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A B S T R A C T   

Selective attention implements preferential routing of attended stimuli, likely through increasing the influence of 
the respective synaptic inputs on higher-area neurons. As the inputs of competing stimuli converge onto post-
synaptic neurons, presynaptic circuits might offer the best target for attentional top-down influences. If those 
influences enabled presynaptic circuits to selectively entrain postsynaptic neurons, this might explain selective 
routing. Indeed, when two visual stimuli induce two gamma rhythms in V1, only the gamma induced by the 
attended stimulus entrains gamma in V4. Here, we modelled induced responses with a Dynamic Causal Model for 
Cross-Spectral Densities and found that selective entrainment can be explained by attentional modulation of 
intrinsic V1 connections. Specifically, local inhibition was decreased in the granular input layer and increased in 
the supragranular output layer of the V1 circuit that processed the attended stimulus. Thus, presynaptic atten-
tional influences and ensuing entrainment were sufficient to mediate selective routing.   

1. Introduction 

The visual system has evolved to represent the environment in a 
hierarchy of brain areas. Lower-area neurons have small receptive fields 
(RFs) and send converging projections to higher-area neurons. This 
convergence creates complex stimulus selectivity and large RFs. These 
large RFs usually cover, under natural viewing conditions, multiple 
stimuli, whereas those stimuli typically fall into RFs of separate neurons 
in primary visual cortex, V1. When one of those stimuli is attended, 
firing rates of V1 neurons are hardly affected, whereas firing rates of V4 
neurons are similar to those observed when the attended stimulus is 
shown in isolation (Luck et al., 1997; Moran and Desimone, 1985; 
Reynolds et al., 1999). Thus, firing rates of neurons in area V4 and in-
ferotemporal cortex primarily reflect the attended stimulus, whereas 
unattended stimuli appear to be filtered out. 

This pattern of V1 and V4 firing rates can be modelled by assuming 
that attention increases the influence of ascending inputs to V4, 

specifically, the inputs from V1 neurons representing the attended 
stimulus - see “biased competition model” in Desimone and Duncan 
(1995), Reynolds et al. (1999) and “normalization model” in Reynolds 
and Heeger (2009). In these mathematical models, attention needs to 
selectively address the inputs representing the attended stimulus, and to 
implement this, separate variables are used for the inputs reporting 
distinct stimuli. However, those converging inputs correspond to syn-
apses onto the dendrites of V4 neurons, namely, synapses that are spe-
cific to the locations and features of the visual stimuli. The complete set 
of all synaptic inputs of a given V4 neuron can be partitioned by the 
multiple stimuli in its RF in essentially infinite ways. Moreover, the 
features of the visual stimuli, and therefore the partitioning of synaptic 
inputs, might change dynamically as the stimuli change or the eyes 
move. Enhancing the gain of the synapses that convey the attended 
stimulus from V1 to V4 would therefore require that these synaptic in-
puts (or at least a significant fraction of them) would be exclusively and 
dynamically addressed by top-down projections. The number of those 
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projections would need to be essentially infinite to cover all possible 
stimuli and attentional sets. Note that this problem arises for each of a 
large number of V4 neurons activated by the attended stimulus; thereby, 
the challenge multiplies at the V4 population level. 

By contrast, at the level of V1, distinct visual stimuli are represented 
by distinct neuronal populations. The population activated by a single 
stimulus forms a gamma-synchronized assembly (Eckhorn et al., 1988; 
Gray et al., 1989; Lowet et al., 2017). Such an assembly has the 
advantage that it can be addressed as a whole, even by coarse top-down 
inputs. These inputs could be provided by topographical projections 
from a higher area equipped with an attentional saliency map. When the 
saliency map contains a local activation peak, reflecting the current 
locus of attention, this will affect the attended V1 assembly. The 
top-down influences will likely match the V1 assembly only partially. 
Yet the targeted subset of neurons can spread attentional effects to the 
entire assembly by means of the assembly’s internal synchronization 
dynamics. 

Therefore, a parsimonious account of attentional addressing relies on 
neuronal synchronization; namely, the Communication-Through- 
Coherence (CTC) hypothesis (Fries, 2005, 2015). CTC offers a flexible 
and biologically plausible mechanism—to enhance the impact of 
attended stimuli on higher areas—based on the coherence between 
higher and lower areas, e.g., macaque visual areas V1 and V4. Indeed, 
when two distinct visual stimuli induce two local gamma rhythms in V1, 
only the gamma induced by the attended stimulus entrains gamma in V4 
and establishes coherence (Bosman et al., 2012; Grothe et al., 2012). 
Selective coherence between the attended V1 and V4 allows the atten-
ded V1 input to arrive on high-gain moments of the V4 gamma cycle 
(Fries, 2015; Ni et al., 2016; Rohenkohl et al., 2018). This likely results 
in attended inputs exerting a greater influence on V4 neurons, without 
the need to address those inputs at the synaptic or postsynaptic level. 
Instead, the top-down attentional signal should target the attended V1 
population, affording it an advantage over the unattended V1 popula-
tion in their competition to entrain V4 in a coherent gamma rhythm. 
One piece of evidence supporting this hypothesis is the observation that 
the attended V1 gamma has a slightly higher frequency than the unat-
tended gamma (Bosman et al., 2012; Ferro et al., 2021), potentially 
providing the attended V1 gamma a competitive edge in entraining V4 
(Cannon et al., 2014; Fries, 2015). 

Based on this CTC account, we hypothesized that both effects of 
attention, on V1 gamma frequency and V1-V4 gamma coherence, could 
be explained by attentional modulation acting solely within V1. To test 
this, we used a Dynamic Causal Model (DCM) of the canonical cortical 
microcircuit (Bastos et al., 2012) containing excitatory and inhibitory 
neuronal populations. This DCM contains intrinsic (within an area) and 
extrinsic (between V1 and V4) connectivity in good correspondence 
with anatomical and functional observations in the macaque. Atten-
tional top-down influences are conceived here as originating from an 
attentional control area, separate from V4; i.e., attentional top-down 
influences are considered distinct from V4-V1 feedback influences. 
V4-V1 feedback projections are included in the model, yet their in-
fluences are modulated indirectly, through changes in the intrinsic 
excitability of their targets. In other words, we do not consider that 
attention modulates the V4-to-V1 feedback projections directly; instead, 
top-down influences beyond V4—carrying information about the 
attentional set—change the excitability of neuronal populations in V1, 
which leads to selective changes in the responses of V4 to attended V1 
afferents. We identify the most likely V1 microcircuit changes that un-
derwrite differences in attentional set between the two attentional 
conditions. The DCM revealed that attentional effects could be explained 
by changes in several local excitatory and inhibitory V1 connections. 
Inhibitory connections are of particular interest, because inhibitory 
populations in the V1 microcircuitry have been proposed as targets for 
top-down signals from higher areas (Zhang et al., 2014) or as mediators 
of neuronal competition (Börgers and Kopell, 2008). Therefore, we 
subsequently used DCM to ask more specifically which inhibitory 

subpopulations are most likely to explain the observed effects of atten-
tion on induced responses. Finally, we investigate whether the observed 
effect of attention on V1 power and V1-V4 coherence can be modelled in 
the absence of V4-to-V1 feedback connections. To evaluate the evidence 
for alternative models of attentional selection—by fitting alternative 
DCMs to the empirical data—we combined Variational Bayes (VB) 
(Friston et al., 2007) with a novel multi-start approach. 

2. Methods 

2.1. Experimental details: stimuli, task and data collection 

All procedures were approved by the animal ethics committee of 
Radboud University (Nijmegen, the Netherlands). Data from two adult 
male Rhesus monkeys (Macaca mulatta) were used in this study. 

Local Field Potential (LFP) data was collected using electrocortico-
graphical (ECoG) grids with 252 electrode contacts, implanted to cover a 
large portion of the left hemispheres of the two monkeys. Note that even 
though the electrodes did not penetrate cortical tissue, we refer to the 
signal as LFP, because we found in previous studies that it reflects local 
neuronal activity as evidenced by small RFs (Bosman et al., 2012). For 
each pair of neighboring electrodes, the LFP was subtracted to remove 
the recording reference, and each resulting bipolar derivation is referred 
to as a (recording) site (Bosman et al., 2012). 

The monkeys were trained to perform a covert selective attention 
task (Fig. 1A). After the monkeys touched a lever and attained fixation 
on the center of a screen, two square-wave gratings appeared at equal 
eccentricities from the fixation spot, one tinted blue, the other yellow, 
both drifting inside a static circular aperture. At a variable time during 
the trial, the fixation spot assumed the color of one of the gratings, 
indicating this grating to be the target, and the other to be the distracter. 
At a variable time thereafter, there was a change in the curvature of one 
of the two gratings, with equal probability for target and distracter 
changes. Changes in the target had to be reported by releasing a lever to 
obtain fluid rewards. 

V1 and V4 sites covered a wide range of RF locations. The two stimuli 
were positioned to fall into one V4 RF, yet separate V1 RFs. That is, the 
two stimuli activated separate V1 sites, called “V1a” and “V1b”, yet the 
same V4 site, called “V4”. The stimulus activating e.g., V1a, will be 
referred to as “V1a stimulus”; a set of simultaneously recorded V1a, V1b 
and V4 sites will be referred to as a “V1a-V1b-V4 triplet” (or just 
“triplet”). The behaviorally relevant stimulus (resp., irrelevant) in each 
trial will be referred to as “attended stimulus” (resp., unattended). 
Correspondingly, we will refer to the V1 site with the attended (resp., 
unattended) stimulus in its RF as the “attended (resp., unattended) V1 
site”. The trials are separated into two conditions: “attend V1a”, where 
the V1a stimulus was the target, and the V1b stimulus was the distractor, 
and “attend V1b”, where the reverse was true. 

For a detailed description of the task, the recordings, and the RF 
mapping, see Bosman et al. (2012). The present study is based on the 
same dataset as Bosman et al. (2012). 

2.2. Preprocessing and MVAR model 

The recorded data was low-passed filtered at 250 Hz to obtain the 
LFP. Bipolar derivations, referred to as (recording) sites, were calculated 
by subtracting the signal of two neighboring electrodes in the time 
domain to remove the common recording reference. 

As in Bosman et al. (2012), we segmented the data into 
non-overlapping epochs of 500 ms. The epochs begin at least 500 ms 
after the cue onset (i.e., the color change of the fixation spot) or 300 ms 
after a potential change in the distractor, and they end when the target 
changes. Epochs with a variance exceeding three times the variance 
across epochs were rejected; this applied to 2 epochs of monkey K 
(0.15% of all epochs of monkey K). The epochs were demeaned and 
normalized to a standard deviation of 1. The number of epochs was 
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equalized across attention conditions by randomly selecting epochs from 
the condition with the higher number of epochs, in order to avoid a 
sample-size dependent bias in the calculation of coherence (Cohen, 
2014). This resulted in Nepoch = 1253 per condition for monkey P and 
Nepoch = 590 per condition for monkey K. 

Before calculating the cross-spectral densities (CSD) between 
different sites, epochs were pre-whitened in order to counteract the ef-
fects of the 1/f characteristic of the power spectra. To do this, data were 
first down-sampled to 250 Hz. Then the ARfit toolbox was used to fit a 
first-order autoregressive (AR) model to the data and to calculate a 
common coefficient r for all channels and all epochs, which is assumed 
to estimate the 1/f component of the data. Each data sample zw of the 
pre-whitened time series was calculated from the original data samples 
zoas: 

zw
t+1 = zo

t+1 − rzo
t  

where t denotes time steps. 
A Multi-Variate Auto-Regressive (MVAR) model with model order 8 

was fit to the pre-whitened data. Power, CSD and coherence were 
calculated on the estimated MVAR coefficients using the BSMART 
toolbox in Fieldtrip. 

2.3. Triplet formation 

The goal of the previous study (Bosman et al., 2012) was to inves-
tigate the case where each of the two stimuli, referred to here as stimulus 
A and stimulus B, is represented by a separate population in V1, referred 
to here as V1a and V1b, and both of them send converging inputs to the 

Fig. 1. Modelling the effects of selective attention on gamma-band neuronal synchronization in the visual cortex. (A) Selective attention task (Bosman et al., 2012). 
The monkey had to maintain fixation on the fixation spot. The stimuli consisted of two iso-luminant gratings, one in the V1a RF, the other in the V1b RF, and both 
contained in the V4 RF. RFs are illustrated with dashed circles, not visible to the monkey. The color of the fixation spot (cue) indicated which of the two gratings the 
monkey had to attend. When the cue color matches the color of the stimulus in one V1 RF, the monkey attends that RF location and primarily this attended stimulus is 
communicated to and represented in the higher area V4. The color assignment to the two stimuli and the attentional condition are selected randomly in each trial. (B) 
Power and coherence of example V1 and V4 sites from monkey P, while the monkey was instructed to attend the stimulus in the V1a (red lines) or V1b (blue lines) RF. 
Top: V4 power relative to baseline; bottom: V1 power relative to baseline; middle: V1-V4 coherence spectrum. Modified from Bosman et al. (2012). (C) The 
V1a-V1b-V4 microcircuit that was used to model the CSD measured from the data. Each area consisted of 4 subpopulations modelled as neural masses: an excitatory 
population in the granular layer g, a pyramidal population in the supragranular layers s, a pyramidal population in the deep layers d and a population of inhibitory 
interneurons i. The pattern of intrinsic (within area) and extrinsic (between areas) connectivity is shown. Note that inhibitory (magenta) connections that appear to 
stem from excitatory (green) populations can be conceived as being mediated by local inhibitory interneurons. Extrinsic connections are depicted as bifurcating to 
simplify the illustration, but the strength of each of the 8 extrinsic connections was fitted independently. Dashed lines represent the connections whose strength could 
vary between the two attentional conditions. 
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same population in V4. For this purpose, the authors had selected V1 
sites that responded with a gamma-band peak selectively to one of the 
two stimuli, and V4 sites that responded approximately equally with a 
gamma-band peak to both stimuli. Since we intended to model the exact 
effects described by Bosman et al. (2012) we used the same criteria for 
the selection of V1 and V4 sites. The main attentional effects observed by 
Bosman et al. (2012) are: When attention was directed to the stimulus 
activating a given V1 site (as compared to when it was directed to the 
other stimulus), this V1 site showed 1) stronger coherence with V4 sites, 
and 2) higher gamma-peak frequency. 

The goal of the present study was to investigate the generative pro-
cesses underlying these attention effects by fitting a DCM. To maximize 
sensitivity, we used triplets of V1a, V1b, and V4 sites, which showed 
these attention effects particularly strongly. To do this, we first calcu-
lated the size of the shift in the V1 gamma-peak frequency and the size of 
the V1-V4 coherence increase with attention. For the size of the coher-
ence effect, we summed coherence values in the gamma frequency range 
(monkey P: 50-80Hz, monkey K: 60-90Hz) and subtracted the total 
“attend out” from the total “attend in” coherence value. Then, we 
excluded all V1-V4 pairs whose V1 site showed a negative shift in the 
gamma-peak frequency with attention (monkey P: 0/67 or 0% of all 
pairs, monkey K: 1/20 or 5% of all pairs) or that had a decrease in V1-V4 
coherence with attention (monkey P: 8/67 or 11.9% of all pairs, monkey 
K: 3/20 or 15% of all pairs). Then, we formed all possible V1a-V1b-V4 
triplets from the remaining V1-V4 pairs, by considering all combina-
tions of V1a-V4 pairs and V1b-V4 pairs that had a common V4 site 
(monkey K: 16 triplets, monkey P: 165 triplets; note that the combina-
torial nature of triplet formation causes few more sites in monkey P to 
result in far more triplets). Each triplet had two attentional coherence- 
effect sizes, one for V1a-V4 and one for V1b-V4 coherence. Those ef-
fect sizes can be visualized as the coordinates of a point for this triplet on 
a scatter plot. For each triplet, we calculated the Euclidian distance 
between this point and the one defined by the maximum observed 
coherence effect magnitude across all V1a-V4 and V1b-V4 site pairs of a 
given monkey. Finally, we selected the 10 triplets with the lowest dis-
tance (or highest coherence effect size) from the triplets of each monkey 
for subsequent modelling. Over both monkeys, this resulted in 20 Va- 
V1b-V4 triplets. For each of those triplets, the data that entered 
DCM—namely, an array of CSD values for frequencies 0-100 Hz among 
V1a, V1b and V4—is referred to as CSD data. 

2.4. Dynamic causal model 

DCM for CSD is using Bayesian statistical methods to fit a 
physiologically-informed, neural mass model of neuronal activity to 
data that has been observed experimentally, in order to infer physio-
logical parameters (Friston et al., 2012). In DCM for CSD neuronal 
populations are modelled as neural masses (David and Friston, 2003; 
Jansen and Rit, 1995). The choice of the particular neural mass (ca-
nonical microcircuit) model is based on many years of Bayesian model 
comparison using dynamic causal modelling across a range of electro-
physiological studies (Moran et al., 2013). This standard functional form 
inherits from mean field approximations to population dynamics (Deco 
et al., 2008). It can be regarded as an expressive ensemble of Jansen-Rit 
models (Jansen and Rit, 1995), suitably coupled to accommodate inter- 
and intra-laminar connectivity (Bastos et al., 2012). The alternative 
(conductance-based) models replace each second-order differential 
equation with a differential equation with second order terms. Exten-
sions of these neural mass models to incorporate fluctuations in variance 
could have been employed (Marreiros et al., 2009), but were considered 
over-parameterized for the current study. Please see Deco et al. (2008), 
Moran et al. (2013) for further discussion. 

In short, the dynamics of each population are modelled by two op-
erations. The first operation corresponds to a transformation of pre-
synaptic firing rates to postsynaptic depolarization: it transforms the 
average pulse density of the inputs to the average depolarization of the 

population, by convolving the inputs with an alpha function, which is 
parameterized by the maximum amplitude of inhibitory or excitatory 
postsynaptic potentials and a time constant that is a lumped represen-
tation of the sum of rate constants of passive membrane and other 
spatially distributed delays in the dendritic network. The second oper-
ation corresponds to a transformation of postsynaptic depolarization to 
postsynaptic firing rate: it transforms the average depolarization of a 
neuronal population to the mean firing rate of that population by means 
of a sigmoid function. This sigmoid function can be further linearized 
around a fixed point when studying steady-state responses (Moran et al., 
2007). The convolution (described in the first operation) of all the 
synaptic inputs to a given population that are themselves the weighted 
mean firing rates of the projecting neuronal populations corresponds to 
the second-order differential equations of the form shown in Fig. 2 that 
capture the activity of each neuronal population. Such models are well 
established for EEG/MEG responses. They are particularly suited to 
study neuronal oscillations as they are operating in the frequency 
domain and can be inverted by making use of both the absolute value 
and the argument of the complex cross-spectral density matrix (Friston 
et al., 2012). We opted for this type of model, because we aimed at 
investigating the mechanisms that underlie experimentally observed 
attentional effects on oscillations, specifically the V1 gamma peak fre-
quency increase and the V1-V4 gamma coherence increase. 

The model used in this paper consists of three sources or nodes to 
account for the activity recorded from the V1a, V1b and V4 sites. The 
nodes have the same internal structure, a canonical cortical microcir-
cuit, which comprises 4 distinct neuronal populations: a pyramidal 
neuron population in the supragranular layer, s, a pyramidal neuron 
population in the deep layer, d, an excitatory population in the granular 
or input layer, g, and a population of inhibitory interneurons, i, that 
sends afferents to all layers (Auksztulewicz and Friston, 2015; Bastos 
et al., 2012). The connections between those neuronal populations 
within a local microcircuit are referred to as intrinsic connections. In 
contrast, the connections between the different microcircuits are 
referred to as extrinsic connections and include excitatory V1-to-V4 
feedforward projections and inhibitory V4-to-V1 feedback projections. 
This architecture is compliant with the subtractive role of predictions 
conveyed by feedback projections in the framework of predictive cod-
ing; for a more extensive discussion see Bastos et al. (2012). More spe-
cifically, each V1 microcircuit sends excitatory projections from the s 
population onto the V4 g and d populations, and the V4 microcircuit 
sends inhibitory projections from the d population onto the s and i 
populations of both V1 nodes. For an illustration of all the intrinsic and 
extrinsic connections, see Figs. 1C and 2. Note that the intrinsic 
connection from population s to g, the self-connections of the s, d and g 
populations and the extrinsic feedback projections are inhibitory even 
though they arise from populations that are conceived to be excitatory. 
These connections are imagined to be mediated indirectly by inhibitory 
interneurons, and the implementation as inhibitory connections origi-
nating from excitatory neurons constitutes a simplification. The imple-
mentation ensures the balance of excitation and inhibition in the 
network, which in turn ensures that the microcircuit has a fixed-point 
attractor around which the system describing the microcircuit dy-
namics can be expanded (Bastos et al., 2015a; Moran et al., 2007). 

We will use the term “model architecture” or simply “architecture” to 
refer to a graph of intrinsic and extrinsic connections; as e.g., illustrated 
in Fig. 1C; and we will use the term “model” to refer to a set of estimated 
model parameters or “posteriors” for a particular model architecture. 
We will first consider the model architecture shown in Fig. 1C and then 
consider a modified architecture. 

The neuronal model described above is complemented by an obser-
vation model that accounts for the measurement of the data. In general, 
the observation model describes the LFP signal as the sum of a neuronal 
and a noise component. The neuronal component is the weighted sum of 
the depolarizations of the different contributing neuronal populations. 
The noise component is inherent to the recording of the data and consists 
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of specific and non-specific channel noise parameterized by an ampli-
tude and exponent in frequency space. For the present study, a param-
eter (w) that accounts for the pre-whitening of the data was added to the 
observation model. Moreover, for this study, only the superficial pyra-
midal population contributes to the LFP, as described below in Section 
2.6. 

The neuronal and observation models come together to form the 
generative model for the CSD data, which is a statistical model of the 
joint probability of the parameters θ and the data y: 

lnP(y, θ|m) = lnP(y|θ,m) + lnP(θ,m)

P(y|θ,m) = N(Γ(θ),Σ(θ))

P(θ,m) = N(λ, σ)

where the model m is defined by the model structure drawn in Fig. 2 and 
the priors. Γ expresses the mapping of the model parameters to the 
model spectral features that are fitted to the experimentally observed 
data, and therefore encompasses the differential equations that describe 
the neuronal dynamics shown in Fig. 2. N denotes a normal distribution 
with the indicated mean and variance. Σ(θ) and σ are the variance of the 
parameters and of the hyper-parameters, respectively. 

The prior mean and variance for the parameters of the neuronal and 
the observation model can be found in Table 1. The frequencies of in-
terest were 0 to 100 Hz. The MATLAB toolbox that was used for con-
structing, fitting and analyzing the DCM was SPM12. The SPM12 
functions, where each DCM parameter can be found, are also included in 
Table 1. 

For people not familiar with DCM, it may be worth rehearsing a few 

Fig. 2. The canonical microcircuit. Equations of motion for the 4 neural masses within a canonical microcircuit node. vx, depolarization of population x; κx, inverse of 
time constant of population x; aF

x→y, extrinsic feedforward excitatory connection strength from population x to population y; aB
x⊸y, extrinsic feedback inhibitory 

connection strength from population x to population y; γx→y, intrinsic excitatory connection strength from population x to population y; γx⊸y, intrinsic inhibitory 
connection strength from population x to population y; Sx, sigmoid function transforming the depolarization of population x to a firing rate; U, external input firing 
rate; v̇, first temporal derivative of depolarization; v̈, second temporal derivative of depolarization. 

Table 1 
Prior mean and variance of DCM model parameters.  

Parameter Prior mean Prior variance SPM 12 function 

VB hyperparameters λ 12 1/64 spm_dcm_csd.m 

Neuronal model 

Intrinsic time constants τg , τs, τi, τd 2,2,16,18 1/64,1/64,1/64,1/64 spm_fx_cmc.m, spm_cmc_priors.m 
Intrinsic connection strengths γg⊸g, γg→s, γg→i 800,800,800 1/32,1/32,1/32   

γs⊸s, γs⊸g , γs→i 800,800,400 1/32, 1/32,1/32   
γi⊸i, γi⊸g, γi⊸s, γi⊸d 800,1600,800,400 1/32,1/32,1/32,1/32   
γd⊸d, γd→i 400,400 1/32,1/32  

Extrinsic connection strengths (forward) αfw
s→g,αfw

s→d 
200,25 1/16,1/16  

Extrinsic connection strengths (feedback) αfb
d⊸s,α

fb
d⊸i 

100,50 1/16,1/16  

Sigmoid gain σ 1 1/32  
Delays δ 0 1/64 spm_cmc_priors.m 
Conditional effects β 0 1/8 spm_dcm_neural_priors.m 

Observation model 

Gain L 1 64 spm_L_priors.m 
Contribution to signal Jg ,Js, Ji,Ji 0,1,0,0 0,0,0,0  
Neuronal fluctuations a 0 1/128 spm_ssr_priors.m 
Non-specific noise b 0 1/128  
Channel-specific noise c 0 1/128  
Neuronal innovations d 0 1/128  
Whitening coefficients w 0 1/128   
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technical issues. DCM is the method of choice for comparing hypotheses 
or models of timeseries data. DCM is the preferred analysis because it 
uses variational procedures that furnish an evidence lower bound 
(ELBO) in the form of variational free energy. This can be contrasted 
with alternative estimates of model evidence (a.k.a. marginal likeli-
hood) based upon Akaike and Bayesian information criteria (AIC and 
BIC) (Penny, 2012), usually employed in sampling schemes. The key 
distinction between variational and sampling (e.g., Markov chain Monte 
Carlo or MCMC) procedures is the assumption of a functional form for 
the posterior. These assumptions allow for a computationally and sta-
tistically efficient variational model inversion and model comparison. 
For example, “since DCM is often characterized by high posterior cor-
relations between its parameters… standard MCMC schemes exhibit 
poor performance and extremely slow convergence.” (Yao and Stephan, 
2021). 

However, the use of variational inference comes at the cost of the 
well-known overconfidence problem (MacKay, 2003). This means that it 
is necessary to ensure that variational model inversion leads to the same 
conclusions as sampling schemes. DCM for expressive neuronal 

state-space models has been validated in relation to MCMC and tested 
against various sampling procedures (Chumbley et al., 2007; Penny and 
Sengupta, 2016; Sengupta et al., 2014, 2015, 2016). The overconfidence 
problem pertains only to the posteriors over model parameters and not 
the posterior over models per se (because there is no mean field 
approximation in BMC). However, when interpreting the posterior 
density over model parameters, the overconfidence problem usually 
involves a shrinkage of credible intervals. 

2.5. Attentional modulation in the DCM 

In any given trial, one of the two V1 sites will be attended, and the 
other V1 site will be unattended. This means that the two conditions 
need to be modelled simultaneously. In both conditions, attentional 
modulation is modelled as a multiplier β that modulates the strength of 
intrinsic V1a and V1b connections. Conceptually, there exists in the 
model a “baseline” connection strength γ that remains constant between 
conditions (and that does not correspond to any experimental condition 
by itself), and is multiplied with β or − β to calculate the final connection 

Fig. 3. DCM of the attentional effects. (A) Top: Schematic representation of the observation model used in the present study: The LFP of a node consists of the 
depolarization of the respective supragranular pyramidal population, weighted by the parameters of the observation model G. Bottom: Legend for panels A-C. (B) 
Power spectral density and coherence spectra averaged over the 10 V1a-V1b-V4 triplets of monkey P. Top: V4 power spectrum, bottom: V1a and V1b power spectra, 
middle: V1a-V4 and V1b-V4 coherence spectrum. (C) Absolute DTF averaged over the 10 V1a-V1b-V4 DCMs of monkey P. (D) GC from V1 to V4 in the fitted models, 
as a function of frequency relative to the individual gamma peak frequency of the respective monkey, averaged over V1a and V1b locations and all triplets of both 
monkeys (for which the GC algorithm converged – see Section 2.10), shown separately for the “attend in” (purple) and “attend out’” (green) condition. The gray 
horizontal bar indicates a significant difference between the conditions, corrected for multiple comparisons across frequencies. (E) PEB posterior estimate of the 
attentional modulation β, combining data from both monkeys. This expresses the half log ratio of connection strengths in the “attend in” over the “attend out” 
condition for each intrinsic V1 connection. Error bars indicate 95% Bayesian confidence intervals (credible intervals), computed from the leading diagonal of the 
covariance matrix. Generally speaking, the effects whose credible intervals do not cross the zero line are significant in the sense that Bayesian model comparison 
provides “very strong” evidence for their presence (Kass and Raftery, 1995). (F) Schematic representation of the “attend in” over the “attend out” connection strength 
ratio for connections significantly modulated with attention. The ratio is equivalent to twice the β value and is presented as the width of the pink- and blue-colored 
connections, relative to the width of grey-colored connections for the connections that are modulated by attention. Note that the strengths γ of the remaining 
connections, which are shown as grey lines, have also been fitted to best explain the data features but have the same value for the two attentional conditions (i.e., 
“attend in” over the “attend out” ratio is equivalent to 1). 

C. Katsanevaki et al.                                                                                                                                                                                                                           



NeuroImage 281 (2023) 120375

7

strength. Thus, the condition-specific connection strength is eγ+cβ, where 
c is the condition effect and is +1 for the “attend V1a” and − 1 for the 
“attend V1b” condition, respectively. 

The ratio of “attend in” over “attend out” connection strength, shown 
in the schematic representations in Figs. 3F and 5F is evaluated as: 

eγ+cβ/eγ− cβ = eγ+β− γ+β = e2β 

The estimates for β, as obtained directly from fitting the data, are 
expected to show opposite effects for V1a and V1b sites, since for V1a 
sites they represent the modulation from the unattended condition to the 
attended one, and for V1b they represent the modulation from the 
attended to the unattended condition. 

Results from the two attention conditions were combined as 
explained below in Section 2.9. 

Note that to ensure that scale parameters (like rate and time con-
stants) have non-negative values, all DCM parameters (except the elec-
trode gains) have log-normal priors. 

2.6. Notes on the observation model 

As mentioned above, the neuronal model is complemented by an 
observation model, which describes, among others, how each element of 
the model contributes to the observed spectra. This entails that the 
power spectrum observed from the model could in principle be 
composed from many different combinations of power spectra across the 
modelled neuronal populations. We choose to constrain the observation 
model to reflect exclusively the supragranular pyramidal population for 
two reasons: (1) Our recordings were obtained with ECoG electrodes 
placed on the surface of the cortex. LFP attenuates with distance 
following an inverse square law, such that ECoG electrode signals are 
dominated by supragranular neuron activity (Destexhe and Bedard, 
2013; Nunez and Srinivasan, 2006). (2) In the employed DCM, only the 
supragranular pyramidal V1 population projects to V4. Thereby, V1-V4 
coherence is directly influenced by the power spectra of the activity in 
the supragranular pyramidal V1 population (and merely indirectly by 
other V1 populations). Correspondingly, the supragranular pyramidal 
V1 power spectra should reflect the observed data faithfully, as obtained 
by the mentioned constraint on the observation model. Note further that 
the observed data showed no consistent difference in gamma power 
between attention conditions, and therefore one of the aims of our 
modelling effort was to investigate whether the strong attentional effect 
on V1-V4 coherence could be explained in the absence of attentional 
effects on the relevant, i.e., supragranular, V1 power. 

2.7. Multi-start variational Bayes 

VB (Friston et al., 2007) performs gradient descent on free energy 
(see Section 2.8 below) in alternating steps of optimizing the parameters 
to minimize free energy for a set of hyper-parameters and vice versa 
(optimizing the hyper-parameters to minimize free energy for a set of 
parameters). The algorithm runs for a given number of steps (Nsteps =

128 in our case) or until convergence, but it is not guaranteed to 
converge to a global minimum. Therefore, it is common practice to 
restart the algorithm in search for better parameters. In each restart, the 
last posterior estimates of the observation and neuronal model param-
eters are used as an initial point for a new gradient descent on free en-
ergy. Meanwhile, the hyper-parameters are reset to their prior values. 
This allows for a wider search in the parameter space, in the vicinity of 
the last posterior estimates. 

Here, we implemented a multi-start version of this scheme. Every 
time VB was restarted, uniform noise with a maximum range of 1 or 2 
was added to the estimated posterior means obtained from the previous 
VB execution, before they were used as a starting point for the next 
execution. After executing VB, using the parameter and hyperparameter 
priors as an initialization, we run a total of 500 randomizations for each 

of the two noise levels; each randomization consisted of another 9 
consecutive VB restarts for each triplet, with noise added in between. 
This resulted in 1 + 9 × 500 × 2 = 9001 models (or sets of parameter 
estimates) for each triplet. 

The data features that were considered when fitting the data were a 
weighted mixture of the CSD, the cross-covariance function and the 
MVAR coefficients calculated from the data. Their relative weights were 
1, 1 and 1/8 correspondingly. 

The hyperparameter prior mean was smaller than in previous DCM 
studies on EEG, because the ECoG data contain less variance. The sub-
sequent data fitting and analysis followed standard procedures for 
Bayesian model inversion, comparison (BMC), reduction (BMR), and 
averaging (BMA) under a hierarchical—i.e., parametric empirical Bayes 
(PEB)—model of within and between site effects. In what follows, we 
briefly rehearse these procedures. 

2.8. Free energy and model comparison 

As a result of fitting the data with a multi-start version of VB, we 
could have obtained 9001 models for each triplet. Due to convergence 
failure, we obtained less models for some triplets (1842/360040 or 
0.0051% of all possible models missing; more specifically for monkey P: 
less than 7 models missing for 2 triplets in the DCM with feedback, 8 
models missing for 1 triplet in the DCM without feedback; monkey K: 
less than 183 models missing for all triplets in the DCM with feedback 
and less than 10 models missing for 3 triplets in DCM without feedback). 

For each model, negative free energy is calculated as: 

F(q) = Eq[lnp(y|θ)]− DKL[q‖ p]

where q and p are the approximate posterior and prior distributions 
respectively (Friston et al., 2007). The first term is the expectation under 
the posterior probability q of the likelihood of the data given the pa-
rameters θ and the model architecture, and it quantifies how well the 
model and its parameters fit the data. The second term is the 
Kullback-Leibler divergence of the posterior from the prior probability 
of the parameters; it expresses the complexity of the model, and it im-
poses a complexity penalty for moving away from the prior parameter 
values to fit the data. 

The models are compared on the basis of their free energy (a.k.a., 
ELBO). The model with the higher free energy (corresponding to a 
higher ELBO) affords a better explanation of the data and is reported as 
the ‘winning model’ for each triplet in the following sections (Penny 
et al., 2004). 

2.9. Quantifying attentional effects across triplets 

In order to quantify whether in the model there is a significant in-
crease in V1-V4 GC for the attended V1 compared to the unattended V1, 
we pooled the model GC spectra over V1 locations, triplets, and mon-
keys. GC was calculated from the CSD matrices of the model using the 
Wilson-Burg algorithm for spectral matrix factorization. This process 
converged for all triplets from monkey P and for 6 out of 10 triplets from 
monkey K, and only these converging triplets participate in the average. 
First, GC spectra were averaged for each bipolar site that was used 
multiple times during the formation of triplets. Then, the GC spectra 
were averaged over the unique V1 sites from both locations and over 
both monkeys after aligning them to the gamma peak frequency of each 
monkey’s power spectra (monkey P: 65 Hz, monkey K: 70 Hz). 

The significance of the GC difference between the two attentional 
conditions was estimated using a randomization test. In each of 1000 
randomizations, each of the unique sites that participated in the average 
GC was randomly assigned condition labels for the two condition GC 
spectra. Then, GC was averaged over sites and the difference between 
the two conditions was calculated. From each randomization, the 
maximum positive difference and the minimum negative difference 
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across frequencies was collected. The values at the 97.5%-percentile of 
the positive differences distribution and the 2.5%-percentile of the 
negative differences distribution were used as significance thresholds for 
the GC of the model. This controls the overall false-positive rate to be 
below 5%, and corrects for the multiple comparisons performed across 
frequencies (Nichols and Holmes, 2002). 

To calculate the attentional modulation of the 12 connections within 
a V1 node, the estimates of V1a and V1b modulation needed to be 
pooled across all 20 triplets from both monkeys. 

Some V1 sites appeared in multiple triplets (see labels in Fig. S1 for 
monkey P). This could introduce a bias when combining the estimated 
parameters from all triplets, as their V1 spectra would be predicted by 
similar parameter posterior distributions. To avoid this bias, our first 
step was to estimate attentional modulation β over the triplets where a 
site was repeated, using PEB (Friston et al., 2016; Zeidman et al., 2019). 
Generally, PEB assumes a hierarchical model where the distribution of 
parameters (θ(1)) in one level (i.e., over subjects) can be modelled by a 
Gaussian distribution that is defined on the level above. For the atten-
tional modulation parameters β, the PEB model can be defined as: 

yk = Γ(1)
k

(
β(1)

k

)
+ X0bk + ε(1)k  

β(1) = Xβ(2) + ε(2)

β(2) = η + ε(3)

The first row expresses the fact that the data yk for each subject k is 
generated by the DCM with the function Γ(1)

k , which is a nonlinear 

mapping from the first-level attentional modulation parameters β(1)
k to 

the data of a subject k. Here, we consider the multiple iterations of a 
repeated site as subjects. The mean of the signal, which can vary be-
tween recordings and is irrelevant to the calculation of the attentional 
effects, can be modelled by a general linear model (GLM) with design 
matrix X0 and parameters bk. Here, we used a prior variance Cbk = 1 /32.
The additive Gaussian error term ε(1)k models the observation noise. The 
second row of the equation corresponds to the second level of PEB, and it 
shows that the vector of first-level parameters β(1) can be modelled by a 
GLM with design matrix X and group-level parameters β(2) and with the 
addition of between-subject variability ε(2). The second-level parameters 
have their own prior mean η and variability ε(3), as expressed in the third 
row. 

The estimated second-level PEB parameters correspond to the 
attentional modulation for a unique V1 site, which can be combined 
with the estimated DCM parameters of the attentional modulation for 
the V1 sites that were not repeated over triplets. This was implemented 
again using PEB, where all unique sites are considered as subjects and 
with an assumed prior variance of C′

b = 1/64. 
This means that the second PEB model combined the results from 

V1a and V1b sites. However, they were expected to have opposite signs 
of attentional modulation in each connection due to the way DCM deals 
with the experimental design. For example, if the V1a supragranular 
pyramidal self-inhibition was increased to change the V1a node 
response from the unattended to the attended state, in the same trial, the 
corresponding V1b connection was expected to decrease to change the 
V1b response from an attended to an unattended state. To accommodate 
for this anti-symmetry, we simply inverted the sign of the posterior V1b 
modulations, since they are log normal and therefore have symmetrical 
magnitude between conditions. As a simplification, the resulting final 
estimate of the attentional modulation over all unique V1 sites is 
referred to in the main text and figures as β or “log modulation”. 

2.10. Hypothesis testing with family-wise model comparison 

If we hypothesize that the attentional modulation, β, can be “turned 

on” or “off” for any number and combination of the 12 intrinsic V1 
connection strengths, γ, the total number of possible models with regard 
to these connections is 212 = 4096 (we refer to 12 instead of 24 pa-
rameters because the modulation needs to be applied with opposite sign 
in both V1a and V1b, see also Section 2.5). Each of these models is a 
reduced model in the sense that its free parameters are a subset of those 
in the full model that we have fitted to the data (in our case these are the 
intrinsic V1 connectivity parameters). Using BMR, we calculate the ev-
idence and the parameters of each reduced model efficiently, directly 
from the full model, without the need to fit the reduced model to data, 
thus precluding local minima (Friston et al., 2016). In the following, the 
attentional modulation parameters of full models are referred to as βF, 
and those of reduced models as βR. 

We partition the set of all reduced models into non-overlapping 
subsets of models (families) following a factorial design; models are 
allocated to families according to whether or not particular connections 
change with attention, according to our hypothesis. For example, if one 
would like to test whether the connection strength γs⊸s is modulated by 
attention, the set of all reduced models would be partitioned into two 
non-overlapping subsets or families, corresponding to the two hypoth-
eses: 1) one family with all models in which βs⊸s is “on” (i.e. it assumes 
the same value in the reduced as in the full model: βR

s⊸s = βF
s⊸s), and 2) 

one family, in which βs⊸s is “off” (i.e. βR
s⊸s = 0). Importantly, each family 

contains all models, in which the requisite condition is met, irrespective 
of all other parameters. Thus, the two families together contain all 
possible models in a given hypothesis. Note that we illustrate this for the 
case of one connection, which leads to two hypotheses; i.e., attentional 
modulation or not. For two connections, this will lead to 22 combina-
tions, i.e., 4 hypotheses. Generally, for N connections, this will lead to 2N 

hypotheses. 
The prior probability of each family is p(fϕ) = 1/Φ, where Φ is the 

total number of families, assuming uniform priors at the family level to 
avoid unwanted bias. The posterior probability for the family is calcu-
lated by summing the posterior probabilities of the models that belong 
to the family (Penny et al., 2010): 

p
(
fϕ|Y

)
=

∑

m∈fϕ

p(m|Y)

In our case, those are the reduced models and their posterior prob-
abilities calculated with BMR. By performing inference at the level of 
families of models we prevent evidence dilution across the many models 
that satisfy a more general hypothesis about the attentional mechanism. 

Finally, we perform BMA for inference at the level of parameters 
within the winning family (Litvak et al., 2015; Penny et al., 2010). BMA 
summarizes family-specific parameters by marginalizing the posterior 
probability of parameters θ over specific models m ∈ fϕ. 

3. Results 

We investigate the effects of selective attention by modelling LFP 
data that was previously acquired from two macaque monkeys per-
forming a covert selective visual attention task (Fig. 1A) (Bosman et al., 
2012). The monkeys were trained to attend one of two gratings that 
appeared on a screen. The two stimuli fell on distinct RFs in V1, but on 
the same RF in V4. The contrast between these two attentional condi-
tions revealed the effects of selective attention on V1 and on the 
communication between V1 and V4 (Fig. 1B) (Bosman et al., 2012). The 
key result is that the attended V1 site synchronized with the V4 site in 
the gamma band much more strongly than the unattended V1. Crucially, 
gamma power did not differ systematically between the attended and 
the unattended V1 site, yet gamma peak frequency at the attended V1 
site was higher than at the unattended V1 site by ~3 Hertz. 

Here, we investigate the mechanisms by which the attentional effects 
on gamma frequency and on interareal coherence could arise. As out-
lined in the introduction, we asked whether both effects can be 
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explained by an influence of top-down attention solely on V1 micro-
circuits, which inhibitory connections are most likely modulated by 
attention, and whether V4-to-V1 feedback connections are required. To 
address these questions, we use a DCM of V1a, V1b and V4 activity to 
model the effects of attention. While the data we use here are observed 
on the LFP scale, DCM allows inferences at the level of specific V1 
neuronal populations; in the sense of layer-specific excitatory or inhib-
itory neuronal populations and the connections between them (Fig. 1C). 
The DCM was fitted to the average (over trials and sessions) CSD of each 
of 20 V1a-V1b-V4 triplets (10 from each monkey) using a multi-start 
approach. 

3.1. Intrinsic V1 modulation is sufficient to explain the effects of attention 

Attention is modelled as a modulation of the strength of intrinsic V1a 
and V1b connections that is needed to switch between the “attend V1a” 
and “attend V1b” conditions to explain the LFP data features measured 
experimentally (Fig. 1C). These data features include condition-specific 
changes in V1-V4 gamma coherence and V1 gamma power peak fre-
quency, in the relative absence of differences in V1 gamma strength. All 
these features are reproduced on the CSD averaged over DCMs fitted to 
the 10 triplets of each monkey (Figs. 3B, S1; see Section 2.6). As only 
intrinsic V1 connections are allowed to change between the two con-
ditions, this demonstrates that intrinsic V1 modulation is sufficient to 
switch attention between the two targets. 

DCM also allows to quantify the Directed Transfer Functions (DTF) 
that can be generated from the neural mass model that best explains the 
data. In the average over the 10 triplets of monkey P, the V1a-to-V4 DTF 
shows an increase in magnitude in the gamma band with attention, and 
the V1b-to-V4 DTF shows a slight increase in gamma peak frequency 
with attention, similar to the peak-frequency shift in V1 gamma power 
(Fig. 3C). In the same analysis for monkey K, the V1a-to-V4 DTF did not 
show any appreciable attention effect (see Section 4.1), and the V1b-to- 
V4 DTF showed a clear increase in magnitude in the gamma band with 
attention (Fig. S2), consistent with similar changes in V1-to-V4 Granger 
causality (GC) (Bosman et al., 2012). 

In our context, the main effect of selective attention is the selective 
routing of attended signals from V1 to V4, which can be quantified as 
V1-to-V4 GC. V1-to-V4 GC in the model, averaged over the two monkeys 
and aligned to their individual gamma peak frequencies, was indeed 
enhanced with attention for the gamma band (Fig. 3D). 

To identify the attentional modulations that are conserved across the 
two V1 sites and across all 20 triplets, we used PEB (Friston et al., 2016). 
This standard hierarchal Bayesian modelling approach assumes that 
attentional modulation is sampled from a normal distribution with some 
mean and variance, reported as the PEB posterior estimate for atten-
tional modulation. The attentional modulation (β) of the intrinsic V1 
connection strength (γ) was significantly positive for three out of the 12 
possible (see explanation at end of paragraph) connections, namely for 
1) the inhibitory self-connection of population s (βs⊸s =

0.3043 ± 0.0104), 2) the inhibitory self-connection of population 
d (βd⊸d = 0.1762 ± 0.0107), 3) the excitatory connection from popu-
lation s to i (βs→i = 0.2018 ± 0.0077). This attentional modulation was 
significantly negative for two connections, namely for 1) the excitatory 
connection from population g to s (βg→s = − 0.1418 ± 0.0062), and 2) 
the inhibitory self-connection of population g (βg⊸g = −

0.4422 ± 0.0119) (Fig. 3E, also shown schematically in Fig. 3F). Note 
that we refer to changes in 12 connections instead of 24 because the PEB 
models attentional effects in the two V1 sites in the same way: i.e., 
attentional modulation of the 12 V1a and 12 V1b connections are 
treated as equivalent (see Section 2.9). 

Figs. S3–S5 illustrate, for one example triplet, how each one of the 
significantly attentionally modulated model parameters influences the 
microcircuit’s dynamics. Note that this is not necessarily representative 
for all other triplets. 

3.2. The role of inhibition 

BMR (Friston et al., 2016) and family-wise model comparison 
(Penny et al., 2010) were used to test hypotheses concerning the role of 
inhibition in V1 microcircuitry in mediating attentional set. With BMR 
one can update the parameter estimates and evidence for all possible 
reduced models (all DCMs with any connection strength within V1 
modulated by attention) directly from the fitted full model (the reported 
DCM with all connection strengths within V1 modulated by attention). 

In order to assess the role of inhibition in mediating attentional set, 
our first test addressed the attentional modulation of the self-inhibitory 
connections of pyramidal populations in the DCM. We considered both 
self-inhibitory connections of the supragranular and of the deep pyra-
midal population and therefore split the reduced model into four fam-
ilies (Fig. 4A): (1) family f s,d

1 , containing models where the self- 
inhibitory connections of both, the supragranular, s, and the deep, d, 
pyramidal populations are modulated with attention (βR

s⊸s = βF
s⊸s and 

βR
d⊸d = βF

d⊸d); (2) family f s,d
2 , where only supragranular pyramidal pop-

ulation s self-inhibition is modulated with attention (βR
s⊸s = βF

s⊸s and 
βR

d⊸d = 0); (3) familyf s,d
3 , where only deep pyramidal population d self- 

inhibition is modulated with attention (βR
s⊸s = 0 and βR

d⊸d = βF
d⊸d); and 

(4) family f s,d
4 , where neither the self-inhibition of s nor d is modulated 

with attention (βR
s⊸s = 0 and βR

d⊸d = 0). Of these four families, the one 
where only supragranular pyramidal self-inhibition is modulated by 
attention had the greatest posterior probability (p(f s,d

2 ) = 0.5995) 
(Fig. 4B). The family with the next highest posterior probability allowed 
both s and d self-inhibitory connections to be modulated by attention 
(p(f s,d

1 ) = 0.2628). 
The second hypothesis tested whether the inhibitory population i in 

the V1 microcircuit plays a substantive role in attentional modulation; in 
the sense that attention would modulate 1) the inhibition it receives 
through its self-inhibitory connection (βR

i⊸i = βF
i⊸i), 2) the excitation it 

receives from other populations (βR
g→i = βF

g→i, β
R
s→i = βF

s→i, β
R
d→i = βF

d→i), 
and/or 3) the strength of its inhibitory projections to excitatory pop-
ulations in the microcircuit (βR

i⊸g = βF
i⊸g, βR

i⊸s = βF
i⊸s, βR

i⊸d = βF
i⊸d). To 

answer this question, the reduced models were split into families that 
correspond to all combinations of the 3 alternatives, forming 23 = 8 
families (shown schematically in Fig. 4D). The family with the highest 
posterior probability was the family where none of the above connec-
tions are modulated by attention (p=0.8772; Fig. 4E). Note that factors 
(2) and (3) were defined as having each of three connections modulated 
by attention or none of them; if we relax this by defining them as having 
at least one of the respective three connections modulated, the results 
remained qualitatively the same. 

The connectivity parameters of models that belong to a winning 
family can be averaged through BMA (Litvak et al., 2015; Penny et al., 
2010) to reveal the attentional modulation averaged over all models in 
the family. The BMA for the winning family of each of two comparisons 
reported above (Fig. 4C, 4F), revealed that there were two common 
elements to attentional modulation: βs⊸s was significantly increased 
with attention, and βg⊸g was significantly decreased with attention. 
Following up on this result, we tested whether including the 
self-inhibitory connection of both the granular and the supragranular 
pyramidal population (βR

s⊸s = βF
s⊸s, β

R
g⊸g = βF

g⊸g) would accumulate more 
evidence than either modulation alone (or no modulation at all) by 
splitting the reduced models into four families (Fig. 4G). The family with 
the highest posterior probability was indeed the one where both mod-
ulations were present in the reduced models (p=0.8593; Fig. 4H). The 
BMA of the attentional modulation calculated across the models of this 
family was βR

s⊸s = 0.3019 ± 0.0104 and βR
g⊸g = − 0.4428 ± 0.0119 

(Fig. 4I, 4J). These values are almost equal to the PEB values for βs⊸s and 
βg⊸g reported above. They constitute our final estimate of the attentional 
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modulation of local inhibitory interactions: with attention they increase 
by 30% in the superficial layers and they decrease by 44% in the input 
layer. 

3.3. Attentional effects have a feed-forward character 

Finally, we ask whether the presence of feedback projections from V4 
to V1 is necessary for the intrinsic V1 modulation to explain the atten-
tional effects. To this end, V4-to-V1 feedback was eliminated from the 
model, and the model was fitted to the 20 V1a-V1b-V4 triplets. V1-to-V4 
feedforward projections and all intrinsic connections were retained, and 
attentional modulation was only allowed for intrinsic V1 connections, as 
before (Fig. 5A). Note that with this architecture, the attentional influ-
ence on V1 is still considered to be exerted by top-down projections onto 
V1. Remarkably, this modified DCM reproduced the broad features of 
the spectra and more specifically the attentional effects (Figs. 5B, S6). 
Moreover, the DTFs obtained from the DCMs showed prominent effects 
in the gamma band: V1-to-V4 DTF gamma magnitude was increased 
selectively for the attended condition (Fig. 5C). Also for the model ar-
chitecture without feedback, we investigated V1-to-V4 GC in the model, 
averaged over the two monkeys and aligned to their individual gamma 
peak frequencies, and found it to be enhanced with attention for the 
gamma band (Fig. 5D). 

We tested whether the attentional modulations found in the model 
architecture without feedback were similar to those obtained with the 
architecture with feedback. Indeed, among others, the key connections 
identified above, γs⊸s and γg⊸g, show significant attentional modulations 
in the same direction as in the model with feedback (βs⊸s = 0.2924 ±

0.0121 and βg⊸g = − 0.3330 ± 0.0144 respectively; Fig. 5E). 
We proceeded to calculate a family posterior probability for those 

two connections both being modulated with attention, as in the final 
family-wise comparison of the original architecture (see Fig. 4G) and 
found that it had the highest probability among the competing hy-
potheses (p = 0.5995). Notably, with the no-feedback architecture, 
another intrinsic connection showed a significant attentional modula-
tion effect in the BMA over the reduced models of the winning family: 
the excitatory connection from the granular population to the inhibitory 
population γg→i. As a final check, we asked whether all three connection 
modulations are necessary in the reduced no-feedback model (βR

s⊸s =

βF
s⊸s, β

R
g⊸g = βF

g⊸g and βR
g→i = βF

g→i) as opposed to any subset of the three 
connections or none. Among the ensuing eight families, the one with the 
highest posterior probability was indeed the one where all three con-
nections were present (p = 0.4745). The BMA of the attentional mod-
ulation over the reduced models of this family was βs⊸s =

0.2917 ± 0.0115, βg⊸g = − 0.3303 ± 0.0144 and βg→i = − 0.3478 ±

0.0082 (respective connection strength ratios shown in Fig. 5F). 

4. Discussion 

We used DCM to examine the mechanisms behind attentional effects 
in the communication between areas of the macaque visual cortex. LFP 
was recorded with an ECoG array from areas V1 and V4 during an 
attentional task, where two visual stimuli activated separate V1 sites, 
V1a and V1b, but the same V4 site, thus competing for representation at 
the level of V4 (Bosman et al., 2012). V4 was selectively entrained by the 

Fig. 4. The role of inhibition in attentional modulation. (A–C) Hypotheses about the role of pyramidal population self-inhibition in the supragranular and deep 
layers. (A) Schematic representation of the four hypotheses shown on an exemplar V1 microcircuit. Connections shown in continuous black lines are modulated by 
attention, connections shown in dashed black lines are not significantly modulated, whereas connections shown in grey may or may not be modulated. (B) Posterior 
probability of each family corresponding to a hypothesis shown in A. The index of the family with the highest posterior probability is highlighted with green in A. (C) 
BМА of the attentional modulation βR across all reduced models that belong to the winning family. (D–F) Same as A–C, but for hypotheses about the modulation of 
input or response gain of the inhibitory population. (G–I) Same as A–C, but for hypotheses about the role of self-inhibition in the supragranular pyramidal and in the 
granular population. (J) Schematic representation of the results shown in G–I, specifically the “attend in” over the “attend out” connection strength ratio for con-
nections significantly modulated with attention. Conventions as in Fig. 3F. Here, the significance of attentional modulation for each connection is considered relative 
to the BMA of βR. 
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attended V1 population, as revealed by the selective increase in the 
gamma coherence between the attended V1 and V4, accompanied by a 
slight increase in the attended V1 gamma frequency (Bosman et al., 
2012). Those spectral features of the data were fitted for the present 
study with a microcircuit DCM of V1a-V1b-V4 activity. 

In the fitted DCMs, both attentional effects—namely, the increase in 
V1 gamma frequency and the increase in V1-V4 gamma coher-
ence—were sufficiently explained by the modulation of intrinsic V1 
connections. The attention-modulated V1 connections included inhibi-
tory connections. This observation, together with prior literature, led us 
to test specific hypotheses about attentional effects on inhibition. The 
family of models with the highest evidence was the one that included 
modulations in the strength of the self-inhibitory connections of both the 
supragranular pyramidal population and the excitatory granular popu-
lation. Estimating the average modulation within this family revealed 
that the self-inhibition is increased in the supragranular pyramidal 
population and decreased in the granular population. Finally, intrinsic 
V1 modulations reproduced the attentional effects even in the absence of 
feedback connections from V4 to V1. This suggests that the selective V1- 
to-V4 entrainment can be achieved through a purely feed-forward 
mechanism (instantiated with a top-down modulation of intrinsic 
connectivity). 

4.1. Technical considerations 

In this section, we offer a critical reflection on technical aspects of 
the model, on our assumptions and on the limits of the dataset used in 

the present study. 
First, as with any model, our DCM architecture and the accompa-

nying priors are a simplification of the underlying cortical circuits and 
specifically of cortical inhibitory interneurons. The inhibitory (intrinsic 
recurrent) self-connections and descending (extrinsic) inhibitory con-
nections are assumed to be mediated by fast-spiking inhibitory in-
terneurons that are not explicitly modelled (Auksztulewicz and Friston, 
2015). Thus, in compliance with Dale’s law, we assume that excitatory 
populations exert inhibitory influences over other populations via 
intermediary inhibitory populations. In the neural mass models used in 
DCM, the excitatory populations and their inhibitory interneuron targets 
are usually combined into a single neural mass to optimize model 
complexity. These combined neural mass models generally have greater 
evidence (or marginal likelihood) when compared to modelling both 
populations separately (Adams et al., 2021). This is because introducing 
extra parameters (with separate populations) increases the model 
complexity and leads to slight overfitting (Litvak et al., 2019). The 
reason this simplification is licensed is probably because excitation is 
followed by fast-spiking inhibition with a delay that is essentially 
negligible compared to the time constants of the neural mass dynamics. 
This means that the response of a fast-spiking inhibitory population—to 
presynaptic input from an excitatory population—effectively re-
capitulates the excitatory input. In short, the fast-spiking inhibitory re-
sponses can be modelled directly as the output of the excitatory 
populations. The resulting simplified model captures core functional 
computations that are hypothesized to be performed by the visual cor-
tex, i.e. predictive coding (Bastos et al., 2012). Furthermore, they 

Fig. 5. Attentional modulation in the no-feedback architecture. (A) Top: Schematic representation of the V1a-V1b-V4 microcircuit without V4-to-V1 feedback. 
Bottom: Legend for panels B-C. (B) Power spectral density and coherence spectra averaged across the 10 V1a-V1b-V4 triplets of monkey P. (C) Absolute DTFs averaged 
across the 10 V1a-V1b-V4 DCMs of monkey P. (D) GC from V1 to V4 in the fitted models, as a function of frequency relative to the individual gamma peak frequency 
of the respective monkey. Conventions as in Fig. 3D. (E) PEB posterior estimate combining data from both monkeys. Conventions as in Fig. 3E (F) Schematic 
representation of the BMA of the attentional modulation β within the family of reduced models with the highest posterior probability (in which βR

s⊸s = βF
s⊸s, β

R
g⊸g =

βF
g⊸g and βR

g→i = βF
g→i). Conventions as in Fig. 3F. 
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capture the dynamics within the visual hierarchy: higher frequency os-
cillations in the gamma range carry feed-forward information, whereas 
lower frequency oscillations in the beta range are used for feedback 
information (Bastos et al., 2015a, 2015b; Michalareas et al., 2016; 
Vezoli et al., 2021). 

Second, neural masses model neuronal activity at the level of 
neuronal populations, not individual neurons. Therefore, this approach 
does not allow to differentiate between changes in the neuronal acti-
vation strength versus changes in neuronal synchrony. 

Third, we constrained the observation model to reflect exclusively 
the supragranular pyramidal population, and this might have biased the 
model to reveal effects in this population. However, note that our first 
set of results, where DCM was free to model the observed data with 
changes in both excitatory and inhibitory connections, involved changes 
across all layers including deep layers (Fig. 3E, F). Also, as explained in 
Section 2.6, we consider it most crucial that the modelled supragranular 
pyramidal V1 power spectra reflect the observed ECoG data faithfully, 
which required the restriction of the observation model. A valuable goal 
for future studies will be to apply DCM to laminar data, which will allow 
the observational model to link different modelled populations to data 
from the corresponding layers. 

Fourth, we assumed that the simplified circuit is sufficiently detailed 
to describe the dynamics that matter for selective attention. When using 
DCM to model attentional effects, DCM will find the simplest explana-
tion in the sense of minimizing complexity (implicit in maximizing 
model evidence). This means DCM provides an accurate account of 
attentional effects that is as close as possible to prior assumptions. 
Although this ensures generalization and predictive validity, it does not 
guarantee the underlying attentional effects conform to prior 
assumptions. 

Fifth, the nature of the question demanded forming triplets of 
simultaneously recorded V1a, V1b and V4 sites, which meant that some 
sites participated in multiple triplets (see sub-panel labels in Fig. S1). In 
the case of monkey K, one of the two V1 locations consisted only of two 
bipolar sites, one of which showed an attentional shift of gamma peak 
frequency opposite to Bosman et al. (2012) and therefore was excluded 
(see exclusion criteria in Section 2.3), and the other showed a minimal 
effect in gamma band coherence. This second site was used in all triplets 
of monkey K (Fig. S1). The small effect size of attention on coherence 
resulted in relatively high variance in the estimate of attentional effects 
β on connection strengths for this location (V1a, monkey K), meaning 
that their contribution to the overall estimate of β was very weak. Note 
that this limitation does not apply to our earlier study (Bosman et al., 
2012), because that study uses triplets merely for illustration, yet bases 
the main analysis on V1-V4 pairs. 

Sixth, the DCM has been fitted to the entire spectrum of frequencies 
between 0 Hz and 100 Hz, rather than to the gamma range only. Given 
that the attentional effects in the gamma frequency range are the most 
prominent feature of the data—and that triplets were chosen to have the 
strongest attentional effect in gamma band coherence—we believe that 
the primary effect of the attentional effects β is to shift gamma peak 
frequency in V1 and to modulate gamma coherence between V1 and V4. 

Seventh, one study has suggested that LFP-LFP coherence between a 
sending and a receiving population can be due solely to synaptic inputs 
to the receiver, as those inputs contribute to the receiver LFP (Schneider 
et al., 2021). For our current dataset, this mechanism would predict that 
the V4 LFP is essentially equal to the sum of V1 activities, which would 
in turn predict V1-V4 coherence to be dictated by the relative power 
between V1a and V1b. Empirically, in V1, attention led to a shift in the 
gamma peak to slightly higher frequencies without a significant change 
in overall gamma strength, resulting in a relative decrease on the rising 
flank of the gamma peak and a relative increase on the falling flank. This 
pattern of decreases and increases in V1 gamma power should be 
mirrored in the V1-V4 coherence, according to the mechanism suggested 
by Schneider et al. (2021). By contrast, the empirical data show that 
V1-V4 coherence increases also on the rising flank of the V1 gamma peak 

(see Fig. S1A for several clear examples). Furthermore, Schneider et al. 
(2021) assumes that interareal transfer functions are flat, whereas we 
find the V1-V4 transfer functions to show clear gamma peaks (Figs. 3C, 
5C). Finally, V4 spiking is known to be entrained to the V4 gamma 
rhythm (Fries et al., 2001), which is entrained by the V1 gamma rhythm 
(Bosman et al., 2012), such that V4 spiking is coherent with V1 gamma 
(Grothe et al., 2012); this pattern of results strongly suggests that the V4 
gamma is not a mere reflection of synaptic input from V1, but genuine 
V4 entrainment. 

4.2. Attention increases neuronal communication 

Visual attention is of particular importance when two or more 
stimuli are simultaneously present (Desimone and Duncan, 1995; 
DeWeerd et al., 1999). These stimuli compete for representation in 
higher visual areas, and firing rates in those areas during attention can 
be modelled by assuming that attention selectively increases the relative 
influence of presynaptic inputs, namely, input-gain (Reynolds et al., 
1999). However, how this input-gain modulation is physiologically 
implemented has remained elusive; particularly, because of the flexible 
nature of attention. Attention can be dynamically deployed to any visual 
stimulus, which should lead to the corresponding input-gain changes. 
Yet, the input space of a receiving neuron, corresponding to its RF, can 
be tiled by two or multiple stimuli in an essentially infinite number of 
ways. Thus, if attention would modulate specific subsets of synaptic 
inputs on the postsynaptic neuron by reaching them through hard-wired 
connections, an infinite number of such connections would be necessary. 
Rather, we argue that the efficacy of the attended subset of inputs from a 
lower area can be increased by enhancing their coherence with the 
postsynaptic neuron; this is the Communication-Through-Coherence 
hypothesis (Fries, 2005, 2015). The postsynaptic neurons in higher vi-
sual areas, for whom the inputs compete, can flexibly enter into coher-
ence with either one of their competing inputs, and so CTC offers a 
mechanism by which selective communication is dynamically achieved 
through selective coherence. 

Predictions of the CTC hypothesis have been tested in numerous 
previous studies. Visually induced gamma in awake macaque V4 
rhythmically modulates the gain of spike responses and behavioral re-
action times, suggesting gamma-rhythmic input gain modulation, a core 
prerequisite for CTC (Ni et al., 2016). A computational study modelled 
two connected neuronal populations and showed that spontaneous 
fluctuations in their gamma phase relation affect their transfer entropy 
(Buehlmann and Deco, 2010). This is supported by empirical studies 
showing that gamma phase relations in macaque and cat visual cortex 
affect effective connectivity, assessed as power correlation (Womelsdorf 
et al., 2007), and the gamma-phase relation between them affects their 
transfer entropy (Besserve et al., 2015). Several computational studies 
have demonstrated that this mechanism can be used in the case of two 
competing inputs, to selectively route forward the attended input. If a 
receiving population, in particular the respective inhibitory in-
terneurons, is selectively entrained by one of two competing input 
gamma rhythms, the corresponding selected input is dominating the 
spike responses of the receiver (Börgers and Kopell, 2008). Similar se-
lective routing effects have been found when several convergent path-
ways compete, and one of them is oscillatory, as long as the receiver is 
implemented at least as a simple spiking network with a single 
feed-forward interneuron layer (Akam and Kullmann, 2010), whereas 
filtering is much less effective when the receiver is less biologically 
realistic (Akam and Kullmann, 2012). 

In awake macaque visual cortex, as mentioned before, two studies 
found that area V4 indeed shows selective coherence with the gamma 
rhythm of the attended V1 input (Bosman et al., 2012; Grothe et al., 
2012). Those two studies used the same stimulus configuration as 
investigated here, namely the V4 RF containing the two competing 
stimuli. A subsequent study used the same stimulus configuration and 
tagged each stimulus with independent broadband luminance noise 
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(Grothe et al., 2018); this allowed to quantify the signal transmission 
from the visual stimulus to V4 and revealed that this transmission is 
selectively gated by attention. A related study used a different stimulus 
configuration, with the V4 RF containing only one stimulus (Ferro et al., 
2021). Still, spectra of V1-V4 coherence and V1-to-V4 conditional GC 
(cGC) showed an attentional increase in the respective gamma bands, as 
we also observed in our data and model. Our model parameters, the 
strengths of inhibitory and excitatory connections, are required to fit the 
entire spectra and can therefore not be directly mapped to the strengths 
of coherence or GC in specific frequency bands. Nevertheless, the 
attentional increase in granular-to-supragranular cGC shown for most 
frequency bands in Fig. 6A of Ferro et al. (2021) may well correspond to 
the attentional increase in excitatory connectivity from granular to 
supragranular layers observed here (Fig. 3E, F). Furthermore, the 
attended V1 input entrains V4 on average at the gamma phase relation 
that is optimal for stimulus transmission, as assessed by behavioral re-
action times to stimulus changes: any momentary deviation from this 
average gamma phase relation leads to lengthened reaction times 
(Rohenkohl et al., 2018). Such deviations occur frequently, due to the 
stochastic variability in gamma frequency (Spyropoulos et al., 2022). 
Intriguingly, when such stochastic variability is included in a compu-
tational model, the selective coherence can still robustly support selec-
tive communication (Palmigiano et al., 2017), probably by means of 
feedforward entrainment leading to frequency matching (Roberts et al., 
2013); if in this scheme two inputs compete, the phase-leading input has 
the dominant influence on the receiver (Palmigiano et al., 2017). Thus, 
the CTC hypothesis has received support from empirical studies and 
computational models. The models so far have shown that selective 
synchronization, once it is established, leads to selective communication 
(Akam and Kullmann, 2010; Börgers and Kopell, 2008; Buehlmann and 
Deco, 2010; Palmigiano et al., 2017). The present model shows how this 
selective synchronization is achieved; specifically, it adds insight on 
modulations intrinsic to the sender population that are sufficient to 
achieve the selective sender-receiver synchronization observed in se-
lective visual attention. Furthermore, and crucially, the model does so 
while fitting the observed power and coherence spectra quantitatively. 

Based on the considerations laid out above (in the Introduction and 
Discussion), we argue that selective V1-V4 coherence emerges most 
parsimoniously from an attentional top-down modulation that acts 
exclusively at the attended V1 site. Our analysis revealed that this is 
indeed possible, and DCM endorsed this by quantitatively explaining 
empirically observed power and coherence spectra: within the attended 
V1 microcircuit, modulating inhibitory activity in the input and super-
ficial layer suffices for the emergence of selective coherence between 
this population and the higher area. We argue that this modulation can 
be implemented by top-down attentional connections that project 
topographically onto the attended assembly within the lower area, even 
if they match this assembly only partially; Synchronization dynamics 
then spread the attentional effects to the rest of the population encoding 
the attended stimulus, which can span multiple RFs and cortical columns 
in the lower area. 

The model furthermore allowed us to investigate the likely roles of 
distinct local neuronal sub-populations and suggested a decreased 
granular and increased supragranular self-inhibition. Note that, within 
V1, the granular population drives the supragranular pyramidal popu-
lation. Thereby, the attentional disinhibition in the granular population 
likely provides enhanced drive to the supragranular population. When 
the enhanced drive interacts with the increased inhibition in the 
supragranular population, this might produce the gamma frequency 
enhancement in the absence of gamma power changes. The enhanced 
gamma frequency can produce the selective coherence between the 
selected supragranular V1 output population and the target in V4 
(Cannon et al., 2014; Palmigiano et al., 2017). 

Intriguingly, V1 gamma frequency shifts of comparable magnitude 
have previously been shown to be induced by increasing stimulus 
contrast (Lowet et al., 2015; Ray and Maunsell, 2010; Roberts et al., 

2013), by stimulus onset, and by foveal position, all aspects enhancing 
stimulus salience (Fries, 2015) and by stimulus repetitions (Peter et al., 
2021; Stauch et al., 2021). In a feedforward network with two 
competing inputs, gamma-frequency differences between the inputs 
might interact with theta-rhythmic gamma-phase resets to bring about 
selective entrainment by the faster gamma rhythm (Burwick and Bou-
ras, 2017; Fries, 2015). Our current DCM analysis suggests that such 
resets are not necessary, yet this does not question their potential 
physiological relevance. 

Our model does not refer to attentional effects on firing rates. 
Nevertheless, it is fully consistent with—and can explain—previously 
observed effects on firing rates in higher areas. Higher area neurons, 
when presented with an attended and an unattended stimulus in their 
RFs, exhibit firing rates similar to when they are presented with the 
attended stimulus in isolation. Thus, the attended stimulus is selectively 
communicated from the lower to the higher area. This selective 
communication is likely the consequence of selective coherence (Akam 
and Kullmann, 2010; Börgers and Kopell, 2008; Buehlmann and Deco, 
2010; Palmigiano et al., 2017), and the selective coherence can be 
achieved as modelled here. 

Finally, the mechanism that we describe here is in principle not 
limited to function only between areas V1 and V4. It could implement 
selective communication of subsets of stimuli from a lower to a higher 
area in any hierarchical level, e.g., when stimuli are larger and/or 
farther apart, and it could potentially even operate in other modalities. 

4.3. Targets and sources of the attentional signal 

Our results provide formal evidence that attentional effects can be 
implemented by strengthening the self-inhibition of pyramidal neurons 
in the supragranular layers and weakening the self-inhibition of excit-
atory neurons in the granular layer. These self-inhibitory connections 
correspond functionally to the local, tightly connected recurrent 
network between pyramidal neurons and local inhibitory interneurons 
(basket cells or fast-spiking cells), which are crucial for the generation of 
gamma oscillations (Buzsáki and Wang, 2012; Cardin et al., 2009; 
MacKay, 2003; Sohal et al., 2009). The attentional modulation of 
self-inhibitory connections in the model might correspond to the 
following physiological mechanisms: (a) top-down axo-axonic pro-
jections targeting synapses between pyramidal neurons and in-
terneurons (Cover and Mathur, 2021), (b) neuromodulators, excreted by 
top-down projections, either directly or via local neuromodulatory 
neurons targeted by top-down projections. Furthermore, the modulation 
of self-inhibition in the model might be a proxy for the modulation of the 
depolarization or excitability of the interneuron population, which can 
be achieved either by direct excitatory input into the interneurons or by 
neuromodulation (directly or indirectly). Alternatively, it can be a proxy 
for modulating the overall activity levels in the excitatory-inhibitory 
circuit; this circuit is under the inhibitory control of SOM+ (Somato-
statin positive) interneurons that target both pyramidal neurons and 
fast-spiking interneurons, and are in turn inhibited by VIP+ (Vasoactive 
Intestinal Peptide positive) interneurons (Pfeffer et al., 2013). Thus, 
SOM+ interneurons might act like a brake on the gamma-generation 
mechanism, and VIP+ interneurons might release that brake. VIP+ in-
terneurons are major targets of long-range top-down input (Lee et al., 
2013; Ma et al., 2021; Zhang et al., 2014), which might correspond to 
attentional top-down input. 

Importantly, our experiments revealed an attentional increase in V1 
gamma frequency and increase in V1-V4 gamma coherence, in the 
absence of significant changes in gamma power. Our Dynamic Causal 
Modelling of those empirical data suggested differential effects on self- 
inhibition in different cortical layers. How this specific laminar 
pattern of effects could be generated by the above-mentioned mecha-
nisms remains to be elucidated. Furthermore, other studies have shown 
that a 30 Hz rhythm, sharing many characteristics with primate gamma, 
is reduced by SOM+ interneuron silencing and enhanced by VIP+
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interneuron silencing (Veit et al., 2017, 2023); but see Chen et al. 
(2017). As all those empirical data on the roles of defined interneuron 
subclasses were obtained in mice, the link between those rhythms and 
effects in mice to their putative homologues in non-human and human 
primates will be an important topic for future research. 

Where does the attentional signal come from? Attentional signals can 
have either a cortical or subcortical origin. The frontal-eye fields (Gre-
goriou et al., 2009; Thompson and Bichot, 2005; Wardak et al., 2006) 
and the ventral pre-arcuate area (Bichot et al., 2015) in the prefrontal 
cortex and the lateral intraparietal area in the posterior parietal cortex 
(Chen et al., 2016; Constantinidis and Steinmetz, 2005; Herrington 
et al., 2009; Ipata et al., 2009; Sapountzis et al., 2018) are thought to 
exert attentional control, in either a spatial or a feature-based manner. 
They appear to construct and maintain salience or priority maps of the 
visual field, where locations with higher activity determine which part 
of the visual field is to be attended covertly or overtly. These regions 
interact with each other, and project to—and modulate the activity 
of—V4 and early visual cortex (Anderson et al., 2011; Felleman and Van 
Essen, 1991; Gregoriou et al., 2009, 2014; Richter et al., 2017). The 
respective attentional top-down influences are likely mediated by 
beta-band synchronization: Beta-band influences in the visual system 
are stronger in the top-down than in the bottom-up direction (Bastos 
et al., 2015b; Michalareas et al., 2016), and top-down beta modulates 
bottom-up gamma (Richter et al., 2017). These beta-band top-down 
influences were not explicitly considered in the present work, because 
the model did not include the areas exerting the top-down influences on 
V1. Furthermore, V1 activity can be modulated by higher cortical areas 
indirectly through the thalamus. The thalamic reticular nucleus, which 
inhibits the visual thalamus, was shown to mediate top-down effects 
from the prefrontal cortex in a cross-modal divided attention task 
(Wimmer et al., 2015). The modulation of thalamic output would 
directly affect activity in the input layers of V1, consistent with our re-
sults and with a precision-weighted predictive coding account of 
attentional modulation (Kanai et al., 2015). 

Alternatively, attentional control may be exerted via sub-cortical 
nuclei: several sub-cortical nuclei provide neuromodulatory input to 
the cortex. There is evidence that cholinergic neuromodulation can 
mediate attentional effects on firing rates in the visual cortex (Herrero 
et al., 2008; Schmitz and Duncan, 2018; Thiele and Bellgrove, 2018); but 
also see Veith et al. (2021). It can also modulate gamma band oscillatory 
activity (Howe et al., 2017; Kim et al., 2015), e.g., through direct pro-
jections from the basal forebrain onto PV+ (Parvalbumin positive) 
basket cells (Kim et al., 2015). Interestingly, administration of a 
cholinergic agonist in humans enhances performance in a spatial 
attention task without affecting gamma band power (Bauer et al., 2012), 
in agreement with the lack of consistent gamma power change in Bos-
man et al. (2012). 

Irrespective of the exact source of the attentional signal, there is a 
strong prerequisite, established by experiments that evince spatial 
attentional control in a specific subset of locations represented within a 
cortical area: The attentional signal needs to have high retinotopic 
specificity at the level of different populations within an area. The 
highest retinotopic resolution is available in area V1, and the present 
analysis shows that core attentional effects (Luck et al., 1997; Moran and 
Desimone, 1985; Reynolds et al., 1999) can be explained by modulations 
at this earliest stage of cortical visual processing and ensuing interareal 
synchronization phenomena. 
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