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Abstract. We introduce two commands, nstagebin and nstagebinopt, that can
be used to facilitate the design of multiarm multistage (MAMS) trials with binary
outcomes. MAMS designs are a class of efficient and adaptive randomized clinical
trials that have successfully been used in many disease areas, including cancer, tu-
berculosis, maternal health, COVID-19, and surgery. The nstagebinopt command
finds a class of efficient “admissible” designs based on an optimality criterion using
a systematic search procedure. The nstagebin command calculates the stagewise
sample sizes, trial timelines, and overall operating characteristics of MAMS designs
with binary outcomes. Both commands allow the use of Dunnett’s correction to
account for multiple testing. We also use the ROSSINI 2 MAMS design, an ongo-
ing MAMS trial in surgical wound infection, to illustrate the capabilities of both
commands. The new commands facilitate the design of MAMS trials with binary
outcomes where more than one research question can be addressed under one pro-
tocol.
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1 Introduction
Randomized controlled trials are the gold standard for testing whether a new treatment
is better than the current standard of care. Multiarm multistage (MAMS) trial designs
are efficient adaptive designs that have been proposed to speed up the evaluation of new
therapies and improve success rates in identifying effective ones (Parmar et al. 2008).
The MAMS design achieves this goal with two main components: The multiarm aspect
allows multiple experimental arms to be compared with a common control (which is
generally taken as the current standard of care) in one trial, and the multistage aspect

© 2023 StataCorp LLC st0728

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X231196295&domain=pdf&date_stamp=2023-09-22


B. Choodari-Oskooei, D. J. Bratton, and M. K. B. Parmar 775

allows interim analyses before the planned end of the study. This enables us to cease
recruitment early to potentially inefficacious experimental arms or stop early for the
overwhelming efficacy. This allows multiple research questions to be efficiently answered
under the same protocol.

Royston, Parmar, and Qian (2003) and Royston et al. (2011) developed a MAMS
design for trials with time-to-event outcomes that uses an intermediate (I) outcome
at interim stages. This increases the efficiency of the MAMS design further because it
allows for the earlier stopping of treatment arms for lack of benefit at interim stages while
maintaining a low probability of false negatives (that is, 1− power). In this framework,
the information on the I outcome accrues at the same or a faster rate than information
for the definitive (D) or primary outcome of the trial. The I outcome should be on
the causal pathway to D, but it does not necessarily have to be a surrogate outcome
(Parmar et al. 2008). If there is no effect of treatment on I, then it is highly desirable
that the same holds for D; otherwise, there is an increased risk of wrongly stopping a
study early for lack of benefit. Choodari-Oskooei et al. (2022) give an extensive account
of Royston, Parmar, and Qian (2003) and Royston et al.’s (2011) MAMS designs and
discuss their underlying principles.

Examples of intermediate and primary outcomes are progression-free (or disease-
free) survival and overall survival for many cancer trials, CD4 count and disease-specific
survival for HIV trials, or culture status (a binary marker for whether a patient has
tuberculosis) and patient relapse (binary) in tuberculosis trials. When one uses an I
outcome, each of the experimental arms is compared pairwise with the control arm on
the I outcome. In the absence of an obvious choice for I, a rational choice of I might be
D itself earlier in time. In this article, the MAMS designs that use the I outcome for the
lack-of-benefit analysis at the interim looks are denoted by I 6= D. Designs that use the
same primary outcome at the interim looks are denoted by I = D. Throughout, we use
the acronym MAMS to refer to the multiarm multistage design described by Royston,
Parmar, and Qian (2003) and Royston et al. (2011).

Binary (or dichotomous) outcomes are widely used in many clinical studies. The
MAMS design has been extended to binary outcomes with the risk difference as the
primary outcome measure (see Bratton, Phillips, and Parmar [2013]) and can easily be
extended to designs with the log odds-ratio as the primary outcome measure (Abery
and Todd 2018). It is one of the few adaptive designs being deployed both in several
trials and across a range of diseases, including trials in COVID-19, cancer, tuberculosis,
and surgery. One example is the MAMS ROSSINI 2 trial in surgical site infection (SSI),
which is used in this article as an example and for illustration (ROSSINI 2 2023).

The purpose of this article is twofold. First, it introduces two commands, nstagebin
and nstagebinopt, that facilitate the design of MAMS trials with binary outcomes.
Second, it addresses the problem of how to find efficient MAMS trials with particular
pairwise or familywise operating characteristics. The nstagebin command operates
similarly to nstage (Barthel, Royston, and Parmar 2009) for time-to-event outcomes.
Given a set of design parameters (including the number of arms, stages, target risk
differences, stagewise significance levels, and powers), nstagebin calculates the required
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sample sizes for the analysis at the end of each stage in addition to stage durations
and the overall pairwise type I error rates and familywise type I error rates (FWER).
The nstagebinopt command finds a class of efficient “admissible” designs based on an
optimality criterion that has been introduced for adaptive designs using a systematic
search procedure. It finds a large set of feasible designs—that is, a design with a
particular (prespecified) overall type I error rate and power—and selects those that
minimize the given optimality criteria. In designs that require correction for multiplicity,
both commands apply Dunnett’s (1955) correction to account for multiple testing due
to multiple experimental arms. We use the ROSSINI 2 MAMS trial as an example to
describe the sample-size calculations and capabilities of these commands. The ROSSINI
2 MAMS trial uses the same primary outcome at all stages of the trial, that is, the I = D
design. In appendix A of the online supplementary material, we also include an example
MAMS trial design that uses an intermediate (binary) outcome at interim stages, which
is different from that of the primary outcome at the final analysis (Bratton, Phillips,
and Parmar 2013).

The structure of this article is as follows. Section 2 presents the specification of
the MAMS design with binary outcomes. It also describes a class of efficient admissible
MAMS designs in section 2.3 and introduces a flexible family of α functions to allow
for a larger set of such designs to be found. Sections 3 and 4 present the nstagebin
and nstagebinopt syntax and dialog boxes. Section 5 describes how to define design
parameters in nstagebin and shows the outputs of both commands using the ROSSINI
2 trial as an example. Finally, we discuss our findings.

2 MAMS designs with binary outcomes
This section presents the specification of the MAMS design with binary outcomes. For
a MAMS trial with K experimental arms and J stages, parameters πjk and πj0 are the
risks of developing the outcome of interest at stage j in an experimental arm k and
the control arm, respectively. The treatment effect is the difference in risks, that is,
a reduction in an unfavorable event rate, and is being measured by θjk = πjk − πj0,
where j = 1, . . . , J and k = 1, . . . ,K. For simplicity, because we assume that all
K pairwise comparisons have the same design parameters (that is, all have the same
design stagewise significance level αj and power ωj), we remove the subscript k from
the notations of design parameters.

Without loss of generality, assume that a negative value of θjk indicates a benefi-
cial effect of treatment k. In trials with K experimental arms, where a set of K null
hypotheses are tested at each stage j, the null and alternative hypotheses are

H0
jk : θjk ≥ θ0j , j = 1, . . . , J

H1
jk : θjk < θ0j , j = 1, . . . , J

for some prespecified (design) null effects θ0j . In practice, θ0j is usually taken to be 0 on
the absolute risk difference. If the same definitive (D) outcome is monitored throughout
the trial (I = D designs), the true treatment effect (θjk) and θ0j are assumed constant
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for all j. Otherwise, θJk and θ0J correspond to the true and null effects on the definitive
outcome and θjk and θ0j correspond to the intermediate outcome for all j < J and
are constant. For sample-size and power calculations, a minimum target treatment
effect (often the minimum clinically important risk difference) is also required, that is,
θ1j . The MAMS framework can be applied to both superiority and noninferiority (NI)
designs where the aim is to show that the active arm is not worse than control by the
prespecified NI margin—see appendix A of the online supplementary material for an
example with the NI design and how to define the null and alternative hypotheses in
this setting.

At each stage, we define the design significance level α = (α1, . . . , αJ) and power
ω = (ω1, . . . , ωJ) for testing each pairwise comparison. Let Zjk be the z test statistic
comparing experimental arm k against the control arm at stage j, where Zjk follows
a standard normal distribution, Zjk ∼ N(0, 1), under the null hypothesis. Note that
all the cumulative data from previous stages are used in the calculations of each z test
statistic. In other words, the pairwise analyses at each stage includes all the individuals
that were included in the analyses of previous stages. The joint distribution of the
z test statistics therefore follows a multivariate normal distribution with the location
parameter as the J × K matrices of the standardized mean treatment effects and the
corresponding covariance matrix (Σ) between the J ×K test statistics. Note that the
Fisher’s (observed) information (Vjk) contained in θ̂jk is defined as {Vjk = 1/Var(θ̂jk)}.
At each interim analysis j = 1, . . . , J−1, the treatment-effect estimates and their corre-
sponding test statistics (Zj1, . . . , Zjk) are calculated together with their corresponding
p-values (pjk).

• If pjk ≥ αj , the result for the pairwise comparison of experimental arm k against
the control arm crosses the jth interim lack-of-benefit stopping rule; therefore,
recruitment to that experimental arm can be stopped for lack of benefit.

• If pjk < αj , continue recruitment in the experimental arm k and control arm and
move to the next stage.

At the final analysis J , the treatment effect is estimated on the primary (D) outcome
for each experimental arm and includes all the randomized individuals from previous
stages in comparison k. As a result, one of two conclusions can be made:

• If pJk ≤ αJ , reject the null hypothesis corresponding to the definitive outcome
and claim efficacy.

• If pJk ≥ αJ , the corresponding null hypothesis cannot be rejected.

2.1 Steps to design a MAMS trial with a binary outcome

The MAMS design requires the specification of the following design parameters to calcu-
late the sample size and trial duration for each stage (j): the (stagewise) design power
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(ωj) and significance levels (αj); the allocation ratio, which is the number of random-
ized individuals in each experimental arm for every individual that is randomized to the
control arm (A); the target effect size under the null (θ0j ) and alternative (θ1j ) hypothe-
ses; the number of arms and stages; and the stagewise accrual rate and the control-arm
event rate for the D and (in I 6= D designs) I outcomes. Below, we outline the steps to
design a MAMS trial with binary outcomes:

1. Choose the number of experimental (E) arms, K, and stages, J .

2. Choose the definitiveD outcome and (optionally, in I 6= D designs) the I outcome.

3. Choose the null values for the underlying treatment effect, θ—for example, the
difference in risks on the definitive and (in I 6= D designs) intermediate outcomes.

4. Choose the minimum clinically relevant target treatment-effect size, θ1j .

5. Choose the control-arm event rate.

6. Choose the allocation ratio A (E:C), the number of patients allocated to each
experimental arm for every patient allocated to the control arm. For a fixed-
sample (one-stage) multiarm trial, the optimal allocation ratio (that is, the one
that minimizes the sample size for a fixed power) is approximately A = 1/

√
K.

7. In I 6= D designs, choose an estimate of the probability of experiencing the defini-
tive (final) outcome given the patient has had the intermediate outcome—that
is, the positive predictive value (PPV)—for the control arm and for experimental
arms. This allows us to estimate the correlation between the treatment effect
on the intermediate outcome and that of the definitive outcome to calculate the
overall pairwise power. An estimate of the PPV can be obtained using data from
previous trials, through expert opinion, or both—more information is included in
Bratton, Phillips, and Parmar (2013). In the ROSSINI 2 design, the same outcome
was used at interim stages (that is, I = D design), so this was not required—see
appendix A in the online supplemental material for a trial example with I 6= D
design.

8. Choose the accrual rate per stage (and optionally, loss to follow-up) to calculate
the trial timelines. The nstagebin command also has two other related options
(extrat() and fu()) that can be invoked to allow for the minimum follow-up
period to observe the outcomes or the extra time that is needed for data cleaning,
analysis, and the various committee meetings that are usually required.

9. Choose a one-sided design significance level for lack of benefit and the target power
for each stage (αj , ωj). The chosen values for αj and ωj are used to calculate the
required sample sizes for each stage.
The nstagebinopt command can be used to determine these values—see sec-
tions 2.3 and 4. Generally, larger-than-traditional (more permissive) values of
αj are used at the interim stages because a decision can be made on dropping
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or continuing arms reasonably early, that is, with a relatively small sample size.
Furthermore, the power in the intermediate stages of the trial should ideally be
at least as high as the final-stage power to give effective experimental arms a
stronger chance of reaching the planned end of the trial, thus allowing more data
to be collected for these arms: ωj ≥ ωJ for all j = 1, . . . , J − 1. This will give
effective arms a stronger chance of reaching the final stage, thus allowing more
data to be collected on them.

2.2 Type I error rate and power

In trials with lack-of-benefit interim stopping boundaries, a type I error is made only
if the null hypothesis for the D outcome is rejected in final-stage analysis. In designs
with J stages and stopping boundaries for lack of benefit, Royston et al. (2011) showed
that, in I = D designs, the overall pairwise type I error rate, α, and power, ω, for each
of the k pairwise comparisons are calculated from

α = ΦJ(zα1 , . . . , zαJ
;R0

J) under θj = θ0j for all j (1)
ω = ΦJ(zω1

, . . . , zωJ
;R1

J) under θj = θ1j for all j

where ΦJ is the J-dimensional multivariate normal distribution function with correlation
matrix R0/1

J . The (j, j′)th entry of R is the correlation between the treatment effects in
stages j and j′—formulas are given in Bratton, Phillips, and Parmar (2013).

In I 6= D designs, the calculation of α in (1) is made under the assumption that H0

is true for both I and D. However, in this case the type I error rate is maximized when
the experimental treatment is highly or infinitely effective on I but the null hypothesis
is true for D. Therefore, the maximum pairwise type I error rate, αmax, is equal to the
final-stage significance level, αJ (Bratton et al. 2016).

In multiarm trials, there are multiple ways to commit a type I error. In some trials
such as the ROSSINI 2 trial, it is required to control the overall FWER at a prespecified
level, usually at 2.5% (one sided). The FWER is the probability of incorrectly rejecting
the null hypothesis for the primary outcome for at least one of the experimental arms
from a set of comparisons in a multiarm trial. The FWER is maximized under the global
null hypothesis, HG

0 , that is, when the null hypothesis that maximizes pairwise alpha is
true for all arms. It is therefore calculated under this hypothesis (Bratton et al. 2016).

2.3 Admissible MAMS designs

In Royston, Parmar, and Qian (2003) and Royston et al.’s (2011) framework, a MAMS
design is constructed by specifying a one-sided significance level and power for the pair-
wise comparisons at each stage of the study along with the minimum target treatment
effect for the outcome of interest in that stage and the allocation ratio for the trial.
Given these design parameters, the sample size required for each analysis is calculated.
The (one-sided) design significance levels act as the stopping boundaries for lack of ben-
efit. Previous MAMS trials such as the STAMPEDE trial (Sydes et al. 2012) have used
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the recommendations given by Royston et al. (2011) to choose the stagewise significance
levels and powers.

Royston et al. (2011) suggested using high power in the intermediate stages (for ex-
ample, 0.95) and also the final stage (for example, 0.90) to ensure high overall power for
the trial. They also suggested using a descending geometric sequence such as αj = 0.5j

for the significance levels in the intermediate stages. However, this approach is prob-
lematic for two main reasons. First, it may not result in a “feasible” design with the
desired overall operating characteristics. To achieve this, a time-consuming trial-and-
error approach is required in which users must continually tweak the stagewise (design)
operating characteristics until a feasible design with the desired overall operating char-
acteristics is found. Second, there are likely to be many feasible designs for any pair
of overall operating characteristics, some requiring smaller sample sizes than others.
Therefore, the chosen design may not be the most efficient or optimal for a particular
true treatment effect. Thus, the most efficient feasible MAMS design for a particular
study is unlikely to be found if this approach is used for trial design.

To address these difficulties, Bratton (2015) developed a systematic grid-search pro-
cedure over the stagewise significance levels and power to find a large set of feasible
designs, that is, designs with a particular (prespecified) overall type I error rate and
power. The procedure then selects the most efficient feasible designs, called admissible
MAMS designs, using an optimality criteria proposed by Jung et al. (2004), which is a
weighted sum of the expected sample size under the global null hypothesis, E(N |H0),
and the hypothesis in which all arms are effective, E(N |H1):

L(q) = qE(N |H1) + (1− q)E(N |H0) (2)

Feasible designs that minimize (2) for some q ∈ [0, 1] are called admissible. Note that
the user chooses q based on the prior beliefs about the effectiveness of the treatment
under study. Special cases are the null-optimal design with q = 0, which minimizes the
expected sample size under the global null hypothesis, that is, E(N |H0), and minimax
designs with q = 1, which minimizes E(N |H1). However, other admissible designs that
minimize a more balanced weighting of the two measures exist. Jung et al. (2004) found
that these “balanced” admissible designs are often much more appealing in practice
because they usually possess similar desirable properties to the null-optimal or minimax
designs but do not have such large maximum or expected sample sizes, respectively. The
parameter q could encompass the prior beliefs about the effectiveness of the experimental
treatment regimens used in each research arm of the trial or the relative importance of
the expected sample sizes under the global null or alternative hypotheses. Designs that
minimize the loss function for a wider range of values of q are likely to be more desirable
because they are admissible for a wider range of prior beliefs or scenarios. Hence, it
is important to find the admissible designs for all values of q so that those that cover
the broadest range of opinions can be found. The final choice of design will therefore
depend on prior beliefs about the effectiveness of the treatment under study, the relative
importance of the maximum and expected sample sizes to the investigators, or both.
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2.3.1 α functions to find design significance levels

In two-stage settings, a simple grid-search procedure can be used to search over all four
stagewise design parameters (α1, α2, ω1, and ω2) to find feasible designs. For designs
with more than two stages, the addition of an extra two parameters for each additional
stage drastically increases the search time, rendering a full grid search impractical.
To increase search speed, one should apply some constraints to limit the number of
parameters to search over without significantly reducing the number of feasible designs
found. Particularly, to limit the number of design significance level parameters to search
over and to ensure that the stagewise significance levels decrease with each stage as
suggested by Royston et al. (2011), one can use a monotonically decreasing function to
automatically determine the parameters that are not included in the search.

An “α function” similar to that proposed by Royston et al. (2011) that determines
the significance levels for the intermediate stages given the significance level for the first
stage is

αj = αj
1 j = 1, . . . , J − 1 (3)

To find a range of feasible designs using this function, one can search over various values
of α1 with the final-stage significance level, αJ , chosen such that the desired type I
error rate is achieved. However, very few sets of significance levels will be searched over
using this function, so few, if any, feasible designs are likely to be found. Bratton (2015)
introduced (4) as an alternative, and more flexible, family of functions that pass through
specified values of α1 and αJ and require the definition of a parameter 0 ≤ r ≤ 1 as
follows:

αj =
α1

jr
J − j

J − 1
+ αJ

j − 1

J − 1
j = 1, . . . , J (4)

By performing a grid search over α1 and αJ , one can use this function to automatically
determine the significance levels for stages j = 2, . . . , J − 1 for a range of prespecified
values of r. The search time will therefore be longer than it is when using (3). However,
more feasible designs are likely to be found. The shapes of both of the above α functions
are shown in figure 1 for J = 3, 4, and 5 stages, α1 = 0.5, αJ = 0.05 and, for (4) only,
r = 0 (linear), 0.5, and 1. The stagewise significance levels corresponding to each
function are shown in table 1 with intermediate significance levels rounded in units of
0.01 for practical reasons.
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Figure 1. Examples of α functions generated using (3) (“Royston’s function”) and (4)
for r = 0, 0.5, and 1; J = 3, 4, and 5 stages; α1 = 0.5; and αJ = 0.05.
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Table 1. Stagewise significance levels obtained from the α functions shown in figure 1
for three-, four-, and five-stage designs

Number of Stage r in (4) Royston’s
stages, J 0 0.5 1 function (3)

3
1 0.50 0.50 0.50 0.50
2 0.28 0.20 0.15 0.25
3 0.05 0.05 0.05 0.05

4

1 0.50 0.50 0.50 0.50
2 0.35 0.25 0.18 0.25
3 0.20 0.13 0.09 0.13
4 0.05 0.05 0.05 0.05

5

1 0.50 0.50 0.50 0.50
2 0.39 0.28 0.20 0.25
3 0.28 0.17 0.11 0.13
4 0.16 0.10 0.07 0.06
5 0.05 0.05 0.05 0.05

Figure 1 shows that as r increases, the α functions in (4) become more curved. This
causes the significance level to decrease more rapidly during the initial stages, thus
increasing their sample size and duration (except for the first stage, whose duration
is determined by the fixed value α1). The functions then level off, so the number of
patients recruited in the later stages will decrease. From table 1, it appears that using
a value of r greater than 1 for many stages (for example, J = 5) will result in negligibly
small decrements in the significance levels between later stages, thus making them too
small. On the other hand, α functions that curve in the opposite direction will have
very short early intermediate stages, while later stages will be lengthy. Such designs
are likely to be impractical and inefficient in practice. Thus, only values of r between 0
and 1 are considered (Bratton 2015). Table 1 also shows that for three or four stages,
the significance levels found using (3) almost coincide with a set found using (4). In
the five-stage example, the decrease in the significance level between the penultimate
(α4 = 0.06) and final stages (α5 = 0.05) using Royston’s function is too small and
unlikely to result in a practical design. The search procedure uses the same (high)
power in all intermediate stages and a different lower power at the final stage.

The nstagebinopt command uses the α function in (4) to search for admissible
designs and finds the corresponding stagewise design significance levels (αj) and power
(ωj). The command works by first finding a set of feasible designs for a given number
of stages and overall operating characteristics and then outputs the admissible designs
from this set for all q ∈ [0, 1]. The syntax and output of the command are presented in
the following sections, including those applied to the ROSSINI 2 trial design.
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3 The nstagebin command
The syntax for nstagebin is described below along with its dialog boxes for simplifying
its use, particularly for first-time users.

3.1 Syntax

nstagebin, nstage(#) accrate(numlist) alpha(numlist) power(numlist)
arms(numlist) theta0(#

[
#
]
) theta1(#

[
#
]
) ctrlp(#

[
#
]
)
[
ppvc(#)

ppve(#) aratio(#) fu(#
[

#
]
) extrat(#) ltfu(#

[
#
]
) tunit(#) probs

ess nofwer reps(#) seed(#)
]

Note that the number of values given in each numlist must equal the number of stages in
the trial as specified in the nstage() option. The options for nstagebin are as follows:

3.2 Options

nstage(#) specifies the number of trial stages, J . nstage() is required.

accrate(numlist) specifies the overall anticipated constant accrual rate, rj , per unit of
trial time (see tunit()) in each stage. accrate() is required.

alpha(numlist) specifies the one-sided significance level, αj , for each pairwise compar-
ison at each stage, j. Significance levels should decrease with each stage. alpha()
is required.

power(numlist) specifies the nominal power, ωj , for each pairwise comparison at each
stage under the effect specified in theta1(). power() is required.

arms(numlist) specifies the maximum number of arms actively recruiting in each stage
(including the control arm). This option does not necessarily specify the number of
arms that will be in each stage by design (except in the first stage). In practice,
the actual number of arms that will recruit after the first stage will be determined
after deciding whether to stop some arms. Therefore, the number in each stage
cannot exceed the number in the previous stage because arms can only be dropped.
Smaller numbers of arms can be specified after the first stage to explore the impact
on sample size and study length for particular scenarios. arms() is required.

theta0(#
[

#
]
) specifies the absolute risk difference under the null hypothesis, H0,

for the I and D outcomes, respectively. Typically, these values are both 0 (no
difference). If I = D, only one value needs specifying. theta0() is required.

theta1(#
[

#
]
) specifies the minimum risk difference targeted under the alternative

hypothesis, H1, for the I and D outcomes, respectively. If I = D, only one value
needs specifying. theta1() is required.
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ctrlp(#
[

#
]
) specifies the anticipated control arm event rate for the I and D out-

come, respectively. If I = D, only one value needs specifying. ctrlp() is required.

ppvc(#) specifies the PPV for the control arm, that is, the probability of a patient
experiencing the D outcome given he or she has also experienced the I outcome,
P (D = 1|I = 1). If I = D, this option does not need specifying.

ppve(#) specifies the PPV for the experimental arm under the alternative hypothesis.
If I = D, this option does not need specifying.

aratio(#) specifies the allocation ratio, A (number of patients allocated to each ex-
perimental arm for each patient allocated to control). For example, aratio(0.5)
specifies that one patient is allocated to each experimental arm for every two patients
allocated to control. The default is aratio(1) (equal allocation to all arms).

fu(#
[

#
]
) specifies the length of follow-up period from an individual’s randomization

to his or her outcome measurement in units of trial time (see tunit()) for the I and
D outcomes, respectively. The follow-up period on D should be at least as long as
that for I. If I = D, only one value needs specifying. The default is fu(0) (I and
D outcomes both observed immediately after randomization).

extrat(#) specifies the delay in units of trial time (see tunit()) between observing the
final required outcome for an analysis and the beginning of the next stage. This delay
incorporates time for data cleaning, analysis, and the various committee meetings
that are usually required. The default is extrat(0) (no delay).

ltfu(#
[

#
]
) specifies the loss to follow-up proportion for the I and D outcomes,

respectively. This is typically larger for D than I. If I = D, only one value needs
specifying. Note that sample sizes are inflated to account for the level of attrition
that is expected. The default is ltfu(0) (no loss to follow-up for either outcome).

tunit(#) defines the code for units of trial time. The codes are 1 = one year, 2 = six
months, 3 = one quarter (three months), 4 = one month, 5 = one week, 6 = one
day, and 7 = unspecified. tunit() has no influence on the computations and is for
information only. The default is tunit(1) (one year).

probs reports the probabilities of the number of arms passing each stage of the study
under the global null (H0 true for all arms) and global alternative (H1 true for all
arms) hypotheses.

ess reports the expected sample size of the trial (average number of patients recruited
to the trial before it is terminated) under the global null and alternative hypotheses.

nofwer suppresses the calculation of the maximum familywise error rate of the trial
(probability of making at least one type I error at the end of the trial under any
parameter configuration). In two-arm designs, the FWER is not calculated by default.

reps(#) specifies the number of replications used in the simulation to calculate the
FWER. The default is reps(250000) replicates.
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seed(#) specifies the initial value of the random-number seed used in the simulation
to calculate the FWER, which is reproducible.

3.3 Dialog box

The nstagebin command is accompanied with a dialog box to simplify the way in which
design parameters can be entered into the command. Once installed, the box can be
accessed by typing “db nstagebin” into the Stata command line. The tabs of the dialog
box are presented in figures 2–5. Because we would like to illustrate the capabilities
of the dialog box for the more complex I 6= D designs, we used the design parameters
of the example trial presented in appendix A in all the screenshots—for its output, see
appendix A.

Figure 2. Screenshot of the first tab of the nstagebin dialog box: general trial design
parameters
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Figure 3. Screenshot of the second tab of the nstagebin dialog box: stagewise operating
characteristics

Figure 4. Screenshot of the third tab of the nstagebin dialog box: parameters for the
intermediate outcome (if applicable)
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Figure 5. Screenshot of the final tab of the nstagebin dialog box: parameters for the
primary outcome

In the first tab (Design parameters—figure 2), the number of stages, allocation
ratio, trial time units, and delay required for interim analyses are entered. In the second
tab (Operating characteristics—figure 3), the significance levels, powers, accrual
rates, and number of recruiting arms are chosen for each stage of the trial. In the third
tab (Intermediate outcome—figure 4), the design parameters for the intermediate
outcome (if it differs from the primary outcome) are entered. These include the control
event rate, risk differences under H0 and H1, length of follow-up, and loss to follow-up
rate. On the final tab (Primary outcome—figure 5), the analogous parameters are
entered for the definitive outcome. Also on the third tab, the PPVs of I on D are entered
for the control and experimental arms.

4 The nstagebinopt command
The syntax for nstagebinopt is presented in the following subsections.

4.1 Syntax

nstagebinopt, nstage(#) arms(#) alpha(#) power(#) theta0(#
[

#
]
)

theta1(#
[

#
]
) ctrlp(#

[
#
]
) aratio(numlist)

[
ppv(#) save(string)

fwer pi(#) p(numlist) ltfu(#
[

#
]
) fu(#) accrate(numlist) acc(#)

plot
]
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4.2 Options

nstage(#) specifies the number of trial stages, J . nstage() is required.

arms(#) specifies the number of arms at the start of the study (including control arm),
K + 1. arms() is required.

alpha(#) specifies the desired overall one-sided type I error rate of each pairwise com-
parison in the trial. If the fwer option is specified, the value specified in alpha() is
the desired familywise error rate of the study. alpha() is required.

power(#) specifies the overall pairwise power. power() is required.

theta0(#
[

#
]
) specifies the absolute risk difference under the null hypothesis, H0,

for the I and D outcomes. Typically, these values are both 0. If I and D are the
same, then only one value needs specifying. theta0() is required.

theta1(#
[

#
]
) specifies the minimum risk difference targeted under the alternative

hypothesis, H1, for the I and D outcomes. Typically, either these values are equal
or the target difference is smaller for the D outcome. If I and D are the same, then
only one value needs specifying. theta1() is required.

ctrlp(#
[

#
]
) specifies the anticipated control-arm event rate for the I and D out-

comes, respectively. If I = D, only one value needs specifying. ctrlp() is required.

aratio(numlist) specifies the allocation ratios (number of patients allocated to each
experimental arm per control-arm patient) that are to be considered in the search
procedure for admissible designs. Allocation ratios such as 1 (equal allocation to
all arms) or 0.5 (1 patient allocated to each experimental arm for every 2 patients
allocated to control) are often used. Note that allocating a higher proportion of
patients to control can decrease sample-size requirements if evaluating more than
one experimental arm. aratio() is required.

ppv(#) specifies PPV P (D = 1|I = 1), assumed to be the same in all arms (only needs
specifying if I 6= D).

save(string) specifies a filename in which to save the characteristics of the admissible
designs. The file is saved in the working directory.

fwer specifies that the maximum familywise error rate of the trial should be controlled
at the level specified in alpha(). The familywise error rate is the probability of
making at least one type I error (false positive) at the end of the trial.

pi(#) specifies the minimum proportion of the maximum control arm sample size that
should be recruited during each stage of the study. For instance, if the maximum
control arm sample size is 500 and pi(0.1), then at least 50 patients will be recruited
to the control arm during each stage. A higher value of # will increase the speed of
the search procedure but may result in finding less efficient admissible designs. The
default is pi(0.1).
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p(numlist) defines which alpha functions are to be used in the search procedure. The
default is p(0 0.25 0.5) if I = D and p(0 0.25 0.5 0.75 1) if I and D differ.

ltfu(#
[

#
]
) specifies the loss to follow-up rate for the I andD outcomes, respectively.

Typically, the loss-to-follow-up rate is larger for the D outcome than the I outcome.
If I andD are the same, then only one value needs specifying. The default is ltfu(0)
(no loss to follow-up for either outcome).

fu(#) specifies the length of the follow-up period (in units of time) for the I outcome.
The follow-up period on the D outcome should be the same or longer than that on
the I outcome. If I and D are the same, then only one value needs specifying. The
default is fu(0) (no follow-up period, that is, outcomes observed immediately after
randomization).

accrate(numlist) specifies the rate per unit of time at which patients enter the trial in
each stage of the trial. Accrual rates should be on the same time scale as used for
fu(). This option needs specifying only if fu() is specified.

acc(#) specifies the maximum deviation in overall alpha and power allowed in feasible
designs from the desired values. The default is acc(0.0005).

plot produces a plot of the expected sample sizes under H0 versus maximum sample
sizes of the J-stage admissible designs.

5 Example: Application to the ROSSINI 2 trial
This section presents the outputs from the nstagebinopt and nstagebin commands
using the ROSSINI 2 trial as an example.

5.1 ROSSINI 2 MAMS trial

The reduction of SSI using several novel interventions (ROSSINI 2) trial [NCT03838575]
is a phase III MAMS design investigating in-theater interventions to reduce SSI. The
composite binary outcome of SSI up to 30 days is the definitive outcome that is used at
both the interim and the final stages of this trial, that is, I = D MAMS design. In this
eight-arm, three-stage MAMS trial, three interventions (skin prep, drape, and sponge)
are being tested, with patients being randomized to receive none (control arm), one,
or any combination of these interventions; that is, there are seven experimental arms
in total. The primary outcome measure θ is the absolute difference in the proportion
of patients reporting SSI up to 30 days after surgery between each of the experimental
arms and that of the control arm. The same primary outcome measure is used at all
stages for analysis and dropping of arms. No formal stopping rule for early evidence of
efficacy has been specified at the design stage of the trial. The trial design also allowed
for treatment selection. For simplicity, we disregard this aspect of the trial design and
consider it as a standard MAMS trial. Table 2 shows the stagewise design parameters
for the ROSSINI 2 trial.
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Table 2. Design specification for the eight-arm three-stage ROSSINI 2 MAMS trial. The
target effect size is 5% reduction in the SSI event rate in each of the seven experimental
arms from the control-arm event rate of 15%—see section 5.3 for more details.

Stagewise operating characteristics

Stage Power Sig. level Ctrl. arm patients

1 0.94 0.40 402
2 0.94 0.14 854
3 0.91 0.005 1887

Overall pairwise power 0.85
Overall FWER 0.025

In this trial, the overall FWER was strongly controlled at 0.025 (one-sided) to account
for multiplicity as a result of multiple pairwise comparisons. The overall pairwise power
is 0.85. The nstagebinopt command used these values to find admissible MAMS designs
and determine the corresponding stagewise operating characteristics, αj and ωj . Then
the nstagebin command calculates the stagewise sample sizes and trial timelines given
stagewise (design) operating characteristics that are determined by nstagebinopt, as
well as all the other design parameters such as the number of arms and stages and
control arm event rate.

5.2 nstagebinopt output

In multiarm trials, nstagebinopt outputs the stagewise operating characteristics and
expected sample sizes under the global null and alternative hypotheses, that is, E(N |H0)
and E(N |H1), for each admissible J-stage design that minimizes the loss function in
(2) for some q ∈ [0, 1]. The command can also save this information in a dataset if
you specify the save() option and can produce a plot of E(N |H0) versus E(N |H1) by
choosing the plot option—see figure 6. Each admissible design can then be entered into
the nstagebin command to explore them in more detail—see section 5.3 for the code
and its output, that is, stage durations and sample sizes.

In the design stage of the ROSSINI 2 trial, the control-arm SSI rate was assumed
to be 0.15, that is, specified using the ctrlp(0.15) option in both commands. The
trial is powered to detect a target SSI rate of 0.10 in each of the experimental arms,
an absolute reduction of θ = 5% (theta1(-0.05)) and a relative reduction of 33.3%.
Patients are allocated to the control arm with a 2:1 ratio (aratio(0.5)) to increase
power for each of the pairwise comparisons. In stage 1, which includes the pilot phase,
the accrual rate was (on average) assumed to be 118 patients per month. This was
expected to increase to 248 patients per month in the subsequent stages (accrate(118
248 248)). These recruitment targets were achievable based on the experience with
the previous ROSSINI-1 trial. Further, it was assumed that 4% of patients will be lost
to follow-up (ltfu(0.04)) or that the primary outcome evaluation will be missing, for
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example, surgery not done. For the interim-stage analyses, once the target number of
patients is recruited, it was expected that around 4 months will pass until the decision
time regarding stopping or continuing research arms, that is, fu(4). This was to allow
for 30-day follow-up, captured data to be entered, interim analysis to be performed,
and Independent Data Monitoring Committee and Trial Steering Committee meetings
to be held.

The output from the nstagebinopt command is shown below for the ROSSINI 2
MAMS trial with the (one-sided) FWER of 0.025, which is alpha(0.025), and the pair-
wise power of 0.85, which is power(0.85). Note that the FWER is calculated using
simulations in both the nstagebin and the nstagebinopt commands. Thus, both com-
mands calculate (and present) the corresponding Monte Carlo error using the formula√
{FWER× (1− FWER)}/N , where FWER is the calculated overall FWER and N is the

number of simulations. The range of values of q (q-range) for which each design min-
imizes the loss function is also presented. Minimax designs (admissible for q = 1) use
a high power in the intermediate stages so that the lowest possible power is chosen in
the final stage, thus reducing the maximum sample size—see design number 4 in the
output. The stagewise powers in the intermediate and final stages then balance out as
q decreases [that is, as E(N |H0) becomes more of a factor in choosing a design]. The
general pattern observed in the output and figure 6, which plots the expected sample
sizes under the global null and alternative hypotheses for the four different admissible
designs, is that as the expected sample size of the admissible designs increases under
the global alternative hypothesis, E(N |H1), the expected sample size under the global
null hypothesis, E(N |H0), decreases. Note that this trend is nonlinear.

The results indicate that the design that is admissible for q ∈ [0.10, 0.65] has an
expected sample size of 4,683 patients, which is just 25 patients higher than the null-
optimal design with 4,658 patients. However, this admissible design has a much smaller
E(N |H1) than that of the null optimal design. Overall, this design is the preferred
choice. So the chosen stagewise significance levels and powers are used in the nstagebin
command for sample-size calculations.
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. nstagebinopt, nstage(3) arms(8) alpha(0.025) power(0.85) theta0(0)
> theta1(-0.05) ctrlp(0.15) ltfu(0.04) fu(4) accrate(118 248 248) aratio(0.5)
> fwer plot
Finding set of feasible designs...
Calculating expected sample sizes...
Finding set of admissible designs...
n-stage (binary) trial design version 1.0.2, 09 June 2023

Admissible designs for a 8-arm 3-stage trial with binary outcome based on
Choodari-Oskooei, Bratton, and Parmar (2023) Stata Journal 23(3).

Design q-range Stage Sig. Power Alloc. E(N|H0) E(N|H1) FWER
number level ratio (SE)

1 [0.00,0.09] 1 0.31 0.93 0.50 4658 8667 0.0249
2 0.16 0.93 (0.0003)
3 0.005 0.92

2 [0.10,0.65] 1 0.40 0.94 0.50 4683 8437 0.0254
2 0.14 0.94 (0.0003)
3 0.005 0.91

3 [0.66,0.77] 1 0.15 0.93 0.50 4989 8277 0.0258
2 0.08 0.93 (0.0003)
3 0.005 0.90

4 [0.78,1.00] 1 0.27 0.99 0.50 6506 7824 0.0254
2 0.14 0.99 (0.0003)
3 0.004 0.85

Note: each design minimises the loss function (1-q)E(N|H0)+qE(N|H1) for values
of q specified in q_range. H1 is the hypothesis that all of the experimental
arms are effective.
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Figure 6. The expected sample sizes for the four different admissible designs presented
in section 5.2—see nstagebinopt output
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5.3 nstagebin output

This section presents the nstagebin command to calculate the required sample size for
the ROSSINI 2 MAMS design, together with its output. Most of the design parameters
have been defined in section 5.2. The chosen design with the corresponding stagewise
significance levels and power from the nstagebinopt output are used in the nstagebin
command to calculate the stagewise sample sizes and timelines. The selected signifi-
cance levels are 0.40, 0.14, and 0.005—that is, alpha(0.40 0.14 0.005). Stages 1 and
2 stagewise significance levels, that is, 0.40 and 0.14, act as the interim stopping bound-
aries for lack of benefit on the p-value scale. The selected design stagewise powers (ωj)
are 94%, 94%, and 91%, respectively, for each of the three stages in all seven pairwise
comparisons—power(0.94 0.94 0.91). These stagewise design parameters ensure an
overall (one-sided) FWER of 0.025 and a pairwise power of 0.85.

. nstagebin, nstage(3) arms(8 6 4) alpha(0.40 0.14 0.005) power(0.94 0.94 0.91)
> theta0(0) theta1(-0.05) ctrlp(0.15) ltfu(0.04) fu(4) accrate(118 248 248)
> aratio(0.5) tunit(4) seed(123)
n-stage trial design - binary outcome version 1.0.2, 09 June 2023

Sample size for a 8-arm 3-stage trial with binary outcome based on
Bratton et al. (2013) BMC Med Res Meth 13:139 and Choodari-Oskooei,
Bratton, and Parmar (2023) Stata Journal 23(3).

Control arm event rate = 0.15
Delay in observing outcome = 4 months
Attrition rate for outcome = 0.04
Operating characteristics

Alpha(1S) Power theta|H0 theta|H1 Length* Time*

Stage 1 0.4000 0.940 0.000 -0.050 19.979 19.979
Stage 2 0.1400 0.940 0.000 -0.050 9.165 29.144
Stage 3 0.0050 0.910 0.000 -0.050 11.994 41.138
Pairwise 0.0040 0.850 41.138
FWER(SE)** 0.0253 (0.0003)

* Length (duration of each stage) is expressed in month periods
** FWER is calculated using simulations with 250000 replications
Cumulative sample sizes per arm per stage

Stage 1
Overall Control Exper.

Number of active arms 8 1 7
Accrual rate* 118.0 26.2 91.8
Active arms
Patients for analysis 1809 402 201
Patients recruited** 2358 524 262
All arms
Patients recruited** 2358
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Stage 2
Overall Control Exper.

Number of active arms 6 1 5
Accrual rate* 248.0 70.9 177.1
Active arms
Patients for analysis 2989 854 427
Patients recruited** 4108 1173 587
All arms
Patients recruited** 4632

Stage 3
Overall Control Exper.

Number of active arms 4 1 3
Accrual rate* 248.0 99.2 148.8
Active arms
Patients for analysis 4719 1887 944
Patients recruited** 4915 1966 983
All arms
Patients recruited** 6613

* Accrual rates are specified in number of patients per month
** Accounts for loss-to-follow-up rate and includes those recruited during
> follow-up periods

6 Conclusions
This article presented the nstagebin and nstagebinopt commands to find efficient
MAMS designs with binary intermediate and definitive outcomes. The commands (and
associated dialog boxes) facilitate sample-size calculations and planning for such com-
plex studies. The target treatment effect in nstagebin is the absolute risk difference
in both I = D and I 6= D designs. In superiority designs, the analysis can be done
on the relative scale, using the odds or risk ratios, with no impact on the operating
characteristics of the design—see appendix B of the online supplementary material for
the results of our simulations to explore the impact of using different analysis methods
on the pairwise operating characteristics of the MAMS design. Both commands can be
used to design MAMS trials with a target odds ratio by converting the target (log) odds
ratio to the corresponding absolute risk difference (that is, given the control-arm event
rate) using the available formula—for example, see (1) in appendix B of the online
supplementary material.

In NI designs, however, the same analysis method that was assumed at the design
stage should be applied. Otherwise, the type I and II error rates might not be controlled
at the prespecified levels because changing the analysis scale in NI designs requires
redefining the NI margin (Li et al. 2022). Appendix B of the online supplementary
material includes an example NI trial design and the corresponding nstagebin code to
calculate the sample size in such designs.

There are limitations within the MAMS framework. First, in designs with a binary
intermediate outcome, the designs assume the same probability of experiencing the
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definitive (binary) outcome given they have had the intermediate outcome (PPV) for
the control arm and for experimental arms. This is a reasonable assumption to make
and is often the case under the null hypothesis. Second, the MAMS framework and the
corresponding nstage suite of commands have been developed for settings where both
the intermediate and definitive outcomes are of the same type of distributions. One
possible extension is to develop the MAMS approach (and the corresponding software)
for intermediate and definitive outcomes that are of different types of distributions. For
example, in some conditions a continuous (information-rich) marker can sometimes be
assessed earlier as an intermediate outcome ahead of the primary binary outcome such
as death or response to treatment (Choodari-Oskooei et al. 2023). This broadens the
application of MAMS designs to a larger spectrum of health conditions.

Finally, we validated the stagewise sample sizes from nstagebin. We compared the
results with those obtained from the artbin Stata command, which can be used only for
single-stage designs. The sample-size calculations in both agree across a wide range of
design scenarios. The validation script is available in the online supplementary material.

We hope that the commands and this article can facilitate the uptake and imple-
mentations of MAMS designs and help to optimize MAMS designs with binary outcomes.
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8 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-3

. net install st0728 (to install program files, if available)

. net get st0728 (to install ancillary files, if available)

For the latest version of the nstagebin and nstagebinopt commands, type

. ssc install nstagebin

. ssc install nstagebinopt
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