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ABSTRACT
Learning representations purely from observations concerns the

problem of learning a low-dimensional, compact representation

which is beneficial to prediction models. Under the hypothesis that

the intrinsic latent factors follow some casual generative models,

we argue that by learning a causal representation, which is the

minimal sufficient causes of the whole system, we can improve the

robustness and generalization performance of machine learning

models. In this paper, we develop a learning method to learn such

representation from observational data by regularizing the learning

procedure with mutual information measures, according to the hy-

pothetical factored causal graph. We theoretically and empirically

show that the models trained with the learned causal representa-

tions are more robust under adversarial attacks and distribution

shifts compared with baselines. The supplementary materials are

available at https://github.com/ymy4323460/CaRI/.

CCS CONCEPTS
• Computing methodologies → Machine learning algorithms.

KEYWORDS
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1 INTRODUCTION
Causal representation learning is an effective approach for extract-

ing invariant, cross-domain stable causal information, which is

believed to be able to improve sample efficiency by understand-

ing the underlying generative mechanism from observational data
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[3, 30]. Causal representation learning is widely applied in many

real-world applications like recommendation systems, search en-

gines etc.[22, 35, 39, 46]. Recently, multiple approaches were pro-

posed to learn the invariant causal representations, which are sup-

posed to encode underlying causal generative systems describing

the data, based on the problem-specific priors.

The usual theory to implement it is called Independent Causal

Machine (ICM) [24] principle, which can be applied to identify

the cause information when all factors are observable. However,

when the variables are unobservable in general and complex sys-

tems, this method usually does not work. Given that most methods

employ a generative model, the main reason for such failure is

due to the observation data (e.g. human images) is entangled by

causal variables. To tackle this problem, previous works learned

latent representations to capture the causal properties, e.g., causal

disentanglement methods [33, 44] and invariant causal representa-

tion learning method [2, 17]. However, additional information like

causal variable labels and domain information should be provided,

which is usually unavailable in real-world systems.

In this paper, we aim at disentangling the causal variables from

an information theoretical view without providing additional super-

vision signals. Supposing that the factors are casually structured,

we formalize a causal system as in Fig.1 (a), which is commonly

accepted by the causality community [40, 42]. Given the label 𝑌 ,

the 𝑑-dimensional observational data X is consist of causal fac-

tors including the parents paY, non-descendants ndY, descendants
dcY of Y. The causal information paY enables the model a better

generalization and robustness for prediction tasks. We consider

the natural data generative process as an information propagation

along the causal graph and try to find out paY from X. Based on the

causal modelling, we propose to learn latent representations which

maintain the most necessary causal information for the prediction

task, named minimal sufficient causal information of a system.

More specifically, we define the minimal sufficient cause (MSC) Z
as a proxy of the parents in factor space as shown in Fig. 1 (b). MSCs

are variables that are specially positioned in the system, blocking

the path from the causes and non-descendants to 𝑌 . In this paper,

we implement it by an information-theoretical approach, reducing

the traditional two-step procedure i.e. causal disentanglement and

information minimizing, to an optimization problem that can di-

rectly learn a latent causal representation with minimal sufficiency

from observations. Specifically, the proposed optimization problem

is a bi-level optimization problem minimizing 𝐼 (Z; paY, ndY), with
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maximizing mutual information 𝐼 (Z;𝑌 ) as a constraint. Based on

this, we propose an intervention effect to accurately specify the

causal information paY. We name this method as CaRI (learning
Cause Representation by Information-theoretic approach) and we

further extend the method under robustness learning framework.

Moreover, we theoretically analyze the sample efficiency of CaRI

by giving a generalization error bound with respect to sample size.

Experiments on synthetic and real-world datasets show the effec-

tiveness of the proposed method.

The main contribution of this paper are summarized below:

• We define minimal sufficient causes (MSC) in causal system

by the formalization of an explicit causal graphical model to

describe the data generative process of the real-world system

and propose an information-theoretical approach to learn MSC

from observational data.

• We theoretically analyze the sample efficiency of the learning

approach by giving a generalization error bound w.r.t sample

size. The theorem depicts a quantitative link between the amount

of causal information contained in the learned representation

and the sample complexity of the model on downstream tasks.

• We empirically verify that CaRI is able to generalize well distri-

bution shift respectively and robust against adversarial attack.

2 RELATEDWORKS
Causal Representation Learning is a set of approaches to finding

generalizable representations by extracting and utilizing causal

information from observational data. They usually aim at finding

causal structure and causal variables behind observations. From sev-

eral different perspectives, a bunch of methods have been proposed

in the literature.

Causal Structure Learning. To assess the connection between

causally related variables in real-world systems, a bunch of tra-

ditional methods use the Markov condition and conditional inde-

pendence between cause and mechanism principle (ICM) to dis-

cover the causal structure or distinguish causes from effect [21].

Several works focus on the asymmetry between cause and effect.

[9, 12, 37, 38], and similar ideas are utilized by [24, 38]. The series of

works always assume that all the variable is observable. In contrast

with these works, our proposed method is applicable to scenarios

where the observed data is generated by hidden causal factors.

Invariant Representation Learning Cross Multidomain.
Some pioneering work [34, 42, 47] considers the heterogeneity

across multiple domains under the out-of-distribution settings

[10, 16, 17, 19, 20, 26, 29, 45]. They learn causal representations

from observational data by enforcing invariant causal mechanisms

between the causal representation and the task labels across multi-

domains. Similar to these works, we target obtaining invariant

latent causal information but do not assume that the datasets are

collected from multi-domains.

Causal Disentanglement Representation Learning. Causal
representation learning helps to reduce the dimension of the orig-

inal high-dimensional input. Several works leverage structural

causal models to describe causal relationships inside the entangled

observational data [33, 42, 44] and learn to disentangle causal con-

cepts from original inputs. Different from aforementioned works,

the proposed method in this paper considers the causal informa-

tion from the perspective of information theory [4, 7]. We put our

attention on minimal causal information, which can be regarded as

a compact representation of the whole underlying causal system.

We also theoretically analyze the generalization ability from PAC

learning frameworks [31, 32] and explain why the causal represen-

tation can achieve better generalization ability from the perspective

of sample complexity.

3 PROBLEM DEFINITION
3.1 Notations
Considering the causal scenario in Fig.1 (a), the observation data

can be generated by the concepts in hidden space which contain

multiple hidden causal variables. Denote X ∈ X as 𝑑-dimensional

observational data like context information or features in real-world

systems, and 𝑌 ∈ Y as the labels of downstream tasks. Each pair

of sample (x,𝑦) is drawn i.i.d. from joint distribution 𝑝 (x, 𝑦). We

use paY ∈ R𝑝1
to denote the variables including parent nodes of

𝑌 in the causal graph, while 𝝐 is the vector of independent noise

with probability densities of 𝑝𝝐 = N(0, 𝛽𝐼 ). Similarly, dcY ∈ R𝑝2

and ndY ∈ R𝑝3
denote the descendant and non-descendant nodes

of Y, respectively. In our method, we introduce minimal sufficient

parents, denoted by Z ∈ Z of the system. Note that all the causal

factors are assumed to be embedded in factors space, the observed

data only contains (X, 𝑌 ), where X = h(paY, ndY, dcY), h ∈ H
where h : R𝑝1+𝑝2+𝑝3 → R𝑑 is a deterministic function. In causal

systems, the causes of prediction tasks are stable and robust, this

means that when intervening on the parents, the causal effect is

propagated to its child but not vice versa. All other correlated

variables ndY, dcY in the causal system are regarded as spurious-

correlated variables.

3.2 Minimal Sufficient Causes (MSC)
In our paper, we claim that not all the cause information is useful

for prediction tasks. For example, considering a case of burning

fire in a room, it is the presence of oxygen which explain the fire,

but the match struck is definitely the necessary cause of fire. This

real-world example is selected from section 9 in [25]. From the

perspective of finding the most useful causes from observational

data, we introduce the minimal sufficient cause variable Z into the

causal system. As Fig. 1 (b) shows, the minimal sufficient causes Z
are regarded as the proxy of parent variables. We define minimal

sufficient causes in detail as below.

Definition 1. Assuming that the causal graph (Fig. 1 (b)) with Min-

imal Sufficient Causes holds, the Minimal Sufficient Cause blocks

the path between [paY, ndY] and 𝑌 , and the following conditional

independence condition holds:

(paY, ndY) ⊥ 𝑌 |Z (1)

Our goal is to identify the minimal sufficient information Z in

hidden factors space. The minimum sufficient causal variable Z in

a causal system is stable information for predicting 𝑦. From the

perspective of sufficient causes, we define it from a probabilistic

view, which is inspired by the minimal sufficient statistics [15].
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Figure 1: The figure demonstrates a case of a causal system (a) and its extension of introducing minimal sufficient causes (b).

Definition 2. (Sufficient Causes). Let paY, ndY,Z, 𝑌 be random

variables. Z is sufficient cause of 𝑌 shown in Fig. 1 (b) if and only if

∀pay ∈ paY, ndy ∈ ndY, 𝑦 ∈ 𝑌 ;𝑝 (𝑦 |z, pay, ndy) = 𝑝 (𝑦 |z) (2)

The definition of sufficient causes are the variables that are able to

“produce” the causal system. From the perspective of minimal, we

define a variable which can generate the whole the system with

the minimum information. That is, all the variables of prediction

task can be inferred if minimal sufficient causes are given.

Definition 3. (Minimal Sufficient Causes). The sufficient cause Z∗

is minimal if and only if for any sufficient cause Z, there exists a
deterministic function f such that Z∗ = f (Z) almost everywhere

w.r.t. X.

Definition 3 shows that the Minimal Sufficient Causes Z in the

causal system is the variable containing minimal information from

all parents.

3.3 Learning MSC as Causal Representation
from Observational Data

This paper focuses on causal representation learning, which aims at

finding a low-dimensional representation of observation benefiting

for predicting 𝑌 . Fig. 1 (a)(b) shows the causal system behind a pre-

diction task, which uses observational data X to predict the target𝑌 .

The method is treated as a two stage process, and the first stage is

to extract the representation from observational data. Let Z = 𝜙 (X)
denote representation extracted from original observation X, where

𝜙 : X → Z is the representation extraction function. The next

stage is to use the representation to predict 𝑌 .

Now that we have formally defined Minimal Sufficiency, the

basic objective is defined as learning a representation where all

the information from minimal sufficient causes is included. The

process is to model a flow of representation learning method and

downstream prediction by satisfying Definition 2 3. The objective

from Definition 2 is easy to be evaluated by common statistic meth-

ods, like independent testing by mutual information. However, it

is very hard to get the minimal variable in Definition 3. To eval-

uate the objectives in Definition 2 3 in a unified framework, we

utilize the information-theoretic ways since it can naturally com-

bine Definition 2 and 3 by considering the information contained

in MSC.

4 LEARNING MINIMAL SUFFICIENT CAUSAL
REPRESENTATIONS

In this section, we present a method to learn the minimal sufficient

parent’s information Z from observational data X. The difficulty

lies in distinguishing minimal sufficient cause Z from X, when

we only observe X. We first analyze the information propagation

among different causal variables under two typical causal graphs

in hidden factors space, based on which we propose an objective

function with mutual information constraints. Next, we extend our

method by introducing do-operation, which can enhance the ability

to distinguish causes if such information is not embedded in the

observational data.

4.1 Information-theoretic property of MSC in
factor space

An important fact is that in Fig.1 (b), the minimal sufficient causes in

observational data X dominate the generative process of the causal

system defined in Fig.1 (b). If there exists a mapping fromX toZ, it is
a function that finds the minimal sufficient causes inside the causal

system. We develop an algorithm to learn representations based on

such hypothetical structure Fig. 1 (b). Based on the definition of Z,
denoted by 𝐼 (·, ·) the mutual information, we obtain the following

Theorem (The proof is provided in supplementary material).

Theorem 4.1. Let Z ∈ Z, Z = 𝜙 (X), X = h(paY, ndY, dcY) and
h ∈ H is an invertible function, Z is a minimal sufficient cause of the
causal system demonstrated in Fig. 1 (b) if and only if Z is an optimal
solution of following objective

min

Z
𝐼 (Z; paY, ndY)

𝑠 .𝑡 . Z ∈ arg maxZ′ 𝐼 (Z′
;𝑌 )

(3)

Theorem 4.1 shows that we can identify the MSC by solving the

min-max optimization problem. In real-world applications, the in-

formation of ndY and dcY may not be revealed, and the above
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objective function cannot be optimized directly. To get a tractable

form, in the next section, we extend our optimization objective to

observational space. We extend Eq. 3 to a tractable objective by

scaling the mutual information terms in Eq. 3. The way is to link

the unrevealed variables ndY, dcY to observation X. The following

lemma can help us scale Eq. 3.

Lemma 4.2. Suppose the features and labels are X, 𝑌 respectively,
where X deterministically consists of the minimal sufficient parents,
descendants and non-descendant as X = h(paY, ndY, dcY). The fol-
lowing inequality holds if and only if h is an invertible deterministic
function

𝐼 (Z; ndY, paY) ≤ 𝐼 (Z; X) (4)

Proposition 4.3. LetZ′,Z ∈ Z,Z = 𝜙 (X),X = h(paY, ndY, dcY),
ℎ ∈ H h(·) is invertible function. When all the functions (lines in Fig.
1) between paY, ndY, dcY are invertible Z is the minimal sufficient
cause of the causal system demonstrated in Fig. 1 (b) if and only if Z
equals to the optimal solution of following objective

min

Z
𝐼 (Z; X),

𝑠 .𝑡 . Z ∈ arg maxZ′ 𝐼 (Z′
;𝑌 )

(5)

From Theorem 4.3 we can substitute the terms including ndY and

paY by tractable mutual information term. For Eq. 5 in Proposition

4.3, by defining𝑚(𝑌 ) = maxZ′ 𝐼 (Z′
;𝑌 ) and then reformulating Z ∈

arg maxZ′ 𝐼 (Z′
;𝑌 ) as 𝐼 (Z;𝑌 ) ≥ 𝑚(𝑌 ), with plugging in Z = 𝜙 (X)

the optimization problem in Eq. 3 can be equivalently formulated

as minimizing the following Lagrangian L(𝜙, _) such that

𝛿 (𝜙) = L(𝜙, _) = 𝐼 (𝜙 (X); X) − _𝐼 (𝜙 (X);𝑌 ), (6)

where L(𝜙, _) is denoted as 𝛿 (𝜙) for conciseness and _ is a hy-

perparameter which is manually selected in practice. The object

coincides with Information Bottleneck (IB) objective function [32].

The difference is that IB is deduced from Rate Distortion Theo-

rem in information theory, and it holds under the structure of the

Markov Chain instead of a causal graph (i.e. Fig. 1). In this paper,

the IB setting is generalized into causal space, by bridging mini-

mal sufficient causes with root cause variables in the hypothetical

causal graph. The detailed proof of Theorem 4.1 and Proposition

4.3 in supplementary materials show the differences between our

proposed method and IB.

4.2 Distinguishing components by intervention
effect

The previous section illustrates a method to find Z on the factor

and observation level. Note that the objective function 𝛿 (𝜙) (Eq. ??)
given from Proposition 4.3 can find the minimal sufficient causes

under the strong assumption. In real-world applications, if we use

the information-theoretic objective, it is very hard to distinguish

causes pay and spurious variable dcY, ndy of 𝑌 from the objective.

To release this problem, we introduce an intervention operation, de-

noted by 𝑑𝑜 (𝑋 = 𝑥) [25] into our method. Intervention in causality

means the system operates under the condition that certain vari-

ables are controlled by external forces. In hidden factor space, one

of the differences between Z and dcY, ndy is that if we intervene

on the value of Z, the causal effect will be delivered to its child 𝑌 ,

but the causal effect to 𝑌 from the intervention conducted on child

node dcY will be blocked. From such, let x̄ means the intervened

value which not equals to x, the following inequality describes

intervention effect holds

𝑃 (𝑌 = 𝑦 |𝑑𝑜 (Z = z)) − 𝑃 (𝑌 = 𝑦 |𝑑𝑜 (Z = z̄)) >
𝑃 (𝑌 = 𝑦 |𝑑𝑜 (dcY = dcy))) − 𝑃 (𝑌 = 𝑦 |𝑑𝑜 (dcY = ¯dcy)) =
𝑃 (𝑌 = 𝑦 |𝑑𝑜 (ndY = ndY))) − 𝑃 (𝑌 = 𝑦 |𝑑𝑜 (ndY = ¯ndY)) = 0

(7)

Instead of conducting interventions on the parental variables in a

real-world environment, we create a representation spaceZ where

it supports simulation of the interventional manipulation on parents

by intervening Z in the learned model. The functional interven-

tional distributions 𝑃 (𝑌 = 𝑦 |𝑑𝑜 (Z = 𝜙 (x̂))) can be identified from

purely observational data X and 𝑌 ( [25, 27, 42]),

𝑃 (𝑌 = 𝑦 |𝑑𝑜 (Z = 𝜙 (x̂)))

=

∫
x
𝑃 (𝑌 = 𝑦 |x, ẑ) |ẑ=𝜙 (x̂)𝑃 (ẑ|pay)𝑃 (pay |x)𝑃 (X = x)𝑑x

= 𝐸x [𝑃 (𝑌 = 𝑦 |ẑ)] |ẑ=𝜙 (x̂)

(8)

Therefore in the representation space, we can directly maximize

the intervention effect on the intervention space Z to satisfy Eq. 7.

To make the intervention effect easier to be evaluated in the mutual

information process, we introduce an intervention variable Z̄ ∈ |Z|
and build an intervention network shown in Fig. 2, in which we

first infer the representation z from observational data x, based on

which we can obtain the intervened value z̄ ≠ z. Then we optimize

the parameters in the model by maximizing the intervention effect

term defined in mutual information language by

Intervention Effect =

∫
z,𝑦

𝑝 (z, 𝑦) log𝑝 (𝑦 |z)𝑑𝑦𝑑z

−
∫
𝑦,z

𝑝 (𝑦, z̄) log𝑝 (𝑦 |z̄)𝑑𝑦𝑑 z̄

= 𝐼 (Z;𝑌 ) − 𝐼 (Z̄;𝑌 )

(9)

Integrating intervention effect and the objective function Eq. 6, the

final objective is defined as below. The additional term 𝐼 (Z̄,𝑌 ) is
the key to evaluating the intervention effect.

𝐿(𝜙) = min

𝜙
𝐼 (Z; X) − (𝐼 (Z;𝑌 )︸                 ︷︷                 ︸

(1)positive term

− _𝐼 (Z̄;𝑌 ))︸     ︷︷     ︸
(2)negative term

(10)

To intuitively understand the final objective Eq. 10, we divide it

into positive and negative parts. The first positive term aims at

finding minimal causes, and it helps retain information from the

prediction task and drops redundant information from the original

input. For the negative term, it is used to distinguish causes from

all correlated variables by decreasing the information overlapping

between 𝑌 and intervened representation Z̄.

5 PRACTICAL ALGORITHMS
In this section, we provide the details of how to evaluate the mu-

tual information term in Eq. 10 and the alternative robust training

process of our method.

5.1 Implementation of 𝐿(𝜙)
In this paper, all objective functions are defined under mutual in-

formation formulation. We evaluate Eq.10 in two parts. The first
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positive part (Eq.10 (1)) is evaluated by the following parameterized

objective, the variational estimation of mutual information [1]:

𝐼 (Z; X) − _𝐼 (Z;𝑌 )
≥ _E𝐷 [Ez∈𝑞 (z |x) [log 𝑝𝑔 (𝑦 |z)] − DKL (𝑞𝝓 (z|x) | |𝑝𝜽 (z))]

(11)

For the negative term described in Eq. 10, the minimization process

requires the upper bound of it [8]. The upper bound is formed as

below:

𝐼 (Z̄, 𝑌 ) ≤ E𝑝 (𝑦,z̄) [log(𝑝 (𝑦 |z̄))] − E𝑦Ez̄ [log(𝑝 (𝑦 |z̄))] (12)

Note that the expectation on second term in Eq. 12 requiresmarginal

distribution 𝑝 (𝑦) 𝑝 (z̄) rather than joint distribution, therefore we

independently sample𝑦 in practice. The intervened network (Fig. 2)

helps us calculate the value of Z̄ along two steps. The first step, we

build a neural network to generate the transformation vectorT ∈ R𝑡
from observational data X, where (t = k(x)) and k : X → R𝑡 is a
deterministic function modeled by neural network. The second step,

the density of intervened Z̄ is calculated by 𝑝 (z̄|z, t) = 𝛿 (z̄ = z + t),
where 𝛿 (·) is Dirac delta function. In experiments, if t is close to
0, it will decline performance of our method since original z is

close to the intervened one z̄. To avoid this problem, we add an

additional constraint mink |t2 − b|2, where 𝑏 is a hyperparameter,

in our experiments, we set 𝑏 = 0.8.

5.2 Robust Learning under Adversarial Attack
To enhance the robustness against potential exogenous variable

or noises 𝝐 and guarantee the robustness of the proposed method,

we extend our method by incorporating adversarial learning). Con-

sidering the causal generative process as Y = 𝑓 (paY, 𝝐 , the 𝝐1 is

regarded as a random noise perturbing the pay inside a ball with

finite diameter. We treat the inference approach as the process of

adversarial attack [5, 6, 41] and define the ’Actions’-step in coun-

terfactual estimation as

z′ = z + 𝝐, z′ ∈ B(z, 𝛽)
z̄′ = z̄ + 𝝐, z̄′ ∈ B(z̄, 𝛽)

(13)

where B(z, 𝛽) is Wasserstein ball, in which the 𝑝-th Wasserstein

distance [23] W𝑝
1
between 𝑧 and z′ is smaller than 𝛽 . z′ and z̄′

integrate both intervention and exogenous information. We further

define intervention robustness (IR) to measure the worst interven-

tion results of the intervention term in Eq.10. IV defines aims at

finding the worst perturbation of z and z̄, which is formally defined

below,

Definition 4. (Intervention Robustness) Let Z̄′
denote intervened

variables on Z = 𝜙 (X), ∀z′ ∈ B(z, 𝛽), z̄′ ∈ B(z̄, 𝛽), 𝐷 and 𝐷′

denote datasets sample from 𝑝 (z′, y) and 𝑝 (z̄′, y), the vulnerability
of robust counterfactual estimation is defined as

min

z′∈B(z,𝛽 ),z̄′∈B(z̄,𝛽 )
𝐼𝑅B = min

z′∈B(z,𝛽 )
𝐼 (𝑌 ; Z′) − max

z̄′∈B(z̄,𝛽 )
𝐼 (𝑌 ; Z̄′)

(14)

Remark. The intervention robustness defines the worst interven-

tion effect influenced by exogenous 𝝐 . For the representation z,
the term minz′∈B(z,𝛽 ) 𝐼 (𝑌 ; Z′) aims at find the perturbed z′ around

1
W𝑝 (`, a ) =

(
inf𝛾 ∈Γ (`,a )

∫
Z×Z Δ (𝒛, 𝒛′ )𝑝 𝑑𝛾 (𝑧, 𝑧′ )

)
1/𝑝

, Γ (`, a is the collection

of all probability measures on Z × Z

z with lowest mutual information 𝐼 (𝑌 ; Z′). For the transformed vari-

able z̄, IV aims to findworstmutual informationmaxz̄′∈B(z̄,𝛽 ) 𝐼 (𝑌 ; Z̄′).
Combining two worst mutual information together, the IR term

aims at finding the worst intervention effect perturbed by 𝝐 .

Combining the IR term with the original objective 𝐿(𝜙), we get
the final objective function optimized by minmax approach. Equiv-

alently, we only need to optimize 𝐼 (Z′
;𝑌 ) rather than 𝐼 (Z;𝑌 ) +

𝐼 (Z′
;𝑌 ) since if the worst case 𝐼 (Z′

;𝑌 ) is satisfied, 𝐼 (Z;𝑌 ) is satis-
fied. The robust optimization objective function is 𝐿

rb
𝜙 , where

max

𝜙
min

z′∈B(z,𝛽 ),z̄′∈B(z̄,𝛽 )
𝐿(𝜙) + 𝐼𝑅B

≥ max

𝜙
min

z′∈B(z,𝛽 ),z̄′∈B(z̄,𝛽 )
𝐼 (Z′

;𝑌 ) − _𝐼 (Z; X)︸                  ︷︷                  ︸
(1) positive

− 𝐼 (Z̄′
;𝑌 )︸   ︷︷   ︸

(2) negative

=𝐿
rb
(𝜙)

(15)

The inequality in above objective is due to

𝐼 (Z′
;𝑌 ) − 𝐼 (Z̄′

;𝑌 ) ≥ min

z′∈B(z,𝛽 ),z̄′∈B(z̄,𝛽 )
𝐼𝑅B .

The robust method is learned by the minimax procedure. Literally,

the minimization procedure helps to avoid the worst-case led by

exogenous variable 𝝐 , because it maximizes the intervention ro-

bustness by adjusting the parameter of feature extractor 𝜙 . The

optimization objective of the robust method can extract minimal

sufficient causal representation from observation data with high

robustness ability.

We train and evaluate the robust method by the adversarial attack

on representation space. We use PGD attack [18] with∞-norm and

2-norm to get intervened z′ and z̄′. We set 𝑝𝜽 (z) as N(𝑦, 1) to
avoid trivial representations. Then we use negative cross entropy

to approximate mutual information. More implementation details

are shown in the supplementary material.

6 WHY CAUSAL REPRESENTATION CAN
ENHANCE GENERALIZATION ABILITY

In this section, we theoretically analyze the generalization property

of causal representation by learning theory framework [31]. Learn-

ing theory contains a set of methodologies to show the upper bound

of the gap between risk/error on training data and all possible data

from the data distribution. These methods justify a generalization

problem that whether a model learned from a small data set can

be generalized to any unseen test data from data distribution. In-

stead of estimating the risk bound, we start from the perspective

of information theory and follow the framework of information

bottleneck [32]. We provide a finite sample bound of the difference

between ground truth and estimated one, which measures the gen-

eralization ability. The bound the relationship between 𝐼 (Z;𝑌 ) and
its estimation 𝐼 (Z;𝑌 ).

6.1 The Generalization Error Bound of i.i.d.
Data

Here, we provide theoretical justification with the following theory

(The proof is provided in supplementary material):

Theorem 6.1. Let Z = 𝜙 (X) where 𝜙 : X → Z be a fixed
arbitrary function, determined by a known conditional probability
distribution 𝑝 (z|x). Let𝑚 be sample size and𝐶 is a constant. For any
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confidence parameter 0 < 𝛿 < 1, it holds with a probability of at least
1 − 𝛿 , that

1. General case (The learned representation 𝑍 contains correlated
information)

|𝐼 (𝑌 ; Z) − 𝐼 (𝑌 ; Z) |

≤

√︁
𝐶 log( |Y |/𝛿 )

(
|Y |

√︁
|Z | log(𝑚) + 1

2

√︁
|Z | log( |Y | )

)
+ 2

𝑒
|Y |

√
𝑚

(16)

where𝑚 ≥ 𝐶
4

log( |Y|/𝛿) |Z|e2

2. Ideal case (The learned representation Z contains information of
causes)

|𝐼 (𝑌 ; Z) − 𝐼 (𝑌 ; Z) |

≤

√︁
𝐶 log( |Y |/𝛿 )

(
|Y |

√︁
𝛽 log(𝑚) + 1

2

√︁
|Z | log( |Y | )

)
+ 2

𝑒
|Y |

√
𝑚

where𝑚 ≥ 𝐶 log( |Y|/𝛿)𝛽e
2

Remark. The theorem provides a generalization bound under finite

sample settings. It shows that when representation Z fully contains

parent information paY, we achieve a sample complexity bound as

𝑚 ≥ 𝐶 log( |Y|/𝛿)𝛽e
2
, where 𝛽 is the variance of 𝝐 . The minimum

number of samples needed reduces from |Z| to 𝛽 , which is a tighter

bound since in most of cases we assume |Z| ≫ 𝛽 . This shows

that z = paY gives the reduced sample complexity and tightened

generalization bound. The theorem also serves as a general solution

to causality prediction problems, supporting the claim that a better

prediction is achieved with causal variables, compared to that with

correlated variables.

6.2 The Generalization Error Bound when
Distribution Shift Happens

We also show additional generalization results. For the scenario

of distribution sift, we define the mutual information on source

domain as 𝐼S (Z, 𝑌 ) and mutual information on target domain as

𝐼T (Z, 𝑌 ). Denote joint distribution in source and target domain as

S(z, 𝑦) = 𝑝S (z, 𝑦) and T (z, 𝑦) = 𝑝T (z, 𝑦), separately.
The causal mechanism 𝑝 (y|z) and causal representation 𝑝 (z)

are stable under distribution shift such that 𝑝S (y|z = 𝜙 (x)) =

𝑝T (y|z = 𝜙 (x)) and 𝑝S (z = 𝜙 (x)) = 𝑝T (z = 𝜙 (x)), if Z is suf-

ficient cause of 𝑌 .

Theorem 6.2. Let Z = 𝜙 (X) where 𝜙 : X → Z be a fixed arbi-
trary function, determined by a known conditional probability distri-
bution 𝑝 (z|x). Let𝑚 be sample size and 𝐶 is a constant. In domain
adaptation scenario, defining𝐷𝐾𝐿 (S||T ) > 0 as the Kullback-Leibler
divergence between source domain and target domain. For any con-
fidence parameter 0 < 𝛿 < 1, it holds with a probability of at least
1 − 𝛿 , that

1. General case (The learned representation 𝑍 contains correlated
information)

|𝐼T (𝑌 ; Z) − 𝐼T (𝑌 ; Z) |

≤

√︁
𝐶 log( |Y |/𝛿 )

(
|Y |

√︁
|Z | log(𝑚) +𝐷𝐾𝐿 (T | |S) +𝐷𝐼S )

)
+ 2

𝑒
|Y |

√
𝑚

(17)

2. Ideal case (The learned representation Z contains information of
sufficient causes of 𝑌 , Assumption 6.2 holds)

|𝐼T (𝑌 ; Z)−𝐼T (𝑌 ; Z) | ≤

√︁
𝐶 log( |Y |/𝛿 )

(
|Y |

√︁
|𝛽 | log(𝑚) +𝐷𝐼S )

)
+ 2

𝑒
|Y |

√
𝑚

(18)

where 𝐷 = 2

minz 𝑝 (z) and 𝐼S = ES(z,𝑦)
𝑝 (z,𝑦)
𝑝 (z)𝑝 (𝑦)

Remark. The theorem shows that in a domain adaptation scenario,

causal representation can help to achieve better generalization

ability. We bound the risk of mutual information evaluation on the

target domain by the bound on the source domain. It is because,

in the training process, the information from the target domain is

not observable. From the bounds of |𝐼T (𝑌 ; Z) − 𝐼T (𝑌 ; Z) | shown in

the general case and ideal case, we can see that the generalization

error bound of the ideal case is smaller than that of the general

case, with a margin quantified by a positive term 𝐷𝐾𝐿 (S||T ) > 0.

These theoretical results support that the causal representation can

achieve better generalization ability under distribution shift.

7 EXPERIMENTS
In this section, we conduct extensive experiments to verify the

effectiveness of our framework. In the following, we begin with the

experiment setup, and then report and analyze the results.

7.1 Datasets
Our experiments are based on one synthetic and four real-world

benchmarks. With the synthetic dataset, we evaluate our method

in a controlled manner under the selected dataset. We follow the

causal graph defined in Fig.1 (a) to build our synthetic simulator, on

which we compare the representation learnt by our method with

the ground truth under different 𝛽 degrees.

7.2 Synthetic Datasets
The synthetic data is generated following the general causal graph

Fig.1. We build the simulator using nonlinear functions refering to

[43, 48]. We simulate 500 data for each settings. Let ^1 (·) and ^2 (·)
as piecewise functions, and ^1 (𝑥) = 𝑥 − 0.5 if 𝑥 > 0, otherwise

^1 (𝑥) = 0, ^2 (𝑥) = 𝑥 if 𝑥 > 0, otherwise ^2 (𝑥) = 0 and ^3 (𝑥) =

𝑥 + 0.5 if 𝑥 < 0, otherwise ^3 (𝑥) = 0. . For the fair evaluation, we

set the same dimension for paY, ndY, dcY that 𝑑1 = 𝑑2 = 𝑑3 = 5.

The nonlinear systems are:

paY ∼ 𝑈 (−1, 1),
𝝐1 = 𝝐2 = 𝝐3 ∼ N(0.3, 𝛽𝐼 )

nd1 = 𝒂𝑇^1 (^2 ( [paY, 𝝐2])) + 𝑞,

nd2 = 𝒂𝑇^3 (^2 ( [−paY,−𝝐2])) + 𝑞,
ndY = 𝜎 (nd1 + nd1 · nd2)

y1 = 𝒂𝑇^1 (^2 ( [paY, 𝝐1])) + 𝑞,

y2 = 𝒂𝑇^3 (^2 ( [−paY,−𝝐1])) + 𝑞,
ndY = I(𝜎 (y1 + y1 · y2))

dc1 = 𝒂𝑇^1 (^2 ( [𝑦, 𝝐3])) + 𝑞,

dc2 = 𝒂𝑇^3 (^2 ( [−𝑦,−𝝐3])) + 𝑞, dcY = 𝜎 (dc1 + dc1 · dc2)
X = [paY, ndY, dcY]
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Table 1: Overall Results on Yahoo!R3-OOD, Yahoo!R3-i.i.d. and PCIC

Dataset Method p=∞ p=2

Metrics AUC ACC advAUC advACC AUC ACC advAUC advACC

Yahoo!R3-OOD

base(robust) 0.5 0.4508 0.5 0.4508 0.5 0.4545 0.5 0.4537

base(standard) 0.6198 0.6097 0.5212 0.5189 0.621 0.6099 0.5139 0.5188

IB(standard) 0.6181 0.6063 0.5333 0.5149 0.6184 0.6069 0.5431 0.5255

r-CVAE(robust) 0.6186 0.6235 0.5886 0.5912 0.6191 0.6241 0.5882 0.5907

r-CVAE(standard) 0.6253 0.6249 0.5855 0.5863 0.6233 0.6243 0.5865 0.5872

CaRI(robust) 0.6238 0.6284 0.5993 0.5999 0.6242 0.6307 0.6008 0.601
CaRI(standard) 0.629 0.6257 0.5966 0.5965 0.6276 0.6255 0.5917 0.5917

Yahoo!R3-i.i.d.

base(robust) 0.5 0.6001 0.5 0.5997 0.5 0.6 0.5 0.6

base(standard) 0.7334 0.7483 0.6267 0.6251 0.7346 0.752 0.6260 0.6103

IB(standard) 0.7291 0.7513 0.6361 0.6721 0.7348 0.7521 0.6418 0.6775

r-CVAE(robust) 0.7341 0.7093 0.7180 0.7080 0.7376 0.7151 0.7194 0.7082

r-CVAE(standard) 0.7488 0.7515 0.7191 0.7072 0.7487 0.7529 0.7202 0.7099

CaRI(robust) 0.7378 0.7168 0.721 0.7107 0.7374 0.7158 0.7247 0.7159
CaRI(standard) 0.7497 0.7503 0.7191 0.7099 0.7493 0.7495 0.7188 0.7072

PCIC

base(robust) 0.5534 0.5875 0.5388 0.6257 0.5605 0.6498 0.5264 0.6287

base(standard) 0.6177 0.6517 0.5231 0.589 0.6269 0.6615 0.519 0.5581

IB(standard) 0.6242 0.6532 0.5741 0.6199 0.6216 0.6537 0.5768 0.6233

r-CVAE(robust) 0.6363 0.6733 0.6088 0.6596 0.63 0.674 0.6187 0.6493

r-CVAE(standard) 0.6358 0.6779 0.6138 0.6601 0.6328 0.6725 0.5893 0.6429

CaRI(robust) 0.639 0.6761 0.6225 0.6638 0.6363 0.6709 0.6332 0.6576

CaRI(standard) 0.6447 0.6817 0.6148 0.664 0.6416 0.6803 0.619 0.6625

where 𝑞 = 0.3, I(𝑥) is an indicator function, which is 1 if 𝑥 > 0,

and 0 otherwise. From synthetic data, we analyze whether CaRI

has the ability to identify the paY from mixed observational X.

7.3 Real-word benchmarks
We also evaluate our method on real-world benchmarks for the

recommendation system.

Yahoo! R32 is an online music recommendation dataset, which

contains the user survey data and ratings for randomly selected

songs. The dataset contains two parts: the uniform (OOD) set and

the nonuniform (i.i.d.) set. The non-uniform (OOD) set contains

samples of users deliberately selected and rates the songs by pref-

erence, which can be considered as a stochastic logging policy. For

the uniform (i.i.d.) set, users were asked to rate 10 songs randomly

selected by the system. The dataset contains 14,877 users and 1,000

items. The density degree is 0.812%, which means that the dataset

only records 0.812% of rating pairs.

PCIC The dataset is collected from a survey by questionnaires

about the rate and reason why the audience like or dislike the movie.

Movie features are collected from movie review pages. The training

data is a biased dataset consisting of 1000 users asked to rate the

movies they care from 1720 movies. The validation and test set

is the user preference on uniformly exposed movies. The density

degree is set to be 0.241%.

For evaluation, Yahoo! R3 and Coat dataset both have two val-

idation (include test) datasets. The i.i.d. set is 1/3 of data from a

nonuniform logging policy, and the OOD set consists of the data

generated under a uniform policy. For the PCIC dataset, we train

2
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

our method on non-uniform datasets and perform evaluations on

uniform datasets.

CelebA-anno The dataset contains more than 200K celebrity

images, each with 40 attribute annotations. Following the previous

work [14], we select 9 attribute annotations, which include Young,

Male, Eyeglasses, Bald, Mustache, Smiling, Wearing Lipstick, and

Mouth Open. Our task is to predict Smiling. paY including {Young,

Male}, ndY including {Eyeglasses, Bald, Mustache, Wearing Lipstick}

and cdY including {Mouth Open}. From this dataset, we evaluate

the ability to distinguish paY from X (Results on CelebA-anno are

provided in supplementary materials).

Coat Shopping Dataset3 is a commonly used dataset collected

from web-shop ratings on clothing. The self-selected ratings are

the i.i.d. set and the uniformly selected ratings are the OOD set. In

the training dataset, users were asked to rate 24 coats selected by

themselves from 300 item sets. The test dataset collects the user

rates on 16 random items from 300 item sets. Just as Yahoo! R3,

the training dataset is a non-uniform dataset and the test dataset is

a uniform dataset. The dataset provides side information on both

users and item sets. The feature dimension of the user/item pair is

14/33.

Compared Method. For all the compared methods, we use the

same model architecture, with different training strategies. The

model consists of representation learning module z = 𝜙 (x) and
the downstream prediction module ŷ = 𝑔(z), with each module

implemented by neural networks. Base model has no additional

constraints on representation, and the optimization is to minimize

the cross-entropy between 𝑦 and learned 𝑦. We involve a recently

3
https://www.cs.cornell.edu/ schnabts/mnar/
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Table 2: Overall Results on Coat dataset.

Dataset Method p=∞ p=2

Metrics AUC ACC advAUC advACC AUC ACC advAUC advACC

Coat-OOD

base(robust) 0.5586 0.5569 0.5479 0.5451 0.5593 0.556 0.5441 0.5412

base(standard) 0.5659 0.5724 0.3874 0.4024 0.5642 0.5687 0.3128 0.3317

IB(standard) 0.5659 0.5681 0.4701 0.4796 0.5659 0.5713 0.5442 0.5495

r-CVAE(robust) 0.5629 0.5586 0.559 0.5544 0.5634 0.5591 0.5572 0.5522

r-CVAE(standard) 0.5656 0.5643 0.5527 0.5478 0.5671 0.5649 0.5586 0.554

CaRI(robust) 0.5707 0.5681 0.5653 0.5659 0.5705 0.5675 0.5674 0.565
CaRI(standard) 0.5705 0.5718 0.5643 0.5659 0.5725 0.5732 0.5608 0.5601

Coat-i.i.d.

base(robust) 0.7156 0.7232 0.7034 0.7107 0.7195 0.7261 0.7001 0.7057

base(standard) 0.7191 0.7217 0.4911 0.487 0.7235 0.7255 0.3642 0.3515

IB(standard) 0.7162 0.72 0.6023 0.6017 0.7182 0.7222 0.694 0.696

r-CVAE(robust) 0.7147 0.7222 0.7105 0.7181 0.7087 0.7169 0.7058 0.7141

r-CVAE(standard) 0.7106 0.7184 0.7029 0.7106 0.7129 0.7206 0.7023 0.7059

CaRI(robust) 0.7276 0.7339 0.7208 0.727 0.7265 0.7331 0.7196 0.7261
CaRI(standard) 0.7283 0.7355 0.7125 0.7196 0.7248 0.7305 0.7069 0.7125

proposed variational estimation with information bottleneck (IB)
[1], extend the condition VAE (CVAE [36]) by robust training pro-

cess as r-CVAE, whose objective function is similar with CaRI but

without a negative term (Eq.10 (2)). We conduct ablation studies by

comparing our proposed methodCaRIwith the r-CVAE to evaluate

the effectiveness of negative term. We evaluate our method on two

main aspects: (i) Generalization of the model under distribution

shifts and (ii) Robustness under adversarial attack on representa-

tion space. For (i), we evaluate our method on OOD and i.i.d. setting

on Yahoo! R3 and Coat. For (ii), the standard mode of adversarial

attack (𝛽 = 0) means that we do not perturb original z. In robust

mode, we set 𝛽 = {0.1, 0.2, 0.1, 0.3, 0.3} for PCIC, Yahoo! R3, Coat,
Synthetic and CelebA-anno respectively.

Metrics. We use the common evaluation metrics AUC/ACC [11,

28] on CTR prediction and their variants called adv-ACC/ adv-AUC

[18] on adversarially perturbed evaluation dataset. Moreover, we

consider Distance Correlation metrics [13] to evaluate the similarity

between learned representation and parental information paY.

7.4 Implementation
Architecture and Setups: The model consists of two parts, the

representation learning part and the downstream prediction part.

For the representation learning part, we first use encode function

𝜙 (·) to get representation z and get the intervened ẑ. Then we

perturb the learned z and z̄ by PGD attack [18] procedure to find

the worst case corresponding to the worst downstream loss. We

use PGD attack with ∞-norm (𝑝 = ∞) and 2-norm (𝑝 = 2) in our

implementation. Finally we put z′ and ẑ′ into the downstream pre-

dictionmodel𝑔(·) to calculate𝑦. The likelihood in Eq.11 is estimated

by cross-entropy loss. Note that the perturbation approach would

block the gradient propagation between the representation learning

process and downstream prediction in some implementation ways.

Thus we use the conditional Gaussian prior 𝑝\ (z) = N(𝑦1, I) rather
than standard Gaussian distribution 𝑝\ (z) = N(0, I) to calculate KL

term. If gradient propagation is blocked, by using conditional prior,

the learning process of representation z and exogenous 𝝐 embed-

ded in z′ will not be influenced. The form of conditional Gaussian

prior is more general 𝑝\ (z) = N(Z (𝑦), I), where Z (·) could be any

non-trivial function like linear function even neural network.

Hyperparameter The hyper-parameters are determined by grid

search. Specifically, the learning rate and batch size are tuned in

the ranges of [10
−1, 10

−2, 10
−3, 10

−4] and [64, 128, 256, 512, 1024],
respectively. The weighting parameter _ is tuned in [1, 100]. Pertur-
bation degrees are set to be 𝛽 = {0.1, 0.2, 0.1, 0.3} for Coat, Yahoo!R3,
PCIC and CPC separately. The representation dimension is empiri-

cally set as 64. All the experiments are conducted based on a server

with a 16-core CPU, 128g memories and an RTX 5000 GPU.

7.5 Overall Effectiveness
Table 1 shows the overall results on Yahoo! R3 and PCIC. From

Yahoo! R3 dataset, which contains both i.i.d. and OOD validation

and test sets, we find that our method enjoys better generalization.

In Yahoo! R3 OOD, our method increases the performance by 1.9%,

and 8.1%, in terms of ACC and adv-ACC, compared with the base

method. The performance of r-CVAE is close to CaRI, since it is

a modified version of our method, which only includes the posi-

tive term in Eq.15 but removes the negative term. The difference

between the performances of CaRI and r-CVAE shows the effective-

ness of the negative term in the objective function of CaRI. In PCIC

dataset, standard and robust modes of CaRI achieve the best AUC

at 64.47%, and 63.9% respectively, which validates the effectiveness

of our idea. In the robust training mode, our method achieves the

best performance in adversarial metrics. In the PCIC dataset, our

method reaches 62.25%, which increases by 8.37% against the base

method on adv-AUC. Robust training of CaRI is also better than

the standard training, winning with a margin of around 1.42%. we

present the additional test results and analysis in this section. Table

2 shows overall experimental results on Coat, The table contains
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Figure 2: Representation learning results on synthetic dataset over different range of 𝛽 , where 𝑝 = 2 under robust training.

both i.i.d. and OOD settings. Based on this we find that in most

cases, our method achieves better performance in terms of AUC

and ACC, compared to base methods. The overall results show

that the robust learning process with exogenous variables involved

enhances the adversarial performance on perturbed samples. On

the other hand, in standard training mode, CaRI achieves better

adversarial performance than baselines including base method and

IB. We find that standard training of CaRI on PCIC has an AUC of

64.47%, which is better than the performance under robust training

(63.9%). But contrary conclusions are drawn on adversarial per-

formance. The result supports that the causal representation we

learned is more robust. The performance of the base method in

robust training mode is worst in most of cases, indicating that the

robust training process will largely influence the learning of the

model and ruin the prediction model. Although the robust train-

ing deteriorates the performance of on normal dataset, it will help

to identify the causal representation, which benefits downstream

prediction under adversarial attack. The robust learning process

with exogenous variables involved enhances the adversarial per-

formance on perturbed samples. On the other hand, in standard

training mode, CaRI achieves better adversarial performance than

all baselines. The result supports that the causal representation our

method learned is more robust.

7.6 Representation Analysis
In this section, we study whether our method CaRI helps to identify

the parental information from observational data. Fig.2 demon-

strates the ability of the model to learn causal representations un-

der different 𝛽 degrees on a synthetic dataset. The figure shows

the distance correlation between the learned representation z and
different parts of observational data, namely (paY, ndY, dcY). From
Fig.2 (left), we find that our method learns a representation that is

with the highest similarity, in comparison with the base method un-

der different values of 𝛽 . It is evidence that our method successfully

identifies the parental information from mixed observational data.

The information from ndY and dcY are not considered as important

as parental information from CaRI, and the distance correlation

metric corresponding to this part is slightly lower. We also find that

the metric under CaRI gets lower variance, which shows the stable

performance of CaRI. On the contrary, the distance correlation met-

ric of the base method is with high variance, which indicates the

possible incapability of the base method on extracting the parental

information from observations.

8 CONCLUSIONS & FUTUREWORKS
In this paper, we deal with the problem of learning causal repre-

sentations from observational data, which comes with satisfactory

generalization ability. Assuming that the underlying latent factors

follow some causal generative models, we argue that learning a

minimum sufficient cause of the system is the optimal solution. By

analyzing the information theoretical property of our hypothetical

graphical model, we propose a causality-inspired representation

learning method by optimizing a function with regularized mutual

information constraints. It achieves effective learning with guar-

anteed sample complexity reduction under certain assumptions.

Extensive experiments on real-world dataset show the effective-

ness of our algorithm, verifying our claim of robustness of the

representation with respect to downstream tasks.

Future Works. For future works, one promising direction is to

involve the concept of Kolmogorov complexity in information the-

ory. Different to mutual information and information entropy, Kol-

mogorov complexity is an asymmetric notion. Based on such a

concept, we can develop a causal representation learning method

without introducing an intervention network. Another direction

is that our proposed method can be generalized to a mixture of

anti-causal and causal learning frameworks where observation data

contains both parents and descendants of outcome label 𝑌 . The

information-theoretic-based sample complexity theorem can in-

spire the generalization error/risk analysis on causal representation

learning and causal structure learning. Lastly, this paper is based

on the assumption of the given causal graph Fig. 1. In the future, it

is interesting to extend our method to more complex scenarios like

sequential prediction, reinforcement learning etc.
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