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Abstract—Deep learning models have achieved the state of the
art in blood glucose (BG) prediction, which has been shown
to improve type 1 diabetes (T1D) management. However, the
models in most existing studies can only provide single-horizon
prediction and face a variety of real-world challenges, such as
lacking hardware implementation and interpretability. In this
work, we introduce a new deep learning framework, the edge-
based temporal fusion transformer (E-TFT), for multi-horizon
BG prediction, and implement the trained model on a customized
wristband with a system on a chip (Nordic nRF52832) for
edge computing. E-TFT employs a self-attention mechanism to
extract long-term temporal dependencies and enables post-hoc
explanation for feature selection. On a clinical dataset with 12
T1D subjects, it achieved a mean root mean square error of
19.09 ± 2.47 mg/dL and 32.31 ± 3.79 mg/dL for 30 and
60-minute prediction horizons, respectively, and outperformed
all the considered baseline methods, such as N-BEATS and N-
HiTS. The proposed model is effective for multi-horizon BG
prediction and can be deployed on wearable devices to enhance
T1D management in clinical settings.

Index Terms—Diabetes, deep learning, multi-horizon predic-
tion, edge computing, transformer.

I. INTRODUCTION

Diabetes mellitus is a global health challenge that affects
more than half a billion people and becomes an increasingly
heavy economic burden to many countries [1]. Type 1 diabetes
(T1D) occurs when the immune system attacks and destroys
the β-cells of the pancreas, and people with T1D require the
administration of exogenous insulin and long-term blood glu-
cose (BG) management [2]. In this case, BG level prediction is
a viable method to enable proactive interventions and thereby
reduce the short and long-term complications caused by hyper-
glycemia or hypoglycemia, such as retinopathy, nephropathy,
and cardiovascular disease [3].

In recent decades, continuous glucose monitoring (CGM)
systems have been widely adopted in T1D management [4],
which generally measure BG concentration every five min-
utes and thus provide vital data for achieving accurate BG
prediction. Daily events, such as carbohydrate intake, insulin
bolus delivery, and exercise, can significantly influence BG
levels, which are commonly recorded via smartphone apps, as
shown in Fig. 1, and employed as additional data sources to
develop data-driven decision support algorithms. In this regard,
artificial intelligence technology, especially deep learning, has

shown excellent performance in BG prediction for various
T1D datasets [5]. Recent advances in self-attention mecha-
nisms [6] have achieved the state-of-the-art in natural language
processing [7] and boosted the development of transformer-
based models for time series forecasting, such as Informer [8]
and Autoformer [9]. Among these, temporal fusion trans-
formers (TFT) [10] is a specifically-designed multi-horizon
transformer that employs gating mechanisms to simultaneously
process various data for real-world applications, including
exogenous time series, future known information, and static
metadata. This feature is extremely useful in BG prediction
with heterogeneous data sources (Fig. 1).

To bring the models to practical use in T1D management,
edge computing-enabled deep learning models for wearable
medical devices are in urgent need [11]. However, increasingly
complex models rely on a large number of parameters and in-
tensive computational resources. It is challenging to implement
these models on a system on a chip (SoC) that interacts with
CGM and provides real-time BG prediction at the same time.
In addition, model interpretability plays an important role in
actual clinical settings, which is the key to feature selection
and pattern analysis in time series forecasting but is still under
research [5], [10].

II. RELATED WORK

Leveraging powerful deep neural networks, a wide range of
deep learning models has been applied to BG prediction [5]
and outperformed conventional machine learning algorithms,
such as support vector regression (SVR) [12]. In particular,
many existing studies are based on recurrent neural networks
(RNNs), including long short-term memory (LSTM) [13]–
[16] and gated recurrent units (GRUs) [11], [17]–[19], which
employ hidden states to extract temporal features from input
sequences. Recently, attention mechanisms were investigated
and combined with LSTM [14] and GRU [19] to assign
weights to hidden states and further enhance BG prediction.
In [19], the authors further adopted the encoder of the original
transformer [6] as a baseline method, which exhibited compa-
rable performance to RNN models for BG prediction on three
clinical datasets. However, most existing studies used many-
to-one RNNs for single-horizon prediction [13]–[20]. These
models require multiple sets of model weights for two or more
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Fig. 1. Framework of a T1D management system, wearable edge device, and the architecture of the proposed TFT model.

prediction horizons (PHs), e.g., 30 and 60 minutes, which
are inefficient for hardware implementation, especially when
storage memory is limited. Multi-horizon models can output
completed sequences but are difficult to train. Smartphone
apps, based on iOS [18], [19] or Android [17], [21] operating
systems, are the most common platform to deploy deep
learning-based glucose predictors. Nevertheless, smartphone
platforms suffer from the lack of wearability, battery issues,
and frequent updates of operating systems [11]. To enable
predictors to be operated on wearable and edge devices,
pioneering work has implemented RNN models on a micro-
controller unit [15] and a SoC [11]. In this work, we propose
an edge-based TFT (E-TFT) model for BG prediction, as
shown in Fig 1. After selecting essential input features through
interpretability analysis, a TFT model is trained and further
deployed on the SoC of a customized wearable edge device,
which can fetch real-time CGM measurements and provide
predictive warning of hypoglycemia and hyperglycemia, which
has the great potential to be incorporated in other wearable
devices, such as CGM transmitters and insulin pumps.

III. METHODOLOGY

A. Data Preparation

To enhance reproducibility and compare model perfor-
mance, we use OhioT1DM dataset [22], a publicly available
dataset that contains a variety of data fields collected in an
eight-week clinical trial with 12 T1D adults. This dataset
also served as a benchmark dataset in Blood Glucose Level
Prediction (BGLP) Challenges [22]. The training and testing
sets are provided separately, and the last 25% data of each
training set were employed as a validation set. There are many
missing values of CGM measurements, due to many practical
reasons, such as signal loss and sensor calibration. To fill up
the gaps without involving any future information, we apply
linear extrapolation and clip values to the sensor operating
range of 40-400 mg/dL.

B. Temporal Fusion Transformers

TFT can deal with mixed types of input data, as shown
in the right part of Fig 1. In particular, CGM measurements
are the target time series, while carbohydrates of meal intake,
insulin bolus, and exercise are treated as exogenous time
series inputs. We further incorporate the gender information
as a static covariate and timestamps as future known time
series. Overall, aiming to obtain multi-horizon prediction,
TFT employs an encoder-decoder structure with the gated
residual network (GRN) [10] as a basic block to determine
the relationship between target time series and exogenous
inputs. GRNs use exponential linear unit activation [23] and
gated linear units [24] to control the nonlinear contributions
of each input feature. The variable selection network (VSN)
combines GRNs with a Softmax layer to assign variable
selection weights for processed input features. Following the
VSNs, LSTM layers are used in both the encoder and the
decoder to extract the local patterns from past inputs and future
known inputs, respectively.

Then the extracted temporal features are fed to upper
modules (green area). First, a static enrichment layer uses
GRNs to populate the impact of the static features. Then, a
specifically designed multi-head attention layer, based on the
self-attention mechanism [6], learns long-term dependencies
while preserving global temporal interpretability, which is
denoted as follows.

Attention(Q,K,V) = Softmax(
QKT

√
Dk

)V, (1)

Hi = Attention(QWQ,KWK ,VWV ), (2)

MultiHeadAttn(Q,K,V) = [
1

N

N∑
i=1

Hi]W
O, (3)

where Q, K, V denote queries, keys, values, respectively,
associated with head-specific weights WQ, WK , WV ; Hi

stands for the output of i-th head out of a total of N heads;



Dk is the dimensions of keys, and WO is a projection weight.
Finally, a position-wise feed-forward network (PWFFN) is
applied to obtain the output sequences, using a gated residual
connection that skips all the upper modules.

C. Model Training and Edge Implementation

The weights of the TFT model are updated through back-
propagation with an Adam optimizer to minimize a quantile
loss [25]. We perform an early stopping technique to avoid
overfitting, where a patience of 20 is applied to a total of 200
training epochs. To obtain mini-batches with a batch size of
128, we use a look-back sliding window to embed past 120-
minute observations to predict future 60-minute BG sequences.
Each input feature was scaled by standard normalization. After
training a TFT model with all the available exogenous features,
we perform feature selection using the variable selection
weights of the encoder VSN as a post-hoc explanation method.
Then, we obtain the weights of E-TFT by retraining TFT with
the selected features, aiming to optimize the computational
resources of the SoC.

To deploy E-TFT on the wristband for edge computing,
we first decompose the model into matrix operations that
explicitly describe the computations and logic of each layer.
Then these matrix operations are translated from Python into
Embedded C with optimized memory utilization, such as
iterating matrix operations column by column, and pipelining
interleaved processes. The involved SoC is based on Nordic
nRF52832 that offers not only Bluetooth connectivity to
acquire data from the CGM, but also efficient computation
capability and memory space to perform real-time model
inference. The device benefits from instant decision-making
with very low latency since all processes are carried on locally.
The performance of E-TFT is evaluated on the device through
UART and USB ports.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Baseline Methods: We consider a group of baseline
methods in the experiments to evaluate the prediction per-
formance. Classic machine learning predictors, including
SVR [12] and LSTM [15], and advanced deep learning mod-
els, including dilated RNN (DRNN) [20], N-BEATS [26],
and N-HiTS [27] are employed. Particularly, DRNN and
N-BEATS achieved the best performance in the 2018 and
2020 BGLP challenges, respectively. Empowered by dilated
connections, DRNN was designed to have a larger receptive
field with fewer parameters and higher computational effi-
ciency compared with standard RNNs. N-BEATS uses a deep
stack of fully connected layers to process univariate inputs
and showed promising performance in various time-series
prediction problems. Based on N-BEATS, N-HiTS further
introduces multi-rate sampling and hierarchical interpolation
and achieved better accuracy than N-BEATS [27]. Among
these, LSTM, DRNN, N-BEATS, and N-HiTS are adopted as
multi-horizon predictors by modifying the output layers, while
two single-horizon SVR models are trained for two PHs.
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Fig. 2. Feature importance of the encoder input.

TABLE I
30-MINUTE PREDICTION PERFORMANCE OF THE CONSIDERED MODELS

FOR THE OHIOT1DM DATASET

Model RMSE (mg/dL) MAE (mg/dL) gRMSE (mg/dL)
SVR 23.35± 3.80 15.70± 2.82 29.05± 4.98

LSTM 20.22± 2.63 14.32± 1.67 24.61± 3.26
DRNN 19.58± 3.51 13.32± 2.25 24.03± 4.39

N-BEATS 19.43± 2.27 13.43± 1.56 23.84± 2.72
N-HiTS 19.63± 2.28 13.90± 1.56 24.47± 2.78
E-TFT 19.09± 2.47 13.07± 1.59 23.25± 3.09

2) Evaluation Metrics: In BG prediction, the most common
statistical metrics are root mean square error (RMSE) and
mean absolute error (MAE). To analyze the clinical effects,
we incorporate glucose-specific RMSE (gRMSE) [28], which
penalizes the predictions that would lead to adverse BG events,
and Clark error grid (CEG) analysis [29].

B. Feature Importance

Fig. 2 shows the histogram of the feature importance for the
encoder. It is noted that the CGM time series plays the most
significant role in the input features of the encoder, and CGM
and timestamps account for a total of 93.9% contribution.
Therefore, we only use these two selected features and gender
information when training the E-TFT model. In this instance,
the number of weights is largely reduced, and thus much less
Flash and SRAM are required on SOC. When compared with
the model with exogenous time series, the mean RMSE of E-
TFT was improved by 0.3 mg/dL for the validation sets. E-TFT
can also avoid manual data entry errors, such as misestimation
of carbohydrates.

C. Prediction Performance

Table I and II present the results (Mean±STD) of BG
prediction. It is worth noting that E-TFT achieved the smallest
RMSE, MAE, and gRMSE for both 30 and 60-minute PHs,
while DRNN, N-BEATS, and N-HiTS also showed significant
improvement when compared with conventional methods of
SVR and LSTM. Fig. 3 depicts two-day ambulatory glucose
profiles of the ground truth of BG levels and trajectories of
60-minute TFT predictions. The dotted blue and green lines
show the upper and lowered bounds derived from the 25th
percentile and 75th percentile of quantile forecasts, and the



TABLE II
60-MINUTE PREDICTION PERFORMANCE OF THE CONSIDERED MODELS

FOR THE OHIOT1DM DATASET

Model RMSE (mg/dL) MAE (mg/dL) gRMSE (mg/dL)
SVR 35.47± 5.20 25.29± 4.35 45.71± 6.95

LSTM 34.35± 4.21 25.44± 3.14 42.68± 5.40
DRNN 33.24± 5.38 23.62± 4.11 41.07± 6.72

N-BEATS 33.82± 3.93 24.43± 2.98 42.97± 4.89
N-HiTS 33.00± 3.66 24.50± 2.85 42.46± 4.63
E-TFT 32.31± 3.79 23.24± 2.84 40.90± 4.93

shaded blue area refers to the interquartile range. The RMSE
of subject 563 is close to the mean RMSE of the whole
cohort, while subject 570 has the largest RMSE. Thus, we
choose these subjects for visualization. We observe that the
deviation between predictions and actual CGM measurements
is small, and most adverse glycemic events were predicted. We
successfully detected severe hypoglycemia and hyperglycemia
that were missed by the point predictions (i.e., 50th percentile,
the red curve), using the quantile upper and lower bounds.
We also present the corresponding CEG analysis in Fig. 3.
In particular, we achieved a percentage of 90.4%+8.8% for
subject 563 and 87.1%+11.4% for subject 575 in the A+B
zones. The predictions in these zones would not lead to
inappropriate interventions.

D. Hardware Footprint

The final E-TFT model was implemented and deployed
onto the target Bluetooth SoC, which occupies a total ROM
space of 278.86 KB and requires 14.63 KB RAM memory for
processing. The input of the encoder consists of past CGM and
timestamps with a length of 24, while the decoder processes
future timestamps with a length of 12 (i.e., 60-minute PH). The
output with a dimension of seven refers to the 2nd, 10th, 25th,
50th, 75th, 90th, and 98th percentiles of quantile forecasts at
each timestep. It is noted that the gated residual connection
of the LSTM layer requires a considerable RAM space, 11.25
KB, to hold the data. Thus, it is recommended to statically
allocate the memory space in advance to improve the system
stability. Thanks to the on-chip DSPs that can perform high-
performance floating-point arithmetic calculations, the ported
E-TFT model can be computed within 1.9 seconds with the
detailed computation time listed in Table III. In addition,
by means of representing all weights in hexadecimal format
represented by IEEE 754, the computation accuracy can be
significantly improved. The RMSE between the outputs of the
Python model and those of the C model is less than 1.5×10−5.

V. DISCUSSION AND CONCLUSION

In this work, we propose E-TFT, a transformer-based deep
learning model, for multi-horizon BG prediction, and imple-
ment it on a customized wristband to provide real-time deci-
sion support using edge computing. E-TFT exhibited excellent
performance on the OhioT1DM dataset. It obtained the lowest
RMSE, MAE, and gRMSE for the 30 and 60-minute PHs
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Fig. 3. Two-day visualization of CGM measurements and TFT prediction
and CEG plots with the 60-minute PH.

TABLE III
DETAILS OF FLASH AND SRAM MEMORY FOOTPRINT OF E-TFT

Layer Input Shape Flash (B) SRAM (B) Time (ms)
Input (2, 36) 0 240 N/A

Encoder (2, 24) 11,448 14,976 142.87
Decoder (1, 12) 5,592 3,384 17.29
LSTM (36, 48) 169,728 12,104 1267.20

Attention (36, 48) 21,952 10,760 227.99
PWFFN (12, 48) 76,032 7,296 205.11
Output (12, 7) 1,380 1,156 3.68

among all the considered methods. E-TFT has great potential
to be directly implemented on CGM transmitters in the future
collaboration with the manufacturer, since CGM can provide
all the required data for real-time prediction. Future work
also includes validating the wristband with the embedded E-
TFT model in actual clinical trials or in T1D simulators to
investigate clinical efficacy.
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