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Human activity recognition (HAR) is an active field of research for the classification of human movements 
and applications in a wide variety of areas such as medical diagnosis, health care systems, elderly care, 
rehabilitation, surveillance in a smart home, and so on. HAR data are collected from wearable devices 
which include different types of sensors and/or with the smartphone sensor’s aid. In recent years, deep 
learning algorithms have been showed a significant robustness for classifying human activities on HAR 
data. In the architecture of such deep learning networks, there are several hyperparameters to control 
the model efficiency which are mainly set by experiment. In this paper, firstly, we introduced one 
dimensional Convolutional neural network (CNN) as a model among supervised deep learning for an 
online HAR data classification. In order to automatically choose the optimum hyperparameters of the 
CNN model, seven approaches based on metaheuristic algorithms were investigated. The optimization 
algorithms were evaluated on the HAR dataset from the UCI Machine Learning repository. Furthermore, 
the performance of the proposed method was compared with several state-of-the-art evolutionary 
algorithms and other deep learning models. The experimental results showed the robustness of using 
metaheuristic algorithms to optimize the hyperparameters in CNN.

© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Aging is one of main concern of the countries due to the grow-
ing population of vulnerable groups such as the elderly or cardio-
vascular or diabetic patients. Therefore, monitoring the physical 
health of these people and the amount of energy they consume 
during the day is crucial. Thus, acquiring information about their 
physical activities helps the medical centers to screen the level of 
activity, check their health status and recovery process, prescribe 
medication accordingly, and totally improving the quality of their 
life which affects the entire community. Consequently, monitoring 
and detecting such activities are conducting HAR researches [1,2].

Due to the diversity and complexity of human activities, differ-
ent methods have been used to collect HAR data. In general, such 
methods can be divided into two groups; sensors and cameras [3]. 
Collecting HAR data using camera is very common because of the 
simplicity of implementation in numerous researches on such data. 
In this method, the cameras need to be installed in a fixed place 
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and capture video of the user’s movements. Several video games 
and computer applications are constructed using this method [4]. 
One of the disadvantages of this method is that the camera should 
be installed in a special place and the user must always be in the 
field of view of the camera. Another drawback is the cameras can-
not be used everywhere, for instance in the bedroom or private 
spaces which concerns for privacy violations. Furthermore, provid-
ing sufficient brightness during the night might increase the cost 
of recent technique.

In order to overcome the aforementioned problems, sensors 
are more convenient and lower-cost option than the cameras for 
HAR data collection. Various sensors are available for this purpose 
such as gyroscopes, electromyography, magnetometers accelerom-
eter, pressure sensors body and compasses [5]. Also, valuable in-
formation about people’s lifestyle and a wide range of activities 
such as walking, sitting, running, lying down can be captured us-
ing these sensors, by putting them on special parts of the body 
[6]. As long as the sensors have been developing, the acquired data 
need to be interpreted precisely using robust tools such as neural 
network algorithms.

According to Data Reportal, over than 2.9 billion smartphone 
and smartwatch users were in 2020 which they all include several 
ess article under the CC BY-NC-ND license 
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Fig. 1. Accelerometer and Gyroscope sensors in a smartphone (Samsung S7) for 
three human activities, walking on stairs, normal walking and sitting. X-Y-Z are 
three directions for signal acquisition.

sensors to collect the motion data such as magnetometer sensors, 
accelerometers and gyroscopes. They are collecting motion data [7]
and transfer them to supporting apps for monitoring the activities 
of their owners. They offer a great number of advantages including 
user-friendliness and portability, support for various communica-
tion protocols such as WIFI and Bluetooth, convenient and fast 
processing power, as well as no need for special infrastructure. The 
aforementioned advantages of smart devices have made them very 
popular for potential researches [8].

Accelerometer and gyroscope are two most used built-in smart-
phone sensors. Accelerometer is employed to detect the orientation 
of the phone while the gyroscope, or gyro for short, adds an addi-
tional dimension to the information supplied by the accelerometer 
by tracking rotation or twist (see Fig. 1). The raw signals col-
lected by such sensors usually are pre-processed to clean the noise 
and artifacts. Later by performing several feature extraction meth-
ods, they can be classified using statistical and machine learning 
models such as Multilayer perceptron, Support vector machine, 
Decision Tree, Markov models, etc. [9]. Two drawbacks of these 
traditional methods are the preprocessing steps on the data and 
also using hand-crafted feature engineering techniques to reduce 
the feature space. Basically, manual extracting features from sen-
sor data due to the similarity between activities (e.g., sitting or 
standing) is a difficult and time-consuming process that requires 
high skill and knowledge [10].

In recent decades, deep learning (DL) algorithms as a sub-
branch of machine learning have had a successful performance in 
many fields such as machine vision, natural language processing 
and speech recognition [11]. A DL such as Convolutional Neural 
Network (CNN) can significantly reduce the difficulty of selecting 
appropriate features in traditional methods by automatically ex-
tracting abstract features using hidden multi-layers [12–14]. Each 
DL model has its own learning process settings to learn from the 
data and improve its performance. These settings are associated to 
the hyperparameters in DL models which have a huge impact on 
the training time, cost of calculations and performance of the mod-
els [15]. The main problem is how to choose the optimum set of 
hyperparameters since each hyperparameter has different effect on 
DL model [16]. A fundamental method to solve this problem is the 
trial and error decision in which the hyperparameters are empir-
ically selected. On the other hand, in DL architectures, there is a 
trade-off among the hyperparameters such that changing one may 
also affect the impact of the others. Given the above conditions, 
manually searching the optimal set of hyperparameters is very te-
dious [17].

Recently, some attempts have been done to improve the ef-
ficiency of DL models in optimizing their hyperparameters. For 
example, James and Yoshua [18] showed that randomly chosen tri-
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als are more efficient for hyper-parameter optimization than trials 
on a grid. Very recently, Bacanin et al. [19] introduced Enhanced 
Swarm Intelligence Metaheuristics to optimize a CNN’s hyperpa-
rameters for handwritten digits clustering in computer vision. They 
showed that both proposed improved methods establish higher 
performance than the other existing techniques in terms of clas-
sification accuracy and the use of computational resources.

In this paper, we investigated seven well-known metaheuristic 
algorithms which can automatically optimize DL hyperparameters 
by searching the optimum value of each hyperparameter of a CNN 
on the HAR dataset in the UCI repository [20]. In addition, we 
compared the results with several other states of the art methods 
and experimental results to show higher efficiency of the proposed 
method. Therefore, the contribution of this paper includes:

1- Finding optimal hyperparameter values automatically without 
human intervention which may result in increasing the effi-
ciency of the DL model. To the best of our knowledge, the 
proposed method for HAR has not yet been performed.

2- Using seven states of the art metaheuristic algorithms to find 
the optimal values of CNN hyperparameters and compare the 
experimental results with CNN, CNN-LSTM, LSTM and ConvL-
STM models. Statistical results prove that one of the proposed 
methods was better than the other models.

3- This study provides a review of the state of the arts ap-
proaches for the researchers who are about using DL model 
on their dataset.

The rest of this paper is dedicated to related works and meta-
heuristic algorithms, methodology, results and discussion, and con-
clusion, respectively.

1.1. Related works for HAR classification

According to the benefits of using the build-in sensors of smart-
phones to collect HAR data mentioned earlier, numerous studies 
have been done by researchers in the HAR area. One can di-
vide HAR classification approaches into three major areas: Machine 
learning, deep learning and hybrid models. We review some of 
them as follows. In the Machine learning studies for instance, An-
guita et al. [21] used a multi-class support vector machine (SVM) 
to classify data collected from smartphone sensors (accelerometer 
and gyroscope) to recognize human activity and provided the on-
line UCI HAR dataset (see also [22]). One of the most widely used 
model is Hidden Markov which has been modified in several stud-
ies to classify the HAR data. For example, Ronao et al. [23] used 
a two-stage continuous Hidden Markov to classify human activity 
using the same sensors.

As the second major area, there are a couple of deep learning 
models which are used for HAR classification by researchers. CNN, 
LSTM and Deep Q-Learning are the most significant approaches. 
For example in CNN model, Cho et al. [24] presented a new 1-D 
CNN-based method for HAR using a conquer-based classification. 
In another study, to identify the pattern of fine-grained move-
ments, Zhou et al. [25] proposed a framework for HAR based on 
semi-supervised DL and auto-labeling model. They used six ac-
celerometer sensors on different part of the body. Xia et al. [26]
introduced a combined method of LSTM and convolution layers for 
activity classification. The idea was that the collected data from 
the sensors, firstly, goes to the LSTM and then feed the convolu-
tion layers. The dataset that they implemented their model on was 
collected by 5 types of sensors, namely accelerometers, gyroscopes, 
magnetometers, object sensors, and ambient sensors.

The third group of HAR classification approaches is dedicated 
to the hybrid schemes. There are several researches in which they 
combined different models such as CNN with LSTM or Hidden 
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Markov models to improve the performance of such classifiers. For 
example, San et al. [27] clustered six different human activities us-
ing data collected from accelerometer and smartwatch sensors. In 
this study, they manually extracted the features and used a CNN 
model. Then, they used Hidden Markov models, LSTM and machine 
learning techniques to modeling the time sequence of continuous 
physical activities. As another hybrid approach, Peng et al. [28]
introduced a method called AROMA, which was used to classify 
simple and complex activities. This model consists of a CNN to de-
tect simple activities and a LSTM for complex activities, in which 
the CNN output is given to the LSTM input. This model was eval-
uated using two public datasets which were collected using sev-
eral sensors such as triaxial accelerometer, IMUs and inertial sen-
sors. Zeng et al. [29] introduced a hybrid method based on CNN-
encoder-decoder and CNN-ladder architecture for 3 HAR dataset. 
The datasets were collected using accelerometer, gyroscope, mag-
netometer, temperature, heart rate, ECG, etc. Mukherjee et al. [30]
used three different EnsemConvNet classification models, i.e., CNN-
Net, Encoded-Net and CNN-LSTM to classify human activity. This 
type of classification performs the clustering process based on ma-
jority voting, sum rule, product rule and so on. The datasets in 
their model were collected using accelerometer, gyroscope, and ge-
omagnetic field sensors. Another example for hybrid approaches is 
a CNN-LSTM method suggested by Mutegeki et al. [31]. They evalu-
ated the proposed method using two datasets UCI and ISPL. As the 
last but not least paper, we refer to a hybrid model based on CNN 
and LSTM to extract Spatio-temporal features of radar data intro-
duced by Zhu et al. [32]. This model was evaluated on seven HAR 
datasets. This method uses 1-D CNN for extracting spatial features 
from the spectrograms and a LSTM to lean global time-dependent 
information.

In the reviewed papers, the used models have several hyper-
parameters which normally are adjusted empirically. In order to 
automate the hyperparameter selection, several methods can be 
used that we review seven among them as follows.

1.2. Metaheuristic algorithms

Unlike other optimization algorithms such as greedy searches, 
meta-heuristic algorithms randomly explore the search space. This 
randomness property leads to search more space in less time than 
other regular optimization algorithms [33]. Moreover, in the search 
space area that offers promising solutions, they search deeper [34]. 
Another advantage is that they use the search information which 
gets in each iteration for the next search. Furthermore, a chance 
of searching more areas in the search space stems from avoiding 
falling into the local optimization, which ultimately increases the 
likelihood of finding a global optimization [35]. Because of the ad-
vantages of metaheuristic algorithms in finding optimal solutions, 
we used seven among them to automatically find the optimal val-
ues of CNN hyperparameters. We give a brief description of these 
algorithms as follows.

1.2.1. Gray wolf optimizer (GWO)
Gray wolf algorithm was firstly proposed in 2014 by Mirjalali et 

al. [36]. GWO is inspired by the way that gray wolves hunt, eat and 
live-in groups. GWO is a population-based algorithm to overcome 
by the optimization problems. A hierarchical order exists within 
the group such that the alpha wolves at the head (commander-in-
chief) of the group, and the other wolves follow them. Beta wolves 
are in the next hierarchy of the group that helps alpha wolves for 
decision, and in the absence of alpha wolves they are replaced. 
After alpha and beta, delta and omega wolves are in the next 
hierarchy that they have no role in group decision and are only 
obedient. The wolf hunting process takes place in several stages; 
3

tracking, approaching the prey, siege and then the hunt. The opti-
mization process in GWO is led by alpha, beta and delta wolves. 
While alpha is considered as the best solution, the second and 
third best solutions are related to beta and delta. Therefore, GWO 
stores all three best current solutions and the other wolves look 
for a better solution.

1.2.2. Whale optimization algorithm (WOA)
WOA is another population-based algorithm introduced by Mir-

jalali and Lewis [37] in 2016, inspired by whale behavior and 
Bubble-net strategy to solve optimization problems. Since the 
whales prefer to catch krill or small fish near the surface of the 
water, they create prey by making circular bubbles and then hunt. 
Optimization based on this algorithm is performed in three phases; 
Siege of prey, bubble-net attack method and prey search.

1.2.3. Salp swarm algorithm (SSA)
SSA is a bio-inspired optimizer for engineering design problems 

released in 2017 [38]. Salp is a type of salpidae that has a clear, 
barrel-shaped body similar to jellyfishes. Swarming behavior of the 
salps is the main motivation considered in this algorithm. This be-
havior results in to create a swarm called a salp chain. The reason 
for this behavior is not clear, but they seem to do it to achieve 
better locomotion and foraging. Individuals in this algorithm are 
divided into two groups, leader and followers. The leader is located 
in front of the salp, which is responsible for leading the popula-
tion, and the rest of them are followers. In this algorithm, a food 
source called F is considered as swarm’s target, and the leader up-
dates its position according to the food source. Three coefficients 
named c1, c2, and c3 are used in updating the leader position. The 
most important one i.e., c1 is used to balance the exploration and 
exploitation. c2 and c3 are as two random numbers uniformly dis-
tributed in the range [0-1] determine the step size and the next 
position in the jth dimension. The followers’ positions are updated 
with an equation called Newton’s law of motion.

1.2.4. Sine cosine algorithm (SCA)
As another population-based algorithm, SCA [39] searches for 

the optimal solutions with sine and cosine waves in the solution 
space. The waves always move towards the best solution and their 
oscillating behavior causes to examine the search space around the 
best solution. This algorithm has four main parameters: R1, R2, R3, 
R4 to control the movements. R1 is a parameter to determine the 
direction of the next move or the next search area. R2 is to de-
scribe the direction movement, how far moves to the destination 
or far from it. R3 is a weight for the movement step. R4 is a ran-
dom variable in the range [0,1] for switching between sine and 
cosine motion.

1.2.5. Multi verse optimizer (MVO)
This method is a metaheuristic algorithm that is able to solve 

optimization problems inspired by three physics concepts; black 
hole, white hole and wormhole [40]. This algorithm follows the 
Big Bang theory in astronomy in which it expands continuously, 
and creates new universe such that the worlds inside each uni-
verse are interconnected and collided. Every universe has an in-
flation rate that is an important factor in the formation of black 
holes and white holes, stars and planets and their suitability for 
life and habitation. Black holes and white holes are considered as 
exploration while wormholes indicate exploitation. In MVO, each 
variable in the solution is assumed as an object in that world. Each 
solution also has an inflation rate that is corresponding with its 
fitness function values. This algorithm follows a rule for optimiza-
tion; the higher inflation rate, the higher probability of having a 
white hole. Therefore, the probability of a black hole is inversely 
proportional to the rate of inflation such that a higher inflation 
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Fig. 2. Overall steps of the purposed model, i.e., a CNN with metaheuristic optimizer of the hyperparameters.
rate can reduce the likelihood of having a black hole. In addition, 
the worlds with high inflation rates can send the objects from the 
white hole to the black hole. Then, the worlds with low inflation 
tend to receive more objects from the black hole. Finally, the ob-
jects may go to the best world randomly, regardless of the rate of 
inflation, by the wormhole.

1.2.6. Particle swarm optimization (PSO)
This optimization algorithm is adapted from the swarm behav-

ior of animals (fish, birds, etc.) [41]. PSO starts with a random 
solution called particle solution, and then updates it at each it-
eration. Since these particles are related to each other eventually 
converge to an optimal solution. The fundamental of this algorithm 
is based on this concept that each particle is moving at a speed in 
the search space and also memorizes the best value of its individ-
ual position, and shares its best position with other particles. Three 
values are used in updating each particle such that; the first value 
is the best value obtained by the particle itself, the second value is 
the best value obtained by the whole swarm, and the third value is 
the speed of movement of each particle in the search space. These 
values suggest the next position of the particles.

1.2.7. Moth flame optimization (MFO)
Moths have a navigation mechanism called transverse orienta-

tion to move in a straight line at night which is very efficient when 
flying long distances [42]. In this mechanism the moth maintains a 
constant angle with respect to the moon to move in a straight line. 
A disadvantage of this mechanism is that it works only when the 
light source is too far away. In addition, this mechanism loses its 
effectiveness when a moth is exposed to an artificial light source 
since the moth wants to maintain a constant angle with the light 
result in a spiral fly around the light source. This algorithm consid-
ers the search agents as the moth and the best position found by 
the moth as the fire. Each moth searches around a flag and updates 
it if it finds a better position. The moths update their positions 
using a logarithmic spiral equation. This spiral motion allows the 
moth to fly around the flames and not necessarily in the space be-
tween them. In this way, exploration and exploitation of the search 
space can be guaranteed.

2. Methodology

In this section, we introduce a new method for HAR classifica-
tion based on the 1-D CNN model in which the hyperparameters 
of the model are automatically optimized by metaheuristic algo-
rithms. Fig. 2 shows the overall steps of the proposed method. We 
describe the proposed model in details as follows.
4

2.1. CNN models

CNN is one of the most noteworthy DL algorithms which is 
used in various fields, e.g., computer vision, language recognition 
as well as classifying dataset. CNN consists of 3 main layers: 1-
convolutional layer 2- pooling 3-fully connected layer. Usually, a 
convolutional layer is used to extract input features. In this layer, 
several kernels (or filters) are responsible to extract them from 
the input such that the kernels slide over the input. The greater 
number of kernels may result in more extracted features from the 
input. Indeed, the kernel values are multiplied by the input values 
to generate output which is also called feature map.

After the convolutional layer, an activation layer can be used 
which is a non-linear layer. The purpose of this layer is to convert 
linear operations in the convolution layer to nonlinear operations 
that are applied to the feature map (output of the previous layer). 
This layer usually uses a RELU function, which is nonlinear and 
learns faster than older nonlinear functions such as tanh and sig-
moid. RELU helps to reduce vanishing gradient.

The second layer is called pooling layer, which can be used af-
ter the RELU function. This layer is also known as subsampling. 
The pooling layer is applied to the entire output generated from 
the previous step. The purpose of applying this layer is to reduce 
the input dimensions, reduce network computations and control 
overfitting.

The third layer is fully connected, which receives input from 
the previous layers and produces an N dimension vector as output, 
which N is the number of classes that CNN is supposed to classify. 
This vector is given to Softmax to perform the classification. Fi-
nally, after performing all the above steps, the network can predict 
an activity when receives input sensor data.

The learning process in CNN is done with backpropagation. 
When fully connected predicts an output, this value is compared 
to the actual value (in Supervised learning the target values of 
the samples are already known) and its error is calculated by a 
loss function. Loss functions vary according to the application of 
deep networks, but for multiclassification, the loss function is usu-
ally categorical cross-entropy. There are several optimizers for the 
loss function such as gradient descent family, Stochastic optimiz-
ers, adaptive learning rate method, etc. We used Adam optimizer 
in our model [43].

After calculating the network error, update the weight values 
with the backpropagate of error in the network, the gradient de-
scent algorithm updates them by calculating the value of gradient 
error relative to the network weights. Indeed, weight values are 
the same as kernel values. This operation is repeated until the 
amount of error reaches its minimum and more iteration does not 
reduce the error anymore.
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2.2. Hyperparameters in CNN

As it was mentioned before, searching for the optimum hy-
perparameters in a deep neural network is a challenge. Moreover, 
finding hyperparameters automatically is crucial since it does not 
require expertise and experience, and finding the optimal hyper-
parameter values improves the performance of DL. In order to find 
the optimal values of hyperparameters, the models can be viewed 
from the perspective of optimization problems. There are several 
algorithms to solve this optimization problem. One class of opti-
mizers for such problems is metaheuristic algorithms. This study 
is aimed to use metaheuristic algorithms to find the optimal val-
ues of hyperparameters in a CNN model.

2.3. Proposed approach

In this section, we introduce a new method for HAR classifica-
tion. This method is based on a 1-D CNN model. The model has 
several important hyperparameters that have a great impact on 
its performance. We use the metaheuristic algorithms described 
in the previous section to optimize the hyperparameters of the 
model to achieve a high accurate prediction for the six differ-
ent HAR activities in a dataset. The selected hyperparameters for 
the CNN model are Pooling size, Kernel size, Number of filters, 
Number of epochs, and Batch size. Therefore, metaheuristic algo-
rithms must find the optimal values of these 5 hyperparameters. 
The metaheuristic algorithms start with a random solution of hy-
perparameters, which is an N-dimension vector the same size of 
the hyperparameters of the DL model (here is a 5-D vector). We 
perform a loop in which the metaheuristic algorithms try to op-
timize the initial random vector at each iteration using the cost 
function provided by the CNN model (train data, performs the 
classification for test data, and calculate the loss as cost function 
for optimization). Metaheuristic algorithms find the optimum so-
lution in a continuous space [0,1] which should be translated as 
CNN hyperparameters. For example, using the following equation, 
we convert the continuous values of the GWO algorithm to dis-
crete values as hyperparameters and then send it to the model 
for next training step of the CNN (see supplementary materi-
als).

In order to know how the current solution is close to the opti-
mal solutions in each iteration, a fitness function is used to show 
the performance of the metaheuristic algorithms. Since the aim 
of metaheuristic algorithms is to decrease the fitness function, we 
used 1-accuracy as the fitness function. As long as the algorithms 
reduce the fitness function, they increase the accuracy of the CNN 
model. Consequently, in each iteration in the loop, the model run 
using new hyperparameters, the calculated fitness function value 
for classifying the test data is given to the metaheuristic algorithms 
as the cost function to update the next solution of the hyperpa-
rameters accordingly.

2.4. Data collection

In this study, a public database called UCI HAR is used to eval-
uate the proposed method and compare the metaheuristic algo-
rithms. This dataset is collected by a smartphone (Samsung Galaxy 
S II) 30 subjects in the age range of 19 to 48 years are asked to 
wear a smartphone to their waist and perform 6 predefined ac-
tivities including WALKING, WALKING UPSTAIRS (WU), WALKING 
DOWNSTAIRS (WD), SITTING, STANDING, and LAYING. This data 
was collected by a tri-axial accelerometer sensor and a gyroscope 
sensor on a smartphone at a sampling rate of 50 Hz. After prepro-
cessing, the raw data are manually labeled. The total number of 
data is 10299 vectors, each vector contains 561 attributes. The data 
is divided into two parts: train and test data include 7352 (∼71%) 
5

Table 1
HAR dataset details used in this study.

Type of activity Activities Train Test Total

Static
Sitting 1286 491 1777
Standing 1374 532 1906
Laying 1407 537 1944

Dynamic
Walking 1226 496 1722
WU 1037 471 1508
WD 1022 420 1442

Total 7352 2947 10299

WU=Walking Upstairs, WD= Walking Downstairs

Table 2
Control parameter used for the experiments in metaheuristic algorithms; 
PSO, MVO, GWO, MFO, WOA and SCA.

Algorithm Parameter Value

PSO Acceleration constants [2.1, 2.1]
Inertia weights [0.9, 0.6]

MVO Wormhole existence probability [0.2, 1]
GWO Random and adaptive vector with linearly 

decrease
[0-2]

MFO Convergence constant with linearly 
decrease

[-1, -2]

WOA Constant to define spiral 1
SCA A constant in changed adaptively equation 1
SSA No parameters -

Table 3
List of hyperparameters’ intervals 
to perform in the loops for method 
evaluation.

Hyperparameters Value

Batch size [10-100]
Number of epochs [1-200]
Number of filters [1-400]
Kernel size [1-20]
Pooling size [1-20]

and 2947 (∼29%) vectors, respectively. Table 1 provides more de-
tailed information about this dataset.

2.5. Experimental settings

In order to define and run the proposed method and the algo-
rithms, we employed Python and Keras library with Tensor Flow 
backend and a cluster including a system with the hardware con-
figuration of RAM 11 GB and GTX-1080ti GPU architecture Turing 
(chip TU102) with 4352 cores. Each metaheuristic algorithm has 
several parameters that must be set before the run. Table 2 shows 
the parameters of each algorithm with the set value for them.

The maximum number of iterations and search agents of each 
algorithm are set at 20 and 25, respectively. These values are se-
lected by trial and error in such a way that an acceptable answer 
can be reached in a short time. In order to achieve reliable and 
fair results, each experiment (algorithm) has been performed 10 
times independently, and the results of the experiments have been 
reported as the average obtained by different models.

We specified the lower and upper bound in the search space 
for each hyperparameter in Table 3, restricting the search agents 
to find the optimal value for each hyperparameter according to 
previous literature [44].

3. Results and discussion

In this section, the experimental results of the proposed 
method using seven metaheuristic algorithms including PSO, GWO, 
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Table 4
The optimal set hyperparameters for CNN based on metaheuristic 
algorithm for HAR dataset.

Algorithms filters Kernel epochs Batch Pooling

GWO 310 4 50 16 20
MFO 180 6 200 51 20
MVO 258 6 176 43 15
PSO 218 5 122 38 19
SCA 128 5 58 19 19
SSA 200 13 132 34 10
WOA 200 20 200 64 20

Fig. 3. Convergence profiles of the proposed model on HAR dataset classification for 
50 iterations using 7 metaheuristic optimizers. Loss= (1-accuracy) or fitness.

MFO, MVO, SSA, SCA and WOA and four well-known DL models 
including LSTM, CNN_LSTM, CLSTM and CNN on UCI HAR database 
were compared. We evaluated them using several classification 
metrics such as Accuracy, Precision, Recall, and F1-score.

Table SI in supplementary materials shows the average of ac-
curacy, precision, recall and f1-score for all models on the training 
dataset. The statistical results of this table prove that the mod-
els that use metaheuristic algorithms to optimize hyperparameters 
are more efficient than the models that their hyperparameters are 
manually selected based on the previous literature. Furthermore, 
in this table, the accuracy of Laying activities is higher than other 
activities. Standing and sitting also have the lowest results. More-
over, the last column of the table shows the average of each met-
ric. According to this table, the GWO_CNN, although it has higher 
AVG accuracy than all the other models, the MVO_CNN has bet-
ter results in other AVG metrics. Table SII in supplementary ma-
terials also shows the confusion matrix of the proposed method 
for each of the metaheuristic algorithms by each activity on UCI 
HAR dataset based on the highest accuracy. The main diagonal of 
each matrix is the number of activities that the model has classi-
fied them correctly and the rest are wrong classified activities. In 
the last column of this table, accuracy values are reported sepa-
rately for each activity. According to Table 3, we determined the 
lower and upper boundary of search space for metaheuristic al-
gorithms. Thus, the optimum results obtained after 50 iterations 
for each model are presented in Table 4 are within the bound-
ary of specified search space. Table 3 shows the optimal values of 
hyperparameters obtained for the CNN model using the proposed 
method, based on the implemented metaheuristic algorithms on 
HAR dataset. Since the fitness function (Loss) in this paper was 
considered as 1-accuracy, metaheuristic algorithms update the set 
of hyperparameters in each iteration to reduce the value of the fit-
ness function.

Fig. 3 shows convergence curves of seven metaheuristic algo-
rithms over 50 iterations based on a defined fitness function.
6

Fig. 4. Boxplot of purposed model based on accuracy metric.

In this figure, the convergence trend of the algorithms shows 
that each algorithm did not fall in local optima results in reducing 
the classification error. That is because of getting better during 50 
iterations (except for WOA which is not getting better after the 7th 
iteration). Fig. 4 shows the accuracy boxplot diagram for 10 inde-
pendents runs of all metaheuristic algorithms. Each boxplot shows 
the first and third quarters, the middle, and the maximum and 
minimum values. The length of the rectangle in the boxplot shows 
the range of variation between the first and third quarters. The 
outlier values are shown in this figure with a hollow black circle. 
The smaller rectangle, the shorter whiskers, and the lack of out-
lier value for each algorithm indicate less scatter of the results and 
higher reliability of the models.

Fig. SI in Supplementary Materials shows the violin diagrams 
for each hyperparameter, with each subplot showing the values 
obtained by each metaheuristic algorithm in 10 independent it-
erations for each hyperparameter. The thicker points of the di-
agrams indicate that the optimal values of each hyperparameter 
are around those points. In other words, this hyperparameter may 
result in the CNN model to perform more accurate classification 
for those values. For example, the GWO has obtained the optimal 
value for the Number of epochs 50.

In summary, the experimental results showed that the proposed 
method can reduce the classification error by finding optimum val-
ues of hyperparameters without the need for prior knowledge and 
experience of the problem and increase significantly the efficiency 
of the model. Moreover, metaheuristic algorithms can explore the 
search space of several hyperparameters together and use the re-
sults of previous searches in subsequent searches, so they can 
establish a trade-off between the values of the hyperparameters 
which allows to increasing the computational speed and decrease 
calculations.

The metaheuristic algorithms introduced in this paper search 
the optimum hyperparameters without checking all combinations 
possible like grid search. Thus, in training step of DL models, they 
considerably save time and energy. Also, such algorithms guar-
antee the convergence unlike random selection of the hyper pa-
rameters. In addition, metaheuristic algorithms have memory and 
search smartly to decrease the loss function.

Since the model can predict the human activities (with an ac-
ceptable accuracy), it is possible to implement it on cell phone to 
process data from either smartwatch or phones, monitoring each 
activity as future step. Also, we would like to investigate the pos-
sibility of detect wrong positioning in sitting, walking and laying 
which leads several injuries of knee, hip and vertebral column.

4. Conclusions

Human activity recognition (HAR) has become one of the im-
portant research fields due to its numerous applications, especially 
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in healthcare systems. Researchers use a wide variety of methods 
to classify such activities. DL methods due to their robustness and 
flexibility for almost all classification approaches have attracted a 
huge attention. DL models have several hyperparameters that af-
fect the network performance. Since there is no specific method 
for setting them, the values of hyperparameters are mainly ad-
justed based on trial and error. In this paper, we propose a class 
of methods for automatically adjust the hyperparameters of 1-D 
CNN for HAR classification, optimally. The proposed method using 
metaheuristic algorithms with random search in the search space 
of each hyperparameter can finally find the optimal set of hyper-
parameters that increase the efficiency of CNN. The results showed 
that the proposed method has a higher average than other meth-
ods in classification metrics. Since the random values of weights 
and biases at the beginning of the learning process may fall in 
local optima and results in low convergence speed in DL or ma-
chine learning algorithms, as future step we examine the method 
to avoid this drawback.
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