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Humans discount delayed relative to more immediate reward. A plausible explanation is
that impatience arises partly from uncertainty, or risk, implicit in delayed reward. Existing
theories of discounting-as-risk focus on a probability that delayed reward will not
materialize. By contrast, we examine how uncertainty in the magnitude of delayed reward
contributes to delay discounting. We propose a model wherein reward is discounted
proportional to the rate of random change in its magnitude across time, termed volatility.
We find evidence to support this model across three experiments (total N = 158). First,
using a task where participants chose when to sell products, whose price dynamics they
previously learned, we show discounting increases in line with price volatility. Second, we
show that this effect pertains over naturalistic delays of up to 4 months. Using functional
magnetic resonance imaging, we observe a volatility-dependent decrease in functional
hippocampal–prefrontal coupling during intertemporal choice. Third, we replicate these
effects in a larger online sample, finding that volatility discounting within each task
correlates with baseline discounting outside of the task.We conclude that delay discounting
partly reflects time-dependent uncertainty about reward magnitude, that is volatility. Our
model captures how discounting adapts to volatility, thereby partly accounting for
individual differences in impatience. Our imaging findings suggest a putative mechanism
whereby uncertainty reduces prospective simulation of future outcomes.
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Humans and other animals exhibit impatience
when offered reward (Berns et al., 2007; Frederick
et al., 2002; Kalenscher & Pennartz, 2008;
Loewenstein et al., 2003). Experiments show
that the subjective value of reward decreases
approximately in inverse proportion to its delay
(Bickel et al., 2012;Greenet al., 1994, 1999;Kirby
et al., 1999; Madden et al., 2003). Specifically,
people appear to discount the value of delayed
reward following a hyperbolic function, such that
the value of a reward of magnitude X, available
after a delay t is given by the following equation:

VðXtÞ =
X

1 + Kts
: (1)

HereK referred to as a discount rate, determines
howsteeply reward value decreases as it is delayed,
with higher values of K generating greater
impatience. s is an additional parameter corre-
sponding to power law time perception (Rachlin,
2006). The wider relevance of delay discounting
is supported by a correlation with impulsive or
shortsighted real-world behavior, from substance
misuse to undersaving for retirement (Bickel &
Marsch, 2001; Bickel et al., 2014; Critchfield &
Kollins, 2001; Daugherty & Brase, 2010; Epstein
et al., 2014;Koffarnuset al., 2013;MacKillopet al.,
2011;Meier&Sprenger, 2012; Snider et al., 2019).
An influential theory posits that delay discount-

ing arises partly from uncertainty implicit in future
reward (e.g., Andersen et al., 2008; Andreoni &
Sprenger, 2012a; Harrison et al., 2005; Jones &
Rachlin, 2009; Keren & Roelofsma, 1995; Kurth-
Nelson et al., 2012; Luhmann et al., 2008;
Noussair & Wu, 2006; Rachlin et al., 1991;
Sozou, 1998; B. J. Weber & Chapman, 2005).
Where the range of possible outcomes and their
probabilities are precisely known, uncertainty over
outcomes is termed “first-order uncertainty” (Bach
et al., 2011), commonly conceptualized as “risk”

(VonNeumann&Morgenstern,1947).Bycontrast,
uncertainty about the probability distribution of
outcomes is referred to as “second-order uncer-
tainty” (Bach et al., 2011; Knight, 1921), often
conceptualized as “ambiguity” (Ellsberg, 1961).
Here, for simplicity, we limit our discussion to
first-order uncertainty, or risk.
Models of risk-sensitivity commonly assume

that a preference for reward is affected by its
variability (e.g., Bell, 1995; D’Acremont &
Bossaerts, 2008; Kahneman & Tversky, 1979;
Kroll et al., 1984; Sharpe, 1964; Symmonds et al.,
2011; Weber et al., 2004). Furthermore, it has
been proposed that delay discounting occurs
because delayed reward entails greater risk than
immediate reward (e.g., Jones & Rachlin, 2009;
Rachlin et al., 1991; Sozou, 1998). However,
rather than focusing on a variability associated
with delayed reward, extant theories of dis-
counting-as-risk have instead tended to empha-
size a possibility that delayed reward will not be
received. Such theories ascribe a probability per
unit time that delayed rewardwill fail tomaterialize,
termed a hazard rate (Friston et al., 2013; Jones &
Rachlin, 2009; Kacelnik, 1997; Luhmann et al.,
2008; Rachlin et al., 1991; Sozou, 1998; Yi &
Landes, 2012). In support, delay discounting
increases when people are faced with more
hazardous life circumstances (Lahav et al., 2011;
Sheffer et al., 2018) and is found to be higher
both among people who are hopeless about the
future (Pulcu et al., 2014), and among those who
report reduced subjective survival probability
(Chao et al., 2009). Furthermore, delay dis-
counting correlates with a subjective probability
that reward will not be paid out as promised
(Patak &Reynolds, 2007; Reynolds et al., 2007;
Takahashi et al., 2007).
Hazard rate models emphasize that delayed

reward has a lower probability of being realized
than immediate reward and hence has a lower
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expected (mean) value. By contrast, first-order
uncertainty is greatestwhen all rewardmagnitudes
are equally likely, which, in the case of reward
versus no-reward, occurs when p(no-reward) =
0.5; see Rushworth & Behrens, 2008. Thus, if
delaydiscounting is indeed sensitive touncertainty
about future reward then, even for instances where
the expected (mean) value of future reward remains
constant, a growing variancewith time should lead
to greater discounting. In other words, even where
receipt of future reward is guaranteed, uncertainty
about its magnitude may grow with delay. For
example, owing to random changes in currency
markets, the purchasing power of £100 1 year
ahead is less predictable than it is today.
In support of this idea, delay discounting is

higher in risk averse individuals (Eckel et al.,
2005; Epper et al., 2011; Hayden & Platt, 2007;
Leigh, 1986) and in those expressing a greater
subjective intolerance of uncertainty (Luhmann
et al., 2011). Finally, an observation that adding
delay to choices between gambles reduces a bias
toward riskless options (Noussair&Wu, 2006;B.
J. Weber & Chapman, 2005) suggests that delay
implicitly entails variability in reward. However,
existing models of discounting make no claims
about whether discounting is sensitive to future
reward variance nor have previous approaches
directly tested this experimentally. Previous
work has examined uncertainty in the timing of
future reward (Chesson & Viscusi, 2003;
Dasgupta & Maskin, 2005); however, here we
are concerned with magnitude uncertainty.
We address these issues here by formalizing

first-order future uncertainty as volatility, the
perceived rate of continuous random change in the
reward environment, governing an increase in
variancewithdelay (Figure 1a andb).Weconsider
a simplemodel inwhich decision-makers discount
future reward hyperbolically, with rate propor-
tional to volatility. This model has a Bayesian
interpretation as an optimal integration of future
reward according to itsmagnitude uncertainty (see
supplemental material; MacKay, 2003).
We adopt a modeling framework wherein

agents have an internal, or generative model,
of reward dynamics (cf. Behrens et al., 2007;
Mathys et al., 2011). Within this framework,
rewardmagnitude and its volatility are (subjective)
parameters of the internal model. We assume that
these parameters are learned and therefore come to
reflect both an agent’s preferences and the
objective dynamics of the environment. Thus,

magnitude uncertaintymight entail either variance
in the objective size of rewards (e.g., the value of
a stock, or the weight of corn produced per hectare
of land), or in the subjective value of reward
(e.g., appetite for food, fashion tastes). Here, we
manipulate volatility in objective reward magni-
tude, though we consider the very same model
could be applied to volatility in subjective value.

A Volatility Discounting Model

We consider a situation wherein a decision-
maker is promised a reward, with an expected
magnitude, if redeemed immediately, of R0 (e.g.,
a£10voucher for a local deli,which is expected to
buy a kilogram of food). However, the reward is
only available after a delay, t (e.g., the voucher is
redeemable after a month). The decision-maker
believes the magnitude of the reward might
change during the delay (e.g., the price of food at
the deli may fall or rise, meaning that the voucher
will buy either more or less food).
Specifically,we assume that the decision-maker

is equipped with a generative model wherein
expected future reward magnitude, Rt > 0,
evolves based on a randomwalk, with volatility,
σ2, such that:

Rt = Rt−1 + εt, εt ∼Nð0, σ2Þ: (2)

We also consider an additional “emission noise”
in the observed rewards, rt, which does not vary
with time (e.g., portion sizes vary slightly from
day-to-day), and has standard deviation, ϑ:

rt = Rt + ε0, ε0 ∼Nð0, ϑ2Þ: (3)

A key intuition here is that a latent quantity, Rt,
governs reward magnitude and varies over time.
However, the reward realized at a given time step,
rt, is notpreciselyequal toRt, but instead it is drawn
from a Gaussian distribution with a mean of Rt.
Since there is no drift in the random walk and

no bias in the emission noise, future reward has
the same expected (mean) magnitude as if it were
consumed immediately (e.g., one can expect, on
average, a £10 voucher will buy the same amount
of food next month as it would buy today):

E½rt� = E½Rt� = R0: (4)

However, by the additive property of Gaussian
random variables, the variance of future reward
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grows linearly with delay, reflecting an accumu-
lation of random changes over time:

var½rt� = tσ2 + ϑ2: (5)

Thus volatility, σ2, determines how quickly
uncertainty in reward magnitude grows with
delay (e.g., changeability in food prices). The
above definition of volatility follows previous
learning models (Behrens et al., 2007;Mathys et
al., 2011); formally similar definitions occur in

financial modeling (e.g., Black&Scholes, 1973;
Sharpe, 1964).
We posit that, given estimates of σ2 and ϑ2, the

decision-maker values reward in inverse propor-
tion to its variance:

VðrtÞ =
E½rt�
var½rt�

: (6)

Here, rewards whose value is more precisely
known contribute more to a long-run estimate of

Figure 1
A Volatility Discounting Model

Note. (a) Samples of reward magnitude drawn from a Gaussian random walk. Solid blue bars represent 1 SD
above and below the mean at each timepoint. Green lines schematically represent Gaussian probability densities
at the same timepoints. (b) Variance in expected reward magnitude grows linearly with delay with a slope given
by volatility. (c) Immediate reward magnitude, x, at indifference, is plotted as a function of time delay for
different levels of risk aversion (left panel) and volatility (right panel). Rewards are hyperbolically discounted,
with discount rate given by an interaction between risk aversion m and volatility, σ2. Here, for simplicity, we
assume η = 0, s = 1. See the online article for the color version of this figure.
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future value; distant rewards are more uncertain,
and therefore receive lessweight (MacKay, 2003).
We envisage σ2 and ϑ2 as parameters within

the decision-maker’s internal model of reward
dynamics. Here we assume that the volatility of
the reward environment is static, and known to
the decision-maker; we therefore fix σ2 to the
objective, external volatility. However, in
Equation 6, the value of reward tends to infinity
as its variance tends to zero. To address this, we
define the emission noise parameter, ϑ2, as a
sum of internal and external sources of noise:

ϑ2 = η2 + θ2: (7)

where η2 denotes the objective, external noise,
and θ2 denotes a degree of irreducible internal
uncertainty associated with all reward, even a
nominally certain reward. As described below,
this formalism allows θ2 to capture individual
differences in sensitivity to variance in objective
reward magnitude.
To derive a discount function, we consider a

choice between an immediate reward, E[rt] = x,
and a larger delayed reward, E[rt] = X. At
indifference, by Equation 6:

x

X
=
var½r0�
var½rt�

: (8)

Thus, delayed reward is discounted according
to its uncertainty, relative to that of immediate
reward. For a case, where immediate reward is
nominally certain:

x

X
=

θ2

θ2 + η2 + tσ2
: (9)

Dividing by θ2 and substitutingm= 1/θ2 gives the
following equation:

x

X
=

1

1 + mðη2 + tσ2Þ : (10)

This arrangement thus yields hyperbolic dis-
counting of risky reward according to its objective
variance, with rate m. Where t = 0, m captures
individual differences in risk aversion, with the
variance of a risky prospect given by η2.
In fitting the model, we also allow for a

possibility of nonlinear time perception, whereby
uncertainty increases as a function of subjective
time:

x

X
=

1

1 + mðη2 + σ2tsÞ : (11)

This arrangement is commensurate with exist-
ing models of hyperbolic discounting (Rachlin,
2006). Where objective time-independent risk is
negligible (η2=0),Equation11obtains hyperbolic
delay discounting (as shown in Equation 1), with
rate proportional to volatility,K=mσ2, and where
individual differences in “volatility discounting”
are captured by m (shown in Figure 1c).
Gabaix and Laibson (2017) derive a closely

related model by considering a decision-maker’s
internal uncertainty associated with future reward.
In the resulting model, agents attempt to mentally
simulate the future and combine these noisy
signals with their prior expectations to generate
posterior beliefs. By analogy to volatility, noise
in the sampling process accrues linearly with
delay. The authors show that this arrangement
results in hyperbolic discounting, with a rate given
by the precision of future simulations relative to
prior expectations.A corollary of this arrangement
is that at long delays, where the value of future
reward is imprecisely known, average value
estimates return to prior expectations.
Gershman and Bhui (2020) extend the above

framework by postulating that more precise future
simulation demands mental effort. The authors
showhow thismodel can account for awell-known
finding that people are more patient for larger
rewards, by proposing that increased simulation
effort is deemedmoreworthwhile for larger reward.
Theirmodel also accounts for afinding that choices
aremore variable for smaller rewards, an effect that
is found to diminish for more uncertain rewards.
Here by contrast we experimentally vary volatility
in external reward. The present study therefore
links Bayesian approaches to discounting with
extant notions of discounting-as-risk.

Neural Correlates of Volatility Discounting

A further outstanding question is how
uncertainty-dependent valuation of future reward
is implemented in the brain. A process model, we
consider, is that uncertainty reduces the extent to
which future outcomes are incorporated into a
person’smodel of their future situation (Gershman
&Daw, 2017; Kurth-Nelson et al., 2012; Schacter
et al., 2008). Such high-levelmodels are supported
by medial temporal lobe (MTL) and related
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structures, in particular, the hippocampus (HC;
Addis et al., 2007;Hassabis et al., 2007; Johnson&
Redish, 2007; Peters & Büchel, 2010; Schacter
et al., 2008; Tsao et al., 2018). Important here
are observations that encouraging imagination of
delayed reward, by embedding rewards within
future episodes of a person’s life (e.g., an
upcoming birthday), decreases delay discount-
ing (Daniel et al., 2015; Peters & Büchel, 2010)
and increases connectivity between MTL and
prefrontal regions encoding discounting value
(Peters & Büchel, 2010). However, if future
rewards are more variable then representing the
ensuing range of future scenarios is more cogni-
tively demanding (Gershman&Bhui, 2020).We
suggest therefore that, when faced with uncer-
tain future reward, rather than expend cognitive
resource, people engage simpler value repre-
sentations that are less enriched by episodic
forecasts. This would predict that MTL regions
should then participate less in the evaluation of
more volatile delayed rewards, and in functional
magnetic resonance imaging (fMRI), this would
predict a decreased correlation between MTL
activity and discounted value, and/or a weaken-
ing of MTL connectivity with regions represent-
ing discounted value (Kable & Glimcher, 2007;
McClure et al., 2004, 2007).

Summary of Experiments

We test the above predictions across three
experiments (total N = 158); wherein, we
manipulate reward volatility in a combined
learning and intertemporal choice (ITC) task. In
Experiment 2, a subset of participants performed
the task whilst undergoing fMRI, to probe a
relationship between uncertainty-dependent
valuation of future reward and MTL activity.
Notably, in reinforcement-learning models,
discounting of past reward is determined by a
learning rate, where a high learning rate entails
steeper discounting of past rewards and faster
value updates (Daw et al., 2005, 2006; Dolan &
Dayan, 2013; Mathys et al., 2011; Rescorla &
Wagner, 1972; Sutton & Barto, 1998; Wilson et
al., 2010). As predicted by optimality, learning
rates in humans increase when reward contingen-
cies aremore changeable, or volatile (Behrens et al.,
2007; Iigaya, 2016;McGuire et al., 2014; Nassar et
al., 2010, 2012). Both learning rate and discount
rate ought therefore to increase when reward
dynamics become more changeable. Furthermore,

if learning rate and discount rate both depend on
perceived volatility, then the two parameters
might be correlated across participants. We also
examine these hitherto untested predictions.

Experiment 1

In Experiment 1, participants were briefed to
imagine that theyowneda farmingbusiness, selling
produce to the highest bidder in a marketplace.
Participants learned how the prices of three
different products (wheat, chicken, and beans)
evolved week-by-week, where a week corre-
sponded to a trial of the experiment (Figure 2).
The three products had different levels of volatility
in price evolution. Participants subsequently made
ITCs about when to sell each product, either
immediately for a guaranteed price or in the
marketplace following a delay.

Method

Ethics Statement

All participants gave full informed consent
before takingpart in thestudy.Thestudyprocedures
received approval from the UCL Research Ethics
Committee (3450/002) and were carried out in
accordance with these guidelines.

Data and Code Availability

Behavioral data supporting the findings of this
study are publicly available online in a third-party
repository: https://doi.org/10.5061/dryad.47d7wm
3k2 (G. Story, 2023). Computer codes that support
the findings of this study are available from the
corresponding author upon reasonable request.

Participant Recruitment and Sample Size

This experiment was designed as a pilot, and
thereby focused on testing for larger, within
participant, effects. Participants were recruited
from the UCL Institute of Cognitive Neuroscience
subject database. Twenty participants (mean age
27.4 years, SD 6.9 years; nine female) completed
the experiment.

Baseline Discounting

Prior to the main task, we elicited discount
functions for riskless quantities of money.
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Participants were required to indicate the smallest
immediate monetary reward, termed their indiffer-
ence amount, that they would be willing to accept
instead of a larger stated quantity ofmoney (£8, £9,
£11, or£12) to be received at a specifieddelay (1, 2,
4, 26, or52weeks).Eachdelaywaspresented twice
for each larger reward amount, creating 40 choices
in total. One choicewas selected to be paid for real,
at the stated delay, in postdated Amazon vouchers.
To achieve this in an incentive-compatiblemanner,
for the selected choice, we randomly selected an

immediate reward from a uniform distribution
between £0 and the magnitude of the larger
reward (e.g., £12); if this amount was below or
equal to the participant’s stated indifference
point, they received the delayed reward, if above
the indifference point they received the ran-
domly drawn immediate reward. Participants
were fully briefed on this procedure. We fitted a
two-parameter hyperbolic model of the form
shown in Equation 1 to participants’ indifference
points (Rachlin, 2006).

Figure 2
Design of Experiment 1: Farming Futures Task

Note. Participants tracked prices of three agricultural products, where a single trial corresponded to a “week.” For one product
(a), no volatility, the underlying market price was constant, with added Gaussian emission noise. For another two products, the
market price underwent shifts across time, with the same emission noise. For a low volatility product (b) shifts in the market
price were small, while for a high volatility product (c), shifts were more extreme. (d) After observing prices over several trials,
participants were asked to predict upcoming prices 1 week ahead. Within each block, participants performed three phases of
observation and prediction: The first consisted of 70 observation trials followed by 70 prediction trials, while the subsequent
two phases each consisted of 45 observation trials and 5 prediction trials. (Example predictions from one participant shown in
color in Panels a–c). The time series was paused at three points (vertical blue lines), where participants predicted market prices
further into the future. They were subsequently asked to indicate the lowest price they would accept to sell the product on the
market after a delay (not shown), providing an estimate of the discount factor at each delay. See the online article for the color
version of this figure.
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Learning Price Dynamics

During the task, participants observed and
predicted the price of each product, displayed
on a linear scale ranging from £0 to £25, as it
evolved over the course of 240 trials. Each trial
of the experiment was described as a “week.”
After passively observing prices over several
“weeks” (trials), participants were asked to
predict upcoming prices 1 week ahead; the task
therefore involved both observational and instru-
mental learning (Figure 2a–c). Participants were
instructed about two sources of variability in
prices: Gaussian emission noise, applying equally
to all products, which we described as “variability
in bidding,” and changes in the underlying
“market price.” For one of the three products
(“no volatility”), the market price was held
constant; the market price of the other two
products (“low volatility” and “high volatility”)
underwent random changes across time, with
the same Gaussian emission noise. We used
two predefined sequences of outcomes for each
product; participantswere then allocated at random
to one of the two sequences. We estimated
learning rates for the three products separately
by fitting a Rescorla–Wagner learning model
(see supplemental material; Rescorla & Wagner,
1972) to participants’ price predictions from
the first block of 70 prediction trials (shown in
Figure 2a–c).

ITC Procedure

At three points during each block, participants
were asked to predict themarket price further into
the future, at delays of 1, 4, 7, 12, or 18 weeks.
Participants subsequently chose when to sell the
product, either immediately for a fixed price (x),
or on the market after a stated delay (1, 4, 7, 12,
or 18 weeks). Specifically, they were asked to
indicate the smallest fixed price that would just
tempt them away from selling on the market.
Participants were informed that the future price
would evolve according to the same process they
had previously observed and was also subject to
the same Gaussian emission noise. By contrast,
the immediate price was fixed, with no objec-
tive risk.
Participants were informed that, after the

experiment, we would select one of their choices
to be paid out for real. To realize this in an
incentive-compatible manner, for the selected

choice, we randomly selected an immediate fixed
price from a uniform distribution between £0 and
£25; if this amount was below the participant’s
stated indifference point, they received the
simulated future market price for the product
as a bonus payment. If the selected price was
above the participant’s indifference point, they
received the randomly drawn fixed price. All
bonus payments were made on the same day, at
the end of the experiment.

Statistical Analyses

Weused a Bayesian hierarchical mixed-effects
model fitting routine, the details of which have
been described previously (Huys et al., 2011,
2012). Models were compared using the inte-
grated Bayesian information criterion (BICi),
which approximates themodel evidence (Huys et
al., 2011, 2012). We also computed exceedance
probabilities (φ), which estimate the likelihood
of a given model outperforming the alternatives,
given the model evidence for each across partici-
pants (Stephan et al., 2009).
We fitted participants’ reported indifference

points with a volatility discounting model. The
model assumed two independent contributions to
discounting: a baseline component due to effects
other than volatility, with rateK, (see Equation 1)
and an additional component due to volatility (see
Equation 11):

x =
X

1 + Kts
·

1

1 + mðη2 + σ2tsÞ + c: (12)

Here x represents the participant’s immediate
price at indifference, while X represents the
expected future market price. We tested alterna-
tive models in which X was given by either
(a) each participant’s individual estimate of the
future price at the relevant delay, or (b) the mean
of this estimate across participants. σ2 represents
objective volatility, and η2 objective emission
noise. m is a participant-specific risk aversion
parameter. c is a bias term that does not varywith
condition and is set to zero for immediate options. s
is an additional parameter corresponding to power
law time perception (Rachlin, 2006). Using
nonlinear optimization in MATLAB (Mathworks,
Provo), with a Gaussian likelihood function,
parameters were sought that minimized differ-
ences between reported indifference amounts
and those predicted by the model.
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We first fitted hyperbolic curves to each
product separately, omitting the volatility dis-
counting term (setting m = 0), and testing for an
effect of volatility on log K using linear mixed-
effects regression. The contribution of each
participants’ data to this analysis was weighted
by the reliability of their log K estimates (see
Huys et al., 2012). We went on to fit the full
model to the three products jointly, with differ-
ences between products parameterized by m.
Finally, we tested a different class of model
wherein risk preference is accounted for by
concave utility over reward magnitude (see
supplemental material).

Results

In-Task Discount Rate Increased
With Volatility

As shown in Figure 3a, a volatility discounting
model in which future reward magnitude was
estimated from participants’ individual price pre-
dictions outperformed a version based on mean
price predictions across participants (ΔBICi =
1,104; highermodel evidence in 16/20 participants;
φ = 0.998). This model also outperformed a null
model in which m = 0 (ΔBICi = 1,252; higher
model evidence in 16/20 participants; φ = 0.999),
and an alternative model based on concave utility
(ΔBICi = 400; higher model evidence in 16/20
participants; φ = 0.999), supporting an effect of
volatility discounting.
As shown in Figure 3b and c, a volatility

discounting model (Equation 12) provided a
goodfit to participants’ choices. Figure 3c shows
observed indifference amounts for the three
products, averaged across choices and partici-
pants, together with those predicted by the
model. Discounting increased in proportion to
volatility, linear mixed effects on log K fitted to
each product separately: βcondition = 0.19, t(58) =
2.38, p = .020.
Participants’ future price predictions for the

three products are shown in Figure 3d. For the
purposes of illustrating effects of initial price
on delay discounting, we transformed indiffer-
ence amounts to discount factors (immediate
price/future price), using the initial market price
as an estimate of the future price. Indifference
amounts predicted by the model were trans-
formed in the same way, overlaid with the
observed discount factors in Figure 3e.

When the initial price was close to the long-run
mean, participants correctly predicted zero net
growth in price, and discounting increased with
increasingvolatility.For thehighvolatilityproduct,
when the current price was below average,
participants expected the future price to increase
across time, and accordingly showed a prefer-
ence to defer reward. For the low volatility
product, when the current price was below
average, expected price increases were more
subtle, and discount factors predominantly
reflected a small effect of volatility. By contrast,
when the initial price was above average,
participants expected the price of the high and
low volatility items to fall and accordingly were
more likely to prefer the immediate reward.
These effects reflect the experimental design,
wherein price evolution was bounded between
£0 and £25, leading participants to expect that
eccentric prices would tend to return toward the
long-run average. The effects are captured by the
model, which is furnished with participants’
subjective estimates of future market prices.

Baseline Discount Rate Correlated
With In-Task Volatility Discounting

Importantly, volatility discounting within
the task, governed by parameter m, showed a
significant positive correlation with baseline
discounting (Spearman ρ = 0.49, p = .049; N =
17; three participants who answered £0 in
response to all baseline questions were excluded
from this analysis). That is, people who showed
greater discounting of uncertainty within the
task tended to show steeper discounting of
money outside of the task.

Learning Rate Increased With Volatility

As previously reported (Behrens et al., 2007;
Lee et al., 2020), Rescorla–Wagner learning
rates increased with increasing volatility, linear
mixed effects onα: βcondition= 0.88, t(58)= 6.61,
p < .001; no volatility: mean α = 0.39, SD =
0.22, low volatility, mean α = 0.55, SD = 0.17,
high volatility mean α = 0.75, SD = 0.11.
However, in-task discounting showed no signifi-
cant correlation with learning rate across partici-
pants in any of three conditions (log K vs. α; no
volatility: ρ = 0.41, p = .076; low volatility: ρ =
−0.12, p = .612; high volatility: ρ = −0.28, p =
.232; supplemental Figure S1).
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Summary

In summary, in this pilot experiment, we found
thatwithin-task delay discounting increased in line
with reward volatility. Furthermore, people who
showed greater volatility-dependent increases
in discounting within the task tended to show
steeper discounting of money across real delays
at baseline. This finding supports an hypothesis

that discounting of time-dependent uncertainty
contributes to individual differences in delay
discounting.

Experiment 2

Experiment 2 tested whether the effects
observed in Experiment 1 replicated in a larger
sample and also probed neural correlates of

Figure 3
Model Fits, Price Forecasts, and Discount Factors in Experiment 1

Note. (a) Model comparison; blue asterisk indicates the best fitting volatility discounting model. (b) Observed indifference
amounts are plotted against indifference amounts predicted by the best fitting model. (c) Mean indifference amounts
(immediate selling prices) across all choices are plotted as a function of delay, separated by product (N= 20 participants). Solid
lines show the fits of a volatility discounting model, where subjective forecasted future prices are hyperbolically discounted
according to their variance. (d) Mean price forecasts for the three products separated by initial market price for the volatile
products. (e) To illustrate effects of initial price on delay discounting, indifference amounts are transformed to discount factors
(immediate price/future price), using the initial market price as an estimate of the future price. Indifference amounts predicted
by the model are also divided by the initial market price, and overlaid with the observed data. When the price of the high
volatility product was expected to rise, participants chose to defer selling the product (left panel). By contrast, participants were
more likely to sell the high volatility product immediately when its price was expected to fall (right panel). When the expected
future price was constant (central panel), discounting increased with increasing volatility. Throughout, error bars indicate one
standard error. BICi = integrated Bayesian information criterion. See the online article for the color version of this figure.
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volatility discounting. Here, to test whether effects
of volatility extend to timescales used in conven-
tional discounting tasks, we superimposed the
timescale of the task onto longer delays. Specifi-
cally, one actual ITCwas selected to be paid out at
the stated delay, in the order of weeks. To further
test the veridicality of themodel, wemeasured risk
aversion outside the main task, and elicited
participants’ subjective estimates of future uncer-
tainty within-task.

Method

Ethics Statement

All participants gave full informed consent
before taking part in the study. The study
procedures received approval from the UCL
Research Ethics Committee (3450/002) and were
carried out in accordance with these guidelines.

Data and Code Availability

Behavioral data supporting the findings of
this study are publicly available online in a
third-party repository: https://doi.org/10.5061/
dryad.47d7wm3k2 (G. Story, 2023). Computer
codes and imaging data that support the findings
of this study are available from the corresponding
author upon reasonable request.

Learning Phase

Participants learned price dynamics according
to a similar procedure as described for Experi-
ment 1 (see supplemental material and Figure 4a
and b). Here only two products were used, to
simplify the neuroimaging analysis. For one of
the two products (“stable”), themarket price was
held constant at £25, and participants were
explicitly informed about this; the market price
of the other product (“volatile”) evolved according
to a Gaussian random walk, with zero mean drift
and volatility σ = 3.5, upper bounded at £50 and
lower bounded at £0 (Figure 4a). We used two
predefined sequences of outcomes sampled from
a random walk with these properties; partici-
pants were then allocated at random to one of the
two sequences. To estimate the optimal learning
rate for the volatile product, we fitted a Rescorla–
Wagner model so as to minimize differences
between observed price inputs and those predicted
by the model. We did this for the specific stimulus

sequence observed by each participant, and
averaged the estimates.

ITC Phase

After observing price evolution for both
products, participants entered a separate ITC
phase of the experiment.Here, participantsmade
a series of binary choices about when to sell each
product, either immediately for a guaranteed
(i.e., riskless) price (less than £25), or in the
marketplace after a stated delay (0, 1, 4, 17
weeks) from a starting price of £25 (Figure 4c).
We included a delay of 0 week to allow the
intercept of the discounting curve to be reliably
estimated. We selected a set of guaranteed
immediate prices that allowed a plausible range
of discount factors to be estimated (the full
choice set, with equivalent K values at indiffer-
ence, is shown in supplemental Table 4).
Participants were informed that one of their

choices would be selected and realized after the
experiment and, depending on their actual choice,
participants would be paid either the guaranteed
amount on the day of the experiment (if they
opted for the immediate choice), or the simulated
future price of the product at the stated number of
weeks in the future (if they opted for the delayed
choice). Here, since delays were real, rather than
embedded within the timescale of the task, we
expected a significant degree of discounting even
in the stable condition, due to the influence of
effects outside of the task. Modeling analyses
followed equivalent procedures as described for
Experiment 1: we fitted log K separately for the
two products and also fitted volatility discounting
models. We also tested a model wherein risk
preference is accounted for by concave utility
over reward magnitude.

Participant Recruitment, Sample Size, and
Power Calculation

We conducted a behavioral pilot experiment
with 11 participants, using the above design. In
this pilot experiment, we observed an effect size
of d = 0.76, based on the mean difference in log
K between stable and volatile products, sug-
gesting that amedium effect size was a plausible
assumption. Sample size for the imaging experi-
ment was therefore determined so as to achieve at
least 80% power to detect a medium effect size
(Cohen’s d = 0.5), based on a paired t-test,
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indicating a required sample size of 34 participants.
We aimed to recruit at least 34 participants for the
main experiment, in addition to the pilot sample.
Thirty-six participants were recruited from the
UCL Institute of Cognitive Neuroscience subject
database, and underwent MRI scanning. Including
the behavioral pilot, a total of 47 participants (mean

age 28.0 years, SD 8.4 years, 32 female) completed
the experiment.

fMRI Methods

Imaging methods are described in online
supplemental material.

Figure 4
Design of Experiment 2: Online Marketplace Task

Note. (a) Participants first observed prices of two products to be sold in an imaginary online marketplace, where one trial
corresponded to 1 week. For one of the two products, the market price (solid gray line) was constant at £25, with added Gaussian
emission noise. For the other product, the market price changed as a Gaussian random walk (volatility σ = 3.5), with the same
emission noise (standard deviationη= 2). Sample inputs from one participant are shown. (b) Participants predicted prices 1 week
ahead. (c) Subsequently, inside the fMRI scanner, participants chose between selling each product today for a guaranteed price, or
after a delay in the simulated online marketplace. This differs from a standard delay discounting task because the uncertainty of
the future payoff in the volatile condition grows with delay. See the online article for the color version of this figure.
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Baseline Risk Aversion

Before participants were introduced to the
market behavior, we measured their risk prefer-
ences for lotteries to be paid out on the same day.
Each lottery had prices drawn from a Gaussian
distribution with mean £25, and one of four
standard deviations (ranging from £5 to £13). For
each lottery participants observed 36 outcomes
drawn from the relevant distribution, before
making a series of choices between receiving a
guaranteed amount (between £11 and £25) or
accepting a one-off play of the lottery. We fitted
participants’ risk choices with a hyperbolic risk
discounting model of the form shown in Equation
12, with t = 0, setting η2 to the objective variance
of the lottery. We also tested a standard additive
mean–variancemodel (Bell, 1995;D’Acremont&
Bossaerts, 2008; Kroll et al., 1984; Symmonds et
al., 2011; Weber et al., 2004; see supplemental
material).

Subjective Future Uncertainty

Following the learning phase, we elicited
participants’ predictions about each product’s
future price, for a scenario in which the current
market price was stated to be £25. Using a
graphical interface, participants were also asked
to indicate the lower and upper bounds of an
interval in which they were 90% certain the
future price would lie, described as “highest and
lowest reasonable estimates” (for similar esti-
mation procedures see Cesarini et al., 2006;
Delavande & Rohwedder, 2008; O’Connor,
1989). We fitted a model to participants’
confidence intervals based on the true generative
process, that is a Gaussian random walk (see
supplemental material), to derive a subjective
estimate of σ2 for each participant in each
condition, which we termed “subjective future

uncertainty” (SFU=
defσ̂2).

Statistical Analyses

As shown in Figure 1, the volatility discounting
model predicts that a component of discounting is
proportional to an interaction between future
uncertainty (σ2) and risk aversion (m). To test this,
we examined a relationship between log K and an
(SFU ×m) interaction, wherem is measured from
risk choices outside of the discounting task. The
interaction term denotes the “subjective cost of

future uncertainty.”We tested for an effect on log
Kof a subjective cost of future uncertainty in stable
and volatile conditions separately, using simple
linear regression. Here, the contribution of each
participants’ data was weighted by the reliability
of their log K estimates (see Huys et al., 2012),
where logKwas estimated separately for the two
conditions (setting m = 0 when fitting discount-
ing choices).
We also tested whether an effect of condition

on discounting was greater amongst partici-
pants who showed a greater increase in the
subjective cost of uncertainty between condi-
tions. To do so,we calculated, for each participant,
the change in SFU between conditions: dSFU =
SFUvolatile−SFUstable. We then implemented a
mixed-effects linear regression on logK, withm,
dSFU, condition, (Condition × dSFU), (Condi-
tion × m), and (Condition × dSFU × m) as
predictor variables, where condition is coded as
a within-subject dummy variable. We hypothe-
sized that participants who were (a) risk averse
and (b) showed a greater subjective increase in
uncertainty between conditions would be more
sensitive to an effect of condition, manifest in a
significant three-way (Condition × dSFU × m)
interaction.

Results

Baseline Risk Aversion

A hyperbolic risk discounting model substan-
tially outperformed a standard mean–variance
model in accounting for baseline risk prefer-
ences (higher model evidence in 39/45 partici-
pants; φ > 0.999). Participants were on average
risk averse (mean log m = −7.44, 95% CI
[−7.82, −7.06]) and also showed a bias away
from choice of the risky option (mean c = 3.43,
95% CI [4.00, 2.86]).

Subjective Future Uncertainty Increased
With Volatility

As shown in Figure 5a, subjective confidence
intervals increased with delay. On average, in
the volatile condition participants accurately
predicted that the expected future price would
remain £25 (Figure 5b; mean slope of future
predictions, β = 0.03, 95% CI of β [−0.38,
0.44]). Consistent with an effect of volatility,
SFU was significantly greater in the volatile
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than in the stable condition, paired t(46) = 8.7,
two-tailed p< .0001, d= 1.27; Figure 5a and c. In
the volatile condition, participants tended to
slightly overestimate the true volatility (group
mean σ̂ = 4.17, true σ = 3.50, 95% CI of σ̂ [3.44,
4.90]). Notably there was a shallow positive slope
even in the stable condition, in keeping with a
prior belief that uncertainty grows with delay
(group mean σ̂ = 2.08, true σ = 0, 95% CI of σ̂
[2.11, 2.80]).

Delay Discounting Increased With Volatility

Two of 47 participants always selected the
immediate option, rendering their discounting
preferences inestimable, and consequently they
were excluded from analysis (N = 45). The
proportion of choices on which participants
chose the delayed option decreased with delay,
indicating participants discounted delayed pay-
offs (Figure 6a). Fitting the baseline discount
rate,K, separately for the two conditions (setting
m = 0 in Equation 12, leaving K, c, and s as free
parameters), we found that log K was signifi-
cantly greater in the volatile condition, mean

difference in log K = 0.37, 95% CI [0.21, 0.53],
t(44) = 4.62, p < .001, d = 0.69, in keeping with
steeper discounting.

Discounting Correlated With the Subjective
Cost of Uncertainty

We first tested for an effect on log K of a
subjective cost of future uncertainty in stable and
volatile conditions separately.We found that logK
in both conditions showed the expected positive
relationship with the cost of future uncertainty,
(SFU × m), Figure 6b, panel iii; stable condition:
β= 0.16, t(43)= 2.97,p= .005; volatile condition:
β = 0.12, t(43) = 4.68, p < .001. In a subsequent
analysis, we tested whether an effect of condition
(volatile vs. stable) on discounting was greater
amongst participants who: (a) showed a greater
subjective increase in uncertainty between condi-
tions and (b) were more risk averse. Here, we
found evidence for an hypothesized three-way
interaction, (m × dSFU × Condition): β = 0.10,
t(83) = 3.04, p = .003, indicating that a change in
discounting between conditions was sensitive to
an added cost of future uncertainty.Main effects of

Figure 5
Subjective Future Uncertainty and Price Forecasts in Experiment 2

Note. (a) Mean width of subjective confidence intervals on future prices. Participants accurately
predicted that uncertainty grows as a function of delay in the volatile condition (red). Solid lines show
the fit of a random walk model. (b) Mean “best guesses” about future prices. Participants accurately
predicted that expected prices are constant across delay. Solid lines show the fit of log growth curves.
N = 47 for all analyses shown. Error bars indicate one standard error. (c) Subjective future uncertainty
(SFU), that is subjective volatility σ̂ derived from growth in confidence intervals across delay. Filled
gray bars show group means, solid green and red bars 95% CIs; black dots show individual parameter
estimates. See the online article for the color version of this figure.
*** p < .001.
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condition (β=0.41, t(83)=4.19,p< .001) and risk
aversion (m),β= 0.39, t(83)= 2.27, p= .026,were
also significant. Additional terms included as
covariates were not significant, [dSFU]: β = 0.03,

t(83) = 0.32, p = .752; [dSFU × Condition]: β =
−0.02, t(83) = −0.62, p = .539; [m × Condition]:
β=−0.10, t(83)=−1.10,p= .275. In summary, as
predicted by a volatility discounting model, both

Figure 6
Delay Discounting as a Function of Risk Aversion and Future Uncertainty in Experiment 2

Note. (a) Mean discount functions for stable (green) and volatile conditions (red) for participants separated by risk aversion,
N = 15 per tertile. Low risk aversion: log (m) ≤ −8.06; medium: −8.06 < log(m) ≤ −4.75; high: log (m) > −4.75. Error bars
represent 1 SE. Solid lines represent fits of a volatility discounting Model to both conditions together, with risk aversion, m,
estimated from risk choices outside of the ITC task. (b) Discounting depends on the subjective cost of future uncertainty. LogK
fitted directly to volatile (red) and stable (green) conditions is plotted as a function of risk aversion (m, Z-scored), SFU (shown
here for high risk averse participants, N = 15) and an (SFU × Risk Aversion) interaction. Color intensity reflects the
contribution of each data point to the weighted least squares regression. P-values are for each condition and regressor
separately. (c) Model comparison; blue asterisk indicates the best fitting volatility discounting model, with risk aversion, m,
estimated from risk choices outside of the ITC task. ITC = intertemporal choice. (d) Observed choice proportions are plotted
against proportions predicted by the best fitting model. SFU = subjective future uncertainty; BICi = integrated Bayesian
information criterion. See the online article for the color version of this figure.
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baseline discounting and a volatility-dependent
shift in discounting were commensurate with
participants’ subjective sensitivity to future
uncertainty.

Volatility Discounting Correlated
With Baseline Discounting

Wewent on to fit a volatility discounting model
(Equation 12) directly to the delay discounting
data, fitting both conditions with the same set of
parameters. As shown in Figure 6c, this model
outperformed an alternative based on concave
utility. Consistent with Experiment 1, within this
model baseline discounting (log K) was signifi-
cantly correlatedwith volatility discounting (logm;
Spearman ρ= 0.31, p= .037). That is, participants
who showed greater discounting in the absence of
extraneous volatility also increased their discount-
ing more in response to volatility.
Finally, we fitted a volatility discounting

model by carrying participants’ risk aversion
parameters forward to fit their ITCs. Here, each
participant’s estimate ofmwas carried over from
their risk choices, which were fitted separately.
This model, which leverages information about
participant-specific risk aversion, provided a
better fit to the data than a null model withm = 0
(higher model evidence in 41/45 participants;
φ > 0.999). The fit of this model to participants’
ITCs is shown in Figure 6a. Here, an effect of
condition predicted by the model derives from
participants’ idiosyncratic degrees of risk aversion,
measured separately.

Learning Rate Increased With Volatility

Rescorla–Wagner learning rates were substan-
tially higher in the volatile condition, paired t(46)=
17.5, two-tailed p< .0001,mean α-volatile= 0.68;
SD 0.11, and close to zero in the stable condition
(mean α-stable = 0.03; SD 0.06). The mean
learning rate in the volatile condition was close
to the optimal learning rate of 0.75. We found
neither a significant correlation between learn-
ing rate and logK (stable condition: r= 0.14, p=
0.346; volatile condition: r = 0.006, p = .966;
supplemental Figure S2) nor between change
in learning rate and change in log K (r = −0.14,
p = .376).

Reduced Hippocampal–Prefrontal Coupling
Under Volatile Reward Dynamics

We first sought to replicate previously pub-
lished observations by investigating neural repre-
sentation of subjective value for a delayed choice
option, corresponding to the time of presentation
of this delayed option. Participants who did not
discount delayed reward (N = 8) were excluded
from this analysis. Consistent with prior results
(Owens et al., 2017; Wesley & Bickel, 2014), we
found clusters in middle temporal gyrus (left −48
−46 7, t= 6.58) and dorsolateral prefrontal cortex
(right 39840and542625, t=6.57, extending into
right anterior insula) that survived whole brain
correction at family-wise error (FWE) p < .05.
We hypothesized that higher volatility should

lead to a decrease in the reliability of simulated
future scenarios. Accordingly, we predicted that
medial-temporal lobe (MTL) and related regions
(which support imagining future scenarios),would
participate less in the evaluation of more volatile
delayed rewards. In fMRI data, this predicts: (a) a
decreased correlation between MTL activity and
discounted value in the volatile condition com-
pared to the stable condition and (b) an associated
modulation in functional coupling between MTL
and prefrontal regions tracking discounted value.
To evaluate the first of these two hypotheses,

we tested for regions whose activity correlated
more strongly with discounted value in the
stable compared to the volatile condition. This
contrast revealed activation in left amygdala
(FWE correctedwithin a bilateral amygdalamask,
−30 2 − 23, t = 3.65, p = .029; supplemental
Figure S3b); however, this did not survive small
volume correction for a larger a priori region of
interest encompassing bilateral HC and amygdala
(p = .11 corrected). The reverse contrast yielded
no significant suprathreshold clusters at p < .001.
To test the second hypothesis, we performed a

psychophysiological interaction (PPI) analysis
with a seed in the HC, with Condition ([stable–
volatile]) as a modulating variable. Although we
did not observe hippocampal activation in our
primary contrast of interest, we selected a
hippocampal seed region on an a priori basis,
since HC is known to provide for a cognitive
map (Addis et al., 2007; Hassabis et al., 2007;
Peters & Büchel, 2010; see supplemental
material). In order to test which regions showing
increased HC-coupling in the stable condition
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also correlated with discounted value, we used
the discounted value contrast (without an effect
of condition) as a mask for this PPI. For left HC-
coupling, we found a significant peak in left
dorsolateral prefrontal cortex (left dlPFC −39
26 25, t = 5.22, p = .025, FWE corrected for the
volume of the discounted value mask), which
both tracked discounted value and showed
decreased coupling with HC in the volatile
condition (supplemental Figure S8). The equiv-
alent analysis for right HC-coupling yielded no
significant activations. There were no signifi-
cant clusters at p < .001 uncorrected whose
connectivity with HC was greater in the volatile
condition.

Summary

Here, we illustrate effects of volatility on
discounting at a time-scale commensurate with
that used in conventional discounting question-
naires, across delays of up to 4 months. Our
findings support a conclusion that delay dis-
counting incorporates uncertainty discounting.
We find a decrease in functional coupling under
volatile conditions between MTL (HC) and a
region of left dorsolateral prefrontal cortex
(dlPFC), which tracked discounted value. This
finding suggests that volatility-dependent in-
creases in discounting are associated with
reduced engagement of MTL structures known
to participate in prospective forecasts.

Experiment 3

Experiment 3 tested for replicability of effects
in Experiments 1 and 2 in a larger, online sample.
A replication test was motivated by findings that
estimated correlation coefficients are unstable in
smaller sample sizes (Schönbrodt & Perugini,
2013). The design followed that of Experiment 1.

Method

Ethics Statement

All participants gave full informed consent
before takingpart in the study.The studyprocedures
received approval from the UCL Research Ethics
Committee (20399/001) and were carried out in
accordance with these guidelines.

Data and Code Availability

Behavioral data supporting thefindings of this
study are publicly available online in a third-
party repository: https://doi.org/10.5061/dryad
.47d7wm3k2 (G. Story, 2023). Computer codes
that support the findings of this study are available
from the corresponding author upon reasonable
request.

Sample Size and Power Calculation

Budget constraints limited our sample size to
approximately 100 participants. Statistical simu-
lations indicate that this sample size allows the
Pearson correlation coefficient r to be estimated
within an interval of ±0.15 with 80% confidence,
for a true correlation of r= 0.3 (approximately the
size of correlation observed between log K and
risk aversion in Experiment 2; Schönbrodt &
Perugini, 2013). Participants were recruited from
Prolific.co, an online subject database.

Baseline Delay Discounting

Prior to starting the task, participants (N =
101, mean age 28.9 years, SD 9.7 years; 52
female) made a series of binary choices between
a monetary reward of magnitude £23, £23.50,
£25, or £26.50, delayed by 3, 7, 12, or 18 weeks,
respectively, and a smaller quantity of money
available immediately. Choices were selected
according to an adaptive procedure (see supple-
mental material). Participants were informed
that we would select one choice from every
twenty participants to be paid for real as a bonus
in Prolific.

Learning Price Dynamics

Market prices evolved according to a Gauss-
ian random walk, upper bounded at £40 and
lower bounded at £0. For one of the three
products (“no volatility”), the market price was
held constant at £20.00; the market price of the
other two products (“low volatility” and “high
volatility”) evolved with volatility σ = 1.5 and
σ = 3.5, respectively. All prices were subject to
Gaussian emission noise, with standard devia-
tion η= 3. Price profiles were selected so that the
market price on the final trial was equal to the
long-run mean of £20.00.
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ITC Procedure

After observing the price dynamics of each
product, participants were asked to predict each
product’s future price and report a subjective
confidence interval, as described for Experiment
2. Eight out of 101 participants did not adjust the
subjective confidence interval from its starting
value in at least one of the three conditions,
suggesting inattention to the task; these parti-
cipants were therefore excluded. Participants
subsequently chose when to sell the product,
either immediately for a guaranteed price, or for
themarket price after a stated delay (1, 4, 9, or 13
weeks). As for Experiment 1, one choice was
selected to be realized and was paid out as a
bonus at the end of the experiment. An adaptive
procedure was used to estimate indifference
points at each delay by adjusting the immediate
price (see online supplemental material). Statisti-
cal analyses followed those previously described
for Experiments 1 and 2. By distinction from
Experiments 1 and 2, here future sales were for
the market price, without emission noise; we
therefore set η2 to zero when fitting models.

Results

Nonveridical Estimates of Subjective
Future Uncertainty

As shown in Figure 7a, future price predictions
largely reflected a veridical pattern of no net
growth or decay. Subjective confidence intervals
about future prices increased as a function of delay
(Figure 7b). However, unlike in Experiment 2,
group average confidence intervals did not
recapitulate the statistics of the true generative
process. Instead, participants overestimated vola-
tility in the no volatility condition (σ2 = 0, mean
σ̂2 = 0.55) and underestimated volatility in the
lowvolatility (σ2= 1.5,mean σ̂2 = 0.48Þ and high
volatility (σ2 = 3.5, mean σ̂2 = 0.65Þ conditions.
There was no significant difference between

subjective future uncertainty (SFU=
defσ̂2) in high

volatility and no volatility conditions, paired
t(92) = 1.16, two-tailed p = .24 (Figure 7c).
However, the intercept term, corresponding to
an estimate of time-independent uncertainty,
was significantly higher in the high volatility
condition, paired t(92) = 4.73, two-tailed p <
.0001. This pattern suggests that, in this online

experiment, participants either did not fully
differentiate price dynamics in the three condi-
tions, or did not fully attend to delay when
providing subjective confidence intervals.

Delay Discounting Increased With Volatility

We fitted a volatility discounting model to
participants’ choices. A model in which reward
magnitude was given by mean future price
predictions across participants outperformed a
version in which magnitude was estimated from
participants’ individual future price predictions
(Figure 7d;ΔBICi=1,544, highermodel evidence
in 81/93 participants; φ> 0.999). This model also
outperformed a null model in which m = 0
(ΔBICi = 317; higher model evidence in 48/93
participants;φ= 0.999), supporting an effect of
volatility to increase delay discounting. Finally
the volatility discounting model outperformed an
alternative based on concave utility (ΔBICi =
2000;highermodel evidence in93/93participants;
φ> 0.999). Discount curves for the three products
are shown in Figure 7e, plotted using mean future
price predictions as estimates of future reward
magnitude. As predicted, discounting increased in
proportion to volatility, linear mixed effects on
logK fitted to each condition separately: βcondition=
0.04, t(277) = 4.13, p < .001.

Baseline Discount Rate Correlated With
In-Task Volatility Discounting

Volatility discountingwithin the task, governed
by parameter m, showed a significant positive
correlation with baseline discounting, measured
outside of the task (log m vs. log K: Pearson r =
0.22, p= .035). As shown in Figure 8, this finding
was consistent across all three experimental tasks.
Pooling data across the three experiments revealed
a highly significant positive relationship between
log m and log K, linear mixed-effects regression
with random slope and intercept parameters,
grouped by experiment: fixed slope βm = 0.24,
t(153) = 2.84, p = .005.

Learning Rate Increased With Volatility

Learning rates increased overall with increasing
volatility, linear mixed effects on α: βcondition =
0.32, t(277)= 6.16, p< .001.However, the pattern
was nonmonotonic, suggesting that participants
did not fully distinguish between no volatility and
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low volatility conditions (no volatility: mean α =
0.16, SD = 0.43, low volatility, mean α = 0.05,
SD = 0.60, high volatility mean α = 0.77, SD =
0.88).We speculate that thiswas due to inattention
to the task. It is also possible that increased
emission noise in this experiment (relative to
Experiment 2) obscured participants’ perceptions
of volatility. As previously, in-task discounting
showed no significant correlation with learning
rate across participants in any of three conditions

(no volatility: r = −0.02, p = .815; low volatility:
r=−0.08, p= .422; high volatility: r=−0.19, p=
.051; supplemental Figure S5).

Summary

In summary, Experiment 3 reproduced find-
ings that in-task delay discounting increased
with increasing volatility, to an extent that
correlated with baseline discounting. Notably,

Figure 7
Subjective Future Uncertainty and Delay Discounting in Experiment 3

Note. (a) Mean “best guesses” about future prices. Participants accurately predicted that expected prices are constant across
delay. (b) Mean width of subjective confidence intervals on future prices. Solid lines show the fit of a random walk model. (c)
Subjective future uncertainty (SFU), that is, subjective volatility σ̂ derived from growth in confidence intervals across delay.
Filled gray bars show group means, solid green, yellow and red bars 95% CIs; black dots show individual parameter estimates.
Participants overestimated future uncertainty in the no volatility and low volatility conditions and underestimated future
uncertainty in the high volatility condition. (d) Model comparison; blue asterisk indicates the best fitting volatility discounting
model. (e) Discount curves in each condition, fitted with a volatility discounting model. The model overestimated discounting
in the high volatility condition, commensurate with participants’ underestimating future uncertainty in this condition. BICi =
integrated Bayesian information criterion. See the online article for the color version of this figure.
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here participants’ subjective estimates of future
uncertainty and learning rate during the task
did not reflect the true reward statistics, perhaps
suggesting lower attention to the task during this
online experiment than was achieved by partici-
pants in the previous laboratory experiments.

General Discussion

Acentral idea in behavioral economics considers
impatience as arising, at least partly, from risk
implicit in a delay. Existing approaches have
emphasized that delayed rewards are less probable
than immediate ones, rather than that the value
of delayed reward is less precisely known. By
contrast, here, we advance a model in which
random changes in reward value accumulate over
time. If risky rewards are discounted according to
their variance, this model yields impatience, to an
extent that is proportional to volatility (changeabil-
ity) of reward value. This model has affinities with
concepts found in finance, such as the price of risk,
theexcess rateof returnonan investmentdemanded
to compensate for an increase in volatility,
expressed per unit of volatility (Sharpe, 1964).

Consistentwith volatility discounting, wefind that
people discount delayed reward more steeply in
volatile environments, an effect that also pertains
over naturalistic delays of up to 4 months.
In the experiments presented here, objective

outcomes (prices) are uncertain, whereas in
conventional discounting tasks the objective
outcomes are certain (e.g., $10 or $20 tomor-
row), but subjective values are uncertain. It may
be argued that manipulating volatility experi-
mentally in this manner simply adds extraneous
risk to a baseline delay discounting process,
rather than revealing that subjective values
incorporate estimates of volatility. However,
three findings mitigate this concern. First, in
the stable condition of Experiment 2, where
there is no extraneous time-dependent risk, delay
discounting nevertheless correlated signifi-
cantly with a subjective cost of future uncer-
tainty. Second, participants who showed steeper
discounting in the stable condition also increased
discounting more in response to volatility. Third,
within-task volatility discounting in Experiments
1 and 3 correlated with delay discounting of
nominally riskless rewards outside of the task.

Figure 8
Baseline Discounting Versus In-Task Volatility Discounting

Note. (a) For Experiment 1, volatility discounting (logm), that is, sensitivity of discounting to volatility within-
task, correlates with baseline discounting for nonrisky rewards measured outside of the task (N = 17; three
participants excluded due to inestimable baseline discounting data). (b) In Experiment 2 (N = 45), where in-task
discounting was measured over naturalistic timescales, volatility discounting (logm, estimated from discounting
choices) correlates with baseline discounting (log K0, discounting in stable condition). (c) In Experiment 3 (N =
93), in-task volatility discounting (log m) correlates with discounting for nonrisky rewards measured outside of
the task. Solid lines show fits of a linear mixed-effects regression with experiment as a random grouping variable,
fixed slope βm = 0.24, t(153) = 2.84, p = .005. See the online article for the color version of this figure.
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Taken together, these findings support a conclu-
sion that impatience for reward is partly deter-
mined by an aversion to future uncertainty.
Nevertheless, the experiments presented here
manipulate volatility explicitly, so participants
may have been primed to attend to this. Future
work might examine effects on discounting of
implicit manipulations of volatility.
We do not suggest that volatility is the sole

factor underlying delay discounting. Rather,
normative factors independent of risk, such as
an opportunity cost associated with delay, ought
to affect discounting (Niv et al., 2007; Rachlin,
2006), perhaps accounting for observations that
probability and delay discounting are subject to
distinct influences (Cox et al., 2020; Estle et al.,
2006; Lee et al., 2020; Luhmann et al., 2008;
Peters & Büchel, 2009; Weber & Huettel, 2008).
Furthermore, while volatility pertains to uncer-
tainty over the magnitude of future reward, in
conventional discounting tasks both the proba-
bility of receipt (e.g., Sozou, 1998) and the timing
of the receipt may also be uncertain (Dasgupta &
Maskin, 2005).

Sampling Future Reward in
Prospective Memory

Gabaix and Laibson (2017) propose that,
owing to time-dependent uncertainty, mental
simulations of future events are less precise than
more immediate ones. The formal implications
for discounting are similar to those considered
here. A key hypothesis is that cognitive resources
ought to be devoted to simulating the future
only where doing so is worth the reward gained
and is effective in reducing future uncertainty
(Gershman & Bhui, 2020). Our imaging findings
are consistent with this idea. In Experiment 2, we
investigated volatility-dependent increases in
discounting in terms of relative engagement of
MTL structures known to participate in prospec-
tive forecasts, in particular, the HC (Addis et al.,
2007; Hassabis et al., 2007; Johnson & Redish,
2007; Peters&Büchel, 2010; Schacter et al., 2008;
Tsao et al., 2018). We found a decrease in
functional coupling under volatile conditions
between HC and a region of left dorsolateral
prefrontal cortex (dlPFC), which tracked dis-
counted value.
Anatomically, dlPFC is reciprocally connected

toHCvia the parahippocampal gyrus, subiculum,

and presubiculum (Goldman-Rakic et al., 1984)
and is a region implicated in the exercise of
cognitive control (Hare et al., 2009; Hare et al.,
2009; Hecht et al., 2013;MacDonald et al., 2000;
Rudorf & Hare, 2014). An interpretation is
therefore that dlPFCmaintains an online represen-
tation of delayed reward, by retrieving contextual
information from MTL, and this coupling is
diminished under unpredictable reward dynam-
ics.We tentatively suggest that this effect reflects a
cost-benefit trade-off whereby imagining the
future is more effortful and is therefore down-
weighted.Thisfinding is inkeepingwithaprevious
report that in a reinforcement-learning task, dlPFC
wasmore strongly activated under predictable than
under unpredictable state transition rules (Tanaka
et al., 2006).Notably however our primary contrast
of interest did not reveal hippocampal activation,
placing our connectivity analysis on a relatively
weak evidential footing.

Effects of Nonlinear Utility and Internal State

In economic models, risk aversion is often
accounted for by postulating a concave utility
function over reward magnitude, such that
rewards of increasing magnitude are associated
with decreasing marginal benefits (Bell, 1995;
Kahneman & Tversky, 1979; Pine et al., 2009).
We found that a volatility discounting model
outperformed a model based on a concave
power law utility function. However, effects
of nonlinear utility cannot be fully delineated
from the model presented here, since the
two effects both converge on a prediction
that discounting depends on the variance of
future reward. Indeed, it is likely that there
exists some alternative form of utility function
that would approximate hyperbolic discounting
of variance.
In the experiments presented here, we

manipulate volatility in external reward magni-
tude. However, the same model might also be
applied to changes in the subjective utility of
reward deriving from changes in internal state.
For example, a person asked to specifywhat they
would like to eat for dinner a week in advance
might be unsure ofwhether their preferenceswill
be the same in a week’s time. Effects of internal
state changes on both risk attitude (Kacelnik,
1997; Smallwood, 1996) and delay discounting
(Giordano et al., 2002; Kirk & Logue, 1997;
Mitchell, 2004) are well documented and
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examining the interactions of such effects with
those of future uncertainty suggests an important
direction for future research.

Learning Rate and Discount Rate as
Separable Markers of Impulsivity

As predicted by optimality, volatility-
dependent increases in temporal discounting
seen here were also associated with an increase
in learning rate (Behrens et al., 2007; Iigaya, 2016;
Nassar et al., 2010, 2012). In reinforcement-
learningmodels, the value of an action is estimated
by updating a recency-weighted average of
rewards which followed that action in the past
(Mathys et al., 2011; Wilson et al., 2010), where
a high learning rate entails steeper discounting of
past rewards and faster value updates (Rescorla
&Wagner, 1972; Sutton & Barto, 1998). A high
setting of either rate can generate impulsive
behavior: A high learning rate leads to behavior
driven by recent successes or failures, rather than
the long-run context, while a high discount rate
produces behavior driven by its immediate
consequences, thereby neglecting delayed ben-
efits. We show that volatility engenders an
increase in both parameters, reflecting the fact
that where reward contingencies change fre-
quently, neither past rewards nor promised
future rewards are fully informative of current
action value (Daw et al., 2005, 2006; Dolan &
Dayan, 2013).
That we did not find a correlation between

learning rate and discount rate across participants
suggests that future discounting engages processes
different to those involved in learning. Inparticular,
we find that while learning rate is sensitive to
volatility, discounting is sensitive to an interaction
between volatility and risk aversion. Within this
interaction, risk aversion appears to contribute the
greater source of between-participant variability.
An additional consideration is that the form of
weighted averaging over past rewards predicted
by Rescorla–Wagner learning does not corre-
spond directly to the model used here for future
discounting. Further workmight examinewhether
integration of past and future rewards might be
fitted with the same model.
Finally,wenote that increasing time-independent

uncertainty ought to decrease both learning rate
(Mathys et al., 2011;Wilson et al., 2010) anddelay

discounting (by Equation 8 and supplemental
Equation S12). This accords with findings that
adding risk to both immediate and delayed
rewards reduces a bias toward immediate reward
(Anderhub et al., 2001; Andreoni & Sprenger,
2012b; Keren & Roelofsma, 1995; Stevenson,
1992; though see Ahlbrecht &Weber, 1997) and
that increasing emission noise reduces learning
rate (Diederen & Schultz, 2015). In this regard,
an interesting direction for future research
would be to examine a tendency to misperceive
emission noise as volatility, which may under-
pin maladaptive impulsivity. For example, in
learning tasks, people with high trait anxiety
show smaller adjustments in learning rate in
response to changing volatility (Browning et al.,
2015), and increased reliance on “lose-shift”
strategies (Huang et al., 2017). These findings
suggest that anxious individuals may misperceive
chance fluctuations as underlying environmental
changes, particularly following losses. Further
research might explore whether this effect corre-
lates with the increased delay discounting reported
amongst anxious individuals (Xia et al., 2017).

Conclusions

We conclude that individual differences in
delay discounting in part reflect differential
discounting of uncertainty, whereby more
impatient people are more sensitive to future
risk. The present study contributes to a growing
body of work illustrating how discounting
can be derived from beliefs about the statistics
of future reward across time (e.g., Patak &
Reynolds, 2007; Reynolds et al., 2007; Stevens
et al., 2005; Takahashi et al., 2007).We propose
that measuring such beliefs directly offers to
enrich our understanding and prediction of
impulsive behavior. This idea can also reconcile
state- and trait-level influences on discounting
in that, over long timescales, prevailing envi-
ronmental conditions ought to be reflected in
trait-based differences in discounting,which are
subject to state-based effects when conditions
change (Griskevicius et al., 2011; Haynes et al.,
2021; Koffarnus et al., 2013; Odum, 2011;
Peviani et al., 2019). However, more integrative
studies are required to examine how the various
documented influences on discounting interact
to shape impulsive behavior “in the wild.”
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