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Abstract—Deep learning models have achieved the state of the
art in blood glucose (BG) prediction, which has been shown
to improve type 1 diabetes (T1D) management. However, the
models in most existing studies can only provide single-horizon
prediction and face a variety of real-world challenges, such as
lacking hardware implementation and interpretability. In this
work, we introduce a new deep learning framework, the edge-
based temporal fusion transformer (E-TFT), for multi-horizon
BG prediction, and implement the trained model on a customized
wristband with a system on a chip (Nordic nRF52832) for
edge computing. E-TFT employs a self-attention mechanism to
extract long-term temporal dependencies and enables post-hoc
explanation for feature selection. On a clinical dataset with 12
T1D subjects, it achieved a mean root mean square error of
19.09 ± 2.47 mg/dL and 32.31 ± 3.79 mg/dL for 30 and
60-minute prediction horizons, respectively, and outperformed
all the considered baseline methods, such as N-BEATS and N-
HiTS. The proposed model is effective for multi-horizon BG
prediction and can be deployed on wearable devices to enhance
T1D management in clinical settings.

Index Terms—Diabetes, deep learning, multi-horizon predic-
tion, edge computing, transformer.

I. INTRODUCTION

Diabetes mellitus is a global health challenge that affects
more than half a billion people and becomes an increasingly
heavy economic burden to many countries [1]. Type 1 diabetes
(T1D) occurs when the immune system attacks and destroys
the β-cells of the pancreas, and people with T1D require the
administration of exogenous insulin and long-term blood glu-
cose (BG) management [2]. In this case, BG level prediction is
a viable method to enable proactive interventions and thereby
reduce the short and long-term complications caused by hyper-
glycemia or hypoglycemia, such as retinopathy, nephropathy,
and cardiovascular disease [3].

In recent decades, continuous glucose monitoring (CGM)
systems have been widely adopted in T1D management [4],
which generally measure BG concentration every five min-
utes and thus provide vital data for achieving accurate BG
prediction. Daily events, such as carbohydrate intake, insulin
bolus delivery, and exercise, can significantly influence BG
levels, which are commonly recorded via smartphone apps, as
shown in Fig. 1, and employed as additional data sources to
develop data-driven decision support algorithms. In this regard,
artificial intelligence technology, especially deep learning, has

shown excellent performance in BG prediction for various
T1D datasets [5]. Recent advances in self-attention mecha-
nisms [6] have achieved the state-of-the-art in natural language
processing [7] and boosted the development of transformer-
based models for time series forecasting, such as Informer [8]
and Autoformer [9]. Among these, temporal fusion trans-
formers (TFT) [10] is a specifically-designed multi-horizon
transformer that employs gating mechanisms to simultaneously
process various data for real-world applications, including
exogenous time series, future known information, and static
metadata. This feature is extremely useful in BG prediction
with heterogeneous data sources (Fig. 1).

To bring the models to practical use in T1D management,
edge computing-enabled deep learning models for wearable
medical devices are in urgent need [11]. However, increasingly
complex models rely on a large number of parameters and in-
tensive computational resources. It is challenging to implement
these models on a system on a chip (SoC) that interacts with
CGM and provides real-time BG prediction at the same time.
In addition, model interpretability plays an important role in
actual clinical settings, which is the key to feature selection
and pattern analysis in time series forecasting but is still under
research [5], [10].

II. RELATED WORK

Leveraging powerful deep neural networks, a wide range of
deep learning models has been applied to BG prediction [5]
and outperformed conventional machine learning algorithms,
such as support vector regression (SVR) [12]. In particular,
many existing studies are based on recurrent neural networks
(RNNs), including long short-term memory (LSTM) [13]–
[16] and gated recurrent units (GRUs) [11], [17]–[19], which
employ hidden states to extract temporal features from input
sequences. Recently, attention mechanisms were investigated
and combined with LSTM [14] and GRU [19] to assign
weights to hidden states and further enhance BG prediction.
In [19], the authors further adopted the encoder of the original
transformer [6] as a baseline method, which exhibited compa-
rable performance to RNN models for BG prediction on three
clinical datasets. However, most existing studies used many-
to-one RNNs for single-horizon prediction [13]–[20]. These
models require multiple sets of model weights for two or more
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Fig. 1. Framework of a T1D management system, wearable edge device, and the architecture of the proposed TFT model.

prediction horizons (PHs), e.g., 30 and 60 minutes, which
are inefficient for hardware implementation, especially when
storage memory is limited. Multi-horizon models can output
completed sequences but are difficult to train. Smartphone
apps, based on iOS [18], [19] or Android [17], [21] operating
systems, are the most common platform to deploy deep
learning-based glucose predictors. Nevertheless, smartphone
platforms suffer from the lack of wearability, battery issues,
and frequent updates of operating systems [11]. To enable
predictors to be operated on wearable and edge devices,
pioneering work has implemented RNN models on a micro-
controller unit [15] and a SoC [11]. In this work, we propose
an edge-based TFT (E-TFT) model for BG prediction, as
shown in Fig 1. After selecting essential input features through
interpretability analysis, a TFT model is trained and further
deployed on the SoC of a customized wearable edge device,
which can fetch real-time CGM measurements and provide
predictive warning of hypoglycemia and hyperglycemia, which
has the great potential to be incorporated in other wearable
devices, such as CGM transmitters and insulin pumps.

III. METHODOLOGY

A. Data Preparation

To enhance reproducibility and compare model perfor-
mance, we use OhioT1DM dataset [22], a publicly available
dataset that contains a variety of data fields collected in an
eight-week clinical trial with 12 T1D adults. This dataset
also served as a benchmark dataset in Blood Glucose Level
Prediction (BGLP) Challenges [22]. The training and testing
sets are provided separately, and the last 25% data of each
training set were employed as a validation set. There are many
missing values of CGM measurements, due to many practical
reasons, such as signal loss and sensor calibration. To fill up
the gaps without involving any future information, we apply
linear extrapolation and clip values to the sensor operating
range of 40-400 mg/dL.

B. Temporal Fusion Transformers

TFT can deal with mixed types of input data, as shown
in the right part of Fig 1. In particular, CGM measurements
are the target time series, while carbohydrates of meal intake,
insulin bolus, and exercise are treated as exogenous time
series inputs. We further incorporate the gender information
as a static covariate and timestamps as future known time
series. Overall, aiming to obtain multi-horizon prediction,
TFT employs an encoder-decoder structure with the gated
residual network (GRN) [10] as a basic block to determine
the relationship between target time series and exogenous
inputs. GRNs use exponential linear unit activation [23] and
gated linear units [24] to control the nonlinear contributions
of each input feature. The variable selection network (VSN)
combines GRNs with a Softmax layer to assign variable
selection weights for processed input features. Following the
VSNs, LSTM layers are used in both the encoder and the
decoder to extract the local patterns from past inputs and future
known inputs, respectively.

Then the extracted temporal features are fed to upper
modules (green area). First, a static enrichment layer uses
GRNs to populate the impact of the static features. Then, a
specifically designed multi-head attention layer, based on the
self-attention mechanism [6], learns long-term dependencies
while preserving global temporal interpretability, which is
denoted as follows.
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where Q, K, V denote queries, keys, values, respectively,
associated with head-specific weights WQ, WK , WV ; Hi

stands for the output of i-th head out of a total of N heads;


