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Abstract

The eQTL Catalogue is an open database of uniformly processed human molecular quanti-

tative trait loci (QTLs). We are continuously updating the resource to further increase its util-

ity for interpreting genetic associations with complex traits. Over the past two years, we

have increased the number of uniformly processed studies from 21 to 31 and added X chro-

mosome QTLs for 19 compatible studies. We have also implemented Leafcutter to directly

identify splice-junction usage QTLs in all RNA sequencing datasets. Finally, to improve the

interpretability of transcript-level QTLs, we have developed static QTL coverage plots that

visualise the association between the genotype and average RNA sequencing read cover-

age in the region for all 1.7 million fine mapped associations. To illustrate the utility of these

updates to the eQTL Catalogue, we performed colocalisation analysis between vitamin D

levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. Although most

GWAS loci colocalised both with eQTLs and transcript-level QTLs, we found that visual

inspection could sometimes be used to distinguish primary splicing QTLs from those that

appear to be secondary consequences of large-effect gene expression QTLs. While these

visually confirmed primary splicing QTLs explain just 6/53 of the colocalising signals, they

are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6

cases.
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Author summary

Genome-wide association studies have identified many non-coding loci associated with

complex traits and diseases. While these variants are primarily expected to affect gene reg-

ulation, identifying the target genes as well as the tissue and cell type contexts where these

variants are active has remained challenging. We have previously developed the eQTL

Catalogue resource to systematically curate and reprocess all available RNA sequencing

and genotype datasets. Here we present several updates to the resources that increase its

utility for interpreting complex trait associations even further. In addition to increasing

both the number of studies and datasets covered, we have also implemented statistical fine

mapping to improve our ability to link multiple independent genetic variants influencing

gene regulation with complex traits and diseases. We demonstrate the utility of these

updates by focussing on interpreting genetic variants associated with a single well-charac-

terised complex trait—circulating levels of vitamin D in human plasma. We believe that

our publicly available analysis results will greatly facilitate the interpretation of complex

trait associations identified by other large-scale human genetics efforts.

Introduction

Most genetic variants associated with complex traits are in the non-coding regions of the

genome [1]. More than a decade of molecular quantitative trait locus (QTL) studies have

revealed that these variants regulate either the expression level [2,3], splicing [4], promoter

usage [5,6] or alternative polyadenylation [7,8] of their target genes. Although the eQTL Cata-

logue has contained transcript-level QTL summary statistics from the beginning, characteris-

ing the exact mechanism of action of each molecular QTL has remained challenging due to

considerable overlap between QTLs detected by different RNA-seq quantification methods

[2], technical biases in read alignment [9], and a large number of alternative transcripts or

splice junctions to be considered for each gene. Furthermore, because the usage of each tran-

script or splice junction is quantified relative to all other transcripts, the magnitude and direc-

tion of the genetic effect, the part of the gene affected, as well as the absolute expression of the

affected transcript is often difficult to assess from summary statistics alone.

This ambiguity can be reduced by visualising the change in the average RNA-seq read cov-

erage in the gene region associated with each additional copy of the alternative allele. We and

others have used these QTL coverage plots to characterise chromatin QTLs [10–12] as well as

to confirm promoter usage and splicing QTLs [5]. However, previous studies have visualised

individual molecular QTLs in a setting where access to individual-level genotype and read cov-

erage data is available. It has not been done systematically in large molecular QTL compendia

such as the GTEx project [3] and the eQTL Catalogue, because in a naive implementation the

read coverage stratification by genotype needs to be performed separately for each significant

genetic variant and molecular trait pair of interest. Since transcript and exon-level analyses

profile hundreds of thousands of correlated molecular traits in a single dataset, this means that

the number of QTL coverage plots required can quickly become intractable.

In this update to the eQTL Catalogue, we present an approach to generate QTL coverage

plots for all independent genetic signals and their associated molecular traits. First, we have

updated our data processing workflows to improve promoter usage and splicing QTL discov-

ery and to generate read coverage signals for all 25,724 RNA-seq samples. We have also

adopted fine-mapping-based filtering to identify all independent genetic signals and associated

molecular traits for each gene while reducing the size of the summary statistics files by 98%.

Finally, to support new colocalisation methods that can account for multiple independent

PLOS GENETICS eQTL Catalogue 2023 update

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010932 September 18, 2023 2 / 17

available from the eQTL Catalogue FTP server (see

https://www.ebi.ac.uk/eqtl/Data_access/). The

marginal eQTL summary statistics are also

available via our REST API (https://www.ebi.ac.uk/

eqtl/api/docs), which we have completely re-written

for release 6. RNA-seq and genotype data from the

CAP (phs000481.v3.p2), Peng_2018 (phs001586.

v1.p1), PhLiPS (phs001341.v1.p1) and iPSCORE

(phs000924.v4.p1) studies were downloaded from

dbGaP; Steinberg_2020 (EGAD00001005215,

EGAD00001003355, EGAD00010001746),

Young_2019 (EGAD00001005736), Braineac2

(EGAD00001005526, EGAD00001003100) and

Bossini-Castillo_2019 (EGAD00001004830,

EGAD00010001848) from EGA, and CommonMind

(syn2759792) from Synapse. Raw genotype data

for Gilchrist_2021 (EGAD00010000144,

EGAD00010000520) was downloaded from EGA.

Raw gene expression data from Gilchrist_2021

was downloaded from Zenodo (https://doi.org/10.

5281/zenodo.6352656).
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causal variants [13], we have computed signal-level log bayes factors for all independent signals

[14]. This approach has enabled us to predefine tag variants and molecular traits for all inde-

pendent genetic associations identified in 127 eQTL datasets and generate QTL coverage plots

that can be used to interpret almost all colocalising signals detected in the eQTL Catalogue.

Results

Updates to the eQTL Catalogue resource

The aim of the eQTL Catalogue is to provide a public resource of uniformly processed molecular

QTL summary statistics and continuously update this resource as new studies, reference annota-

tions and quantification methods become available. Here, we present the updates to the eQTL

Catalogue release 6 that we have made since the publication of the original paper (release 3).

Newly added datasets. We have added nine new RNA-seq studies and one microarray

study to the eQTL Catalogue. This has increased the total number of studies in the resource to

31, the total number of datasets to 127 and the cumulative number of donors and samples to

7,526 and 30,602, respectively (Fig 1A). Newly added datasets include additional datasets from

tissues and cell types already present in the eQTL Catalogue (e.g. various brain regions [15,16],

immune cells [17–20] and induced pluripotent stem cells [21,22]) as well as previously missing

microglia [23], placenta [24], hepatocytes [22], and cartilage and synovium tissues [25]. Com-

plete summary of the datasets present in the eQTL Catalogue is shown in S1 Table.

Imputation of the X chromosome genotypes. In addition to integrating new datasets, we

also made two major changes to our genotype imputation workflow. First, we migrated to the

Fig 1. Uniform re-processing of all datasets. (A), The number of studies, datasets, donors and samples in the previous publication (R3) and current version of

the eQTL Catalogue (R6). (B), Number of genes with at least one significant eQTL (‘eGenes’) on the X chromosome as a function of dataset sample size. Red

points indicate datasets for which the X chromosome genotypes were unavailable. (C), The number of eGenes identified in each dataset for the five molecular

traits (gene expression, exon expression, transcript usage, txrevise event usage, and Leafcutter splice-junction usage). Datasets newly added since release 3 have

been highlighted.

https://doi.org/10.1371/journal.pgen.1010932.g001
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new 1000 Genomes 30x of GRCh38 reference panel [26]. This allowed us to impute genotypes

directly to the GRCh38 build and avoid errors caused by the genomic coordinate lift over pro-

cess. Secondly, our imputation workflow now also supports the X chromosome. As a result,

summary statistics for 18 of the 31 studies now also contain variants from the X chromosome.

Across these 18 datasets, we detected at least one significant eQTL (FDR<1%) for 853 unique

genes on the X chromosome (Fig 1B). These X chromosome eQTLs account for ~1.6% of all

significant eQTLs (FDR < = 1%). Ten of the other 13 studies are missing the X chromosome

QTLs because X chromosome genotypes were not deposited with data. Exceptions are male

only studies (n = 3) that did not pass our genotype QC criteria (S2 Table).

Improved quantification of splicing and promoter usage QTLs. The previous release of

the eQTL Catalogue included four molecular trait quantification methods to measure tran-

scriptional changes from RNA-seq data: gene expression (ge), exon expression (exon), tran-

script usage (tx) and transcriptional event usage (txrevise). In addition to these four, we have

now also implemented LeafCutter [27] to directly quantify the usage of splice junctions (Fig A

in S1 Text). We have also augmented the txrevise promoter annotations with experimentally

determined promoters from the FANTOM5 project [28]. Finally, we have updated the refer-

ence transcriptome annotations to Ensembl version 105 and GENCODE version 39. We

observed a clear linear relationship between the number of significant associations detected

with each quantification method and the dataset sample size, with gene expression, exon

expression and txrevise detecting, on average, slightly more associations than transcript usage

and Leafcutter (Fig 1C). For gene expression QTLs, we further quantified the number of novel

associations detected in release 6 relative to release 3. The number of unique genes with at least

one eQTL (‘eGenes’) increased by 1.8% whereas the number of confidently fine mapped eQTL

gene-variant pairs (posterior inclusion probability > 0.95) increased by 4% (Fig B in S1 Text).

Most of this increase was driven by the CommonMind [16] prefrontal cortex dataset that had

the largest sample size (n = 586).

Fine-mapping-based filtering of transcript-level summary statistics. A major challenge

in working with exon- and transcript-level (transcript usage, txrevise, leafcutter) associations

is the large number of correlated traits being tested that result in very large summary statistics

files. For example, typical summary statistics for exon and txrevise QTLs are 15–20 times larger

than the corresponding files for gene expression QTLs. In addition to complicating our data

release and archival procedures, these large file sizes meant that performing comprehensive

colocalisation analysis against the eQTL Catalogue required the downloading and processing

of>15Tb of data. To reduce the size of these files, we have now implemented fine-mapping

based filtering. Briefly, we are using fine mapped credible sets to identify all independent sig-

nals at the gene level. We then filter the summary statistics files to only retain the most strongly

associated molecular trait (exon, transcript, txrevise event or Leafcutter splice junction) for

each signal. This filtering reduces the size of the summary statistics files for those quantifica-

tion methods by ~98% while retaining the vast majority of significant associations for colocali-

sation purposes. Reducing the size of the univariate summary statistics files has also allowed us

to export SuSiE log bayes factors for each fine mapped signal and all tested variants [14]. As

illustrated below, these log bayes factors can be directly used in the new coloc.susie method to

perform colocalisation analysis between all pairs of independent signals [13].

Visualisation of transcript-level associations. Another benefit of fine-mapping-based fil-

tering is that we now have a tractable set of independent lead variants and associated molecular

traits across all datasets and quantification methods that we can visualise using static QTL cov-

erage plots. These plots display normalised RNA-seq read coverage across all exons of the gene

(Fig 2A), exon-level QTL effect sizes and standard errors (Fig 2B), as well as the alternative

transcripts or splice junctions used in association testing (Fig 2C). As an example, we are
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highlighting the association between chr11_14855172_G_A and alternative splicing of exon

four of the CYP2R1 gene (Fig 2). The static QTL coverage plots for all 1,716,482 independent

signals are now available via the eQTL Catalogue FTP server.

Case study:Target gene prioritisation for vitamin D GWAS

To test the utility of the new QTL coverage plots, we performed a proof-of-concept colocalisa-

tion analysis between all molecular traits in the eQTL Catalogue and vitamin D levels in the

Fig 2. Visualisation of a splicing QTL detected in the CYP2R1 gene. (A) RNA-seq read coverage across the CYP2R1 gene in GTEx transverse colon tissue

stratified by the genotype of the lead sQTL variant (chr11_14855172_G_A). All introns have been shortened to 50 nt with wiggleplotr [29] to make variation in

exonic read coverage easier to see. (B) Effect sizes and 95% confidence intervals of the lead sQTL variant on the expression level of individual exons (or exonic

parts) of CYP2R1. Associations significant at FDR< = 1% are shown in dark blue. (C) The top two rows show the MANE Select [30] reference transcript and

all annotated exons of CYP2R1, respectively. The remaining rows show the txrevise [5] event annotations used for sQTL mapping. The short version of exon 4

(between dashed lines) is only present in annotated nonsense-mediated decay (NMD) transcripts.

https://doi.org/10.1371/journal.pgen.1010932.g002
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UK Biobank. We chose this phenotype, because the vitamin D biosynthesis pathway is well

understood and many causal genes underlying GWAS associations for vitamin D are already

known [31,32]. At a stringent threshold of PP4 > 0.9, we found that 53/83 signals from 34/48

regions colocalised with 81 protein coding genes (Fig 3A). Although colocalisation with total

gene expression was most commonly observed, there was considerable overlap between colo-

calisations detected with the five different quantification methods (Fig 3A).

We extracted QTL coverage plots for all 816 colocalising molecular QTL signals. We then

manually reviewed the plots to classify each signal into one of five categories: expression QTLs,

promoter usage QTLs (puQTLs), splicing QTLs (sQTLs), alternative polyadenylation QTLs

(apaQTLs) and ambiguous (Fig 3B). Our aim was to distinguish primary splicing and

Fig 3. Sharing of significantly colocalised signals with vItamin D. (A) Number of colocalised signals detected by the different molecular QTL quantification

methods and sharing between them. (B) Number of colocalised signals assigned to empirical functional consequence (eQTL, sQTL, puQTL, apaQTL or

ambiguous) and sharing structure between them. (C) Number of independent colocalised signals associated with either a single target gene or multiple target

genes in each functional consequences group. eQTL—expression QTL, sQTL—splicing QTL, puQTL—promoter usage QTL, apaQTL—alternative

polyadenylation QTL.

https://doi.org/10.1371/journal.pgen.1010932.g003
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transcript-level QTLs, where the putative causal variant has a direct effect on promoter or

splice junction choice, from likely secondary associations, where the change in promoter, tran-

script or splice junction usage is likely a consequence of large-effect eQTLs, perhaps by altering

the kinetics or fidelity of splicing [33,34]. Although this process is inherently subjective and

noisy, we have provided some examples in S2 Text to clarify the implicit decision rules that we

used. As an example, we detected a splicing QTL affecting the length of exon 4 of CYP2R1 (Fig

2). CYP2R1 is highly likely to be the causal gene at this locus as it codes for the Cytochrome

P450 2R1 microsomal vitamin D 25-hydroxylase [35]. We found that although transcript-level

methods (tx, txrevise and leafcutter) detected at least one colocalisation for 37/53 independent

signals, only 14 of those (7 puQTLs, 6 sQTLs and 1 apaQTL) could be classified as primary

transcript-level QTLs (Fig 3B). Other 23 cases were either ambiguous or could be better

explained by strong primary eQTL effects that led to small downstream changes in splicing or

transcript usage (S3 Table, Fig C in S1 Text).

Even though Leafcutter detected all seven visually confirmed sQTLs and 5/7 puQTLs, it

also detected 11 additional signals, nine of which would be better explained by a strong eQTL

effects (e.g. CELSR2 eQTL at the SORT1 locus (Fig D in S1 Text)). Thus, the fact that colocali-

sation is detected by one of the transcript-level methods (tx, txrevise or leafcutter) does not

reliably indicate that the underlying signal is driven by a primary splicing mechanism. The

visualisations also helped us to detect three likely cases of reference mapping bias at the

DHCR7, NUDT9 and JUND genes (Figs E-G in S1 Text). For discussion of why we opted not

to correct for reference mapping bias during molecular trait quantification, see S1 Text.

We also noticed that 15/32 confirmed eQTL colocalised with more than one gene (Fig 3C).

In contrast, only one of seven puQTLs and one of six sQTLs colocalised with multiple genes,

suggesting that sQTLs and puQTLs might be less pleiotropic than eQTLs. To evaluate if lower

pleiotropy also translated into more accurate causal gene prioritisation, we manually reviewed

all of the 53 GWAS signals to identify the most likely causal genes. We integrated information

about missense variant associations, gene presence in the vitamin D synthesis pathway and

other literature evidence to prioritise the most likely causal gene for 28/53 GWAS signals (S3

Table). For four of the six sQTL signals, the colocalising gene overlapped the prioritised causal

gene (CYP2R1, HAL, GC and SDR42E1) and for two signals we could not prioritise the causal

gene. For eQTLs, we prioritise the most likely causal gene at 19/32 loci. In 11/19 cases (3

shared with sQTLs, Fig 3B) the colocalising eQTL genes completely overlapped the prioritised

genes. In four cases the prioritised gene (SORT1, FLG, HAL, CETP) was one of multiple co-

localizing genes. Finally, at four additional signals, the prioritised gene was different from the

one that had eQTL colocalisation evidence (S3 Table). Interestingly, in three of the four cases

the GWAS lead variant was a missense (SEC23A, PLA2G3) or a synonymous variant

(CYP2R1) in the prioritised gene. While the number of loci observed here is small, these results

suggest that while visually confirmed sQTLs colocalise with a smaller fraction of GWAS loci

than eQTLs (6 vs 32), they are also less pleiotropic and thus more likely to identify the correct

causal gene.

Discussion

We have made three major changes to the eQTL Catalogue in release 6. First, we have inte-

grated data from ten additional eQTL studies bringing the total number of unique eQTL data-

sets to 127. These datasets contain uniformly processed results from 30,602 samples from

7,526 individuals. We have also updated our genotype imputation, RNA-seq analysis and QTL

mapping workflows to add support for the X chromosome, added Leafcutter as a splicing

quantification method and added support for fine mapping-based colocalisation analysis with
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coloc.susie [13]. Finally, we have developed static QTL coverage plots to visualise molecular

QTL associations at the level of RNA-seq read alignments. All of our results and data are avail-

able on the eQTL Catalogue FTP server and REST API.

To quantify the impact of these updates, we performed colocalisation between all molecular

QTLs present in the eQTL Catalogue and fine mapped GWAS signals for plasma vitamin D

levels in the UK Biobank [36]. The QTL coverage plots allowed us to assign an empirical func-

tional consequence (eQTL, sQTL, puQTL, apaQTL) for 42/53 colocalising loci while 11

remained ambiguous. This revealed that while primary sQTLs explained fewer GWAS signals

than eQTLs, they also appeared to be less pleiotropic and more likely to identify the correct

target genes. A limitation of our approach is that we used manual visual inspection to assign

mechanisms to different types of molecular QTLs. Although we tried to be careful, there is a

small risk that this approach could have introduced inadvertent confirmation bias (e.g. classi-

fying less pleiotropic loci as sQTLs). We expect that it might be possible to automate this classi-

fication in the future by machine learning approaches that take into account variant-level

annotations such as splicing scores [37,38] or distance to genomic features.

We also observed that while most GWAS signals colocalised with an eQTL, approximately

~50% of the eQTL colocalisations prioritised more than one gene. Similarly in 4/19 cases, the

colocalising gene was different from the manually prioritised causal gene. This agrees with

multiple previous observations that eQTL colocalisation alone often achieves low precision in

causal gene identification [39,40]. This does not seem to be a simple artefact of colocalisation

analysis as CRISPR experiments have also revealed that targeting a single enhancer often regu-

lates the expression of multiple target genes [41–43]. We believe that while eQTL colocalisation

can sometimes reveal trait-relevant tissues or cell types, target gene identification requires inte-

gration of multiple strands of evidence. Taking into account variants with potentially less

pleiotropic effects such as missense and splice variants can also be helpful.

The systematic re-analysis and visualisation of molecular QTLs presented here would not

have been possible without the researchers of the 31 original studies making their individual-

level gene expression and genotype data available for qualified researchers. We are committed

to sharing all summary statistics and fine mapping results openly and will seek to continuously

integrate new eQTL datasets as they become available. We are also working on making the

static QTL coverage plots available via an API and an interactive web interface.

Methods

Ethics statement

For all newly added datasets, we applied for access via the relevant Data Access Committees.

The database accessions and contact details of the individual Data Access Committees can be

found on the eQTL Catalogue website (http://www.ebi.ac.uk/eqtl/Studies/). In our applica-

tions, we explained the project and our intent to share the association summary statistics pub-

licly. Ethical approval for the project was obtained from the Research Ethics Committee of the

University of Tartu (approval 287/T-14).

Genotype data

Pre-imputation quality control. We lifted coordinates of the genotyped variants to the

GRCh38 build with CrossMap v0.4.1 [44]. We aligned the strands of the genotyped variants to

the 1000 Genomes 30x on GRCh38 reference panel [26] using Genotype Harmonizer [45]. We

excluded genetic variants with Hardy-Weinberg p-value < 10−6, missingness > 0.05 and

minor allele frequency < 0.01 from further analysis. On the X chromosome, we applied the
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QC filters to female samples only and then retained the same variants also in the male samples.

We also excluded samples with more than 5% of their genotypes missing.

Genotype imputation and quality control. We pre-phased and imputed the microarray

genotypes to the 1000 Genomes 30x on GRCh38 reference panel [26] using Eagle v2.4.1 [46]

and Minimac4 [47]. On the X chromosome, we performed imputation separately for variants

located in the pseudoautosomal (PAR) and non-PAR regions. After imputation, we multiplied

male genotype dosage in the non-PAR region by two to ensure that it is on the same scale with

the female genotypes. We used bcftools v1.9.0 to exclude variants with minor allele frequency

(MAF)< 0.01 and imputation quality score R2< 0.4 from downstream analysis. The genotype

imputation and quality control steps are implemented in eQTL-Catalogue/genimpute

(v22.01.1) workflow available from GitHub.

We aligned the low-coverage whole genome sequencing (WGS) data from the BLUEPRINT

project to the GRCh38 reference genome with bwa v0.7.17 [48] and performed imputation to

the 1000 Genomes 30x on GRCh38 reference panel using GLIMPSE v1.1.1 [49]. The low-cov-

erage WGS genotype imputation workflow is available from GitHub: https://github.com/

peepkolberg/glimpse.

Phenotype data

Studies. eQTL Catalogue release 6 contains phenotype data from the following 25 RNA-

seq: ROSMAP [50], BrainSeq [51], TwinsUK [52], FUSION [53], BLUEPRINT [54,55],

Quach_2016 [56], Schmiedel_2018 [57], GENCORD [58], GEUVADIS [59], Alasoo_2018

[11], Nedelec_2016 [60], Lepik_2017 [61], HipSci [62], van_de_Bunt_2015 [63], Schwartzen-

truber_2018 [64], GTEx v8 [3], CAP [19], Peng_2018 [24], PhLiPS [22], iPSCORE [65], Com-

monMind [16], Braineac2 [15], Steinberg_2020 [25], Young_2019 [23], Bossini-Castillo_2019

[18]. It also contains data from the following 7 microarray studies: CEDAR [66], Fairfax_2012

[67], Fairfax_2014 [68], Kasela_2017 [69], Naranbhai_2015 [70], Kim-Hellmuth_2017 [20]

and Gilchrist_2021 [17].

Quantification. We quantified transcription at five different levels: (1) gene expression,

(2) exon expression, (3) transcript usage, (4) transcriptional event usage, and (5) splice-junc-

tion usage (Fig A in S1 Text). Quantification was performed using version v22.05.1 of the

eQTL-Catalogue/rnaseq workflow implemented in Nextflow [71]. Before quantification, we

used Trim Galore v0.5.0 to remove sequencing adapters from the fastq files.

For gene expression quantification, we used HISAT2 v2.2.1 [72] to align reads to the

GRCh38 reference genome (Homo_sapiens.GRCh38.dna.primary_assembly.fa file down-

loaded from Ensembl). We counted the number of reads overlapping the genes in the GEN-

CODE V39 [73] reference transcriptome annotations with featureCounts v1.6.4 [74]. To

quantify exon expression, we first created an exon annotation file (GFF) using GENCODE

V39 reference transcriptome annotations and dexseq_prepare_annotation.py script

from the DEXSeq [75] package. We then used the aligned RNA-seq BAM files from the gene

expression quantification and featureCounts with flags ‘-p -t exonic_part -s
${direction} -f -O‘ to count the number of reads overlapping each exon.

We quantified transcript and event expression with Salmon v1.8.0 [76]. For transcript

quantification, we used the GENCODE V39 (GRCh38.p13) reference transcript sequences

(fasta) file to build the Salmon index. For transcriptional event usage, we downloaded pre-

computed txrevise [5,28] alternative promoter, splicing and alternative 30 end annotations cor-

responding to Ensembl version 105 from Zenodo (https://doi.org/10.5281/zenodo.6499127) in

GFF format. These annotations had been augmented with additional experimentally derived

promoter annotations from the FANTOM5 consortium [77,78]. We then used gffread [79] to

PLOS GENETICS eQTL Catalogue 2023 update

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010932 September 18, 2023 9 / 17

https://github.com/peepkolberg/glimpse
https://github.com/peepkolberg/glimpse
https://github.com/eQTL-Catalogue/rnaseq/
https://doi.org/10.5281/zenodo.6499127
https://doi.org/10.1371/journal.pgen.1010932


generate fasta sequences from the event annotations and built Salmon indices for each event

set as we did for transcript usage. Finally, we quantified transcript and event expression using

salmon quant with ‘–seqBias –useVBOpt –gcBias –libType‘ flags. All expres-

sion matrices were merged using csvtk v0.17.0. Our reference transcriptome annotations are

available from Zenodo (https://doi.org/10.5281/zenodo.4715946).

For Leafcutter analysis, splice junctions of the aligned reads were extracted using the junc-
tions extract command of the regtools v0.5.2 [80] with options ‘-s $strand -a 8 -m 50
-M 500000’. Then, these splice-junctions were clustered using leafcutter_cluster_regtools.

py script from LeafCutter v0.2.9 with options ‘-m 50 -o leafcutter -l 500000
–checkchrom=True‘.

Normalisation. We normalised the gene and exon-level read counts using the conditional

quantile normalisation (cqn) R package v1.30.0 [81] with gene or exon GC nucleotide content

as a covariate. We downloaded the gene GC content estimates from Ensembl biomaRt and cal-

culated the exon-level GC content using bedtools v2.19.0 [82]. We also excluded lowly

expressed genes, where 95 per cent of the samples within a dataset had transcripts per million

(TPM)-normalised expression less than 1. To calculate transcript and transcriptional event

usage values, we obtained the TPM normalised transcript (event) expression estimates from

Salmon. We then divided those transcript (event) expression estimates by the total expression

of all transcripts (events) from the same gene (event group). Subsequently, we used the inverse

normal transformation to standardise all five molecular quantification estimates. Normalisa-

tion scripts together with containerised software are publicly available at https://github.com/

eQTL-Catalogue/qcnorm.

Association testing and statistical fine mapping

We performed association testing separately in each dataset and used a +/- 1 megabase cis win-

dow centred around the start of each gene. First, we excluded molecular traits with less than

five genetic variants in their cis window, as these were likely to reside in regions with low geno-

typing coverage. We also excluded molecular traits with zero variance across all samples and

calculated phenotype principal components using the prcomp R stats package (center = true,

scale = true). We calculated genotype principal components using plink2 v1.90b3.35. We used

the first six genotype and molecular trait principal components as covariates in QTL mapping.

We calculated nominal eQTL summary statistics using the GTEx v6p version of the FastQTL

[83] software (https://github.com/francois-a/fastqtl) that also estimates standard errors of the

effect sizes. We used the ‘–window 1000000 –nominal 1‘ flags to find all associations in

1 Mb cis window. For permutation analysis, we used QTLtools v1.3.1 [84] with ‘–window
1000000 –permute 1000 –grp-best‘ flags to calculate empirical p-values based on

1000 permutations. The ‘–grp-best‘ option ensured that the permutations were performed

across all molecular traits within the same ‘group’ (e.g. multiple probes per gene in microarray

data or multiple transcripts or exons per gene in the exon-level and transcript-level analysis)

and the empirical p-value was calculated at the group level.

We performed QTL fine mapping using the Sum of Single Effects Model (SuSiE) [14] imple-

mented in the susieR v0.11.92 R package. We converted the genotypes from VCF format to a

tabix-indexed dosage matrix with bcftools v1.10.2. We imported the genotype dosage matrix

into R using the Rsamtools v2.8.0 R package. We used the same normalised molecular trait

matrix used for QTL mapping. We regressed out the first six phenotype and genotype PCs sepa-

rately from the phenotype and genotype matrices. We performed fine mapping with the follow-

ing parameters: L = 10, estimate_residual_variance = TRUE, estimate_prior_variance = TRUE,

scaled_prior_variance = 0.1, compute_univariate_zscore = TRUE, min_abs_corr = 0. The steps
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described above are implemented in the eQTL-Catalogue/qtlmap v22.04.01 Nextflow workflow

available from GitHub.

Filtering of transcript-level summary statistics

We filtered transcript-level summary statistics using a connected components approach [85]

to select the strongest signals per transcript-level group (gene for transcript and exon level,

clusters for leafcutter). For each group, first, we filtered out the credible sets where maximum

absolute z value is lower than 3 and size is bigger than 200 variants. Then, we found overlap-

ping variants between credible sets, defining these credible sets as connected components. For

each connected component we selected the molecular trait with the highest posterior inclusion

probability (PIP) as the ‘tag’ trait and kept only the summary statistics of these selected molec-

ular traits. We provided three specific examples for genes SDR42E1, HAL and CYP2R1 on Figs

H-M in S1 Text to illustrate how keeping one ‘tag’ molecular trait for each gene can faithfully

capture the transcript-level QTL signals detect at these loci while significantly reducing the

size of the summary statistics files.

Colocalisation with vitamin D GWAS

We used coloc.susie [13] to perform signal-level colocalisation between all RNA-seq-based

datasets in the eQTL Catalogue and GWAS summary statistics for vitamin D levels in the

UK Biobank. For all molecular QTLs, we used the log bayes factors (LBFs) exported by our

eQTL-Catalogue/qtlmap v22.04.01 workflow. For the vitamin D GWAS, we used published

SuSiE fine mapping results from a previous study [36] downloaded from Google Cloud (link).

We performed colocalisation between all pairs of independent fine mapped signals (up to

10 per locus) and reported results where PP4 > 0.9. The colocalisation workflows is available

from GitHub (https://github.com/ralf-tambets/coloc).

Generation of QTL coverage plots

We used the bamCoverage command from deepTools v3.2.0 [86] with bin-size option ‘-bs
5‘ to generate read-coverage (bigwig) files. We then used extractCoverageData and plotCover-

ageData commands of wiggleplotr R v1.13.1 package [29] to read specific regions of the bigwig

files, scale all introns to the length of 50 nucleotides, and generate the plots as ggplot2 [87]

objects. Finally, we generated exon QTL effect-size plots with ggplot2 v3.3.6 and put all the

plots together with the cowplot v1.1.1 R package [88]. We used tabix.read.table from seqminer

v8.4 package [89] to extract both genotype and QTL data from indexed files in the regions of

interest. Coverage plot generation workflow is publicly available at https://github.com/

kerimoff/leafcutter_plot.

Supporting information
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S2 Text. Classification criteria for QTL coverage plots.

(PDF)
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(XLSX)

S2 Table. Availability of X chromosome genotypes.

(XLSX)
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tory effects modified by immune activation contribute to autoimmune disease associations. Nat Com-

mun. 2017; 8: 266. https://doi.org/10.1038/s41467-017-00366-1 PMID: 28814792

21. DeBoever C, Li H, Jakubosky D, Benaglio P, Reyna J, Olson KM, et al. Large-Scale Profiling Reveals

the Influence of Genetic Variation on Gene Expression in Human Induced Pluripotent Stem Cells. Cell

Stem Cell. 2017; 20: 533–546.e7. https://doi.org/10.1016/j.stem.2017.03.009 PMID: 28388430

22. Pashos EE, Park Y, Wang X, Raghavan A, Yang W, Abbey D, et al. Large, Diverse Population Cohorts

of hiPSCs and Derived Hepatocyte-like Cells Reveal Functional Genetic Variation at Blood Lipid-Asso-

ciated Loci. Cell Stem Cell. 2017; 20: 558–570.e10. https://doi.org/10.1016/j.stem.2017.03.017 PMID:

28388432

PLOS GENETICS eQTL Catalogue 2023 update

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010932 September 18, 2023 13 / 17

https://doi.org/10.1126/science.aaz1776
http://www.ncbi.nlm.nih.gov/pubmed/32913098
https://doi.org/10.1126/science.aad9417
https://doi.org/10.1126/science.aad9417
http://www.ncbi.nlm.nih.gov/pubmed/27126046
https://doi.org/10.7554/eLife.41673
https://doi.org/10.7554/eLife.41673
http://www.ncbi.nlm.nih.gov/pubmed/30618377
https://doi.org/10.1038/s41467-017-01467-7
https://doi.org/10.1038/s41467-017-01467-7
http://www.ncbi.nlm.nih.gov/pubmed/29116076
https://doi.org/10.1371/journal.pgen.1002882
https://doi.org/10.1371/journal.pgen.1002882
http://www.ncbi.nlm.nih.gov/pubmed/22916029
https://doi.org/10.7554/eLife.57492
http://www.ncbi.nlm.nih.gov/pubmed/32584258
https://doi.org/10.1038/nmeth.3582
https://doi.org/10.1038/nmeth.3582
http://www.ncbi.nlm.nih.gov/pubmed/26366987
https://doi.org/10.1038/s41588-018-0278-6
http://www.ncbi.nlm.nih.gov/pubmed/30478436
https://doi.org/10.1038/s41588-018-0046-7
http://www.ncbi.nlm.nih.gov/pubmed/29379200
https://doi.org/10.1371/journal.pgen.1009440
http://www.ncbi.nlm.nih.gov/pubmed/34587156
https://doi.org/10.1111/rssb.12388
http://www.ncbi.nlm.nih.gov/pubmed/37220626
https://doi.org/10.1038/s41467-020-14483-x
http://www.ncbi.nlm.nih.gov/pubmed/32098967
https://doi.org/10.1038/s41597-019-0183-6
http://www.ncbi.nlm.nih.gov/pubmed/31551426
https://doi.org/10.1038/s41467-022-31626-4
http://www.ncbi.nlm.nih.gov/pubmed/35835762
https://doi.org/10.1016/j.xgen.2022.100117
https://doi.org/10.1016/j.xgen.2022.100117
http://www.ncbi.nlm.nih.gov/pubmed/35591976
https://doi.org/10.1186/s12864-020-06966-4
https://doi.org/10.1186/s12864-020-06966-4
http://www.ncbi.nlm.nih.gov/pubmed/32787775
https://doi.org/10.1038/s41467-017-00366-1
http://www.ncbi.nlm.nih.gov/pubmed/28814792
https://doi.org/10.1016/j.stem.2017.03.009
http://www.ncbi.nlm.nih.gov/pubmed/28388430
https://doi.org/10.1016/j.stem.2017.03.017
http://www.ncbi.nlm.nih.gov/pubmed/28388432
https://doi.org/10.1371/journal.pgen.1010932


23. Young AMH, Kumasaka N, Calvert F, Hammond TR, Knights A, Panousis N, et al. A map of transcrip-

tional heterogeneity and regulatory variation in human microglia. Nat Genet. 2021; 53: 861–868. https://

doi.org/10.1038/s41588-021-00875-2 PMID: 34083789

24. Peng S, Deyssenroth MA, Di Narzo AF, Cheng H, Zhang Z, Lambertini L, et al. Genetic regulation of the

placental transcriptome underlies birth weight and risk of childhood obesity. PLoS Genet. 2018; 14:

e1007799. https://doi.org/10.1371/journal.pgen.1007799 PMID: 30596636

25. Steinberg J, Southam L, Roumeliotis TI, Clark MJ, Jayasuriya RL, Swift D, et al. A molecular quantita-

tive trait locus map for osteoarthritis. Nat Commun. 2021; 12: 1309. https://doi.org/10.1038/s41467-

021-21593-7 PMID: 33637762

26. Byrska-Bishop M, Evani US, Zhao X, Basile AO, Abel HJ, Regier AA, et al. High-coverage whole-

genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. Cell. 2022;

185: 3426–3440.e19. https://doi.org/10.1016/j.cell.2022.08.004 PMID: 36055201

27. Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, et al. Annotation-free quantification

of RNA splicing using LeafCutter. Nat Genet. 2018; 50: 151–158. https://doi.org/10.1038/s41588-017-

0004-9 PMID: 29229983

28. Vija A, Alasoo K. Improved detection of genetic effects on promoter usage with augmented transcript

annotations. bioRxiv. 2022. p. 2022.07.12.499800. https://doi.org/10.1101/2022.07.12.499800

29. Alasoo K. wiggleplotr: Make read coverage plots from BigWig files. Bioconductor; 2017. https://doi.org/

10.18129/B9.bioc.wiggleplotr

30. Morales J, Pujar S, Loveland JE, Astashyn A, Bennett R, Berry A, et al. A joint NCBI and EMBL-EBI

transcript set for clinical genomics and research. Nature. 2022; 604: 310–315. https://doi.org/10.1038/

s41586-022-04558-8 PMID: 35388217

31. Manousaki D, Mitchell R, Dudding T, Haworth S, Harroud A, Forgetta V, et al. Genome-wide Associa-

tion Study for Vitamin D Levels Reveals 69 Independent Loci. Am J Hum Genet. 2020. https://doi.org/

10.1016/j.ajhg.2020.01.017 PMID: 32059762

32. Hyppönen E, Vimaleswaran KS, Zhou A. Genetic Determinants of 25-Hydroxyvitamin D Concentrations

and Their Relevance to Public Health. Nutrients. 2022;14. https://doi.org/10.3390/nu14204408 PMID:

36297091

33. Aslanzadeh V, Huang Y, Sanguinetti G, Beggs JD. Transcription rate strongly affects splicing fidelity

and cotranscriptionality in budding yeast. Genome Res. 2018; 28: 203–213. https://doi.org/10.1101/gr.

225615.117 PMID: 29254943

34. Sánchez-Escabias E, Guerrero-Martı́nez JA, Reyes JC. Co-transcriptional splicing efficiency is a gene-

specific feature that can be regulated by TGFβ. Commun Biol. 2022; 5: 277.

35. Cheng JB, Motola DL, Mangelsdorf DJ, Russell DW. De-orphanization of cytochrome P450 2R1: a

microsomal vitamin D 25-hydroxilase. J Biol Chem. 2003; 278: 38084–38093. https://doi.org/10.1074/

jbc.M307028200 PMID: 12867411

36. Kanai M, Ulirsch JC, Karjalainen J, Kurki M, Karczewski KJ, Fauman E, et al. Insights from complex trait

fine-mapping across diverse populations. bioRxiv. 2021. p. 2021.09.03. https://doi.org/10.1101/2021.

09.03.21262975

37. Zeng T, Li YI. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol. 2022; 23:

103. https://doi.org/10.1186/s13059-022-02664-4 PMID: 35449021

38. Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting Splic-

ing from Primary Sequence with Deep Learning. Cell. 2019;0. https://doi.org/10.1016/j.cell.2018.12.015

PMID: 30661751

39. Nasser J, Bergman DT, Fulco CP, Guckelberger P, Doughty BR, Patwardhan TA, et al. Genome-wide

enhancer maps link risk variants to disease genes. Nature. 2021; 1–6. https://doi.org/10.1038/s41586-

021-03446-x PMID: 33828297

40. Mountjoy E, Schmidt EM, Carmona M, Schwartzentruber J, Peat G, Miranda A, et al. An open approach

to systematically prioritize causal variants and genes at all published human GWAS trait-associated

loci. Nat Genet. 2021; 1–7.

41. Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT, Subramanian V, et al. Activity-by-contact

model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat Genet. 2019; 51:

1664–1669. https://doi.org/10.1038/s41588-019-0538-0 PMID: 31784727

42. Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, et al. Local regulation of gene expres-

sion by lncRNA promoters, transcription and splicing. Nature. 2016. https://doi.org/10.1038/

nature20149 PMID: 27783602

43. Kasela S, Daniloski Z, Bollepalli S, Jordan TX, tenOever BR, Sanjana NE, et al. Integrative approach

identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the

3p21.31 locus. Genome Biol. 2021; 22: 1–10.

PLOS GENETICS eQTL Catalogue 2023 update

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010932 September 18, 2023 14 / 17

https://doi.org/10.1038/s41588-021-00875-2
https://doi.org/10.1038/s41588-021-00875-2
http://www.ncbi.nlm.nih.gov/pubmed/34083789
https://doi.org/10.1371/journal.pgen.1007799
http://www.ncbi.nlm.nih.gov/pubmed/30596636
https://doi.org/10.1038/s41467-021-21593-7
https://doi.org/10.1038/s41467-021-21593-7
http://www.ncbi.nlm.nih.gov/pubmed/33637762
https://doi.org/10.1016/j.cell.2022.08.004
http://www.ncbi.nlm.nih.gov/pubmed/36055201
https://doi.org/10.1038/s41588-017-0004-9
https://doi.org/10.1038/s41588-017-0004-9
http://www.ncbi.nlm.nih.gov/pubmed/29229983
https://doi.org/10.1101/2022.07.12.499800
https://doi.org/10.18129/B9.bioc.wiggleplotr
https://doi.org/10.18129/B9.bioc.wiggleplotr
https://doi.org/10.1038/s41586-022-04558-8
https://doi.org/10.1038/s41586-022-04558-8
http://www.ncbi.nlm.nih.gov/pubmed/35388217
https://doi.org/10.1016/j.ajhg.2020.01.017
https://doi.org/10.1016/j.ajhg.2020.01.017
http://www.ncbi.nlm.nih.gov/pubmed/32059762
https://doi.org/10.3390/nu14204408
http://www.ncbi.nlm.nih.gov/pubmed/36297091
https://doi.org/10.1101/gr.225615.117
https://doi.org/10.1101/gr.225615.117
http://www.ncbi.nlm.nih.gov/pubmed/29254943
https://doi.org/10.1074/jbc.M307028200
https://doi.org/10.1074/jbc.M307028200
http://www.ncbi.nlm.nih.gov/pubmed/12867411
https://doi.org/10.1101/2021.09.03.21262975
https://doi.org/10.1101/2021.09.03.21262975
https://doi.org/10.1186/s13059-022-02664-4
http://www.ncbi.nlm.nih.gov/pubmed/35449021
https://doi.org/10.1016/j.cell.2018.12.015
http://www.ncbi.nlm.nih.gov/pubmed/30661751
https://doi.org/10.1038/s41586-021-03446-x
https://doi.org/10.1038/s41586-021-03446-x
http://www.ncbi.nlm.nih.gov/pubmed/33828297
https://doi.org/10.1038/s41588-019-0538-0
http://www.ncbi.nlm.nih.gov/pubmed/31784727
https://doi.org/10.1038/nature20149
https://doi.org/10.1038/nature20149
http://www.ncbi.nlm.nih.gov/pubmed/27783602
https://doi.org/10.1371/journal.pgen.1010932


44. Zhao H, Sun Z, Wang J, Huang H, Kocher J-P, Wang L. CrossMap: a versatile tool for coordinate con-

version between genome assemblies. Bioinformatics. 2014; 30: 1006–1007. https://doi.org/10.1093/

bioinformatics/btt730 PMID: 24351709

45. Deelen P, Bonder MJ, van der Velde KJ, Westra H-J, Winder E, Hendriksen D, et al. Genotype harmo-

nizer: automatic strand alignment and format conversion for genotype data integration. BMC Res

Notes. 2014; 7: 901. https://doi.org/10.1186/1756-0500-7-901 PMID: 25495213

46. Loh P-R, Danecek P, Palamara PF, Fuchsberger C, A Reshef Y, K Finucane H, et al. Reference-based

phasing using the Haplotype Reference Consortium panel. Nat Genet. 2016; 48: 1443–1448. https://

doi.org/10.1038/ng.3679 PMID: 27694958

47. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation

service and methods. Nat Genet. 2016; 48: 1284–1287. https://doi.org/10.1038/ng.3656 PMID:

27571263

48. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv [q-

bioGN]. 2013. Available: http://arxiv.org/abs/1303.3997

49. Rubinacci S, Ribeiro DM, Hofmeister RJ, Delaneau O. Efficient phasing and imputation of low-coverage

sequencing data using large reference panels. Nat Genet. 2021; 53: 120–126. https://doi.org/10.1038/

s41588-020-00756-0 PMID: 33414550

50. Ng B, White CC, Klein H-U, Sieberts SK, McCabe C, Patrick E, et al. An xQTL map integrates the

genetic architecture of the human brain’s transcriptome and epigenome. Nat Neurosci. 2017; 20: 1418–

1426. https://doi.org/10.1038/nn.4632 PMID: 28869584

51. Jaffe AE, Straub RE, Shin JH, Tao R, Gao Y, Collado-Torres L, et al. Developmental and genetic regu-

lation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci. 2018;

21: 1117–1125. https://doi.org/10.1038/s41593-018-0197-y PMID: 30050107

52. Buil A, Brown AA, Lappalainen T, Viñuela A, Davies MN, Zheng H-F, et al. Gene-gene and gene-envi-

ronment interactions detected by transcriptome sequence analysis in twins. Nat Genet. 2015; 47: 88–

91. https://doi.org/10.1038/ng.3162 PMID: 25436857

53. Taylor DL, Jackson AU, Narisu N, Hemani G, Erdos MR, Chines PS, et al. Integrative analysis of gene

expression, DNA methylation, physiological traits, and genetic variation in human skeletal muscle. Proc

Natl Acad Sci U S A. 2019; 116: 10883–10888. https://doi.org/10.1073/pnas.1814263116 PMID:

31076557

54. Chen L, Ge B, Casale FP, Vasquez L, Kwan T, Garrido-Martı́n D, et al. Genetic Drivers of Epigenetic

and Transcriptional Variation in Human Immune Cells. Cell. 2016; 167: 1398–1414.e24. https://doi.org/

10.1016/j.cell.2016.10.026 PMID: 27863251

55. Kundu K, Mann AL, Tardaguila M, Watt S, Ponstingl H, Vasquez L, et al. Genetic associations at regula-

tory phenotypes improve fine-mapping of causal variants for twelve immune-mediated diseases. bioR-

xiv. 2020. https://doi.org/10.1101/2020.01.15.907436

56. Quach H, Rotival M, Pothlichet J, Loh Y-HE, Dannemann M, Zidane N, et al. Genetic Adaptation and

Neandertal Admixture Shaped the Immune System of Human Populations. Cell. 2016; 167: 643–656.

e17. https://doi.org/10.1016/j.cell.2016.09.024 PMID: 27768888

57. Schmiedel BJ, Singh D, Madrigal A, Valdovino-Gonzalez AG, White BM, Zapardiel-Gonzalo J, et al.

Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell. 2018; 175: 1701–

1715.e16. https://doi.org/10.1016/j.cell.2018.10.022 PMID: 30449622

58. Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, Yurovsky A, et al. Passive and

active DNA methylation and the interplay with genetic variation in gene regulation. Elife. 2013; 2:

e00523. https://doi.org/10.7554/eLife.00523 PMID: 23755361

59. Lappalainen T, Sammeth M, Friedländer MR, ’t Hoen PAC, Monlong J, Rivas MA, et al. Transcriptome

and genome sequencing uncovers functional variation in humans. Nature. 2013; 501: 506–511. https://

doi.org/10.1038/nature12531 PMID: 24037378
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