Conversion of Brain Tissue volumes by MR Images form 1.5 to 3.0 Tesla scanners for Multiple Sclerosis patients

Mehran Azimbagirad ${ }^{1}$, Antonio Carlos dos Santos ${ }^{1}$, and Luiz Otavio Murta Junior ${ }^{1}$
${ }^{1}$ University of Sao Paulo, Ribeirao Preto, Brazil

Synopsis

Brain tissue volume estimation based on MRI is crucial to several diseases such as multiple sclerosis (MS). The Images from different scanners with dissimilar magnetic fields have disparities in resolution, Signal to Noise Ratio, contrast, among others. In order to convert volume estimations from different scanners, we suggest and evaluated two methods. The dataset to validate the methods was selected from 14 years follow up study of 72 MS patients with 1.5 and 3.0 Tesla acquisitions. The quantitative study of tissue volume progress is possible using these two methods.

Materials and Methods

Multiple sclerosis (MS) is the most common immune-mediated demyelinating disease of the central nervous system ${ }^{1}$. While much work has concentrated on focal White Matter (WM) lesions in MS, there is growing evidence to suggest that Grey Matter (GM) are also involved in the disease process ${ }^{2}$. So analyzing the volume of tissues is a way to interpret the progress of MS.

In order to convert the estimation of volume of a tissue from 1.5 to 3.0 Tesla, ten persons are chosen to be scanned in both 1.5 and 3.0 Tesla in the same day similar to previous study ${ }^{3}$. The segmentation algorithm for measuring the volumes provided by the 3DSlicer module ${ }^{4}$ is hierarchical EM algorithm ${ }^{5}$ which showed good results respect to other software. Example of simple segmentations both on 1.5 and 3.0 Tesla can be seen in Figure 1.

Data Analysis

By segmenting and measuring the volume of tissues of those ten samples, Histogram 1 shows changes in GM, WM, CSF and total volume between two kinds of MRIs (1.5 and 3.0 Tesla). Although it is needed to consider all factors, which have effects on changes ${ }^{3}$ in this work we just focused on graphical and mathematical parts. If we precisely look at some part of images, it seems that a part of GM is inside WM and a part of CSF is inside the GM and vice of versa (see overlapping in Figure 1). Therefore we suggest a general graphical model which is a linear equations system

$$
\begin{gathered}
\widetilde{G M_{3.0}}=G M_{1.5}+\alpha_{1} \cdot W M_{1.5}+\beta_{1} . C S F_{1.5}+\gamma_{1} \cdot V o l \\
\widetilde{W M_{3.0}}=W M_{1.5}+\alpha_{2} . G M_{1.5}+\beta_{2} . C S F_{1.5}+\gamma_{2} \cdot V o l(1) \\
\widetilde{C S F_{3.0}}=C S F_{1.5}+\alpha_{3} . W M_{1.5}+\beta_{3} . G M_{1.5}+\gamma_{3} . \operatorname{Vol}
\end{gathered}
$$

where \widetilde{A} is converted tissue $A, G M_{1.5}$ is the volume of $G M$ in 1.5 Tesla image and so on and $V o l$ is amount of total volume in 1.5 Tesla image. Next step is to obtain coefficients α_{i}, β_{i} and $\gamma_{i}, i=1,2,3$. As we can see system (1) has three equation with nine unknowns variables. Fortunately there are some graphical information about coefficients which help us to find a solution for system (1). By using the average of increasing in volume for those nine patients we have

$$
\gamma_{1}+\gamma_{2}+\gamma_{3}=C_{1}(2)
$$

where C_{1} is known. Also we have

$$
\begin{gathered}
\alpha_{1} \cdot W M_{1.5}=\alpha_{2} \cdot G M_{1.5} \\
\beta_{1} . C S F_{1.5}=\beta_{3} . G M_{1.5}(3)
\end{gathered}
$$

Because of the high difference between the gray level of CSF and WM we can ignore the overlapping between CSF and WM. It means

$$
\alpha_{3} \cong 0(4)
$$

consequently

$$
\beta_{2} \cong 0(5)
$$

In addition, we can let

$$
\gamma_{2}=\gamma_{3} \cong 0(6)
$$

because growing volume is just for exterior layer which is GM. Now by using equations (2)-(6), system (1) will be reduced to

$$
\begin{gathered}
\widetilde{G M_{3.0}}= \\
\underset{W M_{1.5}-\alpha . G M_{1.5}-\beta . G M_{1.5}+\gamma . V o l}{ } \\
\widetilde{W M_{3.0}}=W M_{1.5}+\alpha . G M_{1.5}(7) \\
\widetilde{C S F_{3.0}}=C S F_{1.5}+\beta . G M_{1.5}
\end{gathered}
$$

where the sign of coefficients obtained from Histogram 1. Since $\gamma=C_{1}$ clearly first equation in (7) depends on two others so we have just two equations and two unknowns α and β. Then

Figure 1．Segmented images in both 1.5 （right）and 3．0（left）Tesla Scanners．Three tissues GM，WM and CSF are labeled by gray，yellow and blue colors respectively．Overlapping happen in 1．5 Tesla because of low resolution，contrast and more noise．
［illalidall｜

\qquad

of 3
\qquad

of 3

Tab

[^0]at red curves．

[^0]: Proc．IntI．Soc．Mag．Reson．Med． 25 （2017）
 \square
 電

 IntI．Soc．Mag．Reson．Med． 25 （2017）

