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School of Management, University College London, 1 Canada Square, London E14 5AA, UK

k.arifoglu@ucl.ac.uk

Hang Ren
School of Business, George Mason University, 4400 University Dr, Fairfax, VA 22030, US

hren5@gmu.edu

Tolga Tezcan
Jones Graduate School of Business, Rice University, 6100 Main Street, Houston, TX 77005, USA

tolga.tezcan@rice.edu

Diagnosis-Related Group (DRG) and bundled payment models are widely used in healthcare reimburse-

ment by entities like the Centers for Medicare & Medicaid Services (CMS) and insurance companies. However,

these models were primarily designed for conditions managed by a single healthcare provider in a centralized

manner, often overlooking the complexities of cases requiring post-acute care (PAC) following an initial

hospital stay. This can result in inadequate incentives for effective care coordination between hospitals and

PAC providers, especially when treatment decisions are decentralized.

Motivated by the Comprehensive Care for Joint Replacement (CJR) payment model recently introduced

by CMS, which holds hospitals accountable for the quality and cost of the entire CJR episode, including the

cost of PAC, we propose simple payment models that incentivize hospitals and PAC providers to collabora-

tively enhance the cost efficiency and quality of care for such conditions. Our approach extends traditional

payment models by introducing performance targets for all providers, encompassing the entire care episode.

Using a game-theoretical model, we demonstrate that the proposed payment model elicits socially opti-

mal actions from all providers, under various assumptions. Importantly, our models do not require detailed

knowledge of the hospital-PAC network structure but rely solely on observed cost and quality outcomes

within the entire system.

Furthermore, while the CJR payment model represents a positive step forward, our analysis reveals

potential areas for improvement. Specifically, we suggest that holding both hospitals and PAC providers

financially accountable, instead of solely focusing on hospitals, would yield further enhancements in the care

delivery model.
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1. Introduction

Diagnosis-Related Group (DRG) based payment models have been widely implemented across

numerous countries, including the United States, Canada, Australia, New Zealand, Germany, and
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Sweden, with the goal of promoting efficient and cost-effective healthcare delivery (OECD 2019).

These systems operate by assigning predetermined payment amounts for specific medical conditions

or treatments, based on the average cost of treating patients within the respective DRG. This

payment amount serves as a benchmark, fostering indirect competition among healthcare providers

to improve cost efficiency. Consequently, providers who manage to operate more efficiently than

the average are able to generate positive margins from their services. The implementation of DRG-

based payment systems, particularly through the prospective payment system initiated by CMS

in 1983, has resulted in reduced hospital spending growth for Medicare (Davis and Rhodes 1988).

Furthermore, according to theoretical evidence, these payment models elicit socially optimal efforts

from providers towards cost reduction (Shleifer 1985).

However, despite the success in incentivizing cost reduction, there is a legitimate concern that

DRG-based payment models may potentially encourage providers to prioritize cost savings over

the quality of care. To address this concern, regulators have introduced outcome-based DRG pay-

ment systems, commonly known as pay-for-performance payment models. These models go beyond

simply reimbursing providers for services rendered or tasks completed by linking a portion of

DRG-based payments to health outcomes and treatment quality. The Affordable Care Act (ACA)

played a pivotal role in promoting the implementation of outcome-based payment models by CMS,

aiming to align payment with the quality of care provided (Chernew et al. 2020). Notable exam-

ples of these models include the Hospital Value-Based Purchasing (VBP) Program and the Skilled

Nursing Facility Value-Based Purchasing (SNF VBP) programs, as outlined in CMS (2023b). In

these models, the magnitude of reward and penalty payments for each provider is determined

based on their relative performance compared to other providers, similar to the approach used in

DRG-based payments. Extensive empirical research has been conducted to examine the effects of

outcome-based payment models (see Blumenthal et al. (2015) among others). Furthermore, there

is a growing body of literature exploring the design and effectiveness of these payment models;

see, for example, Arifoğlu et al. (2021), Savva et al. (2019), Chen and Savva (2018), Zhang et al.

(2016).

Care coordination: DRG and outcome-based payment models, which we refer to as single-

entity payment models, have proven effective in cases where treatment decisions are made in a

centralized manner within a single entity (e.g., a hospital or a post-acute care (PAC) provider) for

a specific episode of care. However, certain medical conditions, such as joint replacement, involve

multiple independent providers, leading to decentralized treatment decisions.

Following joint replacement surgery, a significant number of Medicare beneficiaries are discharged

from hospitals or other acute-care settings to various PAC settings, including skilled nursing facili-

ties, inpatient rehabilitation facilities, and home health agencies (Li et al. 2020, Schwarzkopf et al.
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2016). These PAC settings vary in the intensity and complexity of the medical, skilled nursing,

and rehabilitative services they provide (Department of Health and Human Services 2017) and the

cost of PAC can constitute a substantial portion of the overall care expenses Barnett et al. (2019).

While other conditions, such as stroke, traumatic injuries, and pneumonia, may also require PAC,

our primary focus in this paper is on joint replacement due to the recent emphasis placed on these

procedures by the CMS (Department of Health and Human Services 2017).

Effective coordination between hospitals and PAC providers is important for achieving favorable

outcomes in joint replacement procedures. PAC for joint replacement typically involves a range

of services designed to support the patient’s recovery, such as physical therapy and occupational

therapy (MedPAC 2022). Acute-care providers (usually working in a hospital setting) play a criti-

cal role in ensuring successful PAC outcomes as well through coordination and effective transition

of care (Arana et al. 2017, Department of Health and Human Services 2021). Hospitals and PAC

providers can implement several strategies to improve coordination and transitions, including the

use of connected electronic health records (EHRs) and other technology tools, establishing partner-

ships, scheduling post-discharge visits from hospital physicians, and implementing joint education

and training programs (Adler-Milstein et al. 2021, Britton et al. 2017, Cipriano et al. 2018).

In the past, CMS utilized separate DRG-based payments to reimburse hospitals and PAC

providers for their individual contributions to joint replacement treatment. However, these payment

methods, even with outcome-based adjustments, failed to provide adequate incentives for invest-

ments in care coordination (Department of Health and Human Services 2021). This was because

additional investments made by one party to enhance the efficiency of the other party were not

reimbursed under the traditional DRG payment structure. Furthermore, these payment methods

could lead to unintended consequences, such as hospitals discharging patients to PAC settings with

unnecessary intensive care in an attempt to reduce readmissions (Zhu et al. 2018) because hospitals

are penalized for excess 30-day readmissions under the Hospital Readmissions Reduction Program.

Consequently, a more comprehensive approach to payment models was needed, one that considers

the collaborative nature of care delivery across multiple entities (in a decentralized manner) in the

context of joint replacement procedures.

CJR Program: To enhance coordination between hospitals and PAC providers, CMS imple-

mented the Comprehensive Care for Joint Replacement (CJR) payment model in 2016 across

specific geographic areas in the United States. The CJR model aimed to address the challenges of

care coordination by holding participating hospitals financially accountable for the entire episode

of care, encompassing hospitalization and all PAC services for 90 days post-discharge. CMS estab-

lishes a target price for hip and knee replacements based on the average regional treatment cost,

with quality of care taken into account through a composite-quality score adjustment of up to 3%.
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Participating hospitals receive a reconciliation payment if their spending during the performance

year is below the target price, while repayments may be required if spending exceeds the tar-

get price (CMS 2018, Department of Health and Human Services 2021). However, PAC providers

continue to be paid using a DRG- and outcome-based payment model.

The CJR program draws on concepts from bundled-payment models but incorporates unique

features. While traditional bundled payment models involve a single payment to cover the entire

episode of care (a feature CJR model adopted) the CJR model utilizes separate payments to hospi-

tals and PAC providers, recognizing them as distinct entities. However, this separation of payments

also introduces challenges in determining responsibility for high costs and adverse quality outcomes

throughout the entire episode of care, as opposed to cases where a single entity oversees the entire

process. The complexity is further compounded by the collaborative relationships between hospi-

tals and multiple PAC providers, making it challenging to attribute costs and quality outcomes

accurately. Addressing these issues becomes crucial to prevent potential free-riding problems in

multi-provider settings, as discussed in Chapter 5.3.8 of Salanie (1997).

In an effort to further incentivize care coordination, the CJR program allows hospitals to establish

“gainsharing agreements” with PAC providers to share rewards and penalties. However, designing

effective gainsharing contracts can be challenging, especially when there are informational asymme-

tries between the two providers (Gupta et al. 2021, Ghamat et al. 2021). Additionally, complications

arise due to the hospital’s limited ability to mandate which PAC provider a patient should choose

(McGarry and Grabowski 2017). Thus, despite the potential benefits of bundled payment models

and gainsharing agreements, their implementation is complex in practice.

New payment models for care coordination: In light of the challenges faced by existing

payment models, we propose new payment models that provide incentives for hospitals and PAC

providers to contain costs and improve quality through coordinated efforts. We develop a stylized

model where the quality and cost of care provided by a PAC provider can be improved by additional

effort from the hospital that provided acute care to the patient. Using a game theoretical approach,

we demonstrate that our proposed payment model achieves socially optimal (first-best) outcomes

in terms of both cost and quality.

One notable advantage of our payment model is its simplicity, as as it does not impose additional

informational burdens on payers beyond what existing DRG and bundled payment models require.

Our payment model utilizes benchmarks derived from the average cost and quality performance of

all providers involved, aligning our payment models with the recent payment reforms implemented

by CMS. Providers are incentivized to collaborate and enhance care quality in a cost-effective

manner by comparing their joint performance to these carefully chosen benchmarks.
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Another significant benefit is that our payment model does not rely on the network structure

of hospitals and PAC providers, making it adaptable to various healthcare environments and con-

ditions without necessitating modifications. Moreover, we demonstrate the model’s flexibility by

extending it to accommodate various modifications, such as different types of PAC providers, dif-

ferent coordination and cost structures, and heterogeneous hospitals and PAC entities.

The main distinction between our proposed payment model and the existing single-entity DRG

and outcome-based payment models lies in the fact that each entity is held responsible for the

cost and quality of the entire episode of treatment, rather than only their individual aspects. This

extension builds on prior research on moral hazard in teams (Holmstrom 1982).

Furthermore, we compare the equilibrium outcomes under our proposed payment model to those

under a CJR-type payment model. While CJR is a step in the right direction and has led to cost

reductions (CMS 2022), we show that it does not provide sufficient incentives for achieving socially

optimal outcomes. This limitation arises from the fact that only hospitals are held accountable for

overall costs, while PAC providers are solely responsible for their own cost and quality. While gain-

sharing agreements have the potential to improve care coordination under CJR, designing effective

agreements remains an ongoing challenge (Gupta et al. 2021, Ghamat et al. 2021). In contrast,

our proposed payment model eliminates the reliance on such agreements, offering a promising and

pragmatic alternative.

2. Literature review

In this section we review the relevant literature on healthcare payment models and describe the

contribution of our research to different streams in this literature. We also explain our contribution

to the literature on moral hazard in teams.

Research on payment models for a single-entity setting: Our research contributes to

the growing literature on designing payment models for healthcare provision in various settings

(see for example So and Tang (2000), Ata et al. (2013), Jiang et al. (2012), Bavafa et al. (2021),

Bastani et al. (2016), Goodman and Dai (2023)). Specifically, we focus on relative performance-

based payment models, similar to those recently implemented by Centers for Medicare & Medicaid

Services (CMS), and our work complements the existing literature on this topic.

Savva et al. (2019) demonstrate the effectiveness of combining endogenous benchmarks with

average cost-based DRG-based payment models to reduce waiting times for emergency departments

in a cost-effective manner. Arifoğlu et al. (2021), motivated by the Hospital Readmissions Reduction

Program, concentrate on hospital readmissions and provide similar insights on reducing them.

Additionally, Debo et al. (2021) highlights the vulnerability of DRG-based payment models to

upcoding (i.e., coding and billing for more expensive services or procedures than were actually

performed or rendered) incentives and offers solutions to eliminate such behavior.
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The main distinction between our paper and this literature stream is the latter’s primary focus

on care settings where a single provider delivers care in a centralized manner, whereas our study

investigates settings where care is provided by multiple entities. By investigating these multi-entity

settings, we demonstrate that relative performance-based payment models can effectively achieve

first-best (or socially optimal) outcomes in terms of quality and cost.

Research on payment models for care coordination: Our research makes a significant

contribution to the literature on payment models for care coordination across different settings.

This body of work primarily focuses on comparing the potential cost and quality of care improve-

ments resulting from a transition from traditional fee-for-service payment models to episode-based

payment models, such as bundled payments.

Adida et al. (2016) compare providers’ actions under fee-for-service with bundled payments in a

model where hospitals choose the treatment intensity for heterogeneous patients considering poten-

tial treatment failures. Andritsos and Tang (2018) compare fee-for-service and bundled payment

schemes in a model with readmissions in a single-entity setting. Guo et al. (2019) extend Andritsos

and Tang (2018) by explicitly modeling hospitals’ capacity and its impact on patient waiting times.

Adida and Bravo (2019) study reimbursement contracts between a managing organization offering

basic care, and an external provider providing advanced care, which is reimbursed by the former.

Vlachy et al. (2023) explore the impact of bundled payments on the coordination of hospitals’ and

physicians’ decisions. Gupta and Mehrotra (2015) examine how bundled payment contract selec-

tion processes should be designed by regulators, drawing inspiration from the Bundled Payments

for Care Improvement Initiative.

The primary distinction between this literature and our approach lies in our focus on relative

performance-based payment models, aligning with CMS’s predominant reliance on such models. In

contrast, the existing literature primarily explores payment models with exogenously determined

reimbursement amounts and performance targets, assuming the regulator possesses the required

information to establish these measures.

Additionally, there is a body of literature that examines the design of gainsharing contracts

within the context of a CJR-type bundled payment model. Gupta et al. (2021) investigate the

design of gainsharing contracts between hospitals and physicians when the overall payment for

care is based on a bundled payment model. Similarly, Ghamat et al. (2021) explore the design

of gainsharing contracts between hospitals and PAC providers under the CJR payment model. In

contrast, our study focuses on the design of payment models for scenarios where care is delivered

by multiple providers, rather than solely addressing the allocation of a single bundled payment

among different providers. In addition, similar to other papers reviewed above, Gupta et al. (2021)

and Ghamat et al. (2021) do not utilize relative performance-based payment models.
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One relevant study in this literature is Zorc et al. (2017). Their research also addresses the design

of payment models to promote care coordination, with a specific focus on the care pathway between

general practitioners (GPs) and specialists, aiming to reduce delays in accessing specialist treat-

ment. As in our work, they explore the design of relative performance-based payment models and

demonstrate how model parameters can be determined using the performance of other providers,

such as through yardstick regulation, under various scenarios.

However, a key distinction between their study and ours lies in the focus of provider pairs.

While they concentrate on the coordination between GPs and specialists, our study considers a

broader network of hospital and PAC providers. As a result, their model is more applicable to

care coordination between GPs and specialists, as their underlying assumptions differ from ours.

Specifically, in our model, we incorporate the notion that effective PAC requires additional effort

from hospitals directly, whereas their model assumes that the quality of care at each stage is solely

determined by the provider operating at that specific stage.

Research on moral hazard in teams: Our paper makes a contribution to the broader the-

ory of moral hazard in teams. Holmstrom (1982) demonstrates that, in team settings, individual

members may be less motivated to exert their best effort due to the challenges of measuring and

attributing individual performance, leading to issues of free-riding. He also establishes that certain

contracts can achieve optimal effort from each team member when the regulator possesses complete

information about the costs and benefits associated with individual effort.

Similarly, Mookherjee (1984) provides necessary and sufficient conditions for the optimality of

rank-order based incentive schemes in a similar team setting. Although our model shares similarities

with Holmstrom (1982) and Mookherjee (1984), a crucial distinction exists: the regulator has

the ability to observe the costs of each entity within the care team in their models. Instead, we

demonstrate that a contract based on the relative performance of similar entities induces first-best

effort in equilibrium, thereby extending the main finding of Shleifer (1985) from the context where

entities operate individually, to situations where entities collaborate as part of a team.

3. Model and first-best outcome

We examine an episode of care for a specific condition, such as joint replacement, which consists

of two stages: acute care in a hospital and subsequent PAC provided by another entity, such as

skilled nursing facilities (SNFs). To account for the impact of care quality decisions, we assume that

unsuccessful care may lead to patient readmission to the hospital, requiring the patient to restart

the care process there (approximately 23% of Medicare patients discharged to SNFs experience

readmission to the hospital within 30 days (Britton et al. 2019)).

To assess the influence of payment models, our model involves three key decision-makers: the

regulator, hospitals, and PAC providers. The regulator oversees multiple providers in different
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settings and has the authority to implement a payment model that determines the reimbursement

for each provider’s care services. The cost and readmission likelihood in each treatment episode

depends on the efforts of the hospital, the PAC provider, and the hospital’s coordination efforts

with the PAC provider. With the objective of maximizing social welfare (i.e., achieving the first-best

outcomes), the regulator determines the payment model. In response to the payment model, the

providers select their actions to maximize their expected profit from delivering care. We establish

the (pure-strategy) Nash equilibrium in a one-round game in which each player holds correct

expectations about the other players’ actions, with the aim of assessing the long-term impact of

reimbursement schemes and comparing these outcomes to the first-best actions.

Next, we present the specific details of the objective functions for each party and establish the

optimal effort levels that represent the first-best outcomes.

Care model: We define the cost of an episode of care as the sum of the acute care cost, denoted

by Ch, and the PAC cost, denoted by Cs. We also introduce the readmission probability, denoted

by R, which represents the likelihood of a patient being readmitted. To examine the impact of

payment models on hospitals and PAC providers, we assume that these quantities are functions of

the providers’ efforts, measured in monetary terms.

Initially, we consider a fixed (i.e., exogenous) probability for patients needing PAC and focus

solely on those patients. It is worth noting that, for patients who do not require PAC, single-

entity payment models yield first-best efforts because the whole episode of care is managed by

the hospital; see for example Arifoğlu et al. (2021). To further explore the model, we extend it to

incorporate endogenous discharge decisions in §5.1.

In our model, the cost of acute care, denoted by Ch : [0,Γ]→R+, is a function of the hospital’s

effort, ah, to reduce costs, where Γ> 0. Similarly, the cost of PAC, denoted by Cs : [0,Γ]× [0,Γ]→

R+, depends on the efforts made by the hospital, bh, and the PAC provider, bs, such as improved

coordination through shared electronic medical record systems. Throughout, we also assume that

all provider actions are bounded by Γ> 0 without loss of generality.

Additionally, the probability of patient readmission is denoted by R : [0,Γ]× [0,Γ]→ [0,1] and is a

function of the efforts of both the hospital, eh, and the PAC provider, es, to minimize readmissions.

We assume fixed expected costs for treating readmitted patients in both the hospital, denoted

by ξh, and the PAC setting, denoted by ξs. Our model can be extended to incorporate potential

provider actions to reduce the costs associated with treating readmitted patients; see §5.2. We

assume that the functions Ch, Cs, and R are twice differentiable.

Providers (hospitals and PAC providers): We consider a provider network consisting of N

hospitals indexed by i= 1, . . . ,N , and M PAC providers indexed by j = 1, . . . ,M . The probability

of a patient being discharged from hospital i to PAC provider j is denoted by pij > 0. Throughout
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the paper, we set K= {1, . . . ,K} and Ki =K \ i for any given integer K and for i= 1, . . . ,K, for

notational simplicity.

We use pi to represent the fraction of patients receiving acute care from hospital i, where pi ≡∑
j∈M pij. We assume that each hospital provides care to some patients, i.e., pi > 0 for all i ∈N ,

and we normalize the total patient population to one, i.e.,
∑

i∈N pi = 1, without loss of generality.

Additionally, we assume that PAC providers in the network treat some patients, denoted by p̃j ≡∑
i∈N pij > 0 for all j ∈M.

The effort exerted by hospital i to reduce the cost of acute care is denoted by ahi . To capture

the efforts made by hospitals and PAC providers for care coordination, we denote PAC provider-

specific efforts for cost reduction by bhij and efforts to reduce readmissions by ehij for hospitals.

Similarly, we use esij to represent the effort of PAC provider j in coordinating care with hospital

i. For notational simplicity, we use hi = (ahi , b
h
ij, e

h
ij, j ∈M) to denote the actions of hospital i and

sj = (bsij, e
s
ij, i∈N ) to denote the actions of PAC provider j.

The objective of hospital i, denoted by Πh
i , can be expressed as follows:

Πh
i (hi) = T hi −Chi (hi), (1)

where T hi represents the reimbursement amount received by the hospital (determined by the reg-

ulator) and Chi (hi) is the total cost of hospital i given by

Chi (hi) =pi
[
Ch(ahi ) + ahi

]
+
∑
j∈M

pij
[
R(ehij, e

s
ij)ξ

h + bhij + ehij
]
. (2)

We assume that each hospital exerts the same effort (i.e, ahi ) for cost reduction in acute care

regardless of the PAC destination, as hospitals are unlikely to make different treatment decisions

based on the anticipated PAC provider. However, efforts to reduce readmissions and the cost of

PAC depend on the specific PAC provider (ehij and esij), as these require coordination between the

two parties, such as through shared healthcare records or coordinated care in the PAC setting.

Similarly, the objective of PAC provider j, denoted by Πs
j , for each treatment episode can be

expressed as follows:

Πs
j(sj) = T sj −Csj (sj), (3)

where T s denotes the payment received by the PAC provider from the regulator, and Csj (sj) is the

total cost of the PAC provider j given by

Csj (sj) =
∑
i∈N

pij
[
Cs(bhij, b

s
ij) +R(ehij, e

s
ij)ξ

s + bsij + esij
]

(4)
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Regulator: The regulator aims to maximize the total welfare W from each treatment episode,

calculated as the patient surplus minus the total cost. The total welfare W is given by:

W =υ−
∑
i∈N

Chi (hi)−
∑
j∈M

Csj (sj). (5)

Here, υ represents the patient surplus from receiving treatment, and the remaining terms consti-

tute the total cost of providing care as described earlier, see (2) and (4). For simplicity, we assume

that the patient receives a fixed benefit υ from treatment, independent of readmissions. However,

this assumption can be extended to incorporate patient disutility from readmissions, as discussed

in a similar manner in §5.3 of Arifoğlu et al. (2021). As υ is fixed, the regulator’s objective function

is equivalent to minimizing the total expected cost of a care episode.

Next, we outline our assumptions regarding socially optimal actions. Specifically, we assume that

the regulator’s objective function has a unique optimizer, referred to as “first-best” from hereon.

Additionally, we assume that these effort levels can be identified through the following first-order

conditions (FOCs) obtained from the regulator’s objective function (5):

(Ch(a∗h))′+ 1 = 0, (6)

∂Cs(b∗h, b
∗
s)

∂bh
+ 1 = 0, (7)

∂Cs(b∗h, b
∗
s)

∂bs
+ 1 = 0, (8)

∂R(e∗h, e
∗
s)

∂eh
(ξh + ξs) + 1 = 0, (9)

∂R(e∗h, e
∗
s)

∂es
(ξh + ξs) + 1 = 0. (10)

In Appendix A, we provide sufficient conditions on the cost functions for these assumptions to hold.

Under these assumptions, the socially optimal actions for all hospitals, denoted by (a∗h, b
∗
h, e
∗
h), are

identical to each other, and similarly, the socially optimal actions for all PAC providers, denoted

by (b∗s, e
∗
s), are also identical.

On a technical note, when pij = 0, i.e., no patients are discharged from hospital i to PAC provider

j, the associated cost of care is zero, regardless of the values of bhij, b
s
ij, e

h
ij, e

s
ij. In that case, we

assume that the first-best actions are a∗h, b
∗
h, b
∗
s, e
∗
h, e
∗
s, and hospital i and PAC provider j choose

first-best actions in equilibrium under any reimbursement scheme. This treatment eases exposition

and is without loss of generality because any provider actions lead to zero cost of care from PAC

provider j because pij = 0, see (4).
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4. Coordinating reimbursement schemes

The proposed payment model for both provider types follows a similar structure and consists of two

parts: (i) a payment to cover the costs of care and efforts; and (ii) an outcome-based payment that

promotes coordination, both of which are calculated based on the performances of other providers.

To formulate the payment scheme, we introduce the following notation. Let

C̄h
i =

∑
k∈Ni

pkC
h(ahk)

1− pi
,

represent the per-patient average cost of acute care for patients treated by all hospitals, excluding

hospital i, and

C̄sh
i =

∑
k∈Ni

∑
j∈M

pkjC
s(bhkj, b

s
kj)

1− pi
, (11)

denote the per-patient average cost of PAC for all patients discharged from all hospitals, excluding

hospital i. Similarly, let

R̄h
i =

∑
k∈Ni

∑
j∈M

pkjR(ehkj, e
s
kj)

1− pi
, (12)

represent the proportion of readmitted patients who are treated by all hospitals, excluding hospital

i. We also define

āhi =

∑
k∈Ni

pka
h
k

1− pi
, b̄hi =

∑
k∈Ni

∑
j∈M

pkjb
h
kj

1− pi
, and ēhi =

∑
k∈Ni

∑
j∈M

pkje
h
kj

1− pi
, (13)

as the weighted average effort levels of all hospitals, excluding hospital i. The payment amount for

hospital i is given by:

T hi = pi

[
C̄h
i + āhi + b̄hi + ēhi + R̄h

i ξ
h
]

︸ ︷︷ ︸
Cost of care

+
∑
j∈M

pij

[
C̄sh
i −Cs(bhij, b

s
ij) +

(
R̄h
i −R(ehij, e

s
ij)
)
ξs
]

︸ ︷︷ ︸
Outcome-based adjustment for care coordination

. (14)

The payment for hospitals consists of two components: the “Cost of care” component covers the

costs of providing care and exerting effort, while the “Outcome-based adjustment for care coor-

dination” component rewards or penalizes hospitals based on the average cost of PAC for their

discharged patients and the average cost of treating readmitted patients in PAC, relative to other

hospitals and PAC providers. The first component aligns with payment models used for single-entity

DRG payments, encouraging cost efficiency by setting relative performance benchmarks, while the

second component provides additional incentives for care coordination with PAC providers (we

argue below that the removal of this component will compromise care coordination, see Remark 3
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below for more details). In addition, our proposed payment method resembles bundled-type pay-

ments, involving a single payment for the entire episode of care, including potential readmissions

(see Arifoğlu et al. (2021) for a detailed discussion).

The payment model for PAC providers follows a similar principle. Let

C̄s
j =

∑
i∈N

∑
k∈Mj

pikC
s(bhik, b

s
ik)

1− p̃j
, (15)

denote the per-patient average cost of PAC for patients treated by all PAC providers, excluding

provider j and

R̄s
j =

∑
i∈N

∑
k∈Mj

pikR(ehik, e
s
ik)

1− p̃j
. (16)

represent the proportion of readmitted patients who are treated by all PAC providers, excluding

provider j.

Furthermore

b̄sj =

∑
i∈N

∑
k∈Mj

pikb
s
ik

1− p̃j
, and ēsj =

∑
i∈N

∑
k∈Mj

pike
s
ik

1− p̃j
, (17)

are the weighted average effort level of all the PAC providers, except provider j. The payment for

provider j is given by:

T sj = p̃j

[
C̄s
j + b̄sj + ēsj + R̄s

jξ
s
]

︸ ︷︷ ︸
Cost of care

+
∑
i∈N

pij

[
R̄s
j −R(ehij, e

s
ij)
]
ξh︸ ︷︷ ︸

Outcome-based adjustment for care coordination

. (18)

The payment model for PAC providers also includes a “Cost of care” component and an “Outcome-

based adjustment for care coordination” component, encouraging cost efficiency and incentivizing

coordination with hospitals, respectively.

Theorem 1. If the regulator uses (14) to reimburse hospitals and (18) to reimburse PAC

providers, then the unique Nash equilibrium is for each each hospital i∈N and PAC provider j ∈M

to pick first-best actions ahi = a∗h, b
h
ij = b∗h, e

h
ij = e∗h, and bsij = b∗s, e

s
ij = e∗s, respectively. In addition,

all providers break even in this equilibrium.

The proof is presented in Appendix B. Several key aspects regarding our main result merit empha-

sis.

Remark 1. The proposed payment model is highly appealing due to its simplicity. First, it

eliminates the need for regulators to accurately estimate the cost structures or underlying cost

functions of hospitals and PAC providers. Instead, regulators only need to observe the eventual
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costs after these institutions make efforts to reduce their costs and readmissions. This approach

resemblances the single-entity DRG-based payment models discussed in Shleifer (1985), Savva et al.

(2019), Arifoğlu et al. (2021). Second, the payment model is independent of the network structure

of hospitals and PAC providers, as well as the proportion of patients transferred between them.

As a result, it can be seamlessly implemented in healthcare environments of varying structures

without requiring any modifications.

Remark 2. We can further simplify the payment model by reducing the number of cost items

that the regulator needs to monitor. Specifically, the regulator only needs to observe the overall

costs of hospitals and PAC providers for index admissions, along with readmission costs. This

eliminates the requirement to monitor each individual component of the cost items separately.

To determine T sj as defined in (18), the regulator only needs to observe the aggregated cost of

PAC care for each patient (i.e., Cs
ij + bsij + esij), along with the readmission probabilities and costs.

Similarly, we can simplify the hospital payment defined in (14) as follows. Define the total cost of

PAC provider j’s treatment cost for those patients discharged from hospital i by

C sh
ij =Cs(bhij, b

s
ij) + bsij + esij, (19)

and let

C̄ sh
i =

∑
k∈Ni

∑
j∈M

pkjC sh
kj

1− pi
. (20)

The payment amount for hospital i is then given by

T h
i = pi

[
C̄h
i + āhi + b̄hi + ēhi + R̄h

i ξ
h
]

+
∑
j∈M

pij

[
C̄ sh
i −C sh

ij

]
+
∑
j∈M

pij

[
R̄h
i −R(ehij, e

s
ij)
]
ξs. (21)

We can show that Theorem 1 remains valid when T sj defined in (18) used along with T h
i .

Remark 3. The conventional bundled payment models do not provide adequate incentives for

care coordination between acute and PAC providers. To demonstrate, we note that our payment

model reduces to a conventional bundled payment model if we remove the “Outcome-based adjust-

ment for care coordination” components in (14) and (18). In single-entity healthcare systems, this

payment model restores optimal outcomes (see §5.1 of Arifoğlu et al. (2021)). However, we can

show that hospitals will not exert any effort to reduce treatment costs in PAC with the conven-

tional bundled payment model, i.e. bhij = 0 and this will result in higher readmission costs in the

system, i.e., R(ehij, e
s
ij)(ξ

h + ξs) + ehij + esij >R(e∗h, e
∗
s)(ξ

h + ξs) + e∗h + e∗s in equilibrium for all i∈N

and j ∈M.
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Remark 4. Comprehensive Joint Replacement (CJR) program is a regionalized payment model

(Department of Health and Human Services 2021), meaning that the average payment (referred to

as “target price” by CMS) is determined for each region. This takes into account regional differences

in costs.

Our payment model can be adapted to accommodate this characteristic by allowing flexibility

in calculating payment amounts and benchmark parameters. For example, the payment amount

for a hospital could be calculated as a convex combination of the peer performance of hospitals in

the same region and the average performance of a selected group of providers. This would allow

for more flexibility in setting payment amounts and performance targets, while still taking into

account the regional variation in costs of care.

5. Extensions

In this section, we aim to validate the fundamental concept underlying our payment model by

demonstrating its adaptability to different settings and its ability to consistently elicit socially

optimal actions. We achieve this by adjusting the specific modeling assumptions discussed in the

previous section.We focus on the following scenarios:

i. Endogenous discharge decisions: Hospitals make decisions about which PAC type to discharge

patients to.

ii. Endogenous readmission treatment costs: The cost of treating a patient who is readmitted

depends on the providers’ actions.

iii. Uniform effort: Hospitals exert the same level of effort across all the PAC providers it discharges

patients to, and similarly, the PAC providers across all hospitals it receives patients from.

iv. Non-identical providers: Providers have different characteristics, such as their quality or cost

structure.

The proofs of the results in this section are presented in Appendix C.

5.1. Endogenous discharge decisions

In our original model presented in §3, we assumed that a certain percentage of patients are dis-

charged to PAC, and that this proportion is fixed. However, there is no consensus on the optimal

PAC setting for patients being discharged from the hospital, as highlighted by Li et al. (2020).

Generally, there are two options to consider:

• PAC institutions: These facilities, such as skilled nursing facilities (SNFs), inpatient rehabili-

tation centers, or long-term hospital care, typically offer more intensive care, potentially reducing

unnecessary readmissions. However, they also come with higher costs.

• Home: Patients can also receive PAC through visits from in-home healthcare providers. This

option is typically less costly than PAC in an institution, but it may not offer the same level of

care (Werner et al. 2019).
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Hospitals need to optimize their discharge decisions, taking into account this trade-off among

different PAC settings, while also making efforts to coordinate care with all types of PAC providers.

In this section, we extend our model to examine this additional decision and demonstrate that our

payment model can be applied (using the same underlying principles outlined in §4) to incentivize

hospitals to make socially optimal decisions when a patient can be discharged to these different

settings.

Model: To incorporate hospitals’ decisions regarding patients’ discharge destinations, we intro-

duce the assumption that there are S different types of PAC settings, including home. Each hospital

i determines the proportion, ρsi ∈ [0,1], of their patients discharged to PAC providers of type s,

where s ∈ S. We let ~ρi = {ρsi , s∈ S} denote the vector of these proportions for hospital i. We

represent the proportion of patients discharged from hospital i to type-s PAC provider j as psij.

Therefore, we have
∑

s∈S ρ
s
i = 1 and

∑
j∈Ms psij/pi = ρsi , where Ms = {1, ...,M s} and M s denotes

the number of PAC providers of type s.

Additional notation and terminology required in this section are based on the ones introduced in

§3. We use Cs to denote the cost of PAC for type-s providers, and Rs to represent the readmission

probability for patients discharged to a type-s PAC setting. Similar to our previous model, we

assume that Cs : [0,Γ]× [0,Γ]→R+ is dependent on the efforts made by the hospital, denoted by

bh,s, and by the PAC provider, denoted by bs. The readmission probability from a type-s PAC

setting, Rs : [0,Γ]× [0,Γ]× [0,1]→ [0,1], depends on the efforts of the hospital, denoted by eh,s,

and the PAC provider, denoted by es, in reducing readmissions, as well as the discharge decisions

~ρ. The cost of treating a readmitted patient is denoted by ξh for hospital care and ξs for PAC care

at a type-s provider.

In contrast to the approach outlined in §3, our current assumption takes into account the inter-

dependence between readmission probabilities and the characteristics denoted by ~ρ for each type

of PAC providers. This consideration is essential for encompassing the variation in care intensity

across diverse PAC settings. Notably, hospitals tend to direct more critically ill patients towards

PAC facilities that offer more concentrated and intensive care. Rather than directly modeling these

intricate allocation decisions, we leverage the influence of ~ρ to encapsulate the effects of patient

distribution on readmission probabilities.

Objective functions: In the current setting, the objective of hospital i is defined as similar to

(1)

Πh
i (hi) =T hi −Chi (hi), (22)

where

Chi (hi) =pi

[
Ch
(
ahi
)

+ ahi

]
+
∑
s∈S

∑
j∈Ms

psij

[
Rs
(
eh,sij , e

s
ij, ~ρi

)
ξh + bh,sij + eh,sij

]
(23)
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is the total cost of the hospital. We use hi = (ahi , b
h,s
ij , e

h,s
ij , ~ρi, s ∈ S, j ∈Ms) to denote the actions

of hospital i.

Similarly, the objective of type-s PAC provider j is defined similarly to (3)

Πs
j(vj) = T sj −Csj (vj), (24)

where

Csj (vj) =
∑
i∈N

psij
[
Cs(bh,sij , b

s
ij) +Rs(eh,sij , e

s
ij, ~ρi)ξ

s + bsij + esij
]
. (25)

is the total cost of for this provider. Here vj =
(
bsij, e

s
ij, i∈N

)
denotes the actions of PAC provider

j. For simplicity, we again assume that all readmitted patients receive PAC from the provider that

treated them during their initial visit.

Similar to (5), the total welfare W in this case is then given by:

W =υ−
∑
i∈N

Chi (hi)−
∑
s∈S

∑
j∈Ms

Csj (vj). (26)

The total welfare consists of: (i) patient utility; (ii) the total cost of hospital care; and (iii) the

total cost of all PAC providers.

For any fixed discharge decisions ~ρi for all i ∈ N , we assume that the socially optimal efforts

are uniquely determined by the FOCs of total welfare, as in the original model; see Appendix C.1.

Moreover, in case of multiple discharge decisions being socially optimal, the regulator chooses one

of them using a certain tie-breaking rule. We assume, for simplicity, that hospitals follow the same

tie-breaking rule. Under these assumptions, the socially optimal actions for all hospitals, denoted

by (a∗h, b
∗
h,s, e

∗
h,s, ~ρ

∗) with a slight abuse of notation, are identical, where ~ρ∗ = {ρ∗s, s∈ S} and it is

possible that ρ∗s = 0 for some s. Similarly, the socially optimal actions for type-s PAC providers,

denoted by (b∗s, e
∗
s), are identical, for each s∈ S.

Payment scheme: We now present the extension of our proposed payment model and demon-

strate that it continues to incentivize hospitals and PAC providers to make socially optimal deci-

sions. Before delving into the technical details, we first explain the underlying concept.

The payment scheme outlined in §4 aims to improve care coordination by incentivizing hospitals

to reduce both their total care costs and the overall cost of PAC for their patients, which includes

costs associated with readmissions. Similarly, the payment scheme encourages PAC providers to

consider the cost of hospital care for readmitted patients in their decision-making process. This

is achieved by first setting hospital and PAC provider-specific benchmarks for these costs, based

on the average costs of other hospitals and PAC providers. The payments of hospitals and PAC
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providers are then linked to their performance relative to these benchmarks. In the current context,

we apply the same concept, but we need to modify how the benchmarks are determined.

We will first present the payment scheme for the PAC providers, as it closely resembles the

payment scheme (18) in our original model. The payment for type-s PAC provider j is given by:

T sj =
[
Ĉs
j + b̂sj + êsj + R̂s

jξ
s
]∑
i∈N

psij︸ ︷︷ ︸
Cost of care

+
∑
i∈N

psij

[
R̂s
j −Rs(eh,sij , e

s
ij, ~ρi)

]
ξh︸ ︷︷ ︸

Outcome-based adjustment

, (27)

where

Ĉs
j =

∑
i∈N

∑
k∈Ms

j

psikC
s
(
bh,sik , b

s
ik

)
∑
i∈N

∑
k∈Ms

j

psik
and R̂s

j =

∑
i∈N

∑
k∈Ms

j

psikR
s(eh,sik , e

s
ik, ~ρi)∑

i∈N

∑
k∈Ms

j

psik

represent the average cost and the readmission likelihood for patients who are treated by all type-s

PAC providers, excluding provider j. Additionally,

b̂sj =

∑
i∈N

∑
k∈Ms

j

psikb
s
ik∑

i∈N

∑
k∈Ms

j

psik
and êsj =

∑
i∈N

∑
k∈Ms

j

psike
s
ik∑

i∈N

∑
k∈Ms

j

psik

are the average cost of efforts to reduce costs and readmissions by all type-s PAC providers,

excluding provider j. It is worth noting that (27) follows the same structure as (18).

The payment scheme for hospitals is slightly different from that in §4 because of the additional

decision the hospitals need to make regarding the discharge destination of patients. The payment

scheme is modified to make hospitals internalize the cost of PAC in general. The hospital payment

scheme consists of two main parts: (i) cost of care payments to cover the costs of the hospital,

T h,0; and (ii) outcome-based payment based on the performances of type-s PAC providers that the

hospital discharged patients to, T h,s for s∈ S.

We start with the cost of care component. As in (14), the hospital is compensated for the cost

of care as well as the effort it is expected to exert to reduce costs and readmissions of the PAC

providers that it discharges patients to, as follows

T h,0i︸︷︷︸
Cost of care payment

= pi

[
C̄h
i + āhi + R̂h

i ξ
h
]

+
∑
s∈S

piρ̄
s
i

(
b̂h,si + êh,si

)
, (28)

where

ρ̄si =

∑
k∈Ni

pkρ
s
k∑

k∈Ni
pk

(29)

represents the average fraction of patients discharged to type-s PAC providers, excluding patients

discharged from hospital i. Additionally, b̂h,si and êh,si represent the average costs incurred by
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hospitals to improve care (in terms of cost and readmission probability, respectively) in type-s PAC

providers, excluding patients discharged from hospital i, defined as follows (similar to (13))

b̂h,si =

∑
k∈Ni

∑
j∈Ms

pskjb
h,s
kj∑

k∈Ni

∑
j∈Ms

pskj
, êh,si =

∑
k∈Ni

∑
j∈Ms

pskje
h,s
kj∑

k∈Ni

∑
j∈Ms

pskj
, s∈ S,

and (similar to (12))

R̂h
i =

∑
k∈Ni

∑
s∈S

∑
j∈Ms

pskjR
s(eh,skj , e

s
kj, ~ρk)∑

k∈Ni

∑
s∈S

∑
j∈Ms

pskj

is the proportion of readmitted patients, excluding patients discharged from hospital i.

The outcome-based payment component, based on the performance of type-s PAC providers, is

determined as follows:

T h,si︸︷︷︸
PAC cost component

= piρ̄
s
i

(
Ĉs,h
i + R̂h,s

i ξs
)
−
∑
j∈Ms

psij

[
Cs
(
bh,sij , b

s
ij

)
+Rs

(
eh,sij , e

s
ij, ~ρi

)
ξs
]

+piρ̄
s
i (b̂

s,h
i + ês,hi )−

∑
j∈Ms

psij

[
bsij + esij

]
, (30)

where

R̂h,s
i =

∑
k∈Ni

∑
j∈Ms

pskjR
s(eh,skj , e

s
kj, ~ρk)∑

k∈Ni

∑
j∈Ms

pskj
, and Ĉs,h

i =

∑
k∈Ni

∑
j∈Ms

pskjC
s(bh,skj , b

s
kj)∑

k∈Ni

∑
j∈Ms

pskj
, (31)

denote the proportion of readmitted patients and the average cost of type-s PAC providers, exclud-

ing patients discharged from hospital i, and

b̂s,hi =

∑
k∈Ni

∑
j∈Ms

pskjb
s
kj∑

k∈Ni

∑
j∈Ms

pskj
, and ês,hi =

∑
k∈Ni

∑
j∈Ms

pskje
s
kj∑

k∈Ni

∑
j∈Ms

pskj
(32)

are the average efforts to reduce type-s PAC providers’ costs and readmissions, respectively, exclud-

ing patients discharged from hospital i.

The total payment amount for hospital i is calculated by summing up these components:

T hi = T h,0i +
∑
s∈S

T h,si . (33)

To highlight the intuition behind the payment scheme for hospitals, we first note that T h,oi and

the “cost of care” component in (14) are almost identical in principle: both consider the total cost

incurred by the hospital in providing care and making improvement efforts. Additionally, T h,si is

similar to the “Outcome-based adjustment for care coordination” component in Equation (14) with
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a subtle difference: there is an additional term in the second line of (30). This term incentivizes

hospitals to consider the costs associated with different types of PAC providers’ investment in

reducing costs and readmissions. It does not appear in (14) because the discharge destination is

assumed to be exogenous in that section. However, this component could be incorporated in the

original payment scheme, as outlined in Remark 2.

We next prove that this payment scheme induces first-best actions from all providers.1

Proposition 1. If the regulator uses (27) to reimburse hospitals and (33) to reimburse PAC

providers, then the unique Nash equilibrium is for each each hospital i∈N and type-s PAC provider

j ∈Ms, s∈ S, to pick first-best actions ahi = a∗h, b
h,s
ij = b∗h,s, e

h,s
ij = e∗h,s, ρ

s
i = ρ∗s, and bsij = b∗s, e

s
ij = e∗s,

respectively. In addition, all providers break even in this equilibrium.

5.2. Endogenous readmission cost

We initially assumed that the treatment costs for readmitted patients, denoted by ξh for hospitals

and ξs for PAC providers, are exogenous. However, in practice, hospitals and PAC providers may

make efforts to reduce treatment costs, which can affect costs of treating readmitted patients. In

this section, we extend our model to show that our payment schemes induce first-best actions by

assuming that the readmission cost is the same as the cost for the initial (index) admission. Specif-

ically, we define Ch and Cs as the treatment costs for hospitals and PAC providers, respectively,

for both the initial admission and readmission.

In this case, the objective of hospital i is given by:

Πh
i (hi) = T hi −Chi (hi), (34)

where Chi (hi) represents the total cost of the hospital, defined as:

Chi (hi) =pi

[
Ch
(
ahi
)

+ ahi

]
+
∑
j∈M

pij

[
bhij + ehij +R

(
ehij, e

s
ij

) (
Ch
(
ahi
)

+ ahi + bhij
)]

(35)

and, as in §3, ahi , bhij, and ehij represent the effort levels of hospital i for cost reduction, coordination,

and readmission reduction, respectively. Similarly, the objective of PAC provider j is given by:

Πs
j (s) = T sj −Csj (sj), (36)

where Csj (sj) represents the total cost of the PAC provider, defined as:

Csj (sj) =
∑
i∈N

pij

[
esij +

(
1 +R

(
ehij, e

s
ij

)) (
Cs
(
bhij, b

s
ij

)
+ bsij

)]
(37)

1 Without loss of generality and, as in our original model, we assume that hospital i and type-s PAC provider j choose
first-best effort levels when psij = 0; see the last paragraph of §3 for details.
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and, as in §3, bsij and esij represent the effort levels of PAC provider j for cost reduction and

readmission reduction, respectively. The main difference between (1) and (35) is that we use(
Ch (ahi ) + ahi + bhij

)
to capture the total cost of readmitted patients instead of ξh. Similarly,

Cs
(
bhij, b

s
ij

)
+ bsij replaces ξs in (3) to obtain (37).

To update the proposed payment model to account for the cost of readmitted patients, the

payment amount to hospital i is determined by:

T hi = pi

[(
1 + R̄h

i

) (
C̄h
i + āhi + b̄hi

)
+ ēhi

]
︸ ︷︷ ︸

Cost of care

+
∑
j∈M

pij

[(
1 + R̄h

i

) (
C̄sh
i + b̄sj

)
−
(
1 +R(ehij, e

s
ij)
) (
Cs
(
bhij, b

s
ij

)
+ bsij

)]
︸ ︷︷ ︸

Outcome-based adjustment

, (38)

The term C̄h
i + āhi + b̄hi in the first component (“Cost of care”) above is the payment to cover the

cost of treatment for readmitted patients in the hospital and the outcome-based payment reflects

the PAC expected cost of treating readmitted patients. Similar to the difference between objective

functions in this section and those in §4 as explained above (see (1) and (35)), the main difference

in the current payment amount is that the cost of treatment for readmitted patients (ξh and ξs)

in (14) are replaced by the corresponding costs in the current model in (38). Similarly, for PAC

providers, we modify the payment as follows

T sj =
∑
i∈N

pij

[(
1 + R̄s

j

) (
C̄s
j + b̄sj

)
+ ēsj

]
︸ ︷︷ ︸

Cost of care

+
∑
i∈N

pij

[(
1 + R̄s

j

) (
C̄h
i + āhi + b̄hi

)
−
(
1 +R(ehij, e

s
ij)
) (
Ch(ahi ) + ahi + bhij

)]
︸ ︷︷ ︸

Outcome-based adjustment

, (39)

As for hospitals, C̄s
j + b̄sj in the first component covers the cost of treatment for readmitted patients

in PAC providers and the outcome-based payment is based on the cost of treating readmitted

patients in a hospital, whereas in (18) these costs are captured by ξh for hospitals and ξs for PAC

providers.

The objective of the regulator remains the same as in (5), where Chi and Csj are defined as in

(35) and (37), respectively, for all i ∈ N and j ∈M. Under the assumption that the regulator’s

objective has unique optimal actions (denoted again by (a∗h, b
∗
h, e
∗
h) for hospitals and by (b∗s, e

∗
s) for

PAC providers) and assuming these actions satisfy FOCs, we show that the payment scheme leads

to first-best efforts.

Proposition 2. If the regulator uses (38) to reimburse hospitals and (39) to reimburse PAC

providers, then the unique Nash equilibrium is for each each hospital i∈N and PAC provider j ∈M
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to pick first-best actions ahi = a∗h, b
h
ij = b∗h, e

h
ij = e∗h, and bsij = b∗s, e

s
ij = e∗s, respectively. In addition,

all providers break even in this equilibrium.

Moreover, our model can be extended to accommodate scenarios where the cost of readmitted

patients deviates from that of index admissions, and where patients may need multiple readmis-

sions, as discussed in §5.3 of Arifoğlu et al. (2021).

5.3. Uniform efforts

In our original model in §4, we assume that each hospital exerts a different PAC provider dependent

effort, see term bhij there, to reduce PAC treatment costs with each PAC provider (vis-a-vis, we

assumed PAC providers make hospital-dependent efforts, see term bsij there). However, some invest-

ments, such as installing an integrated IT system, could be considered fixed costs that impact the

collaboration of a hospital with all PAC providers who are willing to participate in cost-reduction

efforts.

To model the impact of uniform (non-PAC/hospital-dependent) efforts, assume that each hospital

makes an effort Hi ∈ [0,Γ], i ∈ N , and each PAC provider makes an effort Fj ∈ [0,Γ], j ∈M, to

reduce PAC treatment costs. Additionally, assume that the cost of PAC treatment Cs : [0,Γ]×

[0,Γ]→R+ is a function of hospital’s effort Hi and PAC provider’s effort Fj. All other components

of the model remain identical to those introduced in §3.

In this case, the objective of hospital i is

Πh
i (hi) = T hi −Chi (hi), (40)

where Chi (hi) represents the total cost of the hospital, defined as:

Chi (hi) =pi
[
Ch(ahi ) + ahi +Hi

]
+
∑
j∈M

pij
[
R(ehij, e

s
ij)ξ

h + ehij
]
. (41)

Similarly, the objective of PAC provider j is

Πs
j (s) = T sj −Csj (sj), (42)

where Csj (sj) represents the total cost of the PAC provider, defined as:

Csj (sj) =p̃jFj +
∑
i∈N

pij

[
Cs(Hi,Fj) +R(ehij, e

s
ij)ξ

s + esij

]
. (43)

The main difference between our original model (1) and (40) is that now we use Hi to capture the

total cost of hospital i’s effort to reduce PAC treatment cost instead of bhij in (1). Similarly, we use

Fj in (42) to capture the effort cost of PAC j instead of bsij in (3).
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To incorporate this change into the payment model, we introduce average efforts H̄i and F̄j as

benchmarks. Let

H̄i =

∑
k∈Ni

pkHk

1− pi
, (44)

denote the average PAC treatment cost reduction effort of all hospitals, excluding hospital i and

F̄j =

∑
k∈Mj

p̃kFk

1− p̃j
, (45)

denote the average PAC treatment cost reduction effort of all the PAC providers, excluding provider

j. The modified payment model for hospitals and PAC providers is as follows:

T hi = pi

[
C̄h
i + āhi + H̄i + ēhi + R̄h

i ξ
h
]

+
∑
j∈M

pij
[(
C̄sh
i −Cs(Hi,Fj)

)
+
(
R̄h
i −R(ehij, e

s
ij)
)
ξs
]
, (46)

T sj =
∑
i∈N

pij

[
C̄s
j + F̄j + ēsj + R̄jξ

s
]

+
∑
i∈N

pij
(
R̄j −R(ehij, e

s
ij)
)
ξh, (47)

where benchmarks H̄i and F̄j are defined as in (44) and (45), respectively, and other benchmark

parameters (i.e., āhi , ē
h
i , C̄

sh
i , R̄

h
i , C̄

s
j , R̄j, ē

s
j) are defined as in (15)–(17).

The payment model in this case is similar to that in §4, see (14) and (18), with the only difference

being the way hospitals and PAC providers are compensated for their cost reduction efforts. In

(14) hospital i receives pib̄
h
i to recoup the cost of their effort to reduce PAC costs (since it is

assumed to be variable cost there), whereas in (46) they receive piH̄i. For PAC providers, they

receive
∑

i∈N pij b̄
s
j for their effort in (18) which becomes

∑
i∈N pijF̄j in (47).

The objective of the regulator in this case is given by (5), where Chi and Csj are defined as in (41)

and (43), respectively, for each i ∈ N and j ∈M. Assuming that the regulator’s objective has a

unique optimal solution and that the optimal actions satisfy the FOCs, we find that the first-best

actions for hospitals are identical and denoted by (a∗h,H
∗, e∗h) for each hospital, while the first-best

actions for PAC providers are identical and denoted by (F ∗, e∗s) for each PAC provider. We next

demonstrate that this payment scheme induces first-best efforts.

Proposition 3. If the regulator uses (46) to reimburse hospitals and (47) to reimburse PAC

providers, then the unique Nash equilibrium is for each each hospital i ∈ N and PAC provider

j ∈M to pick first-best actions ahi = a∗h,Hi = H∗, ehij = e∗h, and Fj = F ∗, esij = e∗s, respectively. In

addition, all providers break even in this equilibrium.

The robustness of our results considering both variable and fixed efforts to reduce the readmis-

sions can be demonstrated in a similar manner.
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5.4. Non-identical providers

To implement coordinating reimbursement schemes, it was previously assumed that the regulator

could identify identical providers or at least pairs of identical providers. However, in real-world

scenarios, providers often exhibit heterogeneity across various dimensions, such as geographical

location and demographic factors. Nevertheless, if these factors can be observed by the regulator

and are exogenous to the providers, then the proposed scheme can be modified to accommodate this

heterogeneity. This approach follows the framework outlined in Shleifer (1985), Savva et al. (2019),

and Arifoğlu et al. (2021). In the following discussion, we illustrate this concept by considering

the case where each type of provider differs along one characteristic. However, it is important to

note that all the results can be generalized to incorporate multiple characteristics per provider, as

discussed in Shleifer (1985) and Savva et al. (2019).

To demonstrate, assume that the readmission probability R is a function of the efforts of the

hospital ehi , i∈N , and the PAC provider esj , j ∈M, (as in §4) as well as the observable exogenous

characteristics of the hospital βh and of the PAC provider βs. Therefore, the first-best outcomes

are dependent on the specific characteristics βh and βs, see (6)–(10)).

In this modified approach, instead of using average values, as shown in equations (12) and

(16), the regulator estimates R̄h
i and R̄s

j , for all i ∈ N and j ∈M. These estimates are obtained

through an estimation procedure, such as linear regression, which is based on observed readmission

probabilities and the corresponding observable characteristics of hospitals βhi , i∈N , and the PAC

provider characteristics βsj , j ∈M. By following the proof provided for Theorem 1, it can be shown

that all providers will take first-best actions under this revised scheme.

Moreover, if the estimation procedure accurately captures the true values, the targets set at the

estimated R̄h
i ’s and R̄s

j ’s will result in all providers achieving a break-even outcome. This implies

that the reimbursement scheme aligns with the actual costs incurred by providers, ensuring a fair

and balanced outcome.

6. Equilibrium under a CJR-type payment model

We have demonstrated that, when both hospitals and PAC providers are held accountable for

the costs and quality of the entire episode of care, it elicits socially optimal actions from both

entities. However, in the case of the CJR program, only hospitals are directly held financially

accountable, while gainsharing agreements are allowed between providers. It is crucial to examine

the implications of this arrangement on providers’ behavior.

Modeling the actions of hospitals and PAC providers under CJR and gainsharing agreements

presents challenges for two reasons. Firstly, while hospitals can share both the risk and reconcilia-

tion (i.e, performance-based) payments with PAC providers through gainsharing agreements, CMS
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has not provided clear guidelines on how to design such agreements. Consequently, the specific

agreement reached between a hospital and a PAC provider is likely to depend on their relative

bargaining power. Secondly, hospitals cannot mandate patients to seek care exclusively from their

preferred PAC providers, further complicating matters.

Although exploring the intricacies of this interaction between hospitals and PAC providers is

beyond the scope of this paper (see (Gupta et al. 2021, Ghamat et al. 2021)), we utilize a sim-

plified model to capture its essence. In this model, we assume that PAC providers bear only a

portion of the hospital treatment cost of readmitted patients, denoted by the parameter θ ∈ [0,1],

while the hospital assumes the remaining cost (1−θ). Additionally, we assume that PAC providers

are responsible for the entire PAC treatment cost of readmitted patients because they are sub-

ject to other outcome-based payment programs such as the Skilled Nursing Facility Value-Based

Purchasing program (see CMS (2023b)).

The payment amount received by PAC providers takes the following form:

T sj = p̃j

[
C̄s
j + b̄sj + ēsj + R̄s

jξ
s
]

+
∑
i∈N

pij

[
R̄s
j −R(ehij, e

s
ij)
]
θξh. (48)

This payment model aligns with our proposed payment model for PACs (see (18)) when θ= 1. As

for hospitals, the payment amount is as follows:

T hi = pi

[
C̄h
i + āhi + b̄hi + ēhi + R̄h

i ξ
h
]

+
∑
j∈M

pij

[
C̄sh
i −Cs(bhij, bsij) +

(
R̄h
i −R(ehij, e

s
ij)
)

((1− θ)ξh + ξs)
]
. (49)

The key distinction between this payment model and our proposed payment model for PAC

providers (see (14)) is that the hospital is held responsible for the excessive readmission cost asso-

ciated with providing acute care, which the PAC provider is no longer accountable for. When θ= 1,

the payment amount in equation (49) becomes identical to (14) in our proposed payment model.

We next establish the equilibrium under the payment model (48)–(49); we relegate the technical

details to Appendix D.

Proposition 4. If the regulator uses (48) to reimburse hospitals and (49) to reimburse PAC

providers, then the unique Nash equilibrium is for each hospital i ∈ N to pick ahi = a∗h, and for

each hospital i ∈ N and PAC provider j ∈ M such that pij > 0, to pick bhij = b∗h, e
h
ij = ẽh and

bsij = b∗s, e
s
ij = ẽs, respectively. In addition, if ∂2R(eh, es)/∂eh∂es > 0 for all eh, es ∈ [0,Γ], we have

ẽh > e∗h and ẽs < e∗s for any θ ∈ [0,1).

Assumption ∂2R(eh, es)/∂eh∂es > 0 implies that hospital investment is less effective at reducing

the readmissions at higher PAC provider investments. With this condition, Proposition 4 estab-

lishes that hospitals invest more, while the PAC providers invest less, in reducing readmissions
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relative to their respective first-best levels. This is intuitive considering Theorem 1 because now the

hospitals bear part of the PAC providers reimbursement adjustment for readmission performance

in the hospital setting. As such, hospitals have stronger incentives to reduce readmissions and PAC

providers have reduced incentives.

This result demonstrates that the CJR program incentivizes hospitals and PAC providers to

make efforts to coordinate, which was not present under separate Diagnosis-Related Group (DRG)

based payments, see Remark 3. Furthermore, because this payment model is identical to our pro-

posed payment model when θ = 1, it can potentially lead to first-best effort levels with carefully

designed gainsharing agreements between hospitals and PAC providers. However, this presents sig-

nificant challenges as the hospital may lack the resources or information on PAC provider costs to

thoroughly assess the impact of a gainsharing agreement. Additionally, similar gainsharing agree-

ments would need to be established with all PAC providers, as hospitals cannot mandate which

PAC provider a patient should choose. Our proposed payment model eliminates the reliance on

such agreements, offering a promising alternative.

7. Conclusions

Payment models in healthcare play a vital role in incentivizing healthcare providers to deliver high-

quality and cost-effective care. DRG- and performance-based payment models have demonstrated

particular effectiveness in eliciting efficient healthcare delivery. While these models are well suited

for medical conditions managed by a single entity, challenges arise when dealing with certain

conditions, such as joint replacement, which involve multiple independent providers operating in

different settings and decentralized treatment decisions. In response to these challenges, bundled

payment models have emerged to encompass the costs and services associated with an entire episode

of care, offering a more holistic approach to payment.

However, effectively dividing bundled payments among independent providers to ensure compa-

rable incentives as in single-entity settings remains uncertain and requires further research. The

CJR payment model implemented by CMS highlights these challenges, as it primarily holds hospi-

tals accountable for the entire joint replacement episode while allowing them to form gainsharing

agreements with other providers to improve healthcare delivery collaboratively. However, the design

of these gainsharing agreements lacks a consensus and poses implementation issues.

Our contributions: In this paper, we propose an innovative payment model and show that

it elicits socially optimal actions from independent healthcare entities responsible for different

parts of a specific condition’s episode of care. Our proposed payment model utilizes benchmarks

derived from the performance of all providers involved and incentivizes them to collaboratively

enhance the quality of care in a cost-effective manner by comparing their joint performance to

these benchmarks.
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The appeal of our method lies in its simplicity and efficiency. Firstly, it eliminates the need

for regulators to accurately estimate the cost structures or underlying cost functions of hospitals

and PAC providers. This streamlines the implementation process and reduces administrative bur-

dens. Secondly, the payment model is independent of the network structure of hospitals and PAC

providers, as well as the proportion of patients transferred between them. Consequently, it can

be seamlessly used in healthcare environments of varying structures and for different conditions

without requiring modifications. An additional advantage of our proposed payment model is its

elimination of the reliance on gainsharing agreements, which can be challenging to design and

implement in practical settings. By removing this complexity, our model becomes more straight-

forward and feasible for adoption.

Overall, our novel payment model presents a promising approach to drive collaboration among

healthcare providers and improve the overall quality of care while maintaining cost effectiveness.

The model’s adaptability and simplicity make it a feasible and attractive option for implementation

in a wide range of healthcare settings, appealing to providers and regulators alike.

Potential implementation issues: Our payment model, while not burdening the regulator

with additional informational requirements beyond current models, does present the potential for

increased risk exposure for PAC providers compared to the CJR payment model. This is primarily

due to our model holding PAC providers financially responsible for excess acute-care costs related to

readmitted patients. However, we believe that CMS (or other regulators) can address and mitigate

these concerns through several strategies.

Firstly, it is essential to recognize that gainsharing agreements, an alternative approach as

described above, also entail increased risk for PAC providers, making our proposed payment model

not inherently unique in this aspect.

Secondly, many PAC providers, including home healthcare providers, currently enjoy healthy

profit margins from treating Medicare patients (MedPAC 2022), suggesting that there is room to

increase their share in penalties and rewards without compromising their financial viability.

Thirdly, a cautious and gradual implementation approach can be taken, initially capping the

share of PAC providers in imposed rewards and penalties and progressively increasing these caps

over several years. This allows PAC providers sufficient time to implement more effective collabo-

ration tools with acute-care providers, reducing risks and enhancing coordination. However, in the

long run, incentive payments should not be capped, as caps could impact the effectiveness of the

model, as discussed in Arifoğlu et al. (2021).

By carefully considering these factors and implementing the payment model thoughtfully, CMS

can address the risk concerns for PAC providers while fostering collaboration and incentivizing

improved patient outcomes across independent providers.
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Limitations: Our study has several limitations that warrant consideration. Firstly, a more

detailed and nuanced model could provide a better understanding of the specific costs incurred by

each party involved in improving collaborative care. While we have focused on two simplified cases

(variable or fixed costs), a more comprehensive understanding of cost structures would enhance the

implementation of our suggested payment schemes. For example, by requiring healthcare providers

to adopt electronic medical records software with specific capabilities, similar to the effective facil-

itation of performance-based payment models by the Electronic Health Record Incentive programs

(CMS 2023a), and then using appropriate reimbursement models, the proposed payment models

could be further improved in practice.

Additionally, we have assumed that patient volume is sufficiently high to keep the variance

of the performance estimates, such as readmission probability, low. However, smaller institutions

may face higher variability, impacting the effectiveness of the payment model. For such providers,

aggregating data over a longer time period or exploring alternative payment models might be more

appropriate.

Moreover, our study employs readmissions as a proxy for a quality measure, while CJR considers

a richer set of quality measures. These measures can potentially influence patient choice, and the

presence of multiple PAC providers in a region offers patients options for selection. To address these

complexities, a more detailed analysis (similar to those in Savva et al. (2019) and Arifoğlu et al.

(2021)) would shed further light on the impact of quality outcomes on patient decision-making and

how payment models can be extended to accommodate these factors.
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Appendix

A. Conditions for unique socially optimal actions determined by FOCs

In this section we prove that the regulator has unique optimal actions that can be determined by

FOCs (6)–(10) under certain conditions.

Assumption A-1. (i) Acute care cost is strictly decreasing and strictly convex in hospital

investment, i.e., (Ch(ah))′ < 0 and (Ch(ah))′′ > 0, and the following boundary conditions hold.

lim
ah↓0

(Ch(ah))′ <−1< lim
ah↑Γ

(Ch(ah))′.

(ii) PAC cost is decreasing and jointly strictly convex in hospital and SNF investments, i.e.,

∂Cs(bh, bs)

∂bi
< 0 and

∂2Cs(bh, bs)

∂(bi)2
> 0 for i= h, s,

∂2Cs(bh, bs)

∂(bh)2

∂2Cs(bh, bs)

∂(bs)2
>

(
∂2Cs(bh, bs)

∂bh∂bs

)2

,

and the following boundary conditions hold.

lim
bh↓0

∂Cs(bh, bs)

∂bh
<−1< lim

bh↑Γ

∂Cs(bh, bs)

∂bh
for all bs ∈ [0,Γ],

lim
bs↓0

∂Cs(bh, bs)

∂bs
<−1< lim

bs↑Γ

∂Cs(bh, bs)

∂bs
for all bh ∈ [0,Γ].

(iii) Readmission probability is strictly decreasing and jointly strictly convex in hospital and SNF

investments, i.e.,

∂R(eh, es)

∂ei
< 0 and

∂2R(eh, es)

∂(ei)2
> 0 for i= h, s,

∂2R(eh, es)

∂(eh)2

∂2R(eh, es)

∂(es)2
>

(
∂2R(eh, es)

∂eh∂es

)2

,

and the following boundary conditions hold.

lim
eh↓0

∂R(eh, es)

∂eh
<− 1

ξh + ξs
< lim

eh↑Γ

∂R(eh, es)

∂eh
for all es ∈ [0,Γ], (A-1)

lim
es↓0

∂R(eh, es)

∂es
<− 1

ξh + ξs
< lim

es↑Γ

∂R(eh, es)

∂es
for all eh ∈ [0,Γ]. (A-2)

Under these assumptions, the socially optimal (or first-best) investments, denoted by

(a∗h, b
∗
h, b
∗
s, e
∗
h, e
∗
s), are unique and can be characterized using the FOCs.

Lemma A-1 (First-best benchmark). The regulator’s objective in (5) has a unique maxi-

mizer in which ahi = a∗h for each hospital i∈N , and for each PAC provider j ∈M such that pij > 0,

bhij = b∗h, b
s
ij = b∗s, e

h
ij = e∗h, and esij = e∗s, where a∗h, b

∗
h, b
∗
s, e
∗
h, e
∗
s ∈ (0,Γ) satisfy FOCs (6)–(10).

Proof of Lemma A-1. Let ~h = {hi, i∈N} and ~s = {sj, j ∈M} denote the actions of all hospitals

and all PAC providers, respectively. Thus, total welfare W is a function of ~h and ~s, and by (2),

(4), and (5), is given by

W = υ−
∑
i∈N

∑
j∈M

pij

[
Ch(ahi ) + ahi +Cs(bhij, b

s
ij) + bhij + bsij +R(ehij, e

s
ij)(ξ

h + ξs) + ehij + esij

]
. (A-3)
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For notational simplicity, we will drop the arguments when it is clear from the context.

First, we characterize a∗h, i.e., hospital’s first-best effort to reduce acute care cost. Taking the

first and second partial derivatives of W in (A-3) with respect to ahi , we have

∂W

∂ahi
=−pi

[
(Ch(ahi ))′+ 1

]
,

∂2W

∂(ahi )2
=−pi(Ch(ahi ))′′.

By Assumption A-1(i), we have ∂2W/∂(ahi )2 < 0, limahi ↓0
∂W/∂ahi > 0, and limahi ↑Γ

∂W/∂ahi < 0.

Thus, there exists a unique a∗h ∈ (0,Γ) that satisfies FOC (6) and

a∗h = arg max
ahi ∈[0,Γ]

W (~h,~s) for each i∈N and any fixed (~h,~s) \ {ahi } (A-4)

Second, we characterize (b∗h, b
∗
s), i.e., first-best efforts made by the hospital and PAC provider

to reduce PAC cost. When pij = 0, W is independent of bhij and bsij. Without loss of generality

(WLOG) we assume that first-best efforts are taken (see the last paragraph of §3 for details), i.e.,

bhij = b∗h and bsij = b∗s, where b∗h and b∗s are given by (7)-(8). When pij > 0, we take the first and

second partial derivatives of W in (A-3) with respect to bsij and obtain

∂W

∂bsij
=−pij

[
∂Cs(bhij, b

s
ij)

∂bs
+ 1

]
,

∂2W

∂(bsij)
2

=−pij
∂2Cs(bhij, b

s
ij)

∂(bs)2
.

For any fixed bhij ∈ [0,Γ], we have ∂2W/∂(bsij)
2 < 0, limbsij↓0 ∂W/∂b

s
ij > 0, and limbsij↑Γ ∂W/∂b

s
ij < 0

by Assumption A-1(ii). Hence there exists a unique g(bhij)∈ (0,Γ) that satisfies

∂Cs(bhij, g(bhij))

∂bs
+ 1 = 0. (A-5)

Applying the Implicit Function Theorem to (A-5), we obtain

g′(bhij) =−
∂2Cs(bhij, g(bhij))/∂b

h∂bs

∂2Cs(bhij, g(bhij))/∂(bs)2
. (A-6)

Since W is concave in bsij by Assumption A-1(ii), we have

W |bsij=g(bhij) = sup
bsij∈[0,Γ]

W.

Next we show that for any given (~h,~s) \ {bhij, bsij}, there exists a unique b∗h ∈ (0,Γ) that satisfies

W |{bhij=b∗
h
,bsij=g(b∗

h
)} = sup

bhij∈[0,Γ]

W |bsij=g(bhij) .
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Let W (bhij) = W |bsij=g(bhij) for notational simplicity. Then,

dW (bhij)

dbhij
=− pij

[
∂Cs(bhij, g(bhij))

∂bh
+
∂Cs(bhij, g(bhij))

∂bs
g′(bhij) + 1 + g′(bhij)

]
=− pij

[
∂Cs(bhij, g(bhij))

∂bh
+ 1

]
, (A-7)

where the second equality follows from (A-5).

d2W (bhij)

d(bhij)
2

=− pij
[
∂2Cs(bhij, g(bhij))

∂bh∂bs
g′(bhij) +

∂2Cs(bhij, g(bhij))

∂(bh)2

]

= pij


(
∂2Cs(bhij ,g(b

h
ij))

∂bh∂bs

)2

∂2Cs(bhij ,g(b
h
ij))

∂(bs)2

−
∂2Cs(bhij, g(bhij))

∂(bh)2

< 0,

where the second equality follows by plugging in g′(bhij) from (A-6), and the inequality follows

from Assumption A-1(ii). Moreover, we have limbhij↓0
dW (bhij)/db

h
ij > 0 and limbhij↑Γ

dW (bhij)/db
h
ij <

0 by Assumption A-1(ii). Thus, W (bhij) has a unique maximizer b∗h ∈ (0,Γ) satisfying the FOC

dW (b∗h)/dbhij = 0, which by (A-7) reduces to

∂Cs(b∗h, g(b∗h))

∂bh
+ 1 = 0. (A-8)

It then yields (7) by defining

b∗s = g(b∗h)∈ (0,Γ), (A-9)

and (8) follows by substituting bhij = b∗h into (A-5).

Third, we characterize (e∗h, e
∗
s), i.e., first-best effort made by the hospital and PAC provider to

reduce the readmission probability. When pij = 0, W is independent of ehij and esij. WLOG we

assume that first-best efforts are taken (see the last paragraph of §3 for details), i.e., ehij = e∗h and

esij = e∗s, where e∗h and e∗s are given by (9)-(10). When pij > 0, we take the first and second partial

derivatives of W in (A-3) with respect to esij and obtain

∂W

∂esij
=−pij

[
∂R(ehij, e

s
ij)

∂es
(ξh + ξs) + 1

]
,

∂2W

∂(esij)
2

=−pij
∂2R(ehij, e

s
ij)

∂(es)2
(ξh + ξs).

For any fixed ehij ∈ [0,Γ], we have ∂2W/∂(esij)
2 < 0, limesij↓0 ∂W/∂e

s
ij > 0, and limes↑Γ ∂W/∂e

s
ij < 0

by Assumption A-1(iii). Hence there exists a unique z(ehij)∈ (0,Γ) that satisfies

∂R(ehij, z(e
h
ij))

∂es
(ξh + ξs) + 1 = 0. (A-10)
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Applying the Implicit Function Theorem, we obtain

z′(ehij) =−
∂2R(ehij, z(e

h
ij))/∂e

h∂es

∂2R(ehij, z(e
h
ij))/∂(es)2

. (A-11)

Since W is concave in esij by Assumption A-1(iii), we have

W |esij=z(ehij) = sup
esij∈[0,Γ]

W.

Next we show that for any given (~h,~s) \ {ehij, esij}, there exists a unique e∗h ∈ (0,Γ) that satisfies

W |{ehij=e∗
h
,esij=e∗s} = sup

ehij∈[0,Γ]

W |esij=z(ehij) .

Let W (ehij) = W |esij=z(ehij) for notational simplicity. Then,

dW (ehij)

dehij
=−pij

[
∂R(ehij, z(e

h
ij))

∂eh
(ξh + ξs) +

∂R(ehij, z(e
h
ij))

∂es
z′(ehij)(ξ

h + ξs) + 1 + z′(ehij)

]
=−pij

[
∂R(ehij, z(e

h
ij))

∂eh
(ξh + ξs) + 1

]
,

where the second equality follows from (A-10).

d2W (ehij)

d(ehij)
2

=− pij
[
∂2R(ehij, z(e

h
ij))

∂eh∂es
z′(ehij) +

∂2R(ehij, z(e
h
ij))

∂(eh)2

]
(ξh + ξs)

=pij


(
∂2R(ehij ,z(e

h
ij))

∂eh∂es

)2

∂2R(ehij ,z(e
h
ij))

∂(es)2

−
∂2R(ehij, z(e

h
ij))

∂(eh)2

 (ξh + ξs)< 0,

where the second equality follows by plugging in z′(ehij) from (A-11), and the inequality follows from

Assumption A-1(iii). Moreover, we have limehij↓0
dW (ehij)/de

h
ij > 0 and limehij↑Γ

dW (ehij)/de
h
ij < 0 by

Assumption A-1(iii). Thus there exists a unique e∗h ∈ (0,Γ) that satisfies (9) with e∗s = z(e∗h)∈ (0,Γ);

(10) follows by substituting ehij = e∗h into (A-10). �

B. Proof of Theorem 1

The proof is based on the observation that under the proposed payment scheme, the difference

between a hospital’s objective and the regulator’s objective is independent of that hospital’s actions,

and the difference between a PAC provider’s objective and the regulator’s objective is independent

of that PAC provider’s actions. More precisely, given the actions of all other hospitals and PAC

providers, by (1)-(4), (14), and (18), hospital i’s objective is

Πh
i (hi) =pi

[
C̄h
i + āhi −Ch(ahi )− ahi

]
+
∑
j∈M

pij
[
C̄sh
i −Cs(bhij, b

s
ij) + (R̄h

i −R(ehij, e
s
ij))(ξ

h + ξs) + b̄hi − bhij + ēhi − ehij
]
, (A-12)
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and PAC provider j’s objective is

Πs
j(sj) =

∑
i∈N

pij
[
C̄s
j −Cs(bhij, b

s
ij) + (R̄s

j −R(ehij, e
s
ij))(ξ

h + ξs) + b̄sj − bsij + ēsj − esij
]
. (A-13)

By (A-3), letting ~h = {hi, i ∈ N} and ~s = {sj, j ∈M} denote the actions of all hospitals and all

PAC providers, respectively, we have

∆h = Πh
i (hi)−W (~h, ~v) =pi

[
C̄h
i + āhi

]
+
∑
j∈M

pij
[
C̄sh
i + R̄h

i (ξh + ξs) + b̄hi + ēhi + bsij + esij
]
− v

+
∑
k∈Ni

∑
j∈M

pkj
[
Cs(bhkj, b

s
kj) +R(ehkj, e

s
kj)ξ

s + bskj + eskj
]

+
∑
k∈Ni

Chk (hk)

does not depend on hi, and

∆s = Πs
j(sj)−W (~h, ~v) =

∑
i∈N

{
pij
[
C̄s
j + R̄s

j(ξ
h + ξs) + b̄sj + ēsj + bhij + ehij

]
+ pi(C

h(ahi ) + ahi )
}
−v

+
∑
i∈N

∑
k∈Mj

pik
[
Cs(bhik, b

s
ik) +R(ehik, e

s
ik)(ξ

h + ξs) + bhik + bsik + ehik + esik
]

does not depend on sj. It then follows that hospital i’s problem

maximize
hi∈[0,Γ]2M+1

Πh
i (hi)

is equivalent to

maximize
hi∈[0,Γ]2M+1

W (hi|hk, sj, k ∈Ni, j ∈M) (A-14)

because the two objectives differ by ∆h which does not depend on the hospital’s decisions hi.

Similarly, PAC provider j’s problem, i.e.,

maximize
sj∈[0,Γ]2N

Πs
j(sj)

is equivalent to

maximize
sj∈[0,Γ]2N

W (sj|hi, sk, i∈N , k ∈Mj). (A-15)

because the two objectives differ by ∆s which does not depend on the PAC provider’s decisions sj.

By Lemma A-1, the regulator’s problem, i.e.,

maximize
hi∈[0,Γ]2M+1,sj∈[0,Γ]2N ,i∈N ,j∈M

W (hi, sj, i∈N , j ∈M), (A-16)

has a unique maximizer given by hi = h∗ for each hospital i∈N and sj = s∗ for each PAC provider

j ∈M, where

h∗ = (a∗, b∗h, . . . , b
∗
h︸ ︷︷ ︸

M times

, e∗h, . . . , e
∗
h︸ ︷︷ ︸

M times

) and s∗ = (b∗s, . . . , b
∗
s︸ ︷︷ ︸

N times

, e∗s, . . . , e
∗
s︸ ︷︷ ︸

N times

)
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are the first-best actions for each hospital and each PAC provider, respectively. It then follows that

for each hospital i∈N ,

h∗ = arg max
hi∈[0,Γ]2M+1

W (hi|hk = h∗, sj = s∗, k ∈Ni, j ∈M). (A-17)

Suppose not, then there exists h′ ∈ [0,Γ]2M+1 such that

W (h′|hk = h∗, sj = s∗, k ∈Ni, j ∈M)>W (h∗|hk = h∗, sj = s∗, k ∈Ni, j ∈M),

or equivalently

W (hi = h′,hk = h∗, sj = s∗, k ∈Ni, j ∈M)>W (hi = h∗, sj = s∗, i∈N , j ∈M).

This contradicts Lemma A-1 proving that W (hi, sj, i ∈ N , j ∈M) has a unique maximizer given

by hi = h∗ for each hospital i ∈ N and sj = s∗ for each PAC provider j ∈M. Similarly, for each

PAC provider j ∈M, we have

s∗ = arg max
sj∈[0,Γ]2N

W (sj|hi = h∗, sk = s∗, i∈N , k ∈Mj), (A-18)

i.e., each PAC provider j’s problem given by (A-15) has a unique solution sj = s∗, when other

hospitals and PAC providers choose first-best actions. By (A-17), each hospital i’s problem given

by (A-14) has a unique solution hi = h∗, when other hospitals and PAC providers choose first-

best actions. Thus, no hospital or PAC provider can profitably deviate from the first-best action

profile, i.e., hi = h∗ for each hospital i∈N and sj = s∗ for each PAC provider j ∈M; thus it is an

equilibrium. Plugging the first best actions in (A-12)-(A-13) one can verify that all hospitals and

PAC providers break even in this equilibrium.

Now we prove by contradiction that there exist no other equilibria other than the first best.

Suppose there exists another equilibrium in which the actions of hospital i∈N and PAC provider

j ∈M are

ȟi = (ǎhi , b̌
h
i1, . . . , b̌

h
iM , ě

h
i1, . . . , ě

h
iM) and šj = (b̌s1j, . . . , b̌

s
Nj, ě

s
1j, . . . , ě

s
Nj).

Thus, in this proposed equilibrium, hi = ȟi is a solution for each hospital i’s problem (A-14), and

sj = šj is a solution for each PAC provider j’s problem (A-15), i.e.,

ȟi ∈ arg max
hi∈[0,Γ]2M+1

W (hi|ȟk, šj, k ∈Ni, j ∈M), (A-19)

šj ∈ arg max
sj∈[0,Γ]2N

W (sj|ȟi, šk, i∈N , k ∈Mj). (A-20)

By (A-4), we have ǎhi = a∗h for each hospital i∈N . Below we prove that

b̌hij = b∗h and b̌sij = b∗s, for each i∈N and j ∈M. (A-21)
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Since (A-21) is assumed to hold when pij = 0 WLOG (see the last paragraph of §3 for details), it

suffices to consider the case of pij > 0. By (A-19)-(A-20), we have

b̌hij ∈ arg max
bhij∈[0,Γ]

W (bhij|ǎhi , ěhij, ȟk, šj, k ∈Ni, j ∈M) = arg min
bhij∈[0,Γ]

pij
[
Cs(bhij, b̌

s
ij) + bhij + b̌sij

]
, (A-22)

b̌sij ∈ arg max
bsij∈[0,Γ]

W (bsij|ěsij, ȟi, šk, i∈N , k ∈Mj) = arg min
bsij∈[0,Γ]

pij
[
Cs(b̌hij, b

s
ij) + b̌hij + bsij

]
, (A-23)

where the equalities follow by plugging in the expression of W from (A-3). In the proof of Lemma A-

1, we have solved for the optimization problem in (A-23) and obtained a unique best response

b̌sij = g(b̌hij)∈ (0,Γ), where g(·) is given by (A-5). Now we solve the optimization problem in (A-22).

For any fixed b̌sij ∈ [0,Γ], we have

∂2
[
Cs(bhij, b̌

s
ij) + bhij + b̌sij

]
∂(bhij)

2
=−

∂2Cs(bhij, b̌
s
ij)

∂(bh)2
< 0,

lim
bhij↓0

∂
[
Cs(bhij, b̌

s
ij) + bhij + b̌sij

]
∂bhij

= lim
bhij↓0

[
∂Cs(bhij, b̌

s
ij)

∂bh
+ 1

]
> 0,

lim
bhij↑Γ

∂
[
Cs(bhij, b̌

s
ij) + bhij + b̌sij

]
∂bhij

= lim
bhij↑Γ

[
∂Cs(bhij, b̌

s
ij)

∂bh
+ 1

]
< 0,

where all inequalities follow from Assumption A-1(ii). Thus, the optimization problem in (A-22)

has a unique solution b̌hij and is determined by the FOC, i.e., ∂Cs(b̌hij, b̌
s
ij)/∂b

h + 1 = 0. Plugging in

b̌sij = g(b̌hij), we obtain

∂Cs(b̌hij, g(b̌hij))

∂bh
+ 1 = 0. (A-24)

In the proof of Lemma A-1, we have proven that (A-24) has a unique solution given by b∗h; see

(A-8). Thus, for all hospital i ∈ N and PAC provider j ∈M, we have b̌hij = b∗h and b̌sij = g(b̌hij) =

g(b∗h) = b∗s, where the last equality follows from (A-9). Following this procedure, one can verify that

ěhij = e∗h and ěsij = e∗s for each hospital i∈N and PAC provider j ∈M. It then follows that ȟi = h∗

and šj = s∗ for each hospital i ∈N and PAC provider j ∈M, contradicting our assumption that

(ȟi, šj, i∈N , j ∈M) is different from first best. �

C. Proof of the results in §5
C.1. Endogenous discharge decisions

We continue to adopt Assumption A-1, with functions Cs and R adapted into sets of functions Cs

and Rs for all s ∈ S, and Assumption A-1(iii) applied to Rs for any given ~ρ. These assumptions

ensure that for any given ~ρ the first-best efforts are uniquely determined by the FOCs of total

welfare; see the proof of Lemma A-2 below. We will also prove that the total welfare with first-best

efforts (as functions of ~ρ) plugged in achieves maximum at some discharge decisions which are the
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same for all hospitals. Notably, we do not impose additional conditions to ensure unique first-best

discharge decisions and will prove in Proposition 1 that our payment scheme restores first best

provided that hospitals follow the same break-even rule as the regulator when multiple discharge

decisions are optimal.

Lemma A-2 (First-best benchmark). The regulator’s objective in (26) has a maximizer in

which ahi = a∗h and ~ρi = ~ρ∗ for each hospital i ∈N , and for each type-s ∈ S PAC provider j ∈Ms

such that psij > 0, bh,sij = b∗h,s, b
s
ij = b∗s, e

h,s
ij = e∗h,s, and esij = e∗s, where a∗h, b

∗
h,s, e

∗
h,s, b

∗
s, e
∗
s ∈ (0,Γ) are

unique and satisfy the following FOCs:

(Ch(a∗h))′+ 1 = 0, (A-25)

∂Cs(b∗h,s, b
∗
s)

∂bh
+ 1 = 0, (A-26)

∂Cs(b∗h,s, b
∗
s)

∂bs
+ 1 = 0, (A-27)

∂Rs(e∗h,s, e
∗
s, ~ρ
∗)

∂eh
(ξh + ξs) + 1 = 0, (A-28)

∂Rs(e∗h,s, e
∗
s, ~ρ
∗)

∂es
(ξh + ξs) + 1 = 0. (A-29)

Proof of Lemma A-2: Let ~h = {hi, i ∈N} and ~v = {vj, j ∈Ms, s ∈ S} denote the actions of all

hospitals and all PAC providers, respectively. Thus, total welfare W is a function of ~h and ~v and

by (23), (25), and (26), is given by

W =υ−Ch(ahi )− ahi

−
∑
i∈N

∑
s∈S

∑
j∈Ms

psij
[
Cs(bh,sij , b

s
ij) + bh,sij + bsij +Rs(eh,sij , e

s
ij, ~ρi)(ξ

h + ξs) + eh,sij + esij
]
. (A-30)

For notational simplicity, we will drop the arguments when it is clear from the context. It is

straightforward to verify that (A-4) holds and thus W is maximized at ahi = a∗h for all i ∈ N ;

the proof is identical to that in Lemma A-1. In addition, for any fixed ~ρi, i ∈ N , by (A-30) we

have: (i) when psij = 0, W is independent of hospital i’s efforts (bh,sij , e
h,s
ij ) and PAC provider j’s

efforts (bsij, e
s
ij). WLOG we assume that first-best efforts are taken (see the last paragraph of §3 for

details), i.e., bh,sij = b∗h,s, e
h,s
ij = ẽh,s(~ρi), b

s
ij = b∗s, e

s
ij = ẽs(~ρi) as determined by (A-26), (A-27), (A-31),

and (A-32), respectively; (ii) when psij > 0, the optimal efforts are characterized by b∗h,s, b
∗
s defined

as in (A-26)-(A-27), and ẽh,s(~ρi), ẽs(~ρi) defined as follows (this proof is omitted as it is similar to

that in Lemma A-1):

∂Rs(ẽh,s(~ρi), ẽs(~ρi), ~ρi)

∂eh
(ξh + ξs) + 1 = 0, (A-31)

∂Rs(ẽh,s(~ρi), ẽs(~ρi), ~ρi)

∂es
(ξh + ξs) + 1 = 0. (A-32)
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Plugging in (A-30) and noting that
∑

j∈Ms psij/pi = ρsi , we obtain

W =υ−Ch(a∗h)− a∗h

−
∑
i∈N

∑
s∈S

piρ
s
i

[
Cs(b∗h,s, b

∗
s) + b∗h,s + b∗s +Rs(ẽh,s(~ρi), ẽs(~ρi), ~ρi)(ξ

h + ξs) + ẽh,s(~ρi) + ẽs(~ρi)
]
.

The welfare-maximizing patient discharge problem can thus be expressed as, for each i∈N ,

minimize
~ρi

∑
s∈S

ρsi
[
Cs(b∗h,s, b

∗
s) + b∗h,s + b∗s +Rs(ẽh,s(~ρi), ẽs(~ρi), ~ρi)(ξ

h + ξs) + ẽh,s(~ρi) + ẽs(~ρi)
]

(A-33)

s.t. ~ρi ∈ [0,1]S,
∑
s∈S

ρsi = 1. (A-34)

Since ẽh,s(~ρi) and ẽs(~ρi) defined as in (A-31)-(A-32) are the unique unconstrained minimizer of

Rs(eh,s, es, ~ρi)(ξ
h + ξs) + eh,s + es, the minimum value Rs(ẽh,s(~ρi), ẽs(~ρi), ~ρi)(ξ

h + ξs) + ẽh,s(~ρi) +

ẽs(~ρi) is continuous in ~ρi; this establishes continuity of objective (A-33) in ~ρi. Since the constraint

set defined by (A-34) is compact, the minimization problem (A-33)-(A-34) has at least one solution.

Moreover, each solution is independent of hospital index i because it does not appear in the

objective function in (A-33) and the constraint set defined in (A-34). The proof is complete by

defining ~ρ∗ as the first best discharge decisions the regulator chooses for each hospital i∈N . �

Proof of Proposition 1: The proof is based on the observation that under the proposed payment

scheme, the difference between a hospital’s objective and the regulator’s objective is independent of

that hospital’s actions, and the difference between a PAC provider’s objective and the regulator’s

objective is independent of that PAC provider’s actions. More precisely, given the actions of all

other hospitals and PAC providers, by (22)-(23) and (28)-(33), hospital i’s objective is

Πh
i (hi) =pi

[
C̄h
i + āhi −Ch(ahi )− ahi

]
+ piR̂

h
i ξ

h−
∑
s∈S

∑
j∈Ms

psijR
s
(
eh,sij , e

s
ij, ~ρi

)
ξh

+
∑
s∈S

[
piρ̄

s
i

(
b̂h,si + êh,si

)
−
∑
j∈Ms

psij
(
bh,sij + eh,sij

)]
+
∑
s∈S

[
piρ̄

s
i (b̂

s,h
i + ês,hi )−

∑
j∈Ms

psij

(
bsij + esij

)]
+
∑
s∈S

{
piρ̄

s
i

(
Ĉs,h
i + R̂h,s

i ξs
)
−
∑
j∈Ms

psij

[
Cs
(
bh,sij , b

s
ij

)
+Rs

(
eh,sij , e

s
ij, ~ρi

)
ξs
]}
.

By (24)-(25) and (27), PAC provider j’s objective is

Πs
j(vj) =

∑
i∈N

psij

[
Ĉs
j + b̂sj + êsj −Cs(bh,sij , b

s
ij)− bsij − esij +

(
R̂s
j −Rs(eh,sij , e

s
ij, ~ρi)

)
(ξh + ξs)

]
.

Subtracting each objective by W from (A-30), we obtain

Πh
i (hi)−W (~h, ~v) =pi

(
C̄h
i + āhi + R̂h

i ξ
h
)

+
∑
k∈Ni

[
Ch
(
ahk
)

+ ahk

]
− υ

+
∑
s∈S

piρ̄
s
i

[
b̂h,si + êh,si + b̂s,hi + ês,hi + Ĉs,h

i + R̂h,s
i ξs

]
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+
∑
k∈Ni

∑
s∈S

∑
j∈Ms

pskj

[
Cs(bh,skj , b

s
kj) +Rs

(
eh,skj , e

s
kj, ~ρk

)
(ξh + ξs) + bh,skj + bskj + eh,skj + eskj

]
,

and

Πs
j(vj)−W (~h, ~v) =

∑
i∈N

psij

[
Ĉs
j + b̂sj + êsj + R̂s

j(ξ
h + ξs)

]
− v+

∑
i∈N

{
pi

[
Ch
(
ahi
)

+ ahi

]
+ psij

[
bh,sij + eh,sij

]}
+
∑
i∈N

∑
k∈Ss

∑
l∈Mk

pkil

[
Ck(bh,kil , b

k
il) +Rk

(
eh,kil , e

k
il, ~ρi

)
(ξh + ξk) + bh,kil + bkil + eh,kil + ekil

]
+
∑
i∈N

∑
l∈Ms

s

psil

[
Cs(bh,sil , b

s
il) +Rs

(
eh,sil , e

s
il, ~ρi

)
(ξh + ξs) + bh,sil + bsil + eh,sil + esil

]
.

Therefore, the difference between objectives of the regulator and any hospital i does not depend

on the hospital’s actions hi, and the difference between objectives of the regulator and any PAC

provider j does not depend on the PAC provider’s actions vj. This implies that the equilibrium

actions are equal to the first best actions; we omit the proof as it is similar to that for Theorem 1.

Plugging in the first best actions one can verify that all hospitals and PAC providers break even

in equilibrium. �

C.2. Endogenous readmission cost

We continue to adopt Assumption A-1 with (A-1)-(A-2) revised into

lim
eh↓0

∂R (eh, es)

∂eh
<− 1

Ch (a∗h) +Cs (b∗h, b
∗
s) + a∗h + b∗h + b∗s

< lim
eh↑Γ

∂R (eh, es)

∂eh
for any es ∈ [0,Γ], (A-35)

lim
es↓0

∂R (eh, es)

∂es
<− 1

Ch (a∗h) +Cs (b∗h, b
∗
s) + a∗h + b∗h + b∗s

< lim
es↑Γ

∂R (eh, es)

∂es
for any eh ∈ [0,Γ]. (A-36)

Under these conditions, the socially optimal actions uniquely exist and are determined by the

FOCs of total welfare W , as shown below.

Lemma A-3 (First-best benchmark). The regulator’s objective in (5) has a unique maxi-

mizer in which ahi = a∗h for each hospital i∈N , and for each PAC provider j ∈M such that pij > 0,

bhij = b∗h, b
s
ij = b∗s, e

h
ij = e∗h, and esij = e∗s, where a∗h, b

∗
h, b
∗
s ∈ (0,Γ) are defined in (6)-(8), e∗h, e

∗
s ∈ (0,Γ)

satisfy the following FOCs:

∂R (e∗h, e
∗
s)

∂eh

[
Ch (a∗h) +Cs (b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
+ 1 = 0, (A-37)

∂R (e∗h, e
∗
s)

∂es

[
Ch (a∗h) +Cs (b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
+ 1 = 0. (A-38)

Proof of Lemma A-3: Plugging (35) and (37) in (5), we obtain

W = υ−
∑
i∈N

∑
j∈M

pij

[(
1 +R(ehij, e

s
ij)
) (
Ch(ahi ) + ahi +Cs(bhij, b

s
ij) + bhij + bsij

)
+ ehij + esij

]
. (A-39)
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It is straightforward to verify that, for any fixed ehij and esij, i∈N , j ∈M, the regulator’s objective

in (A-39) has a unique maximizer in which ahi = a∗h for each hospital i ∈ N , and for each PAC

provider j ∈M such that pij > 0, bhij = b∗h and bsij = b∗s; the proof is identical to that in Lemma A-1.

Below we characterize (e∗h, e
∗
s), i.e., first-best efforts hospitals and PAC providers make to reduce

readmissions. Let W ∗(ehij, e
s
ij, i ∈ N , j ∈M) = W |{ahij=a∗

h
,bhij=b∗

h
,bsij=b∗s ,i∈N ,j∈M} for notational sim-

plicity. When pij = 0, W ∗ is independent of ehij and esij. WLOG we assume that first-best efforts

are taken (see the last paragraph of §3 for details), i.e., ehij = e∗h and esij = e∗s, where e∗h and e∗s are

given by (A-37)-(A-38). When pij > 0, we take the first and second partial derivatives of W ∗ with

respect to esij and obtain

∂W ∗

∂esij
=−pij

{
∂R(ehij, e

s
ij)

∂es

[
Ch(a∗h) +Cs(b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
+ 1

}
,

∂2W ∗

∂(esij)
2

=−pij
∂2R(ehij, e

s
ij)

∂(es)2

[
Ch(a∗h) +Cs(b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
.

For any fixed ehij ∈ [0,Γ], we have ∂2W ∗/∂(esij)
2 < 0, limesij↓0 ∂W

∗/∂esij > 0, and limes↑Γ ∂W
∗/∂esij <

0 by Assumption A-1(iii) and (A-36). Hence there exists a unique z(ehij)∈ (0,Γ) that satisfies

∂R(ehij, z(e
h
ij))

∂es

[
Ch(a∗h) +Cs(b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
+ 1 = 0. (A-40)

Applying the Implicit Function Theorem, we obtain

z′(ehij) =−
∂2R(ehij, z(e

h
ij))/∂e

h∂es

∂2R
(
ehij, z(e

h
ij)
)
/∂(es)2

. (A-41)

Since W ∗ is concave in esij by Assumption A-1(iii), we have

W ∗|esij=z(ehij) = sup
esij∈[0,Γ]

W ∗.

Next we show that for any given (~h,~s) \ {ehij, esij}, there exists a unique e∗h ∈ (0,Γ) that satisfies

W ∗|{ehij=e∗
h
,esij=e∗s} = sup

ehij∈[0,Γ]

W ∗|esij=z(ehij) .

Let W ∗(ehij) = W ∗|esij=z(ehij) for notational simplicity. Then,

dW ∗(ehij)

dehij
=−pij

{(
∂R(ehij, z(e

h
ij))

∂eh
+
∂R(ehij, z(e

h
ij))

∂es
z′(ehij)

)[
Ch(a∗h) +Cs(b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
+ 1 + z′(ehij)

}
=−pij

{
∂R(ehij, z(e

h
ij))

∂eh

[
Ch(a∗h) +Cs(b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
+ 1

}
,

where the second equality follows from (A-40).

d2W ∗(ehij)

d(ehij)
2

=− pij
[
∂2R(ehij, z(e

h
ij))

∂eh∂es
z′(ehij) +

∂2R(ehij, z(e
h
ij))

∂(eh)2

][
Ch(a∗h) +Cs(b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
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=pij


(
∂2R(ehij ,z(e

h
ij))

∂eh∂es

)2

∂2R(ehij ,z(e
h
ij))

∂(es)2

−
∂2R(ehij, z(e

h
ij))

∂(eh)2

[Ch(a∗h) +Cs(b∗h, b
∗
s) + a∗h + b∗h + b∗s

]
< 0,

where the second equality follows by plugging in z′(ehij) from (A-41), and the inequality follows from

Assumption A-1(iii). Moreover, we have limehij↓0
dW ∗(ehij)/de

h
ij > 0 and limehij↑Γ

dW ∗(ehij)/de
h
ij < 0

by (A-35). Thus there exists a unique e∗h ∈ (0,Γ) that satisfies (A-37) with e∗s = z(e∗h); (A-38) follows

by substituting ehij = e∗h into (A-40). �

Proof of Proposition 2: The proof is based on the observation that under the proposed payment

scheme, the difference between a hospital’s objective and the regulator’s objective is independent of

that hospital’s actions, and the difference between a PAC provider’s objective and the regulator’s

objective is independent of that PAC provider’s actions. More precisely, given the actions of all

other hospitals and PAC providers, by (34)-(35) and (38), hospital i’s objective is

Πh
i (hi) =

∑
j∈M

pij

[(
1 + R̄h

i

) (
C̄h
i + āhi + C̄sh

i + b̄hi + b̄sj
)

+ ēhi

]
−
∑
j∈M

pij

[(
1 +R(ehij, e

s
ij)
) (
Ch(ahi ) + ahi +Cs(bhij, b

s
ij) + bhij + bsij

)
+ ehij

]
.

By (36)-(37) and (39), PAC provider j’s objective is

Πs
j(vj) =

∑
i∈N

pij

[(
1 + R̄s

j

) (
C̄h
i + āhi + C̄s

j + b̄hi + b̄sj
)

+ ēsj

]
−
∑
i∈N

pij

[(
1 +R(ehij, e

s
ij)
) (
Ch(ahi ) + ahi +Cs

(
bhij, b

s
ij

)
+ bhij + bsij

)
+ esij

]
.

Subtracting each objective by W from (A-39), we obtain

Πh
i (hi)−W (~h, ~v) =

∑
j∈M

pij

[(
1 + R̄h

i

) (
C̄h
i + āhi + C̄sh

i + b̄hi + b̄sj
)

+ ēhi

]
+
∑
j∈M

pije
s
ij − υ

+
∑
k∈Ni

∑
j∈M

pkj

{[
1 +R(ehkj, e

s
kj)
] [
Ch(ahk) + ahk +Cs(bhkj, b

s
kj) + bhkj + bskj

]
+ ehkj + eskj

}
.

and

Πs
j(vj)−W (~h, ~v) =

∑
i∈N

pij

[(
1 + R̄s

j

) (
C̄h
i + āhi + b̄hi + C̄s

j + b̄sj
)

+ ēsj

]
+
∑
i∈N

pije
h
ij − υ

+
∑
i∈N

∑
k∈Mj

pik

{[
1 +R(ehik, e

s
ik)
] [
Ch(ahi ) + ahi +Cs(bhik, b

s
ik) + bhik + bsik

]
+ ehik + esik

}
.

Therefore, the difference between objectives of the regulator and any hospital i does not depend

on the hospital’s actions hi, and the difference between objectives of the regulator and any PAC

provider j does not depend on the PAC provider’s actions vj. This implies that the equilibrium

actions are equal to the first best actions; we omit the proof as it is similar to that for Theorem 1.

Plugging in the first best actions one can verify that all hospitals and PAC providers break even

in equilibrium. �
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C.3. Uniform Efforts

We continue to adopt Assumption A-1 with conditions for PAC cost in Assumption A-1 adapted

to: (i) PAC cost Cs(H,F ) is decreasing and convex in hospital and PAC provider investments, i.e.,

∂Cs

∂H
< 0,

∂2Cs

∂H2
> 0,

∂Cs

∂F
< 0,

∂2Cs

∂F 2
> 0,

∂2Cs

∂H2

∂2Cs

∂F 2
>

(
∂2Cs

∂H∂F

)2

, (A-42)

and (ii) the following boundary conditions hold

lim
H↓0

∂Cs

∂H
<−1< lim

H↑Γ

∂Cs

∂H
for any F ∈ [0,Γ], (A-43)

lim
F↓0

∂Cs

∂F
<−1< lim

F↑Γ

∂Cs

∂F
for any H ∈ [0,Γ]. (A-44)

Under these conditions, the socially optimal actions uniquely exist and are determined by the

FOCs of total welfare W , as shown below.

Lemma A-4 (First-best benchmark). The regulator’s objective in (5) has a unique maxi-

mizer in which ahi = a∗h and Hi = H∗ for each hospital i ∈ N , Fj = F ∗ for each PAC provider

j ∈M, and when pij > 0, ehij = e∗h and esij = e∗s, where a∗h, e
∗
h, e
∗
s ∈ (0,Γ) are defined in (6), (9), (10),

H∗,F ∗ ∈ (0,Γ) satisfy the following FOCs:

∂Cs (H∗,F ∗)

∂H
+ 1 = 0, (A-45)

∂Cs (H∗,F ∗)

∂F
+ 1 = 0. (A-46)

Proof of Lemma A-3: Plugging (41) and (43) in (5), we obtain

W = v−
∑
i∈N

∑
j∈M

pij

[
Ch
(
ahi
)

+ ahi +Cs(Hi,Fj) +Hi +Fj +R(ehij, e
s
ij)(ξ

h + ξs) + ehij + esij

]
. (A-47)

It is straightforward to verify that, for any fixed Hi and Fj, i∈N , j ∈M, the regulator’s objective

in (A-47) has a unique maximizer in which ahi = a∗h for each hospital i ∈ N , and for each PAC

provider j ∈M such that pij > 0, ehij = e∗h and esij = e∗s; the proof is identical to that in Lemma A-1.

Below we analyze the first-best efforts hospitals and PAC providers make to reduce PAC costs, i.e.,

maximize
~H∈[0,Γ]N , ~F∈[0,Γ]M

W, (A-48)

where we denote ~H = {Hi, i∈N} and ~F = {Fj, j ∈M}. The objective W given by (A-47) is concave

in (~F , ~H) because the Hessian matrix D2W (~F , ~H) is negative semi-definite due to ∂2Cs/∂H2 >

0, ∂2Cs/∂F 2 > 0, and

∑
i∈N

pij
∂2Cs(Hi,Fj)

∂F 2
>
∑
i∈N

(
pij

∂2Cs(Hi,Fj)

∂H∂F

)2

∑
k∈M pik

∂2Cs(Hi,Fk)

∂H2

for each j ∈M, (A-49)
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which follows from (∂2Cs/∂H2)(∂2Cs/∂F 2)> (∂2Cs/∂H∂F )2. In addition, the choice set of (A-48)

is compact. Thus, S has a unique maximizer denoted by H∗i and F ∗j , i∈N , j ∈M. By (A-47),

∂W

∂Hi

=−
∑
j∈M

pij

[∂Cs(Hi,Fj)

∂H
+ 1
]
, (A-50)

∂2W

∂H2
i

=−
∑
j∈M

pij
∂2Cs(Hi,Fj)

∂H2
, (A-51)

∂W

∂Fj
=−

∑
i∈N

pij

[∂Cs(Hi,Fj)

∂F
+ 1
]
, (A-52)

∂2W

∂F 2
j

=−
∑
i∈N

pij
∂2Cs(Hi,Fj)

∂F 2
. (A-53)

For any fixed ~F and each i ∈N , we have ∂2W/∂H2
i < 0 by (A-51) and (A-42), limHi↓0 ∂W/∂Hi >

0 and limHi↑Γ ∂W/∂Hi < 0 by (A-50) and (A-43). For any fixed ~H and each j ∈ M, we have

∂2W/∂F 2
j < 0 by (A-53) and (A-42), limFj↓0 ∂W/∂Fj > 0 and limFj↑Γ ∂W/∂Fj < 0 by (A-52) and

(A-44). Thus, the first-best investments H∗i and F ∗j , i∈N , j ∈M, are determined by FOCs:

M∑
j=1

pij

[∂Cs
(
H∗i ,F

∗
j

)
∂H

+ 1
]

= 0 for all i∈N , (A-54)

N∑
i=1

pij

[∂Cs
(
H∗i ,F

∗
j

)
∂F

+ 1
]

= 0 for all j ∈M. (A-55)

Let H∗ and F ∗ be determined by (A-45)-(A-46). The existence and uniqueness of H∗ and F ∗ are

ensured by (A-42)-(A-44). Moreover, one can verify that Hi = H∗ and Fj = F ∗ for each i ∈ N

and j ∈M is a solution of (A-54)-(A-55). Thus, first best actions, as uniquely determined by

(A-54)-(A-55), are given by H∗i =H∗ and F ∗j = F ∗ for each i∈N and j ∈M. �

Proof of Proposition 3: The proof is based on the observation that under the proposed payment

scheme, the difference between a hospital’s objective and the regulator’s objective is independent of

that hospital’s actions, and the difference between a PAC provider’s objective and the regulator’s

objective is independent of that PAC provider’s actions. More precisely, given the actions of all

other hospitals and PAC providers, by (40)-(41) and (46), hospital i’s objective is

Πh
i (hi) =

∑
j∈M

pij

[
C̄h
i + āhi + H̄i + R̄h

i (ξh + ξs) + C̄sh
i + ēhi

]
−
∑
j∈M

pij

[
Ch(ahi ) + ahi +Hi +R(ehij, e

s
ij)(ξ

h + ξs) +Cs(Hi,Fj) + ehij

]
.

By (42)-(43) and (47), PAC provider j’s objective is

Πs
j(vj) =

∑
i∈N

pij

[
C̄s
j + F̄j + R̄j(ξ

h + ξs) + ēsj

]
−
∑
i∈N

pij

[
Cs(Hi,Fj) +Fj +R(ehij, e

s
ij)(ξ

h + ξs) + esij

]
.
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By (5), (41), and (43), total welfare is

W (~h, ~v) =υ−
∑
i∈N

∑
j∈M

pij

[
Ch(ahi ) + ahi +Cs(Hi,Fj) +Hi +Fj +R(ehij, e

s
ij)(ξ

h + ξs) + ehij + esij

]
.

Subtracting each objective by W from (A-47), we obtain

Πh
i (hi)−W (~h, ~v) =

∑
j∈M

pij

[
C̄h
i + āhi + H̄i + R̄h

i (ξh + ξs) + C̄sh
i + ēhi

]
+
∑
j∈M

pij(Fj + esij)− υ

+
∑
k∈Ni

∑
j∈M

pkj

[
Ch(ahk) + ahk +Cs(Hk,Fj) +Hk +Fj +R(ehkj, e

s
kj)(ξ

h + ξs) + ehkj + eskj

]
.

and

Πs
j(vj)−W (~h, ~v) =

∑
i∈N

pij

[
C̄s
j + F̄j + R̄j(ξ

h + ξs) + ēsj

]
+
∑
i∈N

pij

[
Ch(ahi ) + ahi +Hi + ehij

]
− υ

+
∑
i∈N

∑
k∈Mj

pik

[
Ch(ahi ) + ahi +Cs(Hi,Fk) +Hi +Fk +R(ehik, e

s
ik)(ξ

h + ξs) + ehik + esik

]
.

Therefore, the difference between objectives of the regulator and any hospital i does not depend

on the hospital’s actions hi, and the difference between objectives of the regulator and any PAC

provider j does not depend on the PAC provider’s actions vj. This implies that the equilibrium

actions are equal to the first best actions; we omit the proof as it is similar to that for Theorem 1.

Plugging in the first best actions one can verify that all hospitals and PAC providers break even

in equilibrium. �

C.4. Non-identical providers

We continue to adopt Assumption A-1 with conditions in Assumption A-1(iii) assumed to hold for

any hospital and PAC provider characteristic pair (βh, βs). By Lemma A-1, the first best actions

are a∗h, b
∗
h, e
∗
h(βhi , β

s
j ) for hospital i and b∗s, e

∗
s(β

h
i , β

s
j ) for PAC provider j, where a∗h, b

∗
h, b
∗
s ∈ (0,Γ) are

determined by (6)-(8), and e∗h(βhi , β
s
j ), e

∗
s(β

h
i , β

s
j )∈ (0,Γ) are determined by the following FOCs:

∂R(e∗h(βhi , β
s
i ), e

∗
s(β

h
i , β

s
i ), β

h
i , β

s
i )

∂eh
(ξh + ξs) + 1 = 0, (A-56)

∂R(e∗h(βhi , β
s
i ), e

∗
s(β

h
i , β

s
i ), β

h
i , β

s
i )

∂es
(ξh + ξs) + 1 = 0. (A-57)

In what follows, we redefine R̄h
i and R̄s

j using linear regression based on hospital and PAC provider

characteristics and show that the reimbursement scheme (14) and (18) restores first best outcomes

and all providers break even in equilibrium.

Consider any given hospital and a PAC provider the hospital discharges patients to. Let βmh and

βms denote the hospital’s and PAC provider’s observable characteristics, respectively. Under the pro-

posed reimbursement scheme with any benchmark parameters exogenous to their actions, equilib-

rium outcome coincides with first best and is given by a∗h, b
∗
h, b
∗
s, e

m
h = e∗h(βmh , β

m
s ), ems = e∗s(β

m
h , β

m
s );
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we omit the proof as it is similar to that for Theorem 1. We next use these ex post actions and

linear regression based on observable provider characteristics to derive benchmark parameters R̄h
i

and R̄s
j , which approximate the first-best outcomes for any hospital i∈N and PAC provider j ∈M.

Expanding (A-56)-(A-57) around (emh , e
m
s , β

m
h , β

m
s ), we obtain

∂2Rm

∂(eh)2
(ehi − emh ) +

∂2Rm

∂es∂eh
(esi − ems ) +

∂2Rm

∂βh∂eh
(βhi −βmh ) +

∂2Rm

∂βs∂eh
(βsi −βms )≈ 0,

∂2Rm

∂eh∂es
(ehi − emh ) +

∂2Rm

∂(es)2
(esi − ems ) +

∂2Rm

∂βh∂es
(βhi −βmh ) +

∂2Rm

∂βs∂es
(βsi −βms )≈ 0,

where Rm =R(emh , e
m
s , β

m
h , β

m
s ). Solving for ehi and esi , we obtain estimates of first best actions for

any hospital i∈N and PAC provider j ∈M as

ēh(βhi , β
s
i ) = emh −

(
∂2Rm

∂(es)2
∂2Rm

∂βh∂e
h − ∂2Rm

∂es∂eh
∂2Rm

∂βh∂e
s

)
(βhi −βmh ) +

(
∂2Rm

∂(es)2
∂2Rm

∂βs∂eh
− ∂2Rm

∂es∂eh
∂2Rm

∂βs∂es

)
(βsi −βms )

∂2Rm

∂(eh)2
∂2Rm

∂(es)2
−
(
∂2Rm

∂es∂eh

)2 ,

ēs(βhi , β
s
i ) = ems −

(
∂2Rm

∂(eh)2
∂2Rm

∂βh∂e
s − ∂2Rm

∂eh∂es
∂2Rm

∂βh∂e
h

)
(βhi −βmh ) +

(
∂2Rm

∂(eh)2
∂2Rm

∂βs∂es
− ∂2Rm

∂eh∂es
∂2Rm

∂βs∂eh

)
(βsi −βms )

∂2Rm

∂(eh)2
∂2Rm

∂(es)2
−
(
∂2Rm

∂es∂eh

)2 .

Approximating R(ehi , e
s
j , β

h
i , β

s
j ) by the first-order Taylor series around (emh , e

m
s , β

m
h , β

m
s ) yields

R̄(βhi , β
s
j ) =Rm +

∂Rm

∂eh
(
ēh(βhi , β

s
j )− emh

)
+
∂Rm

∂es
(
ēs(βhi , β

s
j )− ems

)
+
∂Rm

∂βh
(βhi −βmh ) +

∂Rm

∂βs
(βsi −βms ).

We use R̄(βhi , β
s
j ) in place of R̄h

i and R̄s
j , i.e., hospital and PAC provider payment amounts are

T hi = pi

[
C̄h
i + āhi + b̄hi + ēhi

]
+
∑
j∈M

pijR̄(βhi , β
s
j )ξ

h

︸ ︷︷ ︸
Cost of care

+
∑
j∈M

pij

[
C̄sh
i −Cs(bhij, b

s
ij) +

(
R̄(βhi , β

s
j )−R(ehij, e

s
ij)
)
ξs
]

︸ ︷︷ ︸
Outcome based adjustment for care-coordination

.

T sj = p̃j

[
C̄s
j + b̄sj + ēsj

]
+
∑
i∈N

pijR̄(βhi , β
s
j )ξ

s

︸ ︷︷ ︸
Cost of care

+
∑
i∈N

pij

[
R̄(βhi , β

s
j )−R(ehij, e

s
ij)
]
ξh︸ ︷︷ ︸

Outcome based adjustment for care-coordination

.

By definition R̄(βhi , β
s
j ) is independent of hospital i and PAC provider j actions, and approximates

the first best outcome when provider heterogeneity is small.2 Thus, the proposed reimbursement

scheme restores first best outcomes with all providers break even.

D. Proof of the results in §6

We continue to adopt Assumption A-1 with (A-1)-(A-2) strengthened respectively into

lim
eh↓0

∂R(eh, es)

∂eh
<− 1

ξh + ξs
and lim

eh↑Γ

∂R(eh, es)

∂eh
>− 1

2ξh + ξs
for all es ∈ [0,Γ], (A-58)

lim
es↓0

∂R(eh, es)

∂es
<− 1

ξs
and lim

es↑Γ

∂R(eh, es)

∂es
>− 1

ξh + ξs
for all eh ∈ [0,Γ], (A-59)

2 This can be achieved by grouping similar provider pairs and picking a representative pair to define βm
h and βm

s .
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which ensures that PAC providers have unique optimal actions that can be determined using FOCs.

Proof of Proposition 4: By (1), (2), and (49), hospital i’s objective is

Πh
i (hi) =pi

[
C̄h
i + āhi −Ch(ahi )− ahi

]
+
∑
j∈M

pij

[
C̄sh
i −Cs(bhij, bsij) +

(
R̄h
i −R(ehij, e

s
ij)
)

((2− θ)ξh + ξs) + b̄hi − bhij + ēhi − ehij
]
.

By (3), (4), and (48), PAC provider j’s objective is

Πs
j(sj) =

∑
i∈N

pij
[
C̄s
j −Cs(bhij, b

s
ij) + (R̄s

j −R(ehij, e
s
ij))(θξ

h + ξs) + b̄sj − bsij + ēsj − esij
]
.

It is straightforward to verify that in any equilibrium, we have ahi = a∗h for each hospital i ∈ N ,

and for each PAC provider j ∈M such that pij > 0, we have bhij = b∗h and bsij = b∗s; the proof is

identical to that in Theorem 1. Next, we analyze hospitals’ and PAC providers’ efforts to reduce

the readmission probability in equilibrium. When pij = 0, Πh
i and Πs

j are independent of both ehij

and esij. WLOG we assume that first-best efforts are taken (see the last paragraph of §3 for details),

i.e., ehij = e∗h and esij = e∗s, where e∗h and e∗s are given by (9)-(10). When pij > 0, we take partial

derivatives of Πh
i and Πs

j with respect to ehij and esij, respectively, and obtain

∂Πh
i

∂ehij
=−pij

[
∂R(ehij, e

s
ij)

∂eh
((2− θ)ξh + ξs) + 1

]
, (A-60)

∂Πs
j

∂esij
=−pij

[
∂R(ehij, e

s
ij)

∂es
(θξh + ξs) + 1

]
. (A-61)

We proceed as follows: (i) We show that hospital i and PAC provider j have unique best responses

characterized by ehij = zh(esij) and esij = zs(e
h
ij). (ii) We establish the existence of a unique equilib-

rium (ẽh, ẽs) for any given θ ∈ [0,1]. Finally, we prove that (iii) ẽh and ẽs are continuous in θ ∈ [0,1],

and (iv) dẽh/dθ < 0 and dẽs/dθ > 0 for all θ ∈ [0,1] if ∂2R(eh, es)/∂eh∂es > 0.

(i) At any fixed esij ∈ [0,Γ], by (A-60) and Assumption A-1(iii), we have ∂2Πh
i /∂(ehij)

2 < 0,

limeh↑Γ ∂Πh
i /∂e

h
ij < 0, and limehij↓0

∂Πh
i /∂e

h
ij > 0 for any θ ∈ (θh, θ̄h), where

θh = sup
esij∈[0,Γ]

{
2 +

1

ξh

[
ξs +

1

limehij↑Γ
∂R(ehij, e

s
ij)/∂e

h

]}
< 0,

θ̄h = inf
esij∈[0,Γ]

{
2 +

1

ξh

[
ξs +

1

limehij↓0
∂R(ehij, e

s
ij)/∂e

h

]}
> 1

by (A-58). Thus, the hospital has a unique best response zh(esij)∈ (0,Γ) and is determined by the

FOC of Πh
i , i.e.,

∂R(zh(esij), e
s
ij)

∂eh
((2− θ)ξh + ξs) + 1 = 0. (A-62)
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At any fixed ehij ∈ [0,Γ], by (A-59), (A-61), and Assumption A-1(iii), we have ∂2Πs
j/∂(esij)

2 < 0,

limes↑Γ ∂Πs
j/∂e

s
ij < 0, and limes↓0 ∂Πs

j/∂e
s
ij > 0 for any θ ∈ (θs, θ̄s), where

θs = sup
ehij∈[0,Γ]

{
− 1

ξh

[
ξs +

1

limesij↓0 ∂R(ehij, e
s
ij)/∂e

s

]}
< 0,

θ̄s = inf
ehij∈[0,Γ]

{
− 1

ξh

[
ξs +

1

limesij↑Γ ∂R(ehij, e
s
ij)/∂e

s

]}
> 1

by (A-59). Thus, the PAC provider has a unique best response zs(e
h
ij) ∈ (0,Γ) and is determined

by the FOC of Πs
j , i.e.,

∂R(ehij, zs(e
h
ij))

∂es
(θξh + ξs) + 1 = 0. (A-63)

(ii) Consider any given θ ∈Θ = (θh, θ̄h)∩ (θs, θ̄s)⊃ [0,1] due to θh, θs < 0 and θ̄h, θ̄s > 0. Plugging

esij = zs(e
h
ij) into (A-62), we can characterize the hospital’s equilibrium readmission-reduction effort

ẽh by Ψ(ẽh) = 0, where

Ψ(eh) =
∂R(eh, zs(e

h))

∂eh
((2− θ)ξh + ξs) + 1. (A-64)

Taking the partial derivative with respect to eh, we obtain

dΨ(eh)

deh
= ((2− θ)ξh + ξs)

(
∂2R(eh, zs(e

h))

∂(eh)2
+
∂2R(eh, zs(e

h))

∂es∂eh
dzs(e

h)

deh

)
, (A-65)

where

dzs(e
h)

deh
=−∂

2R(eh, zs(e
h))/∂eh∂es

∂2R(eh, zs(eh))/∂(es)2
(A-66)

by taking the derivative of (A-63) with respect to ehij. Plugging (A-66) into (A-65), we have

dΨ(eh)

deh
= ((2− θ)ξh + ξs)

(
∂2R(eh, zs(e

h))

∂(eh)2
− (∂2R(eh, zs(e

h))/∂eh∂es)
2

∂2R(eh, zs(eh))/∂(es)2

)
> 0, (A-67)

where the inequality follows from Assumption A-1(iii). We also have limeh↓0 Ψ(eh) < 0 and

limeh↑Γ Ψ(eh)> 0 by θ ∈ (θh, θ̄h). Therefore, there exists a unique ẽh = {eh ∈ (0,Γ)|Ψ(eh) = 0}. This

and zs(eh)∈ (0,Γ) imply that there exists a unique ẽs = zs(ẽh)∈ (0,Γ). We thus have proven that,

for any θ ∈Θ, there exists a unique equilibrium in which each hospital chooses eh = ẽh and each

SNF chooses es = ẽs.

(iii) Now we show that ẽh and ẽs are continuous in θ ∈Θ, which implies continuity of ẽh and ẽs

in θ ∈ [0,1] ⊂ Θ. For ease of exposition, we will make explicit the dependence of zs and Ψ on θ;

see (A-63)-(A-64). Since R(eh, es) is twice differentiable and ∂2R(eh, es)/∂(es)2 > 0, by the Implicit

Function Theorem, zs(e
h, θ) defined as in (A-63) is continuous in eh ∈ (0,Γ) and θ ∈Θ, so as Ψ(eh, θ)
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defined as in (A-64). Since for any θ ∈Θ, a unique ẽh ∈ (0,Γ) exists and satisfies Ψ(ẽh, θ) = 0, by

the Implicit Function Theorem and noting ∂Ψ(ẽh, θ)/∂e
h > 0 by (A-67), ẽh is continuous in θ ∈Θ.

This and continuity of zs(e
h, θ) imply that ẽs = zs(ẽh, θ) is continuous in θ ∈Θ.

(iv) By continuity of ẽh and ẽs in θ ∈ [0,1], to prove ẽh > e∗h = limθ↑1 ẽh and ẽs < e∗s = limθ↑1 ẽs, it

suffices to prove dẽh/dθ < 0 and dẽs/dθ > 0 for all θ ∈ [0,1]. Taking the derivative of Ψ(ẽh(θ), θ) = 0

with respect to θ, we obtain

dẽh
dθ

=− ∂Ψ(ẽh, θ)/∂θ

∂Ψ(ẽh, θ)/∂eh
=−

((2− θ)ξh + ξs)∂
2R(ẽh,zs(ẽh,θ))

∂eh∂es
∂zs(ẽh,θ)

∂θ
− ξh ∂R(ẽh,zs(ẽh,θ))

∂eh

((2− θ)ξh + ξs)
[
∂2R(ẽh,zs(ẽh,θ))

∂(eh)2
+ ∂2R(ẽh,zs(ẽh,θ))

∂eh∂es
∂zs(ẽh,θ)

∂eh

] . (A-68)

By (A-66) and Assumption A-1(iii), the denominator on the right-hand side of (A-68) is positive

for all θ ∈ [0,1], thus

sgn

(
dẽh
dθ

)
=−sgn

(
((2− θ)ξh + ξs)

∂2R(ẽh, zs(ẽh, θ))

∂eh∂es
∂zs(ẽh, θ)

∂θ
− ξh∂R(ẽh, zs(ẽh, θ))

∂eh

)
. (A-69)

Taking the derivative of (A-63) with respect to θ, we have

∂zs(e
h, θ)

∂θ
=−

ξh ∂R(eh,zs(eh,θ))

∂es

(θξh + ξs)∂
2R(eh,zs(eh,θ))

∂(es)2

. (A-70)

Plugging it into (A-69), we obtain

sgn

(
dẽh
dθ

)
= sgn

(
(2− θ)ξh + ξs

θξh + ξs
∂2R(ẽh, zs(ẽh, θ))

∂eh∂es

∂R(ẽh,zs(ẽh,θ))

∂es

∂2R(ẽh,zs(ẽh,θ))

∂(es)2

+
∂R(ẽh, zs(ẽh, θ))

∂eh

)

= sgn

(
(2− θ)ξh + ξs

θξh + ξs
∂2R(ẽh, ẽs)

∂eh∂es

∂R(ẽh,ẽs)

∂es

∂2R(ẽh,ẽs)

∂(es)2

+
∂R(ẽh, ẽs)

∂eh

)

= sgn

(
(2− θ)ξh + ξs

θξh + ξs
∂2R(ẽh, ẽs)

∂eh∂es
∂R(ẽh, ẽs)

∂es
+
∂R(ẽh, ẽs)

∂eh
∂2R(ẽh, ẽs)

∂(es)2

)
< 0, (A-71)

where the second equality follows from ẽs = zs(ẽh, θ) for any θ, the third equality fol-

lows from ∂2R(eh, es)/∂(es)2 > 0 by Assumption A-1(iii), and the inequality follows from

∂2R(eh, es)/(∂eh∂es) > 0, ∂R(eh, es)/∂eh < 0, ∂R(eh, es)/∂es < 0, and ∂2r(eh, es)/∂e
2
s > 0 by

Assumption A-1(iii).

Taking the derivative of ẽs with respect to θ, we obtain

dẽs
dθ

=
dzs(ẽh, θ)

dθ
=
∂zs(ẽh, θ)

∂eh
dẽh
dθ

+
∂zs(ẽh, θ)

∂θ
=−

∂2R(ẽh,z̃s)

∂eh∂es

∂2R(ẽh,z̃s)

∂(es)2

dẽh
dθ
−

ξh ∂R(ẽh,z̃s)

∂es

(θξh + ξs)∂
2R(ẽh,z̃s)

∂(es)2

> 0, (A-72)

where the second equality follows from differentiation by parts, the third follows from (A-66)

and (A-70), and the inequality follows from dẽh/dθ < 0 by (A-71), ∂2R(eh, es)/(∂eh∂es) > 0,

∂R(eh, es)/∂eh < 0, ∂R(eh, es)/∂es < 0, and ∂2R(eh, es)/∂(es)2 > 0 by Assumption A-1(iii). �
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