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Abstract

Hard exudate plays an important role in grading diabetic retinopathy (DR)

as a critical indicator. Therefore, the accurate segmentation of hard exudates is

of clinical importance. However, the percentage of hard exudates in the whole

fundus image is relatively small, and their shapes are often irregular and the con-

trasts are usually not high enough. Hence, they are prone to misclassifications

e.g., misclassified as part of the optic disc structure or cotton wool spots, which

results in the low segmentation accuracy and efficiency. This paper proposes

a novel neural network RMCA U-net to accurately segmentation hard exudate

in fundus images. The network features a U-shape framework combined with a

residual structure to obtain the subtle features of hard exudate. A multi-scale

feature fusion (MSFF) module and an improved channel attention (CA) mod-

ule are designed and involved to effectively segmentation sparse small lesions.

The proposed method in this paper has been trained and evaluated on three

data sets: IDRID, Kaggle and one local data set. Experiments are shown and

indicate that RMCA U-net of this paper is superior to the other convolutional

neural networks. The method in this paper is increased by 6% higher in PR-

MAP than U-net on the IDRID dataset, increased by 10% in Recall than U-net
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on the Kaggle dataset and increased by 20% in F1-score than U-net on the local

dataset.

Keywords: RMCA U-net, Channel Attention, Multi-Scale Feature Fusion

Module, Residual module, Hard exudate

1. Introduction

Diabetic retinopathy (DR) is one of the usual complications of diabetes and

the main cause of blindness among adults. Some research estimates that about

93 million people worldwide suffer from DR (Reichel & Salz, 2015; Wild et al.,

2004). The size, quantity and location of exudates are used to grade the sever-5

ity of DR (Guo et al., 2020c) in clinical practice. Exudates are classified into

two categories: hard exudates and soft exudates as Fig.1 shows. Hard exudates

appear as bright yellow crystalline granules having sharper definition which is

more related to diabetic retinopathy, whereas soft exudates exist as whitish

gray in color having fuzzy boundaries which are the expression of hyperten-10

sive retinopathy. Hard exudate also is an important index for grading macular

edema. If hard exudate occurs in a range of one diameter of the optic disc (OD)

from fovea the center of the macula, the patients are regarded to be of symptom

of macular edema (Bresnick et al., 2000).

Automatically segmenting hard exudates is necessary for the computer aided15

diagnosis (CAD) system to grade DR and DME. In the existing literature, the

segmentation methods can be divided into three categories: the unsupervised

method, the coarse-to-fine supervised approach and an end-to-end way.

Unsupervised methods mainly utilize the brightness and morphological fea-

tures to segment hard exudates (Walter et al., 2002; Rajput & Patil, 2014; Kaur20

& Mittal, 2018). Walter et al. (Walter et al., 2002) took morphological opera-

tions and watershed algorithms to remove blood vessels and OD at first and then

combined local window variance with morphological methods to segment hard

exudates. Rajput et al. (Rajput & Patil, 2014) enhanced the fundus image by

adaptive equalization and removed blood vessels and OD, then segmented hard25
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Hard Exudate

Soft Exudate

(a)                                                                                   (b)

Figure 1: Two categories of exudate: (a) hard exudate, (b) soft exudate

exudates through K-means clustering and threshold. Similarly, after removing

blood vessels and OD by a multiscale filter and Hough transform, J. Kaur and

D. Mittal. (Kaur & Mittal, 2018) took a dynamic threshold method to segment

hard exudates.

The advantage of unsupervised methods is that they do not require manual30

labels of ophthalmologists. However, this kind of methods might end up with

a large amount of false negatives and false positives when the contrast between

background and hard exudates is not high enough. Most of approaches need

to remove OD and blood vessels before obtaining the segmentation of hard

exudate. The high-performing preprocessing is the prerequisite to get accurate35

segmentation.

Coarse to fine supervised segmentation is data-driven and requires the ex-

pert’s experience and labelling. It can be divided into two stages: (1) the coarse

detection stage to obtain the candidate regions and (2) the fine segmentation

stage to segment hard exudates in candidate regions. Wang et al. (Wang et al.,40

2020a) adopted the mathematical morphology to extract the candidate hard

exudate regions and then trained a deep convolution network to learn the fea-
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tures of hard exudate. Finally, a random forest was adopted to identify actual

hard exudates. Liu et al. (Liu et al., 2017) removed OD and blood vessels by

morphological operations first and then divided and classified the image patches45

into two categories by random forest. Finally, the hard exudates were segmented

by local variance and contrast. Khojasteh et al. (Khojasteh et al., 2019) chose

ResNet-50 to select the patches with hard exudates and finally used support

vector machines (SVM) to segment hard exudates.

Compared with the unsupervised methods, the coarse to fine methods can50

usually achieve better accuracies, but it requires to select patches with hard

exudates. How to select the patches is a problem and often not straightforward.

The end-to-end method generally adopts deep learning architectures to seg-

ment hard exudates (Mo et al., 2018; Guo et al., 2019a; Tan et al., 2017; Liu

et al., 2021). Mo et al. (Mo et al., 2018) used Resnet-50 as the encoder and55

built a full convolutional residual network (FCRN) in the decoder by fusing

different stage feature layers to obtain the segmentation of hard exudates. Guo

et al. (Guo et al., 2019a) proposed a multi-scale feature fusion (MSFF) method

to segment hard exudates, but only Vgg-16 with straight cylinder structure

was used as backbone to extract the feature, which limits the ability to extract60

features. J H Tan et al. (Tan et al., 2017) designed a 10-layer CNN architec-

ture to segment four types of lesions: hard exudate, soft exudate, hemorrhage,

and microaneurysm. However, this method divides the image into patches of

48×48, which means that the fundus image needs to be cut into lots of patches

for prediction, which is obviously time-consuming. Liu et al. (Liu et al., 2021)65

proposed a dual-branching network and a new dual-sampling modified (DSM)

loss function to solve large scale range and class imbalance in hard exudates

respectively.

Compared with unsupervised and coarse-to-fine supervised methods, the

end-to-end deep learning method significantly improves the segmentation per-70

formance, and most of deep learning methods have lower requirements on pre-

processing. However, all these end-to-end models are only validated on fundus

images with 45-degree or 50-degree field of view (FOV) which have relatively
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clean fundus background. The fundus images with 200-degree FOV have more

complex background and involve eyelids, eyelashes and equipment frame in most75

cases. Hence, segmenting hard exudates is full of challenge for ultra-widefield

fundus images.

Based on the aforementioned improvemnets and challenge, a new deep learn-

ing architecture is developed in this paper, an U-shaped structure of the encoder-

decoder is designed, and a residual module is involved in the encoder part to80

obtain the subtle characteristics of hard exudates. Inspired by MSFF proposed

in (Guo et al., 2020b), different scale feature maps for fusion are utilised to

improve the segmentation accuracy in this paper. In addition, a new attention

mechanism is added to the decoder module to enhance features of hard exudates

(Jie et al., 2017; Wang et al., 2020b; Gu et al., 2021).85

The contributions of this paper are summerized as follows. First, the residual

module is involved in the encoder part to learn the subtle characteristics of hard

exudates, and the new channel attention is added into the decoder module to

further focus on the hard exudate. Second, the adjustment fusion of the multi-

scale modules is used to learn different layers of feature instead of only a single90

layer in skip connection, which makes the segmentation more robust. Finally,

the proposed method is validated on an ultra-widefield fundus images in addition

to two public datasets IDRID as well as Kaggle, which proves that the proposed

segmentation method can obtain a highly generalizable performance in the task

of hard exudate segmentation.95

The organization of this paper is arranged as follows. The relative works are

discussed in the next section. The proposed segmentation method RMCA U-net

is introduced including the architecture as well as loss function in section 3. The

extensive experiments are described and the discussion is presented in section

4. The conclusion is made and the future work is given in the last section.100
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2. Related Works

In the last several years, deep learning is widely used in the community

of biological and medical image analysis. End-to-end full convolution neural

network (FCN) (Long et al., 2015) was developed with the convolution layer

instead of full connection layer and de-convolution in up sampling firstly, but105

the segmentation is not accurate due to its high multiple up-sampling. U-

net (Ronneberger et al., 2015) fusing different encoder levels of features with

decoder through jumping connection was proposed by Ronneberger et al. in

2015, which makes up for the problem of poor segmentation precision caused by

the loss of spatial information in the decoding process. As jumping connection110

strengthens the feature conduction and feature reuse, which effectively alleviates

the gradient disappearance and improves the ability to extract features, U-net

is still a popular medical image segmentation and its variants is widely used in

segmenting organs (Guo et al., 2019a).

U-net still has some challenges in dealing with complex biomedical images115

such as the distractions of background in low quality images and poor accuracy

of segmentation. The variants of U-net are mainly divided into two categories:

improving the framework of U-net (Li et al., 2018; Zhou et al., 2020; Guo et al.,

2020b) and adding attention modules (Oktay et al., 2018; Gu et al., 2021; Li

et al., 2022).120

H-DenseUNet (Li et al., 2018) mainly takes Dense-net block to construct 2D

U-net and 3D U-net to extract features and then introduces hybrid feature fusion

(HFF) to optimize and segment liver and lesions. U-net++ (Zhou et al., 2020)

adopts a series of nested and dense skip connections which reduces the semantic

gap between encoder and decoder and obtains good segmentation performance.125

DR-net (Guo et al., 2020b) also takes the strategy to improve the jump connec-

tion through multi-scale aggregation integrating different scales of features to

extract global information, but this may introduce irrelevant interference fea-

tures. CE-Net (Gu et al., 2019) adds dense atrous convolution (DAC) block

and the residual multi-kernel pooling (RMP) block to the top of the encoder130
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to capture wider and deeper semantic features. U2-net (Qin et al., 2020) keeps

the basic framework of U-net but introduces an U-net to construct a nested

architecture, which can capture more context information from different scales

and achieves good segmentation results, but the number of parameters of this

architecture is far larger than U-net. U-net GAN (Schnfeld et al., 2020) takes135

U-net as a discriminator in the GAN network to guide the generator to generate

more realistic false images. DC U-net (Lou et al., 2020) designed dual-channel

block as the encoder and decoder of the model, which helps capture detailed

features.

These variants often obtain the better segmentation by improving the struc-140

ture of encoder, decoder, jump connection and loss function, but sometimes

the parameters of the architecture is over-cumbersome in order to a slight of

improved performance.

Attention U-net (Oktay et al., 2018) introduces the attention gate (AG) mod-

ule in the skip connection which suppresses the irrelevant areas in the encoder145

layers and highlights the significant features. CA-Net (Gu et al., 2021) adds an

improved AG module to the skip connection and integrates an improved squeeze

and excitation (SE) module and a proportional attention module (LA) in the

decoder. CPFNet(Feng et al., 2020) adds scale-aware pyramid fusion module

(SAPF) at the top of the encoder to obtain multi-scale contexts and adds global150

pyramid guidance module (GPG) in the jump connection to fuse the global

context information flows. Dual encoder-based dynamic-channel graph convo-

lutional network with edge enhancement (DE-DCGCN-EE) (Li et al., 2022)

makes use of the dual-path encoder composed of edge detection and CNN to ex-

tract the feature of edge and adds a graph convolution network at the top of the155

encoder to solve the insufficient utilization of channel information, at the end

it obtains the accurate segmentation of fundus blood vessels. CAR U-net (Guo

et al., 2020a) adds the modified efficient channel attention (MECA) module to

the jump connection and also accomplishes the segmentation of blood vessels in

the fundus image. The AG module and non-local block was proposed in MsT-160

GANet (Wang et al., 2021), and position coding was introduced to obtain the
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global feature and identify the drusen in fundus image. TransUNet (Chen et al.,

2021) uses the hybrid CNN-Transformer architecture to fuse the high-resolution

CNN feature with the global context information from Transformer to achieve

the accurate segmentation of multiple organs and hearts.165

This kind of architectures is often superior to the former one in segmen-

tation performance by limiting the attention on the targets. Hence, in order

to achieve accurate segmentation of hard exudates, residual multi-scale feature

fusion channel attention (RMCA) U-net is proposed in this paper to improve

U-net from both the framework and attention.170

3. Method

The proposed architecture RMCA (Residual Multi-scale feature fusion Chan-

nel Attention) U-net is introduced in this section and illustrated in Fig.2. It

makes use of the encoder-decoder architecture as the basic framework which

is divided into seven stages.The main components involve the encoder part,175

the multi-scale feature fusion module and the decoder part where the channel

attention is involved.

The multi-scale feature fusion (MSFF) is used to replace the skip connection

which guides the model to obtain the global salient features and suppress the

uncorrelated local features. The improved channel attention is inserted into the180

top of the encoder path and the decoder path to extract more useful feature

channels.

3.1. Encoder Module

The down sampling block of U-net is a plain feed-forward model indicating

that the input is completely determined by the output of the only preceding185

layer. However, the gradients may disappear or explode as the network archi-

tecture deepens or gets complex. As shown in the Fig.2, the encoder path is

improved and includes four blocks, and each consists of convolution module,

drop block, pooling layer as well as residual module. Drop block can effectively
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Figure 2: The framework of RMCA U-net

alleviate the overfitting by random dropping a continuous area rather than an190

independent unit (Ghiasi et al., 2018) as dropout does. In fact, drop block is a

structured dropout.

Residual module as shown in the Fig.3. The residual module is made up of

two residual blocks. Each residual block has two layers including normalization

block, Relu activation function, 3×3 convolution and drop block. After the195

residual module is added, the output is not only related to the previous network,

but also retains the network information of the previous layer. This structure

not only effectively alleviates gradient disappearance and gradient explosion

(Guo et al., 2020b) but also is very important to extract hard exudate features

with different sizes and complex shapes.200
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Input Output

BN+relu+3×3Conv+DropBlock Element addition

Figure 3: The residual model

3.2. Multi-scale feature fusion (MSFF)

U-net and its variants play an important role in medical image segmentation.

However the simple skip connection ignores the global features and may intro-

duce the distraction of local irrelevant features (Wang et al., 2021). This paper

uses MSFF module to obtain the feature information from different receptive205

fields.

The structure of MSFF1 is shown in Fig.4. Features from stage 1, stage 2

and stage 3 are input into the drop block and 1×1 convolution, and the number

of channels for each stage is adjusted uniformly by the 1×1 convolution to 64.

The feature layers from stage 1 and stage 2 are then adjusted to the same size210

of feature layer as from stage 3 and stage 5 by performing 4×4 pooling and 2×2

pooling respectively. Concatenating all the features together from four stages,

one can get the feature layer with 256 channels. The fusion features are fed into

3×3 convolution and drop block, then the number of channels is reduced to 64.

The structure of MSFF2 is illustrated in Fig.5. Features from stage 1 to215

stage 4 are convolved with 1×1 kernel and then pass by drop block where the

channel number is 32. The feature layers from stage 1, stage 3 and stage 4 are

then adjusted to the same size of feature layer as from stage 2 and stage 6 by

performing 2×2 pooling, 2×2 de-convolution and 4×4 de-convolution respec-

10



Stage1

Stage2

Stage3

Stage5

4×4Pooling

2×2Pooling

DropBlock+1×1Conv 3×3conv+DropBlock

Output

Figure 4: Multi-scale feature fusion module 1
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Stage1

Stage2

Stage3

Stage4

4×4 deconvolution

2×2 deconvolution

2×2Pooling

DropBlock+1×1Conv 3×3Conv+DropBlock

Output

Stage6

Figure 5: Multi-scale feature fusion module 2

tively. Concatenating all the features together from five stages, one can get the220

feature layer with 160 channels. The fusion feature layer are feeded into the

3×3 convolution and drop block, then the channels are reduced to 32.

The structure of MSFF3 is presented in Fig.6. The features from stage 1,

stage 2, stage 3, stage 4 and Residual Module 1 are convolved with 1×1 kernel

and then pass by drop block, then the number of channels is turned to 16.225

The feature layers from stage 2, stage 3, stage 4 and Residual Module 1 are

then adjusted to the same size of feature layer as from stage 1 and stage 7 by

de-convoluting with 2×2, 4×4, 8×8 and 4×4 respectively. Concatenating all

the features from six stages together, one can obtain the feature layer with 96

channels. The fusion feature layer is de-convoluted with 2×2 to keep the size as230

the same as the input of the architecture and the number of channel is turned

to 16, then and fed into convolutional layers, consisting of 3×3 convolution and

drop block.

12



Stage1

Stage2

Stage3

Stage4

Output

Stage7

MSFF1

4×4 deconvolution

2×2 deconvolution

8×8 deconvolution

DropBlock+1×1Conv 3×3Conv+DropBlock Residual module

Figure 6: Multi-scale feature fusion module 3

3.3. Channel Attention and Decoder Module

In the decoder part, we introduce the channel attention module which is235

inserted into the top of the encoder path and the decoder path as Fig.7 shows.

The output at the different stages of the encoder mostly contains some lower-

level information, and the corresponding channel of the decoder contains more

semantic information. To make better use of the obtained feature from MSFF,

the channel attention is introduced in the proposed architecture. The core240

operation of SE-Net (Jie et al., 2017) is squeeze and excitation which are used

to extract the global spatial information from the squeeze module by the global

average pooling. Inspired by CA-Net (Gu et al., 2021) and ECA-Net (Wang

et al., 2020b), we parallel a max pooling on the basis of SE-Net to store more

spatial information, and the full connection layer in SE-Net is replaced by one-245

dimensional convolution which is used to determine the interaction between

channels and reduce the computation without the loss of the accuracy.
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Figure 7: Channel Attention Module

In Fig.7, H, W, C denote the height, width and the number of channels

related to the input respectively. After paralleling the max pooling and aver-

age pooling, two groups of 1×1×C channel attention coefficients are obtained,250

and then pass through a one-dimensional convolution layer with shared weights

where the convolution kernel size is 3, and the correlation between the two

groups of attention coefficients is calculated. Two vectors of the attention co-

efficient are added together and normalized by the sigmoid function, and the

normalised sum is then multiplied with the input to obtain the feature layer255

with the channel attention. Finally, the feature layer with the channel atten-

tion weight is integrated with the input by element-wise addition to obtain the

output.

For decoder part, in order to effectively recover the high-level feature map-

ping extracted by MSFF and the channel attention module, this paper reuses260

the residual block in the decoder just as the encoder does, because the jumping

connection of the residual block is also helpful to recover the spatial position

information of small lesions, and de-convolution is used for up-sampling.

3.4. Loss Function

To optimize the proposed architecture of this paper, binary cross entropy loss265

is taken to segment hard exudates at pixel level, and the fromula is presented

in (1):

14



LBCE = −
∑
h,w

(1 − Y )log(1 −X) + Y log(X) (1)

where X means the segmentation result and Y for the label groundtruth, and h

and w are the coordinates of pixels.

4. Experiment and analysis270

The experiments are performed on an NVIDIA GeForce RTX 2080 Ti GPU

with 12G video memory. The proposed architecture in this paper is validated

on two public datasets IDRID and Kaggle as well as one local dataset ultra-

widefield fundus images.

4.1. Datasets275

IDRID (India diabetic retinopathy image dataset) (Porwal et al., 2018) was

publicated online at the 2018 international conference on biomedical retina im-

age challenge sponsored by international symposium on biomedical imaging.

There are 81 images involving hard exudates with size 4288×2848 which are

divided into two parts: 54 for training and 27 for testing. The images are280

clipped, filled by zero operations andresized to 608×608. In order to compen-

sate the insufficient training samples, data augmentation are adopted such as

image contrast enhancement, horizontal flip, up-down flip and random rotation.

Kaggle (diabetic retinopathy detection competition) includes large set of

high-resolution retina images taken under a variety of imaging conditions and285

occupies 82GB in the storage. The amount of the images is more than 10,000

in their diabetic retinopathy detection competition. Each subject involves a

left and right field with with the subject id as well as either left or right. In

this paper, 120 fundus images with the whole retinal region are selected. After

clipping, scaling and zero filling, they are resized to 448×448 where 80 are used290

as training, 20 validating and 20 testing.

Ultra-widefield fundus image data is the local dataset from Xin Hua Hos-

pital Affiliated Shanghai Jiao Tong University School of Medicine. They were

15
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captured under the 200 degrees field of view (FOV) and include 261 fundus

images with the size of 3900×3072.The images are resized to 1300×1024 with295

165 for training and 96 for testing. The proportion of hard exudate is smaller

and the lesions are sparer in ultra-widefield fundus images than the images of

the normal FOV. In this paper, we train the network on patches with 128×128

randomly selecting 800 patches from the region of interest for each image, and

get a total of 132,000 patches. For each iteration, 20% of patches are randomly300

selected to validate the method. The ultra-widefield fundus images are cor-

rected and synthesized by adding an extra channel into the original two ones

red and green, and then image contrast enhancement is taken as the input of

the proposed architecture.

4.2. Training parameter and evaluation305

The experiments are done on Keras and optimized through adaptive moment

estimation (Adam). The batch size is 2 on IDRID, 4 on Kaggle and 48 on ultra-

widefield fundus images. The initial learning rate and the iterations epoch are

set to 0.001 and 100 respectively. The number of channels in the first coding

block of RMCA U-net is 16 and doubled after each downsampling till to 128.310

The size of drop block and the retention probability of each active unit are set

to 7 and 0.9 separately.

The quantitative evaluation are presented in formula (2) to (6) denoting

accuracy, recall, specificity, precision and F1 score separately. ROC (receiver

operating characteristic) curve and PR (precision recall) curve are plotted re-315

spectively. The abscissa and ordinate of ROC given in (7) and (8) denote the

false positive rate (FPR) and true positive rate (TPR) indicating the proportion

of predicted positive but actually negative samples in all negative samples as

well as the proportion of predicted positive and actually positive samples in all

positive samples separately. IoU (intersection over union) and dice coefficient320

are presented in formula (9) and (10). The abscissa and ordinate of PR curve

is recall and precision respectively.

Here true positive (TP) denotes the number of samples with the positive
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label predicated to be also positive. False negative (FN) denotes the number

ones with the positive label predicated to be negative. False positive (FP)325

means the number ones with the negative label predicated to be positive and

true negative (TN) with the negative label predicated to be also negative.

Accuracy =
TP + TN

TP + FN + TN + FP
(2)

Recall =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

Precision =
TP

TP + FP
(5)

F1 =
2 × TP

2 × TP + FP + FN
(6)

FPR =
FP

FP + TN
(7)

TPR =
TP

TP + FN
(8)

IoU =
TP

TP + FN + FP
(9)

Dice =
2 × TP

2 × TP + FN + FP
(10)

4.3. Experimental results

Table 1 gives the quantity analysis results on IDRID. The results of U-net

(Ronneberger et al., 2015) and DR-net (Guo et al., 2020b) were given by our330

own implementations on the dataset, while HED-Net (Xie & Tu, 2017), FCRN

(Mo et al., 2018) and DeepLab V3+ Chen et al. (2018) were from LWE-Net

17



Table 1: Comparative segmentation of exudates on IDRID
Method Year Accuracy Recall Specificity Precision F1 AUC MAP IoU Dice

U-Net(Ronneberger et al., 2015) 2015 99.39% 64.19% 99.87% 86.72% 73.78% 0.9669 0.8291 58.45% 73.78%

HED(Xie & Tu, 2017) 2017 - 76.18% - 74.14% 75.15% - - - -

FCRN(Mo et al., 2018) 2018 - 68.62% - 60.18% 64.12% - - - -

Avula et al.(Benzamin & Chakraborty, 2018) 2018 96.60% 41.40% 98.30% - - - - - -

DeepLab v3+(Chen et al., 2018) 2018 - 70.12% - 65.71% 67.84% - - - -

LWENet(Guo et al., 2019b) 2019 - 78.03% - 78.26% 78.15% - - - -

Xue et al.(Xue et al., 2019) 2019 99.20% 77.90% 99.60% - - - - - -

DR-Net(Guo et al., 2020b) 2020 99.43% 72.76% 99.80% 83.30% 77.68% 0.9836 0.8714 63.50% 77.68%

Liu et al.(Liu et al., 2021) 2021 - 76.30% - 77.39% 76.84% - - - -

Azat et al.(Garifullin et al., 2021) 2021 - 76.70% 99.70% 75.30% - 0.995 0.842 - -

Ours 2021 99.47% 77.41% 99.78% 82.01% 79.65% 0.9863 0.8792 66.18% 79.65%

(Guo et al., 2019b). The results of (Benzamin & Chakraborty, 2018; Guo et al.,

2019b; Xue et al., 2019; Liu et al., 2021; Garifullin et al., 2021) are from their

own papers. Our approach achieves the highest accuracy (99.47%) and F1 score335

(79.65%), which improves the segmentation performance obviously, while LWE-

Net (Guo et al., 2019b) the highest recall (78.03%) and U-net (Ronneberger

et al., 2015) the highest specificity (86.72%). Our approach achieves the second

best ROC-AUC (0.0087 lower than (Garifullin et al., 2021)) and the best PR-

MAP (0.0372 higher than the second (Garifullin et al., 2021)). Compared with340

U-net and DR-net, IoU and Dice of RMCA U-net increase by 7.73%, 2.68% and

5.87%, 1.98% respectively. ROC and PR on IDRID given by U-net, DR-net and

RMCA U-net are illustrated in Fig.8. AUC and MAP of our architecture are

0.9863 and 0.8792 separately.

Table 2 presents the quantitative analysis on Kaggle. Similarly, results of345

U-net and DR-net are given by our experiments. Except for specificity, our

architecture is better than U-net and DR-net on all other metrics. F1 is up

to 80.99%, and ROC-AUC and PR-MAP are 0.9919 and 0.8936 respectively.

IoU and Dice of RMCA U-net increased by 5.52%, 0.9% and 4.04%, 0.64%

respectively against U-net and DR-net. ROC and PR of three models are shown350

in Fig.9.
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Figure 8: ROC and PR curves of U-net, DR-net and RMCA U-net on IDRID

Table 2: Comparative segmentation of exudates on Kaggle
Method year accuracy Recall specificity Precision F1 AUC MAP IoU Dice

U-Net(Ronneberger et al., 2015) 2015 99.57% 71.69% 99.85% 83.05% 76.95% 0.9874 0.8457 62.54% 76.95%

DR-Net(Guo et al., 2020b) 2020 99.63% 77.21% 99.85% 83.76% 80.35% 0.9861 0.8843 67.16% 80.35%

Ours 2021 99.63% 79.47% 99.83% 82.56% 80.99% 0.9919 0.8936 68.06% 80.99%

Figure 10: ROC and PR of U-net, DR-net and RMCA U-net on ultra-widefield fundus images

Table 3: Comparative segmentation of exudates on ultra-widefield fundus images
Method year accuracy Recall specificity Precision F1 AUC MAP IoU Dice

U-Net(Ronneberger et al., 2015) 2015 99.88% 31.50% 99.98% 75.89% 44.52% 0.9883 0.5438 28.63% 44.52%

DR-Net(Guo et al., 2020b) 2020 99.88% 28.11% 99.99% 81.67% 41.83% 0.9914 0.5739 26.45% 41.83%

Ours 2021 99.89% 41.96% 99.98% 77.45% 54.43% 0.9886 0.6160 37.39% 54.43%
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Figure 9: ROC and PR curves of U-net, DR-net and RMCA U-net on Kaggle

Table 3 shows the quantitative comparison on ultra-widefield fundus images.

Precision, ROC and other metrics of RMCA U-net are better than U-net and

DR-net except for specificity, where recall is 41.96% and MAP of PR curve is

0.6160. ROC and PR curves on ultra-widefield fundus images are shown in355

Fig.10 where our model has ROC-AUC and PR-AUC up to 0.9886 and 0.6160

respectively. IoU and Dice of RMCA U-net increased by 8.76%, 10.94% and

9.91%, 12.6% respectively.

The segmentation on IDRID, Kaggle and ultra-widefield fundus images are

shown in Fig.11 to Fig.13 separately. For the first column in Fig.11 on IDRID,360

there are two kinds of similar lesions exudates and cotton wool spots in the

fundus image, our method proposed in this paper effectively removes the dis-

traction of cotton wool spots and obtains more accurate results than the other

two approaches. For the fourth column, U-net brings obvious false negativ-

ity segmentation. Although DR-net can segment accurately the exudate, the365

brightness is obviously lower than our method, which means that RMCA U-net

is more sensitive to the exudates and has more probability to detect exudates.
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Figure 11: Segmentation of U-net, DR-net and our method on IDRID

For Fig.12 on Kaggle, there are large distractions from cotton wool spots and

laser scars in the first two columns. The first column indicates U-net is heavily

distracted by the laser scars. The second column shows the proposed method370

in this paper is very robust to cotton wool spots and obtains most accurate

segmentation regions among three architectures. The third and fourth column

present the results of fundus images with different quality, and our method also

obtains the best segmentations. When the contrast between hard exudate and
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background is not so obvious in the fourth column, DR-net and RMCA U-net375

give better segmentations than U-net. Since RMCA U-net involves the channel

attention, it gets better results in terms of details than DR-net. There are false

positive regions at some extend for U-net and DR-net, whereas RMCA U-net

obtains more robust segmentation.

Fig.13 illustrates the segmentations on ultra-widefield fundus images. The380

low contrast of these fundus images and the sparsity of lesions make the seg-

mentation of exudates full of challenges. The green boxes indicate the original

position regions for the origin images, ground-truth and segmentation results.

The red box is the enlarged version of the green one. The orange circles show

a large number of false positive regions, and the yellow circle are the enlarged385

one. In the first column, the green box indicates the faint exudates and a little

far from the center of the fundus image, and our method gives the relatively

clear segmentation result while the other two methods are failed in the segmen-

tation. The second and the fourth column involve many small distractions a

slight similar with the exudates. In this case, our method effectively removes the390

distractions. In the third column, the region of interest only occupies a small

part, and there are many distractions such as the eyelid and eyelash. Here,

our method gives the segmentation with the highest intensity and the most

integrated areas among the discussed techniques.
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Figure 12: Segmentation of U-net, DR-net and our method on Kaggle
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Figure 13: Segmentation of U-net, DR-net and our method on Ultra-widefield fundus images

5. Conclusion395

The segmentation of hard exudates is significant in aiding to diagnose the

diabetic retinopathy. This paper proposes a U-shaped encoder-decoder archi-

tecture with MSFF, channel attention and the residual module (RMCA U-net)

to capture subtle characteristics of hard exudates. MSFF module is developed

to learn diverse features under more subtle scales instead of just single layer400

of the architecture, the channel attention is introduced to achieve robust seg-

mentation, and the residual module is to alleviate gradient disappearance and
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explosion as well as extract the features of hard exudates. The proposed method

obtains high segmentation performances for the fundus images from both the

normal FOV and the ultra-widefiled, which is validated on two public datasets405

and a local private dataset. RMCA U-net can not only effectively alleviate the

disadvantage of class imbalance in training samples but also can learn the subtle

features of hard exudates, which make it robust to the distractions of optic disc,

cotton wool spots as well as laser scars.

Although RMCA U-net obtains satisfied results on the fundus images under410

the normal field of views, segmenting exudates on ultra-widefield fundus images

still remains big challenges because of the poor image quality, low contrast and

sparsity of hard exudates, which will be our future work in the next step.
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