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Abstract—The BlazePose, which models human body skeletons
as spatiotemporal graphs, has achieved fantastic performance in
skeleton-based action identification. A Spatial-Temporal Graph
Convolutional Network can then be used to forecast the actions.
This architecture performance can be improved by simply
replacing the skeleton input data with a different set of joints
that provide more information about the activity of interest. On
the other hand, existing approaches require the user to manually
set the graph’s topology and then fix it across all input layers
and samples. This research shows how to use Stochastic Fractal
Search - Guided Whale Optimization Algorithm in conjunction
with the BlazePose skeletal data to construct a novel implemen-
tation of this topology for action recognition. We utilized the
NTU-RGB+D and the Kinetics datasets as benchmarks in our
experiments.

Index Terms—BlazePose, metaheuristics, convolutional net-
works, feature selection, action recognition

I. INTRODUCTION

BlazePose is an architecture for human posture prediction
using a lightweight convolutional neural network optimized for
inference on mobile devices. During the inference process, the
neural network generates 33 main body landmarks for a single
person [1]. The standard method for action recognition sys-
tems generates heatmaps for every joint while simultaneously
adjusting offsets for every position. Nevertheless, it makes the
model for a single individual significantly more complex than
what is needed for real-time inference on mobile phones.

In contrast, we have utilized an encoder-decoder architec-
ture that regresses directly to the coordinates of all joints.
Regression-based approaches attempt to forecast the mean
coordinate values despite being less computationally intensive
and more scalable.

II. LITERATURE REVIEW

We have arranged the previous works found in literature
into two categories: action recognition and feature selection.

A. Convolutional Networks for Action Recognition

In deep learning, the term ”geometric deep learning” refers
to all developing techniques that generalize deep learning
models to non-Euclidean domains like graphs. The concept
of a Graph Neural Network, abbreviated as GNN, was first
described in [2]. The hunch that underpins GNNs (Graph
Neural Networks) is that the edges of a graph indicate the
links between items or concepts, while the nodes represent the
objects or concepts themselves. The Spatial-Temporal Graph
Convolutional Network (ST-GCN) [3] is a sub-class of GNN
that is specifically designed to handle graph-structured data
with dynamic relationships over time. This architecture is able
to model the interactions between nodes in a graph, consid-
ering both the spatial and temporal dimensions. The author
[4] is credited with the original formulation of Convolutional
Neural Networks (CNNs) on graphs. In his work, he adapted
convolution to signals by employing a spectral construction.

B. Metaheuristics Algorithms for Feature Selection

Determining the best combination of characteristics is dif-
ficult and time-consuming to compute. Recently, metaheuris-
tics have been helpful and dependable methods for tackling
various optimization issues [5]. Metaheuristics offer superior
performance compared to precise search methods since they do
not have to look through the total search space. For instance,
the Grey Wolf Optmization algorithm (GWO) was hybridized
with the sine cosine algorithm to improve the power system’s
stability [6]. These hybrid strategies try to share the strengths
of both of their components to increase the capability of



Fig. 1. The architecture of the proposed approach.

exploitation while simultaneously minimizing the likelihood of
falling into an optimal local state. According to the findings of
this research, the performance of the hybrid approaches was
significantly superior to that of other global or local search
methods.

Despite the excellent performance of the approaches de-
scribed above, it is safe to say that none of them can handle all
of the issues associated with the feature selection process. As
a result, the solutions to problems involving feature selection
can be improved by making enhancements to the approaches
that are now in use.

III. THE PROPOSED METHODOLOGY

From our perspective, the augmentation of the number of
joints in the skeletal structure the BlazePose system’s can pro-
vide a greater amount of data to facilitate the enhancement of
the performance of the ST-GCN model compared to alternative
topologies (e.g., OpenPose [7]). By adding feature selection
layers, we hope to get a sense of how the shoulders and head
move together during the activities for the Kinetics dataset and
the NTU-RGB+D dataset. Fig. 1 shows the proposed pipeline
definition for action recognition.

A. SFS-Guided WOA for Feature Selection

The Whale Optimization Algorithm (WOA) [8] as other
Metaheuristic algorithms presented previously was inspired in
nature. Specifically, the original WOA would drive the whales
to swim in random circles around each other, just like the
global search would. The Guided-WOA algorithm increases
the number of whales during the exploration stage to improve
its performance. This can push whales to explore additional

territory without affecting their ability to hold leadership
positions. This results in an enhancement in the Guided WOA’s
capability for exploration, and the diffusion process serves to
find the best outcome.

The Guided-WOA algorithm is used to search for the
optimal subset of features by optimizing a fitness function
that represents the performance of the baseline model. For
feature selection, each feature can be represented as a whale,
and the objective is to find the main features that give the best
performance on the ST-GCN.

B. Fitness Function

During the feature selection process, the metaheuristic al-
gorithm selects which individual features from the population
will be continuing onto the next generation. This can be
achieved using the fitness function. Its value determines the
probability of a feature being selected for further exploration
and exploitation in the algorithm. Subsets of features with
higher fitness scores are more likely to be selected for the next
generation or iteration of the algorithm. We used the following
equation to calculate the value of each solution:

Fitness = h1E(D) + h2
|s|
|f |

(1)

Where s is the quantity of selected features in the iteration,
f is the number of the complete population of features, E(D)
is the misclassification rate for each dimension and h1 ϵ [0, 1],
h2 = 1− h1 leverage the weight of the misclassification rate
and the number of the chosen features.



Fig. 2. A sequence of video frames corresponding to the ”tai chi” action from Kinetics

C. Evaluation Metrics

We evaluated the performance of our solution using the
following evaluation metrics.

Average error: This metric describes the mean of the
precision of the classifier by using the selected features of
each iteration [9].

Average Fitness Size: The Fitness size can be described as
the proportion of the original features size D considered in the
features selection on each iteration. That is, to divide the size
of the N selected features by D. Hence, this is metric describes
the mean value of the proportions (i.e., N

D ) calculated during
the iterations of the optimization algorithm [9].

Best Fitness: This metric represents minimum value for
the fitness function of a given optimization algorithm after
completing all the tuning iterations [9].

Worst Fitness: Opposite to the Best Fitness, this metric
describes the maximum value obtained by the fitness function
of a a given optimization algorithm after completing all the
tuning iterations [9].

IV. EXPERIMENT SETTINGS

We resized each movie until it had the proportions 340 x
256 pixels. Consequently, we extracted the skeleton data using
the framework provided by the BlazePose authors. This tool
is very accurate to detect the joints on actions where there is a
single performer. As a reference, we show the output obtained
with this tool upon a ”tai chi” sample from the Kinetics dataset
in Fig. 2. We did not consider any video frames in which the
BlazePose system did not identify a skeleton as being present.
Limiting the number of frames in the series of skeletons to

Fig. 3. Kinetics Performance

just 300. As a result of this limitation, the majority of videos
featured a limited amount of frames. Because of this, if a
sequence contained fewer than 300 frames, we simply repeated
the first few until we reached the appropriate length. On the
other hand, if the sequence contained more than 300 frames,
we arbitrarily removed some of the excess frames. We used
spatial configuration partitioning to compute the convolution
operation. Finally, we trained the model for 80 epochs.

Due to the nature of the Kinetics dataset which was ex-
tracted from Youtube with no quality checks, the BlazePose
model presented difficulties in detecting the skeleton in many
frames. Hence, we proposed to create a subset of samples for
training. The sk-50 and sk-80 refer to two subsets consisting
of samples using a minimum skeleton detection threshold
indicated. For instance, the sk-50 st subset contains only
samples on which it has been detected a skeleton at least in
50% of the frames on the videos.

V. RESULTS AND DISCUSSION

The results are shown in two stages: First, the performance
achieved in terms of SFS-Guided WOA with all feature selec-
tion performance metrics . The second, SFS-Guided WOA in
conjunction with the BlazePose skeletal topology to construct
a novel action recognition system.

A. Feature Selection Results

In this study, we provide a comparative analysis to assess the
efficacy of the proposed feature selection algorithms with six
other feature selection algorithms: bGWO [10], bPSO [11],
bSFS [12], bWOA [13], bFA [14] and the bGA [15]. The

Fig. 4. NTU-RGB+D Performance



TABLE I
EVALUATION COMPARISON RESULTS

Average error
Dataset SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA
Kinetics 0.27276 0.28648 0.2768 0.285465 0.27374 0.2806 0.27374

NTU-RGB+D 0.21014 0.22314 0.25091 0.230256 0.23596 0.24151 0.23083
Average fitness

Dataset SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA
Kinetics 0.30049 0.33638 0.32279 0.3367 0.32376 0.33055 0.32376

NTU-RGB+D 0.22215 0.25712 0.28462 0.23 0.26981 0.27531 0.26473
Best fitness

Dataset SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA
Kinetics 0.20535 0.22476 0.22476 0.285994 0.26358 0.26358 0.22476

NTU-RGB+D 0.17039 0.18731 0.22115 0.177115 0.19577 0.17039 0.20423
Worst fitness

Dataset SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA
Kinetics 0.39988 0.41888 0.43829 0.360641 0.43829 0.4577 0.39946

NTU-RGB+D 0.32162 0.33115 0.33962 0.363322 0.35654 0.37346 0.38192

evaluation metrics measured based on the achieved results and
recorded in Tab. I. In this table, six evaluation metrics are
calculated and presented. The recorded values achieved by the
proposed approach suggest that our approach outperforms the
other alternative methods.

Another way to demonstrate the effectiveness of the pro-
posed approach is through visualizing the achieved results. To
achieve this, we utilized quartile-quartile (Q-Q) plots. A Q-Q
plot is a graphical representation that compares two probability
distributions by plotting their quantiles against each other. The
purpose of a Q-Q plot is to determine if two sets of data come
from populations with a similar distribution [16]. In Fig.3 and
Fig.4, we show the plots for the obtained results based on the
Kinetics and Ntu-RGB+D, respectively. From these figures, it
can be noted that the performance of the proposed method is
accurate in classifying the given actions.

On the other hand, the comparison of the time cost with
previous works for feature selection is presented in Tab. II.
As it can be noticed, we the time consumed by our proposed
method is lower than the alternatives to select the needed
important features for action recognition.

B. Action Recognition Results

The action recognition results achieved by the proposed
approach is compared to the previous ST-GCN, Spatial-
Temporal Graph Deconvolutional Networks (ST-GDN) [17],
and BlazePose methods. The comparison results are presented
in Tab.III in terms of the Kinetics dataset.

TABLE II
AVERAGE TIME CONSUMED FOR FEATURE SELECTION (IN SECONDS).

Method Kinetics NTU-RGB+D Average Time
SFS-GWOA 31.194 33.612 32.403
bGWO 33.838 35.543 34.6905
bPSO 33.52 35.115 34.3175
bSFS 34.92 34.87 34.895
bWAO 33.327 34.448 33.8875
bFA 34.548 35.132 34.84
bGA 33.794 35.068 34.431

TABLE III
ACCURACY PERFORMANCE: KINETICS

Method Top-1 Top-5
SFS-Guided WOA : BlazePose, sk-80 56.87% 81.44%
SFS-Guided WOA : BlazePose, sk-50 51.79% 77.13%
BlazePose, sk-80 37.38% 65.20%
BlazePose, sk-50 36.78% 61.69%
ST-GDN 37.30% 60.65%
ST-GCN 30.70% 52.80%

Regarding the NTU-RGB+D dataset, the evaluation was
performed using the Cross-Subject (X-Sub) and Cross-View
(X-View) criteria suggested by the dataset’s authors. Accord-
ing to Tab. IV , The accuracy achieved by the proposed ap-
proach in case of sk-50 is 91.33% for X-View and 94.56% for
the X-Sub, which are higher than the other methods included
in the conducted experiments. In addition, the accuracy upon
for the sk-80 subset is 93.13% and 96.74%, for X-View and
X-Sub, respectively.

TABLE IV
ACCURACY PERFORMANCE: NTU-RGB+D

Method X-View X-Sub
SFS-Guided WOA : BlazePose, sk-80 93.14% 96.74%
SFS-Guided WOA : BlazePose, sk-50 91.33% 94.56%
BlazePose, sk-80 87.62% 91.75%
BlazePose, sk-50 87.30% 90.34%
ST-GDN 89.70% 95.90%
ST-GCN 81.50% 88.30%

VI. CONCLUSION

This study introduces a new method for action recognition
by building the BlazePose skeleton topology on top of the
ST-GCN architecture and selecting features with SFS-Guided
WOA. We have chosen the Kinetics and NTU-RGB+D bench-
mark datasets to give a reliable basis for comparison with the
baseline model in. When the visual data has been acquired in
unconstrained contexts, we advocated using alternative skeletal
detection criteria to increase the model’s performance. We’ve



demonstrated that BlazePose’s topology may be improved by
selecting the appropriate features for feet and hands, resulting
in more precise data about the motion being captured. In
addition, the suggested topology in this research can improve
performance even more.
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