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Among statistical models, Gaussian Mixture Models (GMMs) have been used in numerous applications to 
model the data in which a mixture of Gaussian curves fits them. Several methods have been introduced to 
estimate the optimum parameters to a GMM fitted to the data. The accuracy of such estimation methods 
is crucial to interpret the data. In this paper, we proposed a new approach to estimate the parameters 
of a GMM using critical points of Tsallis-entropy to adjust each parameter’s accuracy. To evaluate the 
proposed method, seven GMMs of simulated random (noisy) samples generated by MATLAB were used. 
Each simulated model was repeated 1000 times to generates 1000 random values obeying the GMM. In 
addition, five GMM shaped samples extracted from magnetic resonance brain images were used, aiming 
for image segmentation application. For comparison assessment, Expectation-Maximization, K-means, 
and Shannon’s estimator were employed on the same dataset. These four estimation methods using 
accuracy, Akaike information criterion (AIC), Bayesian information criterion (BIC), and Mean Squared 
Error (MSE) were evaluated. The mean accuracies of the Tsallis-estimator for simulated data, i.e., the 
mean values, variances, and proportions, were 99.9(±0.1), 99.8(±0.2), and 99.7(±0.3)%, respectively. For 
both datasets, the Tsallis-estimator accuracies were significantly higher than EM, K-means, and Shannon. 
Tsallis-estimator, increasing the estimated parameters’ accuracy, can be used in statistical approaches and 
machine learning.

© 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A statistical model describes a set of variables and relations 
concerning the generation of some sample data and similar data 
from a larger population. There are three purposes for a statistical 
model, according to [1]:

• Prediction
• Extraction of information
• Description of stochastic structures

Generally, these aims are interested in all studies that need to be 
modeled.

Usually, one acquires a sample from the population, and then 
a model is guessed for the sample. Then, using several evaluation 
techniques, e.g., Akaike information criterion (AIC), Bayesian infor-
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mation criterion (BIC), Mean Squared Error (MSE), and another sta-
tistical index, the model is evaluated to quantify its performance.

Once a model (with its parameters) is guessed for sample data, 
several crucial indicators can be obtained. For example, once a re-
lation between spreading a contagious disease and accumulating 
peoples is modeled, an obtained indicator shows the minimum dis-
tance to avoid the infection [2]. Another example is, clustering the 
data due to keep similar samples in different groups. Such clus-
tering tasks are crucial for medical image processing, especially in 
neuroscience. For example, in the diagnostic scheme, follow up and 
predict the brain disease using the acquired image, clustering is a 
central part of such approaches.

A straightforward example is to cluster a brain image to White 
Matter (WM), Gray Matter (GM), or Cerebrospinal Fluid (CSF) since 
each compartment has its functionality for investigation. One step 
more, only GM can be divided into several sections (according to 
brain anatomy) to analyze each section in depth. Therefore, fit a 
model to raw data enables us to deeply explore and interpret that 
data which can be marketing data or in a higher level in neuro-
science.
ess article under the CC BY-NC-ND license 
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Once provided a data model, it is possible to separate them us-
ing that model’s indicators (parameters). For example, in [3,4] they 
investigated Model-Based Clustering and Classification in both the-
oretical and applied research. Moraes et al. [5] introduced a new 
method based on the principle curve model for data clustering. In 
order to estimate the parameters of the model, usually, two meth-
ods are used:

• Maximum Likelihood Estimation (MLE)
• Method of Moments Estimation (MME)

MME is discussed in several books (for more details, see [6]) be-
yond this study. MLE will shortly be explained in the next section, 
along with two examples describing this method’s implementation.

1.1. Parameter estimation by MLE

As an estimator method for the parameters of a statistical 
model, MLE has widely been used [7]. Assume that (X = xi, i =
1..n) is a sample data by a Probability Distribution Function (PDF
or shortly f ), e.g., Gaussian (Normal) distribution N (xi; μ, σ 2)

with unknown parameters mean μ and variance σ 2. The parame-
ters μ and σ 2 can be estimated using the MLE by taking the mean 
and variance as parameters and finding particular parametric val-
ues that make the observed results the most probable given the 
model.

Generally, suppose that there is a sample x1, x2, . . . , xn by a 
known (or guessed) PDF depends on some unknown parameter θ , 
written f (X = xi; θ). The primary goal here is to estimate θ , such 
that f (X = xi; θ) is a reasonable estimate of the model. The model 
quality can be defined as a specific error calculated by any of the 
methods mentioned above for the guessed PDF on the estimated 
parameters. For instance, a reasonable estimate of θ = (μ, σ 2)

would be the value such that maximizes the joint density function
for all observations

PDF (X = x1, X = x2, . . . , X = xn; θ) = f (X = x1, x2, . . . , xn; θ) .

(1)

Now looking at this function from a different perspective by con-
sidering the observed values x1, x2, . . . , xn to be the fixed param-
eters, whereas θ be the function’s variable and allowed to vary 
freely

L (θ) = f (X = x1, x2, . . . , xn; θ)

= f (x1; θ) × f (x2; θ) × · · · × f (xn; θ)

⇒ L (θ) =
n∏

i=1

f (xi; θ) , (2)

this function is called the likelihood. Now, in the spirit of MLE, one 
reasonable way to proceed is to treat the likelihood function L (θ)

as a function of θ , and find the value of θ̃ which maximizes it. In 
practice, it is often more convenient when working with the nat-
ural logarithm of the likelihood function, called the log-likelihood, 
defined as follows:

ln L (θ) = ln
n∏

i=1

f (xi; θ) =
n∑

i=1

ln f (xi; θ) . (3)

Several properties of this function were illustrated in [8]. Differ-
ent studies are working on different MLE types and its application 
(refer to the last few [9–11]).

As a bivariate function in calculus, to find the maximizer point 
of L 

(
θ = (μ,σ 2)

)
, usually, the partial derivative is set to zero to 
2

find the optimum points μ̃, σ̃ 2. Since this function has a nonlinear 
form and many terms, the logarithm form of the function will be 
much easier to take the partial derivative. Taking the partial deriva-
tive of the log-likelihood concerning μ and σ 2 and then setting to 
0, gives:

μ̃ =
∑n

i=1 xi

n
and σ̃ 2 =

∑n
i=1(xi − μ̃)2

n
, (4)

what is expected as inductive reasoning for the population.
Nevertheless, it may not always be easy to solve the maxi-

mization equations. For example, if the PDF is a GMM with three 
components, there will be nine parameters to be estimated. Al-
though numerical methods can be used to approximate a solution 
for the partial differential equations, the Expectation-Maximization 
(EM) algorithm [12] is an iterative method to find the maximizer 
of the likelihood, i.e., the parameters of GMM. The problem of MLE 
for GMM parameter estimation and how the EM can solve it are 
discussed in [13], though shortly is demonstrated as follows.

1.2. Parameter estimation by the EM

EM method is an iterative algorithm for parameter estimation 
for statistical models when some of the involved random variables 
are not observed or solving the equation d ln L(θ)

dθ
= 0 has no ana-

lytical solution. For many years, the EM algorithm had been used 
before being introduced by Orchard et al. [14] is a problem for 
missing information principle provided the theoretical foundation 
of the underlying idea. The EM was presented by Dempster [15], 
who gave the proof of general results about the algorithm’s behav-
ior. The EM algorithm uses an initial guess, i.e., θ(0) for θ , then on 
the first iteration compute

Q (θ; θ(0)) = Eθ(0) [ln L(θ)], (5)

where E is the expectation and Q (θ; θ0) is now maximized con-
cerning θ , that is, θ(1) is found such that

Q
(
θ(1); θ(0)

)
≥ Q (θ; θ(0)), (6)

for all possible θ . Thus, the EM algorithm consists of an E-step 
(Expectation) and followed by an M-step (Maximization) defined 
as follows:

I. E-Step: Compute Q (θ; θ(t)) where Q (θ; θ(t)) = Eθ(t) [ln L(θ)],
II. M-Step: Find θ(t+1) such that Q

(
θ(t+1); θ(t)

) ≥ Q (θ; θ(t)),

for all possible θ . The E-step and the M-step have repeated alter-
nately until the difference L 

(
θ(t+1)

) − L(θ(t)) is less than epsilon, 
where epsilon is a prescribed small quantity. The computation of 
these two steps simplifies a great deal when it can be shown that 
the log-likelihood is linear in the sufficient statistic for θ . Several 
examples are discussed to illustrate these steps in the exponential 
family case [16] and to modify approaches to improve EM [17,18].

As an available algorithm for complex maximum likelihood 
computations, the EM algorithm has several appealing proper-
ties relative to other iterative algorithms such as Newton-Raphson 
based approaches. First, it is easily implemented because it relies 
on complete-data computations; the E-step of each iteration only 
involves taking expectations over complete-data conditional distri-
butions. The M-step of each iteration only requires complete-data 
maximum likelihood estimation. Secondly, it is numerically sta-
ble and converges to a local maximum or saddle point of MLE. 
A disadvantage of the EM is its convergence rate, which can be 
extremely slow if much data are missing. Dempster, Laird, and 
Rubin [15] showed that convergence is linear, with the rate pro-
portional to the fraction of information. Another drawback of the 
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EM is the necessity of a large number of initial parameters. For ex-
ample, for a GMM with three components, nine initial parameters, 
i.e., (μ1, σ1, π1), (μ2, σ2, π2) and (μ3, σ3, π3) are needed to start 
the approach.

1.3. Parameter estimation by K-means

The K-means algorithm is another simple iterative method to 
estimate a model’s parameters, e.g., the means of a population 
alongside clustering data [19]. A detailed history of K-means and 
descriptions of several variations are given in [20], though this 
algorithm is illustrated very shortly. Assume that a population in-
cluding three components as the same example used in the MLE 
estimator for GMM. One can use the K-means algorithm to esti-
mate the means (three means) of the components. The algorithm 
is initialized by three (K) giving points as the initial means rep-
resentatives or centroids for the components. Then the algorithm 
iterates between two steps until it converges to the best estima-
tions:

I. Data Assignment: Each member of the population is assigned 
to its closest centroid using the given centroids. Then this step 
clusters the population into three groups.

II. Relocation of the means: For each cluster (group), its mean 
is recalculated.

The algorithm converges when the assignments (and hence the 
centroids) no longer change. The number of iterations required for 
convergence varies and may depend on the population, but this al-
gorithm’s complexity can be considered linear in the dataset size 
as a first cut. Concerning the other estimators like MLE, K-means 
is faster. Recently, [21] used K-means for functional data clustering 
based on a combination of a hypothesis test of parallelism and the 
test for equality of means. Nevertheless, K-means’ precision alone 
may not be acceptable in those studies looking for a high precision 
approximation since only consider the means and not the vari-
ances. This study considers this algorithm to estimate the means 
and the variances and proportions as follows.

Assume that a dataset is given such that a GMM with three 
components needs to be fitted to this data. If K-means is employed 
to estimate three means of the data, then the middle points be-
tween the first and the second and the middle point between the 
second and the third means can be considered the local minimum 
points of a GMM curve. Using these two points and then segment 
the data into three parts, the variance and proportion for each part 
can be calculated. Thus, in addition to the means, the variances 
and the proportions are estimated using K-means.

1.4. Additive and nonadditive entropy

A statistical model estimating how much information is re-
quired, on average, to identify random samples from a distribution 
is defined by Shannon entropy. Equally, the Shannon entropy equa-
tion provides a way to estimate the average minimum number of 
bits needed to encode a string of symbols based on the symbols’ 
frequency. Since researchers desire to model such systems (any 
system with a PDF with GMM to estimate the probability of its 
states), it could be defined as a statistical model. The Shannon en-
tropy and its generalized version to estimate the parameters of a 
GMM are exemplified as follows.

1.4.1. Additive entropy
The entropy of a system is usually calculated from a probability 

distribution, where pi is the probability of finding the system in 
each possible state i. Therefore, 0 ≤ pi ≤ 1 and 

∑n
i=1 pi = 1 where 

n is the total number of states. For example, Shannon entropy de-
scribed as
3

S = −
n∑

i=1

pi ln(pi). (7)

This formalism is restricted to the domain of validity of the 
Boltzmann-Gibbs-Shannon (BGS) statistics [22]. Generally, systems 
that obey BGS statistics are called extensive systems. Assume that 
a system is decomposed into two independent statistical subsys-
tems A and B. Then, the probability of the composite system is 
P {A+B} = P A .P B . It has been verified that the Shannon entropy has 
the additive property (or extensivity in some sense)

S (A + B) = S(A) + S(B), (8)

hence for three subsystems C1, C2 and C3 it is defined

S (C1 + C2 + C3) = S (C1) + S (C2) + S (C3) . (9)

Therefore, those probabilities are divided into three parts to cal-
culate the Shannon entropy of each subsystem. For example, C1 =
{p1, p2, ...pt}, C2 = {pt+1, pt+2, ...pk} and C3 = {pk+1, pk+2, ..., pn}
then

S (C1) = −
t∑

i=1

pi

pC1
ln

(
pi

pC1

)
,

S (C2) = −
k∑

i=t+1

pi

pC2
ln

(
pi

pC2

)
, (10)

S (C3) = −
n∑

i=k+1

pi

pC3
ln

(
pi

pC3

)
,

where pCi is the sum of all probabilities in Ci . Finding the opti-
mum t and k which maximize the Shannon entropy, is desired to 
estimate the best statistical model describing the system. There-
fore, solving the subproblem

arg max
t,k

S (C1 + C2 + C3) , (11)

gives us t̃ and k̃ which can be used to estimate the parameters of 
GMM, i.e., Shannon estimator illustrated in methodology. One can 
solve the problem denoted in (11) through different approaches. 
The first way to find t̃ and k̃ is to check all possible combinations 
of t̃ and k̃ from 1 to n where 1 < t̃ < k̃ < n. Another way is to find 
firstly t̃ and then k̃ i.e., the system has only two subsystems. Thus, 
it is possible to only look for t̃ to maximize the subproblem and 
then search for k̃ to maximize (11).

1.4.2. Nonadditive entropy
Some extension appears to become necessary for a specific class 

of physical systems, which entail long-range interactions, long-time 
memory, and fractal-type structures. Inspired by multifractal con-
cepts, Tsallis has proposed a generalization of the BGS statistics 
[23]. Tsallis statistics are currently considered useful in describing 
nonadditive systems’ thermostatic properties, measuring the un-
certainty of random variables [24], and monitoring defects of a 
moving metallic surface [25]. The original idea of Tsallis entropy 
is based on a generalized entropic form,

Sq = 1 − ∑n
i=1 pq

i

q − 1
, (12)

where n is the total number of possibilities of the states of the sys-
tem and the real number q is an entropic index that characterizes 
the degree of nonadditivity (or nonextensivity). This expression 
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meets the BGS entropy in the limit q → 1 proved in [23]. Tsal-
lis entropy is nonextensive in such a way that for a statistically 
independent system (including two subsystems A and B), the en-
tropy of the system is defined by the following pseudo additivity 
entropic rule

Sq (A + B) = Sq (A) + Sq (B) + (1 − q) × Sq (A) .Sq (B) , (13)

where Sq is defined by Eq. (12). To find the maximum Sq for 
the same as classical entropy, an optimization problem should be 
solved as

arg max
q,t

Sq (A + B) . (14)

In this paper, we employ the Tsallis entropy concept and the 
maximization criteria of its definition to estimate the parameters 
of a system in which its states’ probability obeys a GMM distribu-
tion. Then the accuracy of this approach will be compared by EM, 
K-means, and classical entropy on several examples.

2. Methodology

2.1. Tsallis entropy estimator

Assume that for a general system by n states, frequency of state 
i is given by f i (i = 1, . . . , n). The statistical model to fit the nor-
malized histogram (divided f i by total frequency N) is guessed 
by a GMM with three components C1, C2 and C3 (defined in sec-
tion 1.4.1). Therefore, GMM has a PDF by

PDF (xi) =
3∑

j=1

π j ×N (xi;μ j,σ
2
j ), i = (1,2, . . . ,n) , (15)

where xi is the probability of the state i, π j is the proportion of 
component C j , N (μ j, σ 2

j ) is a Gaussian distribution with mean μ j

and variance σ 2
i . Using Eq. (13):

Sq (C1, C2, C3) = Sq (C1) + Sq (C2) + Sq (C3)

+ (1 − q)×[
Sq (C1) .Sq (C2) + Sq (C2) .Sq (C3) + Sq (C1) .Sq (C3)

]
+ (1 − q)2 × [

Sq (C1) .Sq (C2) .Sq (C3)
]
, (16)

then, the maximum of Sq is provided by

arg max
q,t,k

Sq(C1, C2, C3). (17)

One can solve the problem denoted in (17) by applying the same 
approaches described in section 1.4.2. Assume that, t̃ and k̃ are 
obtained such that maximize (17). Then, C1, C2 and C3 are defined 
such that

C1 = {p1, p2, ...pt̃},
C2 = {

pt̃+1, pt̃+2, . . . pk̃

}
, (18)

C3 = {pk̃+1, pk̃+2, ..., pk̃},
and then the parameters of the GMM are estimated by

μ j = N × mean C j,

σ 2
j = N × variance C j, j = 1,2,3 (19)

π j = sum C j.

These expressions reveal our proposal to estimate the GMM pa-
rameters. It should be mentioned that in (18), for estimating vari-
ance, one may use (N − 1) instead of N , but in large numbers, that 
does not change the results. Shannon’s estimator is defined as Tsal-
lis estimator but using Eq. (10) and Eq. (11). The algorithm of the 
Tsallis estimator can be seen in Appendix A.
4

2.2. Evaluation method

We used two strategies to evaluate Tsallis entropy estimation 
for GMM. First, using a collection of simulated data generated by 
MATLAB to evaluate the robustness of the method. This survey 
generated GMM shape data with several selections of the parame-
ters and random (noisy) data. Therefore, the simulations include 
noise factors, making challenging models. We also repeated the 
simulations to distribute the noise around all parameters. The sec-
ond strategy was the application of the Tsallis estimator tool in 
segmentation. It has been shown that the maximization of either 
BGS or Tsallis entropy of a system (e.g., image) leads to disjoint 
the system states. We used five Magnetic Resonance images [26]
as five systems. Then, we extract the histogram of the images 
which have GMM shape. Then, we estimated the parameters of 
each GMM using the proposed tool. In addition, EM and K-means 
were employed and Shannon’s estimators for comparison purposes.

We defined three errors for the mean, variance, and proportion 
estimated by EM, K-means, Shannon, and Tsallis estimators by

errorμ = | μ − μ̃ |
n

,

errorσ = | σ − σ̃ |
s

, (20)

errorπ = ∣∣π − π̃
∣∣ ,

where | . | is an absolute value, n is the maximum possible values 
for μ, and s is the maximum possible values for σ 2. The reason 
for defining these errors was the simplicity of showing accuracy. 
Therefore, the accuracy of the parameter θ is defined as

Accuracyθ = (1 − errorθ ) × 100, (21)

by percentage unit.
In addition to the accuracy defined above, we also estimated 

AIC [27], BIC [28], and MSE as another statistical index to assess 
the models provided using the estimators, i.e., EM, K-means, Tsallis 
and Shannon as:

AIC = n × log

(
RSS

n

)
+ 2k, (22)

BIC = n × log(RSS/n) + k × log(n), (23)

where k is the number of parameters in the model and RSS is the 
residual sum of squares.

Choosing the best q for the Tsallis estimator needs a training 
step the same as a learning step in neural networks. Depending 
on the GMM artifacts, may the entropic index vary in a limited 
interval [29] to give the best results. In the datasets used in this 
study, we used 5% of the dataset as the training sample to find the 
optimum q in the interval (−1,1).

In practice, when calculating Eq. (12), for the small values of 
pi , Sq may increase exponentially. To avoid this calculation error, 
we proposed an additional parameter α as a conditional limitation 
for pi in Eq. (12) searching in interval (10−6, 10−2). Therefore, the 
recent equation is maximized by two parameters q and α. Thus, in 
the training step, these two parameters are chosen as the optimum 
parameters of the following equation

arg max
q,t,k,α

Sq(C1, C2, C3). (24)

Therefore, q and α are two parameters that can tune the accuracy 
of the Tsallis estimator.
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Fig. 1. (a) Histogram of a sample including 1000 random values of a GMM with the probability of the GMM for 1 to 256. μ1 = 60, μ2 = 120 and μ3 = 180, π1 = 0.2, 
π2 = 0.5 and π3 = 0.3, σ 2

1 = 75, σ 2
2 = 20 and σ 2

3 = 5. (b) Box chart of the methods’ accuracy, including max, min, and mean of calculated accuracy.
3. Results

Using MATLAB software and mvnrnd function, we generated 
1000 simulated random data by GMM in which μ1 = 60, μ2 = 120
and μ3 = 180 and π1 = 0.2, π2 = 0.5 and π3 = 0.3. However, to 
generate more challenging simulations, the variances were cho-
sen such that finding the local minimums turns difficult. For the 
first simulation, we run 1000 times the function generator to pro-
duce 1000 random data by σ 2

1 = 75, σ 2
2 = 20 and σ 2

3 = 5. One of 
the random samples and the GMM are presented in Fig. 1 (a). The 
mean accuracies of each parameter and method are presented in 
Fig. 1 (b).

As shown in Fig. 1, K-means had the best performance through 
the EM, and Tsallis are closed to K-means. Nevertheless, Shannon 
could not accomplish a good performance as the others.

For the simulation dataset, the found optimum q was −0.3 and 
α = 10−2 using the first sample as the training dataset. To make 
a more demanding challenge for estimating the parameters, we 
changed the variances to join data and generated 1000 random 
values. One sample of each selection of variances and the GMM is 
presented in Fig. 2, along with each method’s mean accuracy for 
each parameter.

In Fig. 2, the samples from 2 to 7 were gradually more chal-
lenging due to estimate the parameters of the Gaussian mixture 
models. Nevertheless, Tsallis and Shannon estimators’ accuracy was 
getting better for the complex samples, unlike the EM and K-
means.

Averagely, for all seven simulated data, the accuracies of the 
methods are presented in Fig. 3 using violin plot according to the 
definition of the accuracy Eq. (21).

Another scenario to evaluate the parameter estimator methods 
was to calculate the Akaike information criterion (AIC), Bayesian 
information criterion (BIC), and Mean Squared Error (MSE) on the 
six simulated data. The results are presented in Table 1.

In Table 1, the Tsallis estimator obtained a better score in AIC 
for all simulation data than the EM and K-means and Shannon and 
BIC and MSE.
Table 1
Akaike information criterion (AIC), Bayesian information criterion (BIC), and Mean Squa
data, S1 to S6. Lower score showing a better model. The best scores are highlighted.

MSE AIC

EM K-means Tsallis Shannon EM K-means

S1 4.91E-06 7.79E-06 2.33E-07 0.00018 −12217.5 −11756.3
S2 8.59E-07 1.53E-06 5.31E-08 7.75E-05 −13960.1 −13384.0
S3 3.34E-07 7.85E-07 2.12E-08 3.00E-05 −14904.7 −14051.0
S4 1.63E-07 4.17E-07 1.12E-08 1.12E-05 −15623.0 −14683.3
S5 8.37E-08 2.06E-07 8.36E-09 4.49E-06 −16288.8 −15390.2
S6 5.12E-08 1.15E-07 7.39E-09 2.02E-06 −16781.1 −15973.8
S7 4.05E-08 9.35E-08 7.63E-09 1.41E-06 −17013.9 −16178.2

5

In the second dataset for evaluating the Tsallis estimator, five 
T1-weighted volumetric MRI images [26] were used to estimate 
the parameters of the GMM fitted to the histogram of the images. 
Each image has a dimension of 240 ×240 ×48, i.e., 2, 764, 800 vox-
els (values). Also, each image includes three brain compartments; 
WM, GM, or CSF. That means each voxel has an intensity level (a 
number in (0,255)), which belongs to one of these compartments. 
Therefore, it is expected to have a GMM shape with three com-
ponents (three bell shapes) for the image voxels histogram. Fig. 4
shows the mid slice of each volume image and its histogram.

Since the actual parameters of the GMM fitted to the his-
tograms are not available, ground truth is needed to compare the 
estimated parameters with it. Ground-truth is provided by an ex-
pert who knows each voxel in the image belongs to which tissue, 
i.e., WM, GM, or CSF. The estimations of the parameters were cal-
culated using this ground truth as reference which are presented 
in Table 2.

For the actual images (dataset), the optimum q was found by 
−0.5 and α = 10−2 using the first sample (image). The accuracies 
of the estimated parameters by all methods are presented in Fig. 5.

The accuracy of the methods which estimate the parameters 
of the GMM fitted to the histogram of five actual images is pre-
sented in Table 3. This table shows the accuracy of our suggestion 
is higher than EM, K-means and Shannon estimators. That is, the 
Tsallis estimator gives the best thresholds to segment the images.

4. Discussion

Using Tsallis entropy concept for several applications such as 
segmentation [30], characterizing threshold channel bank profiles 
[31], Monitoring defects of a moving metallic surface [25] etc. had 
been introduced. However, to the best of our knowledge, for the 
first time, we adopted Tsallis entropy to estimate the parameters 
of a GMM, considering the optimum points on the maximization of 
Tsallis entropy in the fitting model scheme. Moreover, we tested it 
on several datasets with GMM shapes. Therefore, one can use this 
estimator in statistical tools, e.g., Origin, SAS, R, and MATLAB, as a 
red Error (MSE) estimated for EM, K-means, Tsallis, and Shannon on six simulation 

BIC

Tsallis Shannon EM K-means Tsallis Shannon

−15265.4 −8563.0 −12202.8 −11741.6 −15250.6 −8548.2
−16744.0 −9458.6 −13945.4 −13369.3 −16729.3 −9443.9
−17664.6 −10408.0 −14890.0 −14036.3 −17649.9 −10393.3
−18303.7 −11396.4 −15608.3 −14668.6 −18288.9 −11381.7
−18592.5 −12306.9 −16274.1 −15375.4 −18577.8 −12292.1
−18716.0 −13103.8 −16766.4 −15959.0 −18701.2 −13089.1
−18684.5 −13465.5 −16999.2 −16163.5 −18669.7 −13450.8
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Fig. 2. (a) Histograms of 1000 random datasets of five GMMs with μ1 = 60, μ2 = 120 and μ3 = 180, π1 = 0.2, π2 = 0.5 and π3 = 0.3, and different variances. (b) Box chart 
of the accuracy of the methods, including max, min, and mean of calculated accuracies.
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Fig. 3. Violin chart of the accuracies of four-parameter estimation for seven simulations.

Fig. 4. One slice of each real image [26] used in this study, with their histogram indicated below. It can be seen from the histogram that each image has different properties, 
such as distribution values of each tissue, noise, and artifacts.
Table 2
The parameters of the GMM fitted to the histograms of the real im-
ages, estimated by the manual task.

Parameters Images

C1 C2 C3 C4 C5

μ1 49.86 59.06 45.31 67.57 60.82
μ2 106.27 116.80 91.29 144.49 114.52
μ3 144.32 150.95 123.41 194.44 158.78

σ 2
1 561.99 501.20 454.82 963.91 532.67

σ 2
2 372.08 479.88 281.12 663.71 402.71

σ 2
3 124.42 306.35 121.98 152.21 117.43

π1 0.36 0.31 0.33 0.35 0.27
π2 0.37 0.43 0.36 0.40 0.45
π3 0.27 0.26 0.31 0.25 0.28

parameter estimator of a GMM model as well as image software 
for segmentation purposes.

Generally, Tsallis estimator for the GMM parameters may have 
different accuracy for each parameter. For example, in Fig. 1 and 
Fig. 2, the means estimations’ accuracy is not the same as the 
variances. It is possible to adopt the Tsallis estimator to achieve 
high precision for a parameter of interest. In the training step, the 
optimum (q, α) should be searched such that the optimum param-
eter is estimated with the highest accuracy. For example, if the 
proportions of a GMM are pursued, in the training step, (q, α) is 
obtained to maximize the accuracy of only the proportions. Gener-
ally, we recommend a strategy to choose the optimum (q, α) in 
7

Fig. 5. Box chart of the methods’ accuracy, including max, min, and mean of calcu-
lated accuracy.

machine learning approaches which are using the training data 
(commonly 30%) to find the best (q, α), then using them to es-
timate the parameters of the model. This flexibility feature of the 
Tsallis estimator could get better image segmentation results com-
pared to the EM, K-means, and Shannon.

In the simulation data (see Fig. 1 and 2), we adopt only one q
and α parameters for the Tsallis estimator. Since each simulation 
had different variances, it was possible to increase the accuracy of 
the Tsallis estimator by choosing (q, α), individually for each sim-
ulation. Besides, by increasing the variances to make it difficult for 
methods to estimate parameters, Tsallis and Shannon’s estimators’ 
accuracy increased instead, showing the robustness of these meth-
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Table 3
The mean accuracy of the parameter estimations by four methods on the five real subjects, μ = mean, σ = variance, and π =
proportion, the parameters of GMM.

Methods

EM K-means Tsallis Shannon

Parameters μ σ π μ σ π μ σ π μ σ π

Image 1 84.49 99.10 90.87 83.42 99.09 81.02 99.97 99.86 99.75 90.26 99.15 94.33
Image 2 87.77 98.85 92.90 86.23 98.82 87.23 99.96 99.87 99.79 93.78 98.89 87.77
Image 3 90.02 99.28 90.94 88.54 99.27 80.38 99.97 99.92 99.83 96.13 99.33 91.36
Image 4 76.46 99.08 91.65 75.54 99.05 83.90 99.97 99.83 99.63 74.10 99.06 78.78
Image 5 86.99 99.12 90.05 86.48 99.11 86.11 99.96 99.92 99.76 93.12 99.17 89.38

Mean 85.15 99.08 91.28 84.04 99.07 83.73 99.97 99.88 99.75 89.48 99.12 88.32
ods. Also, for the real data, it has been shown that [29,32], Tsallis 
entropy for estimating the critical points of a GMM has higher pre-
cision than Shannon entropy.

Artifacts such as noise, inhomogeneity of the magnetic field, 
and partial volume effect directly impact the intensity histogram 
of the image voxel. These artifacts can be seen in Fig. 4, all five 
histograms. If one uses the histogram for segmentation purposes, 
such artifacts affect the accuracy of the results accordingly. For 
Tsallis entropy, precisely, the critical points of its maximizer (see 
Eq. (17)), usually, outliers (noises) can not move these points since 
they decrease the value of Sq in Eq. (16). Still, we should men-
tion that using only Tsallis entropy and, consequently, only image 
histograms, especially 3D images, may not be a robust decision 
[32,33]. For this reason, it is recommended to combine Tsallis 
entropy with other approaches to improve the results of seg-
mentation. However, our study is beyond segmentation and its 
subbranches. Therefore, we only used image histograms as some 
examples for the Gaussian mixture model to estimate the curve 
parameters that can fit them. Indeed, we proposed an estimator 
approach for curve fitting, which segmentation can be an applica-
tion for that.

We introduced and evaluated an estimator for GMM with 3 
components since one of its applications is to segment brain image 
into three materials, i.e., the WM, the GM and the CSF. Finding two 
parameters (q, α) for this estimator increases the computation and 
consequently CPU time. Although results showed an acceptable ac-
curacy and speed in the simulated samples and natural subjects, 
its robustness still needs to be evaluated in GMM with more than 
three components and more GMM dimensions as a future study.

5. Conclusions

In this paper, we introduced a tool using the optimum parame-
ters that maximize Tsallis generalized entropy to estimate a GMM 
with three components. This tool, the same as machine learning 
approaches, at first, needs a training step to obtain two required 
values (q, α). These values can tune the Tsallis estimator’s accu-
racy for either all or a specific parameter of the GMM. The Tsallis 
estimator’s goodness was compared with other well-known esti-
mators, i.e., Expectation-Maximization, K-means, and Shannon en-
tropy. Using a series of simulation and real datasets, we estimated 
the accuracy, Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC), and Mean Squared Error (MSE) of all investi-
gated methods. The accuracy comparison results showed that the 
precision of the Tsallis estimator averagely was higher than Shan-
non, EM, and K-means. Besides, for the AIC, BIC, and MSE, the 
proposed estimator tool had a better performance than the other 
methods. The proposed tool’s innovation is this estimator’s ability 
to increase the accuracy for a specific parameter among all param-
eters of a model. Although results showed an acceptable accuracy 
in the simulated samples and actual subjects, its robustness still 
needs to be evaluated in GMM with more than three components 
or more dimensions.
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Appendix A

Tsallis estimator algorithm on Gaussian Mixture model to esti-
mate the parameters of the probability distribution function:

Tsallis Estimator

Input: Data (X), q, α

Solve argmax
t1,t2

(Sq,α) to obtain t̃1, t̃2 by:

for all t1 and t2 (1 < t1 < t2 < k) do
Calculate the parameters (πi ,μi , σ

2
i ), i = 1,2,3 using t1, t2 for a GMM

Calculate Sq by using GMM and Eq. (15)
end

using t̃1, t̃2 optimum, estimate (π̃i , μ̃i , σ̃
2
i ), i = 1,2,3

Output: (π̃i , μ̃i , σ̃
2
i ), i = 1,2,3

Appendix B. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .neuri .2021.100002.
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