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Abstract

Early childhood is a period of important linguistic development; however, measuring
the neural correlates of speech perception at this age is challenging. So far, there is no clarity
about whether, between the ages of 3-6 years old, brain dynamics associated with speech
perception (i) are different from those observed in adults, (ii) show atypical patterns in

children with language difficulties, or (iii) are modulated by language skills.

This thesis aimed to examine cortical dynamics related to speech perception in
children from 4.7 to 5.7 years old with typical language development (TLD, n=12) and
developmental language disorder (DLD, n=17) and compare them to that observed in
neurotypical adults (n=20). | used electroencephalography (EEG) to investigate whether
young children exhibit top-down modulations on cortical speech processing and whether

TLD and DLD children differed in different measures of cortical oscillatory synchrony.

Considering previous findings, we expected different EEG measures to reflect more
efficient speech perception for participants with better language skills and stimuli with more
informative linguistic content. We also expected an association between children's EEG

responses and phonological and speech perception task performance.

Experiment 1 validated a task-free, ERP multifeature paradigm in adults to determine
whether contrasts between speech stimuli elicited consistent MMN and LDN responses,
compared to a non-speech control condition. In Experiment 2, we used the multifeature
experiment in the speech condition to determine whether the MMN and LDN were present in
children and if they resembled the adult's responses. Here, we complemented ERPs analysis

with time-frequency measures, evaluating the synchrony of the neural responses



independently from their amplitude (power). We also assessed the children's phonological

awareness skills and investigated their association with EEG measures.

Experiment 3 examined the relationship between language skills (TLD/DLD children
and adults) and the power and lateralisation of endogenous oscillations. We also related EEG
resting-state measures to children's performance in speech-in-noise and filtered speech
perception tests. Finally, in Experiment 4, we explored more ecological speech perception
measures, recording EEG responses to unattended continuous speech. We then compared

cortical entrainment to different speech features between children and adults.

Our results demonstrated age-related differences in EEG responses between adults
and children, confirming that increases in neural synchrony are relevant for cortical
development. A central finding is that adults also exhibited a significant effect of the
linguistic content, with greater cortical synchrony for lexical stimuli, but this effect was
absent in children. This indicates that adult-like top-down language modulations on speech

perception could not be already in place during early childhood.

Notably, there was no evidence of differences between TLD and DLD children on
most EEG measures, despite TLD children performing significantly better than DLD in
phonological awareness and filtered speech perception tasks. These results indicate that
cortical speech processing at the acoustic and lexical level may be preserved in young
children with DLD. Although it is essential to consider methodological limitations when

interpreting these findings, they were consistent across experiments.

This thesis contributes to understanding the cortical dynamics of speech perception in
young children. Our findings are relevant to inform oscillatory models of typical and atypical

language development and future objective clinical measures of speech processing.



Impact statement

This research holds potential benefits for both the industry and the general public,
ultimately impacting society as a whole. The findings of this thesis can contribute to
advancements in the field of speech processing, particularly in understanding how the brain

processes and comprehends spoken language.
Industry partners

The evidence gathered in this thesis contributes to uncovering the neural patterns
underlying speech perception in children and adults. This outcome directly benefits the
healthcare industry, as it provides initial values for different EEG measures that can inform
the development of objective speech processing measures for clinical assessment, with

applications in audiology, neurology, speech and language therapy (SLT), and paediatrics.

The EEG measures related to speech processing indicated important differences in
cortical activation patterns between adults and young children. This outcome can drive
advancements in the hearing aid industry, such as developing new algorithms for hearing aid
devices in which speech, auditory and linguistics features are weighted differently according

to the user’s age.

The results of this thesis could also aid the development of more refined speech
recognition technologies. Improved speech recognition systems have broad applications
across industries, ranging from call centres and transcription services to voice-controlled
devices. Moreover, the insights gained from this thesis can contribute to developing assistive
technologies (e.g., brain-computer interfaces, BCIs) for individuals with severe speech

impairments, enabling them to communicate more effectively and independently.



General public and society

This research has the potential to impact the academic field in different ways by
providing new evidence about the EEG signatures of speech processing during early
childhood under typical and atypical language conditions. The findings and EEG analysis
methods could be disseminated through national and international scholarly journals,
conferences, educational instances, translational research, or academic collaborations. In
addition, one practical outcome of this thesis is a database of continuous speech stimuli in
Spanish, with information about their acoustic envelope values, lexical frequency, duration,
and word type, among other features. This database will be made freely available for other
researchers and could be expanded to include new levels of speech information, e.g.

morphological or phonological.

Understanding the brain's speech processing mechanisms can aid in developing new,
targeted interventions to support individuals with communication difficulties such as speech
and language disorders, dyslexia, or aphasia, ultimately improving their quality of life and
social interactions. This thesis could also benefit professional practice and public health
outcomes in speech and language disorders, helping the development of objective speech
perception measures that can be used in infants and young children and fostering earlier

detection and intervention in different disorders.

This research can have educational implications in a broader societal context,
providing new insights into the fundamental principles of language learning and acquisition.
The findings of this thesis can inform educational approaches, curriculum development, and
school policies, promoting more effective language teaching methods and support for learners
with special needs. Enhanced language learning can lead to better educational outcomes,

better global communication, and increased opportunities for individuals in various domains.
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Chapter 1. General Introduction

Speech perception is a crucial component of daily communication that involves
transforming an acoustic signal into cortical representations for accessing linguistic meaning.
Recent language processing models provide plausible explanations regarding where
(neuroanatomy) and how (mechanisms) our brain perceives speech, emphasising the
importance of neural synchronisation and the role of language and cognitive factors in
shaping speech perception. However, these models mainly consider evidence from adult
studies, resulting in a discontinuity in the theories of cortical speech processing between
adults and children. Overall, we do not know what specific changes in the children brain
allow them to, eventually, perceive speech as adults, at what ages these changes occur, or

whether this development is disrupted in children with language disorders.

The gap in knowledge regarding the neural correlates of speech perception
development could be explained by two factors: (i) with any neuroimaging or
electrophysiological method, measuring brain activity in young children is a challenging task
that many researchers rather avoid, and (ii) although there is an important body of evidence
from different methods (EEG, fMRI, behavioural measures), these findings have not been

systematically integrated into a developmental model of language processing.

Understanding the neural basis of speech perception in children is theoretically
relevant because early childhood is a period of significant language development, in which
spoken language is one of the bases for children’s communicative skills and literacy

acquisition. It is also during early childhood when many children with language disorders are
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first diagnosed, suggesting that some atypical patterns in language processing could become

more apparent at this age.

Considering this context, the goal of my PhD was to investigate the cortical dynamics
related to speech perception during early childhood (between the ages of 3-6 years) under the
framework of neural oscillatory synchrony. This thesis addressed the gap in previous research
by using different EEG paradigms to study speech perception in young children with typical
language development (TLD) and with Developmental Language Disorder (DLD). EEG was
chosen as it is a widely used method for studying neural oscillations and to acknowledge the
need of determining what EEG paradigms and analysis techniques are most suitable for

investigating speech perception in children.

Considering the importance of speech perception for children’s communicative
development and educational attainment, this thesis aims to provide new evidence for
understanding how children’s brains perceive speech in TLD and DLD. Considering the high
prevalence of DLD among school-age children (around 7%, according to Tomblin et al.,
1997), | investigated whether children with DLD exhibit atypical speech processing at the
cortical level when compared to TLD peers. In the future, this work could be integrated into a
developmental model of speech perception in the TLD/DLD brain, helping to inform DLD

research and clinical work.

In this first chapter, | will set the theoretical framework for this thesis, outlining
relevant aspects for the EEG experiments in chapters 2-5. Thus, Chapter 1 reviews the
literature about speech perception in adults and young children (with typical and atypical
language development) integrating multiple oscillatory findings, and presents EEG

methodological considerations for speech perception research in early childhood.
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1.1 Speech perception in the adult brain

1.1.1 Brain substrates for speech perception

Neuroanatomy of speech perception

To understand how speech perception networks develop in children, we first need to
identify the language networks in the adult brain. Current models in language neuroscience
agree that there are two main networks for speech and language processing: a ventral and
dorsal pathway (Hickok & Poeppel, 2016; Friederici, 2012a; Friederici & Gierhan, 2013).
The ventral pathway participates in the early stages of speech perception; low-level acoustic,
phonological, and lexical processing that involves temporal regions in both hemispheres,
including the primary auditory cortices. The dorsal pathway participates in left-lateralised
phonological processing, sensorimotor integration for speech production, syntactic and
lexical-semantic processing, involving left temporal and frontal regions, as the posterior

superior temporal cortex (pSTC) and the Inferior Frontal Gyrus (IFG),

On each language pathway, different tracts can be identified, which are of importance
when comparing adults and children. The dorsal pathway has two subcomponents: tract
Dorsal 1, the superior longitudinal fascicle (SLF), relevant for auditory to motor mapping and
language acquisition (Friederici, 2011), and Dorsal 2, the arcuate fascicle (AF), involved in
complex syntactic functions, such as processing distant syntactic dependencies, embedded
structures, and non-canonical sentences (Brauer et al., 2011). The ventral pathway also has
two subcomponents: a superficial tract (Ventral 1) corresponding to the inferior-frontal-
occipital fascicle (IFOF) that is involved in semantic processing (Friederici & Gierhan,
2013), and a deep tract Ventral 2, with two subcomponents: the IFOF orbital from the orbito-
frontal cortex to the frontal pole (anterior component) and the IFOF dorsal (posterior
component) involved in combinatorial semantics (Brauer et al., 2013). Figure 1.1 depicts the

functional neuroanatomy of the dorsal and ventral pathways according to Friederici (2015).
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Figure 1.1

Language Tracts Connecting the Temporal and Frontal Cortex in the Left Hemisphere

superior premotor cortex inferior parietal lobe
(PMC) (IPL)

(darsal)

anlecior postenon
(rostral) (canxdal)

nlence
(ventral)

BA 44, pars opercularis

BA 47, pars orbitalis

frontal operculum (FOP)

[ inferior frontal gyrus (IFG) Dorsal Pathways Ventral Pathways
[] superior temporal gyrus (STG) = PMC to pSTG/MTG  — BA 45/47 to STGMTG
[] middie temporal gyrus (MTG) - BA 44 10 pSTG - FOP to aSTG

Note. Dorsal 1 (purple): superior longitudinal fascicle (SLF), connects the dorsal premotor
cortex (PMC, BAG) through the inferior parietal lobe (IPL) to the posterior superior temporal
gyrus (pSTG). Dorsal 2 (blue): arcuate fascicle, connects the IFG (BA44, Broca’s area pars
opercularis) to superior temporal BA41/42 and middle temporal regions 21, 22 (Wernicke's
area), and 37. Ventral 1 (pink): Longitudinal Inferior-frontal-occipital fascicule (IFOF/
extreme capsule fiber system, ECFS), connects the IFG (BA45, Broca’s area pars
triangularis) and BA47 to the superior and middle temporal gyrus (STG/MTG). Ventral 2
(dark grey) uncinate fascicle (UF), connects the frontal operculum (FOP) and the anterior

superior temporal gyrus (aSTG) (extracted from Friederici, 2015).
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Oscillatory mechanisms in speech perception

Besides understanding the functional neuroanatomy of language, research has also
focused on explaining how the linguistic information in the speech signal is converted into a
neural code (Hickock & Poeppel, 2016). In adults, a mechanism that could explain
information processing in the brain is neural oscillatory synchrony. Neural oscillations refer
to the rhythmic fluctuations in neural excitability related to different neurobiological
processes (Cohen, 2014) and emerge from the synchronised firing of large groups of neurons
(Buzsaki, 2006). These oscillations can be measured at different scales in the brain (for
example, macroscopically using EEG) as fluctuations in voltage that exhibit timing
consistency (periodicity) and can be present over several cycles, resulting in rhythmic activity

at different frequency bands (Hudson & Jones, 2022).

Although not all electrical activity represented in the EEG in the frequency domain
reflects neurophysiological processes, there is consensus that some of it reflects different
rhythmic patterns of excitatory and inhibitory activity in brain networks (Cohen, 2014).
These brain rhythms can be analysed in terms of frequency, amplitude, or phase that may
reflect neural activity that occurs spontaneously (endogenous rhythms) or during perceptual
or cognitive processing of exogenous stimuli (induced or evoked rhythms). In this Chapter,
‘neural oscillations’ will refer to rhythmic activity that is mechanistically related to

information processing in the brain, either spontaneously or related to a task (Cohen, 2014)

The framework of neural oscillations has been a central topic in neuroscience for the
last two decades, proposing that transient synchronisation of neural oscillations enables
coordinated brain activity and is essential to cognition (e.g., Buszaki & Draguhn, 2004;
Buszaki, 2006). The degree of neural synchronisation has been shown to correlate with
different cognitive processes, including speech perception (Uhlhaas et al., 2010), with

changes in the patterns of synchrony reflecting the functional coupling or decoupling of brain
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networks during tasks or at rest (Buzsaki & Draguhn, 2004; Lakatos et al., 2008). The
synchronised oscillatory timing and phase would optimise information processing, explaining

communication within local and long-range cortical networks (Varela et al., 2001).

The role of brain oscillations in speech perception has been addressed by different
theories (for a review, see Meyer et al., 2020), one of the most relevant being cortical
entrainment. Cortical entrainment refers to the phase alignment of brain oscillations driven by
an external or internal rhythmic event (Lakatos et al., 2019). As the neural oscillatory phase
reflects rhythmic changes in neural excitability (Lakatos et al., 2019), resetting to a phase of
high neural excitability would optimise the brain's response to relevant inputs. In speech
perception, neural entrainment has been proposed as a mechanism for the brain to encode

different speech features for language comprehension (Poeppel & Assaneo, 2020).

A related concept that refers to how speech is represented in the brain is 'neural
tracking', which describes the cortical activity evoked by different speech features, including
the acoustic amplitude envelope, but also other types of speech features, such as phonemic or
lexical information (for example, see Song et al., 2020). Some studies use the terms' tracking'
and 'entrainment’ in language research interchangeably. However, others consider that neural
tracking represents time-synchronised (evoked) activity, whereas entrainment refers to a
phase-synchronised activity (for a review see Gillis et al., 2022). In this thesis, we will use

this distinction between them.

Neural entrainment to the speech amplitude envelope has been widely demonstrated
in the auditory cortex, suggesting this is an essential mechanism for speech perception.
Cortical entrainment to the envelope allows the brain to track the timing of individual
phonemes, syllables, and words, supporting speech parsing into linguistic units (Ding &

Simon, 2014; Poeppel, 2014; Meyer, 2018). In sentence perception experiments, Giraud and
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Poeppel (2012) demonstrated that cortical oscillatory entrainment at different frequency
bands reflects the processing of linguistic information in the speech input at multiple
timescales. Slow oscillations in the delta range (1-2 Hz) correlate with the prosodic contour
of the speech input and in the theta band (4-7 Hz) with the detected syllabic rate. Likewise,
high-frequency gamma oscillations (30-50 Hz) correlate with phonemic and sub-phonemic
elements (for a review, see Meyer, 2018). These findings have been consistently replicated
over the last two decades (for a review see Poeppel & Assaneo, 2020), indicating the
importance of neural oscillatory synchrony in speech perception. However, cortical
entrainment occurs not only during speech processing but also for non-verbal sounds,
reversed and non-intelligible speech (Ding & Simon, 2014), raising questions about its
specificity as a speech perception mechanism. Notably, there is evidence that low-frequency
auditory entrainment to the speech envelope correlates with speech intelligibility (Poeppel &
Assaneo, 2020) and that interfering with theta entrainment disrupts speech perception
performance (Zoefel et al., 2018). This evidence suggests that entrainment to speech might

differ from other types of auditory entrainment and may be crucial for speech perception.

In addition to auditory entrainment, there is evidence of neural tracking of linguistic
elements of speech, such as phonemes, lexical or syntactic components. This indicates that
cortical tracking is involved in higher-level network activity, such as semantic processing and
integration of linguistic and contextual information with an individual's previous linguistic
knowledge (Meyer et al., 2020). This implies that, during speech perception (Poeppel &
Assaneo, 2020), the oscillations in the auditory cortex interact with those in other brain
regions. For example, high-frequency gamma oscillations (around 30-50 Hz) have been
linked to the binding of word meanings to their associated context, a process that occurs
beyond the auditory cortex, enabling us to understand the meaning of a sentence as a whole

(Bastiaansen & Hagoort, 2006).
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1.1.2 Language modulations on speech perception

Bottom-up and top-down interactions during speech perception

The transformation of speech into meaning involves a complex processing sequence,
from low-level physical acoustic content to higher-level abstract language forms (Heilbron et
al., 2022). Low-level speech processing is driven by temporal and spectral cues in the speech
signal, with bottom-up mechanisms for encoding segmental (phonetic) and supra-segmental
(prosodic) information in the auditory cortex. Higher-level processing involves top-down
modulations from temporal, frontal and parietal areas on how we perceive incoming speech,

influencing low-level speech processing.

In the brain, language knowledge means a rules-based internal structure (Martin &
Doumas, 2017) acquired during native language development (Meyer, 2018). Elements such
as phonemic categories, lexical status, word morphology, meaning, and grammatical structure
are not present in the speech signal but in the listener's brain. Importantly, these internal rules
can operate top-down to solve perceptual ambiguities during speech perception (Hagoort,
2019). This hierarchical sequence is reflected in the latencies at which speech features are
encoded, with information of higher linguistic complexity processed later than the speech
acoustics. Thus, the low-level speech processing (e.g., pitch, amplitude, formants, and
duration) occurs early (~50-200 ms), in contrast with higher-order linguistic processing of

lexical, semantic, syntactic, and prosodic information which occurs later (>200 ms).

Top-down modulations on speech perception may vary according to individual
differences in cognitive skills and language knowledge (Ding & Simon, 2014; Goswami,
2011). General cognitive modulations include attention, executive control and sensory/short-
term memory skills. These mechanisms are not specific to language processing and usually

exploit the brain's ability to detect environmental regularities, helping to predict incoming
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inputs; for example, frequent items will be perceived more easily than less frequent ones

(predictability) as well as related than unrelated ones (things that co-occur, e.g. context-based
prediction). An example of general top-down modulations is the effect of attention on cortical
entrainment which helps to understand speech in noisy environments (Song & lverson, 2018)

or when the acoustic signal is hard to discern (see review by Obleser & Kaiser, 2019).

On the other hand, language-specific top-down modulations operate only for stimuli
with linguistic status (Ding & Simon, 2014; Goswami, 2011). Language knowledge
(understood as an individual's language proficiency) shapes our sensitivity to speech sounds
determining how they are organised into meaningful units in our brain and interpreted
depending on the language context. Prior language knowledge includes skills such as
phonemic categorical perception, semantic integration, and knowledge of word’s meaning. In
addition, language knowledge influences the discrimination of language-specific cues
contained in the speech stimuli, increasing speech redundancy via phonemic, lexical,

syntactic or semantic priming (Meyer et al., 2018).

Language-specific modulations on speech perception are consistent with the fact that,
despite no exact correspondence between the acoustic patterns in the input and the linguistic
representations activated in the brain, perceptual discrimination is preserved even for highly
variable or discontinuous speech signals, but not for their nonspeech analogues (Skipper,
2014), meaning that speech is perceived different than non-speech sounds even if they have
the same acoustic information. However, there is no clarity about how language-specific and
general cognitive top-down modulations can be dissociated when studying speech perception

(see Zatorre & Gandour, 2008).

Importantly, it is accepted that there is an interaction between bottom-up and top-

down processes during speech perception. A study byDi Liberto et al. (2015) demonstrated
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that the best model to describe the relationship between perceived continuous speech and
neural processing in adults (n=10) was the one that combined low-level information and
phonemic features. Such effects were larger at longer latencies and dissapeared when
perceiving reversed speech, corroborating that speech perceived as such involves a hierarchy
in the auditory/language system. Notably, although the exact neural mechanisms of this
bottom-up/top-down interaction are not fully understood (Poeppel & Assaneo, 2020), they

are thought to involve brain oscillations.

How does language knowledge modulate oscillatory responses to speech?

During speech perception, modulations of neural oscillations would be determined
exogenously (bottom-up) by the linguistic characteristics of the speech signal and
endogenously (top-down) by an individual's prior language knowledge (Meyer et al., 2019).
Language knowledge is proposed to exert top-down effects on speech perception by
modulating the excitability of the auditory cortex during speech encoding, thus increasing the
sensitivity to linguistic stimuli (Giraud & Poeppel, 2012). A candidate mechanism is that the
phase coupling of endogenous oscillations between frontal and temporal areas would stabilise
entrainment with the spoken input in low-level auditory regions (Giraud et al., 2007). Top-
down modulation on temporal auditory areas would occur through alpha and beta band
oscillations generated in frontal cortices. In contrast, bottom-up modulations from temporal

auditory to frontal areas would involve theta band oscillations (Poeppel & Assaneo, 2020).

An important factor related to language-specific modulations on speech perception
seems to be the speech intelligibility, although studies so far show contradictory findings. A
study by Park et al. (2015) demonstrated that high-frequency oscillations in higher-order
language areas (left inferior frontal gyrus and precentral gyrus) modulated low-frequency

oscillations on the auditory cortex significantly more for intelligible than for non-intelligible
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speech. In addition, there is evidence of lexical knowledge modulations on gamma power and
delta cortical entrainment (Doelling et al., 2014; Késem & van Wassenhove, 2017). On the
contrary, Baltzel et al. (2017) demonstrated that the effects of language knowledge on the
strength of auditory entrainment does not depend on the speech intelligibility, reporting

similar priming effects on entrainment regardless the amount of vocoding (3 or 16-channel).

To summarise, research in adults has shown that neural oscillations are an important
mecanism involved in speech perception. This mecanism seems to operate primarily through
cortical synchronisation with the speech signal, with effects of language knowledge from
frontal areas modulating auditory responses in a top-down process. However, less is known
about how the neural activity involved in speech perception changes from birth to adulthood,
how it differs between typical language acquisition and neurodevelopmental disorders and if

an atypical neural activity has a causal role in language disorders.

1.2 Speech perception in early childhood

The development of speech perception skills is a complex and ongoing process that
begins in the womb and continues into childhood and adolescence (Dick et al., 2015), with
well-described changes during early childhood. For example, between age 3 to 6 years,
children become better at segmenting and interpreting speech sounds into their corresponding
phonological and semantic representations (Skeide & Friederici, 2016). Behavioural changes
in speech perception emerge from interactions between brain maturation and experience, for
example, with our native language; however, the relationship between these factors is not
clearly described (Skeide et al., 2016). Understanding the effects of language knowledge on
speech perception is relevant as it may help explain the differences between children and
adults and individuals with language disorders. Therefore, this section reviews the changes in

speech perception skills and brain development during early childhood in TLD.
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1.2.1 Do children perceive speech like adults?

Speech perception skills between 3-6 years old.

Children's language proficiency increases between 3 and 6 years of age (Dick et al.,
2015), but they do not yet perceive speech the same way as adults, who have more advanced
speech perception skills. Adults show better phonological processing than children; for
example, they are better at using acoustic cues to distinguish between speech sounds and
detecting subtle acoustic differences. Essentially, adults are more likely to use top-down
processing when listening to speech, exploiting the context and using their prior knowledge

to solve speech perceptual ambiguities to facilitate speech comprehension (Aboitiz, 2017).

Linguistically, young children have developed some aspects of adult-like speech
processing, but their word recognition skills are not fine-grained until the age of 7 years. This
is evident, for example, in that their lexicon mainly comprises phonetically dissimilar, easily
distinguishable items (Walley, 2005). During early childhood, the perception of phonemes is
not robust and depends heavily on contextual factors such as vowel transitions and duration,
consonantal context, stimulus duration or spectral information (Walley, 2005). An important
finding is that consonant perception is less categorical than in adults until after the age of 6
years (Hazan & Barrett, 2000), with increases in the accuracy of phonemic identification into

late childhood (Walley, 2005).

During early childhood, ongoing auditory maturation is an essential factor that
underlies speech perception, with different age-related trajectories for different central
auditory processing skills (Sanes & Woolley, 2011). For example, bottom-up processes such
as the discrimination of frequency, intensity and duration, or the detection of amplitude and

frequency modulations are not mature by the age of 6 years (Sanes & Woolley, 2011). This
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could explain to some extent why children are less proficient than adults when perceiving

speech.

However, differences in speech perception between adults and children, and between
children at different ages, not only depend on auditory maturation but are also heavily
influenced by general cognitive (working memory, attention) and language-specific
(vocabulary, phonological processing) top-down modulations. After the age of 8 years,
children show improvements when perceiving speech with impoverished acoustic-phonetic
information and speech in noise (Neuman et al., 2010), both speech perception skills known
to be modulated by top-down processing. However, it is still being determined whether such

modulations in children are similar or different from those observed in adults, and if so, how.

Top-down modulations and speech perception in children.

Throughout early childhood, children's speech perception skills are not only shaped
by age (neuromaturation) but also by top-down modulations (Davids et al., 2011) that reflect
the influence of language exposure, early experience, and social interaction. General learning
mechanisms support speech perception development, helping the brain to track patterns in
our native language (Saffran et al., 1996). A longitudinal study by Thompson et al. (2017) in
young children (3 and 4 years old, n=59) demonstrated that age-related improvements in
speech-in-noise perception were related to advanced general processing skills (intelligence,
short-term memory, and attention). At the same time, children's internal language system
develops with age, influencing the way they perceive speech. For example, a study by
Thompson et al. (2019) in children between 4-7 years (n=104) determined that not only
cognitive but also language skills measured at the age of three years predicted children's

performance in a speech in noise task by the age of 5 years.
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A review by Skeide and Friederici (2016) proposed two speech and language
developmental stages. An initial stage of rapid acquisition of bottom-up speech processing
skills (age 0-3 years) that would enable perceptual narrowing for native phonemes, speech
segmentation, mapping phonological word forms with semantic representations, syntactic
categorisation and grouping of words into phrase structures. Friederici et al. (2017) indicated
that, during this initial stage, language processing relies on detecting linguistic statistical
regularities without necessarily building syntactic hierarchies. The second stage (from age
three to adolescence) is characterised by the gradual and slow development of top-down
processing skills that start to emerge in the fourth year of life. This would result in the
capacity for analysing semantic and syntactic relations of increasing complexity and more
sophisticated prosodic processing (Skeide & Friederici, 2016). However, it is important to
determine how these behavioural changes in speech perception are related to the development

of language networks and neural oscillatory synchrony.

Maturation of brain language networks

Although babies are born with the neural foundations for speech and language
processing (Hagoort, 2019), from infancy to adulthood, there is an important development of
language networks (Friederici et al., 2017) that could explain improvements in language and
speech perception skills. During early childhood, language structures in the brain mature
gradually, shaped by neural pruning, myelination, and growth of white-matter tracts (Skeide
& Friederici, 2016), synaptic plasticity and changes in neurotransmission (Uhlhaas et al.,
2010). The evidence indicates that these brain maturation processes underlie and even predict

behavioural changes in speech and language skills (Zuk et al., 2021).

In cortical language networks, different tracts show different developmental
trajectories from infancy to childhood, with later maturation of the dorsal compared to the
ventral pathway (Friederici, 2012b; Friederici et al., 2017). Brauer et al. (2013) used diffusion
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imaging to compare the maturation of functional connectivity between newborns (n=19, age
2-3 days), 7-year-old children (n=10, age range 5-8 years), and adults (n=10). For the dorsal
pathway, only the dorsal tract D1 was detectable in newborns; tract D2 is not yet myelinated,
meaning there is no connection between the BA 44 and pSTC. In 7-year-old children, both

dorsal tracts were present, but D2 is still not fully mature compared to adults. Notably, the

maturation of D2 predicts complex sentence processing performance (Friederici et al., 2017),
phonological awareness skills and vocabulary knowledge (Zuk et al., 2021), which indicates

it could be related to short-term verbal memory and word learning.

For the ventral pathway, Brauer and colleagues (2013) found that the superficial tract
(V1) was present in newborns and children. However, it was more robust in adults and spread
towards the parietal-occipital ending. This pathway likely supports auditory-to-motor
mapping, which supports auditory feedback during infants' babbling and word/phonological
learning. Finally, the deep tract V2 was present in all three groups but with much shorter
middle and anterior connections and less mature in infants than in children and adults. This
suggests that syntactic processing is based on the ventral system during early childhood,
allowing only the processing of simple phrases and canonical sentences. Together, these
structural changes support the ongoing maturation of the language network during early
childhood, which could explain the development of language and speech perception skills

during this stage. Figure 1.2 summarises the development of language networks.

Regarding cortical function, language lateralisation is detectable at birth (see review
by Friederici, 2006). However, it is not adult-like until early childhood, although the exact
age at which children show mature left-lateralisation is unclear. A systematic review of
language fMRI findings by Weiss-Croft and Baldeweg (2015) indicates that left-lateralisation
during speech processing is already in place by the age of 5 years. However, findings by

Thompson et al. (2016) indicate adult-like oscillatory lateralisation by the age of 3 years.
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Furthermore, several neuroanatomical changes during early childhood have been
linked to the development of language skills. Weiss-Croft and Baldeweg (2015) reported
increased activation in the superior and middle temporal gyri (bilaterally), and deactivation in
the cingulate cortex from childhood to adolescence, suggesting a shift in control from high to

low-level cortical areas as language processing becomes more automated and effortless.

Figure 1.2

Development of Dorsal and Ventral Language Tracts in Newborns, Children and Adults

«D1: present in newboms
~ D2: present at age 7 years

«¥/1: more rodbust in adults than chiidren and infants (superficial tract)
-V2: shorter in infants than in children and adults (deep tract)

Note. For the dorsal pathways, D1 (red solid line) is observable in newborns (a), children (b)
and adults, whereas D2 (red dashed line) is absent in newborns but present from childhood
onward. Both ventral tracts are observable at birth, but V1 (blue solid line) is stronger in
adults than children and children than infants and V2 (blue dashed lines) is shorter and less

mature in infants than in children and adults (adapted from Brauer et al., 2013).
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A review by Skeide and Friederici (2016) indicates that BA44 and pSTC activate
during speech perception from an early age, but their interaction is not efficient until late
childhood. From the age of 3 years, they reported gradual development of top-down
modulations of semantic and syntactic relations related to the maturation of the left inferior
frontal cortex. At 3-4 years old, both the left temporal and left inferior frontal cortex are
recruited when processing sentences, suggesting that the components for basic syntax
processing are already present (Friederici et al., 2017). At 5-8 years old, increasing syntax
skills correlate with the reduction of grey matter volume on the left pSTG (e.g., because of
neural pruning); finally, the neuroanatomical specificity for syntax of BA 44 segregates
between the ages of 7 and 10 years and gradually develops until young adulthood when it is
fully efficient for processing complex syntax. Before age 10, syntactic and semantic
information types recruit the same brain regions, consistent with behavioural data indicating

semantic and syntactic interactions during early childhood (Friederici et al., 2017).

Considering these structural changes in cortical language network it is reasonable to
think that they would involve functional changes in neural dynamics. However, it is unclear

how the development of language tracts relates to the development of neural oscillations.

Development of neural oscillations.

During early childhood, neuroanatomical changes are accompanied by changes in the
frequency and synchronisation of neural oscillations, which have shown to be relevant for
developing and segregating cortical networks (Greene et al., 2016). Neural synchrony
maturation continues until early adulthood and involves critical processes in neural networks,
such as stabilisation of synaptic connections, neural pruning, and experience-dependent long-

term plasticity (Uhlhaas, 2010). The mature, adult-like brain is characterised by complex,
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coordinated activity in particular neural populations, with greater oscillatory synchronisation

reflecting more efficient neural communication (Musacchia et al., 2013).

In general, cortical activity becomes more synchronised and spatially focalised with
age. Along with brain structural development, oscillatory coupling increases with age from
uncorrelated to synchronous patterns in different frequency bands (Uhlhaas et al., 2010). This
could be linked with some evidence reporting higher neural background noise in children
than in adults (Vanvooren et al., 2015) and children than teenagers (Bishop et al., 2012;

Héammerer et al., 2013) because of less consistent neural activity.

Overall, spontaneous and task-related cortical activity shows significant age-
dependent decreases in the amplitude of delta and theta oscillations and increases for the
alpha, beta and gamma ranges (Uhlhaas et al., 2010). Likewise, phase synchrony increases
for the theta and beta range with gamma-oscillations maturing during early childhood
(Uhlhaas et al., 2010). Importantly, developmental increases in neural synchrony relate to
better performance in cognitive tasks. During early childhood and until adolescence, better
performance in visual perception tasks was accompanied by bilateral frontal and frontal-
parietal increases in neural synchrony, which the authors interpret as top-down modulations

of sensory regions (Uhlhaas et al., 2009).

In auditory development, there is evidence of similar changes in brain oscillations,
with increased synchronisation from early childhood to adulthood (Bishop et al., 2010a;
Doesburg et al., 2015; Muller et al., 2009). Miller et al. (2009) demonstrated differences in
the amplitude and synchronisation of neural oscillations between young (9-11 years) and
older children (11-13) and adults during cortical auditory discrimination. The theta and delta
bands demonstrated increased synchronisation within and between electrodes. However,

spectral power decreased from childhood to adolescence and adulthood, indicating an age-
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related shift in low-frequency activity towards more precisely synchronised oscillations
(Mdller et al., 2009). These findings indicate that the developing brain may show different
patterns of oscillations than the adult brain. However, the relationship between activity in

different frequencies and the maturation of speech perception is not yet understood.

Neural oscillations in language development

Integrating the evidence on brain maturation and neural oscillatory development, it is
possible that the maturation (e.g. myelination and increased fibre density) of brain language
tracts could be related to greater neural synchrony, resulting in more efficient speech
perception and language processing. However, there is little research linking these lines of

evidence into a functional explanation of language development.

Some studies in children suggest that age-related changes in the strength and
synchrony of neural oscillations reflect speech and language skills development. A
longitudinal study by Benasich et al. (2008) demonstrated that the magnitude of endogenous
frontal gamma oscillations at ages 16, 24 and 36 months predicted language development at
ages 4 and 5 years, with a strong correlation between phonological working memory and
syntactic skills, which the authors considered related to local and long-range neural
synchronisation. Doesburg et al. (2015) demonstrated age-related increases in theta
synchronisation between brain language regions, which correlated with individual language
skills at different ages (n=73, participants between 4-18 years). Cantiani et al., 2019, found
that the amplitude and synchrony in the theta range at six months old (n=24) predicted

expressive vocabulary scores at 20 months.

The evidence also indicates age-related differences in the lateralisation patterns at rest
for high and low-frequency oscillations during early childhood. Kikuchi et al. (2011)

investigated the lateralisation of cortical parietal-temporal oscillations in preschool children
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(n=78, 3-4 years old), demonstrating that stronger left parietal-temporal theta
synchronisation (6-8 Hz) correlated with better performance in language tasks. Thompson et
al. (2016) showed that left-lateralisation for high-frequency oscillations (20-50 Hz) was
already established at the age of 3 years and that children with better speech-in-noise skills
exhibited more pronounced high-frequency leftward asymmetry (age 3-5 years, n=65). This
suggests that theta and gamma oscillatory asymmetry is related to better speech perception

skills in young children, which could be related to better syllabic and phonemic processing.

In terms of entrainment, Goswami (2022) highlights the importance of speech
rhythmic patterns for typical language acquisition, linking the perception of linguistic units
(e.g., prosodic, and syllabic stress patterns) with the rate of modulations of the speech
acoustic envelope (delta and theta bands) during language development. So far, findings
indicate that entrainment to the speech envelope in the delta and theta range is present in full-
term infants and is observed at least until the age of seven months, although at these early
stages, it is not specific for the native language (e.g., Kalashnikova et al., 2018; Ortiz-Barajas
et al., 2021). On the contrary, a longitudinal study by Rios-Lopez et al. (2020) in young
children (n=32) reported that at age 4-5 years, entrainment to the envelope was only present
in the delta band (0 .5 Hz), with bilateral increases in synchrony in temporal areas at all
testing times until the age of 7 years. Thus, there is contradicting evidence about the role of

delta and theta synchrony in speech perception development.

Top-down modulations on speech entrainment are present in children but with some
differences from those observed in adults. Ortiz-Barajas et al. (2021) described age-
dependent changes in language experience modulations on speech entrainment during the
first six months of life. They found that amplitude and phase entrainment to the speech

envelope (sentences in Spanish, English or French) were already present in newborns (n=55)
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and did not show any differences for native (familiar) and non-native (unfamiliar) languages.
However, by the age of six months, infants (n=12 longitudinal plus n=13 cross-sectional
participants) only tracked the phase of native language but not the amplitude. This would
indicate that speech phase entrainment to the acoustic envelope represents a basic auditory
skill, but that amplitude entrainment is modulated by language experience by the first
semester, with less tracking of the language infants are familiar with (or have greater
experience or knowledge). Interestingly, the timing of these changes regarding the infant's
age coincides with extensive evidence reporting native-phoneme specialisation in infants

(e.g., perceptual narrowing) starting around six months of age (for example, see Kuhl, 2010).

In addition, there is evidence that in children, as in adults, auditory entrainment is
modulated by speech intelligibility, although the patterns of modulation may differ. Vander
Ghinst et al. (2019) compared cortical entrainment between adults (n=20) and typically
developing children (n=20, 6- to 9-year-old) while they attended to speech embedded in
multi-talker background noise. They reported two main findings: (i) children exhibited
limited tracking of both the attended voice and the global acoustic stimuli at the 4-8 Hz
syllable rhythm, and (ii) noise increments compromised the speech tracking significantly
more in children than in adults. Likewise, Rios-Lopez et al. (2020) demonstrated that the
strength of delta entrainment to speech in the right hemisphere is related to speech
intelligibility measures. These initial results support the idea that top-down modulations of
acoustic entrainment during the first years of life are related to prior language knowledge (or

‘experience’) and the speech signal itself, resembling interactions observed in adults.

In summary, changes in speech perception in young children are explained by
multiple factors, such as physiological changes (e.g., auditory maturation), cognitive

development (e.g., greater attention skills and memory), and increased linguistic abilities
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(more language experience). However, behavioural and oscillatory findings are not easily
brought together in the current literature because of the variety of methods for investigating
language development, such as very different age ranges, stimuli, and brain measures across
studies. Nevertheless, there has been growing interest in determining the developmental
trajectories of cortical language processing and whether children's language and speech

perception difficulties result from atypical oscillatory activity.

1.2.2 Speech processing in children with DLD

What is DLD?

DLD (formerly referred to as Specific Language Impairment, SLI) refers to children's
significant and persistent difficulties in developing native language skills that are not
explained by any other cognitive, motor, or sensory deficits or known medical cause
(Leonard, 2014). This neurodevelopmental condition is the most prevalent language disorder,
affecting 7% of children and severely disrupting educational, social and emotional
development (Leonard, 2014). DLD is highly heritable, more prevalent in boys than girls, and
likely to co-occur with other neurodevelopmental disorders such as dyslexia or autism
spectrum disorder (ASD), suggesting complex genetic influences (Newbury & Monaco,
2010). The clinical profiles (or symptoms) are very heterogeneous but generally include

deficits in syntactic, morphological, phonological and lexical processing (Schwartz, 2017).

Although the causes of DLD are not auditory, there is evidence of some speech
perception deficits in children with DLD, leading to a long-lasting controversy about the role
of atypical perceptual processing in this condition. Early studies indicated that children with
DLD had difficulties detecting rapid auditory changes (e.g., 'Temporal Processing'

hypothesis), which were linked to phonological processing difficulties, for example, when
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detecting the second phoneme in a consonant cluster (Tallal et al., 1997). Other studies as
Ziegler et al. (2005), also focused on phonemic processing, demonstrating poorer
discrimination of VCV sequences in noisy conditions in children with DLD (n=10) than in
age-matched (n=10) and language-matched (n=10) controls suggesting difficulties in
extracting speech features such as voicing in adverse listening environments. Cantiani et al.,
2019, found that infants (n=24, six months old) at familial risk of DLD presented poorer
detection of changes in FO and the duration of nonspeech sounds compared to healthy
controls. Other studies have shown difficulties in perceiving and reproducing acoustic
rhythmic patterns in children with DLD compared to controls, relating them to poor

processing of linguistic rhythm (for reviews, see Goswami, 2022; Ladanyi et al., 2020).

However, there are several issues with the auditory accounts of DLD; firstly, speech
perception and phonological deficits, although recurrent, are not universal symptoms in the
DLD population (Bishop & McArthur, 2005). On the contrary, DLD-affected individuals
exhibit very heterogeneous linguistic profiles, which makes their classification difficult, even
into broad subgroups, such as receptive, expressive, or mixed. Secondly, it is unclear whether
perceptual impairments observed in DLD overlap with those in other language disorders, e.g.,
speech disorders or dyslexia, meaning these speech perception deficits are not a signature (or
‘marker”) of DLD (Bishop & Snowling, 2004; Ramus et al., 2013). Finally, there is
significant controversy about to what extent DLD should be considered a unitary condition

rather than a syndrome with multiple causal components (Bishop et al., 2016; 2017).

Crucially, mounting evidence shows that individuals affected by DLD exhibit typical
performance in low-level auditory tasks, with only a small proportion of them showing
auditory processing deficits (see review by Rosen, 2003), which has discredited the idea of an
auditory cause of DLD. In turn, some theories about the origin of DLD have argued that

speech processing deficits could be a downstream consequence of this disorder, meaning that
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the perception of speech sounds is affected (Bailey & Snowling, 2002). For example, a less
developed language system could result in reduced top-down support during speech

perception in children with DLD (Bishop et al., 2012; Bishop, 2013).

Importantly, behavioural studies may be inconclusive and unreliable in young
children, making it necessary to use objective brain measures for investigating speech and

language processing in children with or at risk of DLD.

Neural oscillations and speech perception in DLD.

So far, there is no clear link between brain neuromaturation, oscillatory activity and
speech perception deficits in DLD. Considering the developmental trajectories of language
networks from birth to adulthood, it is reasonable to assume that the healthy maturation of the
dorsal and ventral pathways is necessary for typical language acquisition or that atypical
maturation could be related to language deficits. Researchers have tried to identify brain
markers for DLD in the last decades, but findings have been inconsistent. Although some
studies report abnormalities in grey and white matter volumes in children with DLD, there is
no consistent evidence of significant differences in DLD brain anatomy from TLD children

(Evans & Brown, 2016).

The evidence of brain functional differences in DLD is also inconclusive. Many
studies have investigated whether atypical brain activity in language areas can explain
language difficulties in DLD. However, findings are based on studies with very different
designs, low ecological validity, and small sample sizes. An example is the widespread belief
that atypical left-lateralisation could underlie poor language skills in DLD (Bishop, 2013).
However, Wilson and Bishop (2018) could not replicate these findings in a larger sample of
twins (n=107 with DLD and 156 with TLD, aged 6-11 years), concluding that previous

findings could be spurious and explained by methodological fails.
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The importance of neural synchrony for normal brain development suggests that it is
relevant to investigate when explaining speech perception and language deficits at the cortical
level. For example, in DLD, if reduced temporal precision of neuronal oscillations is present,
it could affect activity-dependent network development (Uhlhaas et al., 2010). Notably, there
is evidence of a critical role of atypical oscillatory activity in populations with other
neurodevelopmental disorders; for example, there is evidence of impaired speech-related
oscillations in autism spectrum disorder. Jochaut et al. (2015) reported that the severity of
verbal impairment and autism symptoms in adults and adolescents (n=31) was predicted by
reduced theta in the left auditory cortex and top-down gamma modulation on speech

entrainment.

In dyslexia, a recent systematic review by Nallet & Gervain (2022) indicates atypical
auditory entrainment to speech at the phonemic, syllabic (~5 Hz) and prosodic rates (~2 Hz)
in infants and children at risk or with a diagnosis of dyslexia. Previously, Goswami (2011,
2022) proposed the ‘Temporal Sampling’ framework for dyslexia, explaining that atypical
cortical entrainment with the rhythmic speech envelope at low frequencies would impair
adequate sampling of speech elements that are critical for linguistic and phonological
development. Together, these findings support the idea that atypical entrainment affects
speech perception by interfering sampling of linguistic units and could be related to language

deficits in these disorders (Molinaro et al., 2016).

Although something similar could happen in DLD, there is still little research on
neural oscillations in children affected by language disorders (Maguire & Abel, 2013).
Evidence from adult studies shows that atypical patterns in cortical measures as acoustic
entrainment reflect speech perception differences in adults with hearing impairment,

blindness, dyslexia, autism, and severe brain injury, as well as in older participants (Palan et

44



al., 2022). Consequently, atypical oscillatory activity could be present in DLD and related to

some of the symptoms observed in this disorder.

A recent perspective paper by Goswami (2022) extends the Temporal Sampling
hypothesis to DLD, proposing that rhythmic processing disruptions detected in children with
DLD reflect impaired neural alignment with the speech envelope, with poor encoding of key
syllabic elements (onset, rhyme, stress) undermining their phonological and syntactic
development. Similarly, Ladanyi et al. (2020) had previously proposed the ‘Atypical Rhythm
Risk’ hypothesis, posing that atypical rhythmic processing skills are a risk factor for
developmental speech and language disorders. However, both hypotheses are based on
behavioural evidence from children with DLD (e.g., Richards & Goswami, 2019), as there

are no studies on cortical entrainment in this population yet.

To our knowledge, only three studies have investigated the role of cortical oscillatory
synchrony in DLD. Bishop et al. (2010b) compared auditory discrimination in children aged
7-16 with DLD diagnosis versus typically developing controls. The control group exhibited a
drop in low-frequency power and a significant desynchronisation after cortical change
detection responses (after 300 ms), which was absent in language-impaired children. The
authors interpreted the lack of desynchronisation in DLD children as a poorer capacity to

disengage from the cortical discrimination signals.

Heim et al. (2011; 2013) studied children aged 6-9 years with and without DLD and
reported atypical oscillatory activity during rapid auditory discrimination tasks. The DLD
group found significantly reduced synchronisation of early (45-75 ms) oscillations in the
gamma-band range (29-52 Hz) when presenting the second stimulus of tone doublets.

Cantiani et al., 2019, found that infants (n=24, six months old) at familial risk of DLD
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showed reduced left lateralisation in the theta and gamma bands during nonspeech auditory

discrimination tasks compared to healthy, age-matched controls.

If taken together, the findings from these three studies suggest that some atypical
oscillatory patterns may be present in individuals with DLD, which could have implications
in terms of language processing. From Bishop et al. (2010b) findings, we could assume that
less desynchronisation (or ‘less disengagement’) in later processing stages could impede
higher-order language processing or disrupt speech encoding because of less available
neuronal resources for processing upcoming speech. Heim et al.'s (2011; 2013) findings
about reducing the gamma range could explain poorer phonemic processing and potential
phonological difficulties, whereas less pronounced lateralisation could affect syllabic and
phonemic processing (Cantiani et al., 2019). However, these studies used very different

methods, which makes them hard to integrate and have used simple linguistic stimuli, if any.

In summary, the role of atypical entrainment in speech and language processing
during language acquisition needs to be better understood. So far, there is no systematic
research on the associations of DLD and neural oscillations and the role of neural synchrony

in speech perception during early childhood.

1.3 EEG in speech perception developmental research

Cortical speech processing can be studied using the electroencephalogram (EEG), a
direct measure of the brain's electrical activity. The EEG captures the synchronised
postsynaptic activity of large populations of cortical neurons, recording it with scalp
electrodes (Jackson & Bolger, 2017). The EEG reflects brain dynamics during different
cognitive processes but studying them requires extracting their neural signature from the raw

signal, separating it from background noise. Different EEG methods include resting-state (‘or
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baseline’)' measures, Event-Related Potentials (ERPS), and cortical entrainment analysis, all
of which quantify different aspects of neural oscillatory synchrony (Bastiaansen & Hagoort,
2006). Notably, the excellent temporal resolution of EEG makes it a great tool for studying

rapid neural dynamics in auditory, speech, and language processing.

1.3.1 EEG measures of speech perception

Frequency domain measures: resting-state EEG

The resting state or baseline EEG measures the amplitude of the spontaneous brain
activity that occurs without any external task or stimulation (endogenous or intrinsic neural
oscillations). The raw EEG signal is represented in the frequency domain via spectral
decomposition methods such as the Fourier transform. These methods represent the EEG

signal as a linear combination of sine waves at different frequency bands (Gross, 2014).

Different features of the resting-state EEG can measure the degree of synchronisation
of neural oscillations. Spectral power (in microvolts), either total or at a given frequency
band, is an estimate of the signal amplitude (Varela et al., 2001), with increases in power
reflecting a larger number of neurons that are active in a given location (Cohen, 2014).
Resting-state frontal asymmetry uses indices to quantify power differences between frontal
electrodes in the left and right hemispheres. In contrast, coherence is a measure of linear
cross-correlation between two signals (e.g., pairs of electrodes) in which oscillatory phase
and amplitude are intertwined (Norton et al., 2021). Baseline EEG measures may reflect brain

maturation and cognitive and language processing differences.

The resting-state EEG is a valuable method to study children and other non-compliant

populations (e.g., clinical groups) because it is task-free and does not require the participant
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to follow instructions. It is recorded during a short period while the child is quietly watching

silent images on a screen, either with their eyes open or closed.

Time domain measures: ERP (MMN and LDN).

A common method to study changes in cortical activity (voltage) over time is Event-
Related Potentials (ERPs). ERPs measure voltage changes over time that are time-locked
(evoked) to an external stimulus and averaged for analysis (Cohen, 2014). The Mismatch

Negativity (MMN) has been prevalent among ERPs in auditory and language research.

The MMN is an automatic, pre-attentional index of auditory change detection, with a
temporal component generated bilaterally in the primary auditory cortex and a frontal
component that reflects involuntary attentional changes (N&atanen et al., 2007). In typical
adults, the auditory MMN consists of a negative deflection of 0.5-5 uV, peaking around 150-
250 ms after a change (deviant stimuli) is detected within a sequence of invariant sounds
(standard stimuli), known as an oddball paradigm. However, MMN amplitude and latency
vary depending on factors such as the participant's age or the stimulus type (Naaténen et al.,
2007). In adults, larger MMN amplitudes tend to correlate with better behavioural detection
of acoustic changes, including frequency, duration, intensity, and speech contrasts (N&atanen

& Alho, 1997; N&atanen et al., 2007).

A late discriminative negativity (LDN) has also been described between 350-550 ms.
The LDN is more pronounced in children than adults and larger for speech than nonspeech
sounds (Bishop, 2010a). An immature MMN has been identified in infants and young
children, known as the Mismatch Response (MMR). The MMR can present positive polarity,
longer latency, larger amplitude, and different scalp distribution than the adult MMN (Morr

etal., 2002).
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Time-frequency domain measures: ERSP and ITC/ITPC

Time-frequency analysis quantifies spectral changes in neural oscillations over time,
for example, in response to speech stimuli. Time-frequency analysis includes indices such as
power (amplitude?) and synchrony (timing) that reflect variations for a single (local) or pairs
(long-range) of electrodes (Cohen, 2014). Time-frequency measures can reflect induced
neural oscillations; these are non-time locked to stimulus onset and extracted trial-by-trial to
avoid cancelling out during averaging. Alternatively, evoked oscillations are power and
phase-locked to an external stimulus and extracted from the final averaged ERPs (Uhlhaas,
2010). Importantly, the analysis of the phase relationship across trials is independent of the

amplitude of the oscillations, except in cases when power is very low (Cohen, 2014).

Time-frequency indices include event-related spectral perturbation (ERSP), that
measures event-locked changes in spectral power from a baseline, and Inter-trial coherence
(ITC), which indicates the degree of phase angle clustering to a time-locking event across
single trials (Makeig et al., 2004). ITC is an index that ranges from 0 (random phase angles)
to 1 (identical phase angles) and is equivalent to 'Inter-trial Phase Clustering' (ITPC), 'Phase

Locking Value (PLV), or 'Phase Coherence' (PC) (Cohen, 2014).

ERP components can also be analysed in the time-frequency domain to study induced
activity. For example, single-trial analysis of the MMN has shown local increases in theta
ITC/PLV during auditory discrimination of deviant stimuli (Bishop et al., 2010a; Bishop &
Hardiman, 2010). Moreover, increased phase synchronisation for the MMN reflects more
robust long-range cortico-cortical communication between temporal and frontal regions
(Hsiao et al., 2010; Hsiao et al., 2009). These findings demonstrate an association between
the MMN generation and oscillatory synchrony, supporting the idea that time-frequency
analysis and ERPs reflect a common mechanism and are complementary for understanding

neural dynamics in speech perception (Makeig et al., 2004; Miller et al., 2009).
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Speech tracking measures

Different EEG measures quantify neural synchronisation to continuous speech. Neural
tracking measures describe mutual speech-brain relations and how they are affected by
acoustic or cognitive manipulations, for example, language modulations on speech
entrainment (Obleser & Kayser, 2019). Early studies measured cortical entrainment to
continuous speech as cross-correlation (coherence) between the speech envelope and the
recorded brain activity (Di Liberto & Lalor, 2017). Recently, linear modelling methods can
predict the EEG responses from the speech input (encoding or forward models) or reconstruct
the speech stimulus from the EEG (decoding or backward models), linking cortical responses
to speech features (e.g. the amplitude envelope), and higher-order information, such as

phonemic (Di Liberto et al., 2015) and lexical content (Sassenhagen, 2019).

In sum, there are various EEG measures and paradigms for studying speech
perception, but it is necessary to evaluate which are more suitable for developmental
research. In children, speech perception has mainly been studied using ERPs. However, there
is increasing interest in using alternative approaches that help overcome significant

challenges of EEG research in children and infants.

1.3.2 Methodological considerations for EEG in speech developmental research.

EEG is a non-invasive, portable, and relatively inexpensive method with enormous
potential in neurodevelopmental science. EEG allows using the same measures from birth to
adulthood, is sensitive to age-related changes in brain activity, and may predict language and
cognitive skills (Norton et al., 2021). However, measuring speech perception in children is a
complex task, and the EEG methodologies used in adults are only sometimes suitable for
paediatric research. Despite the advantages of EEG, there are several challenges for its use in

children that may lead to spurious findings and high variability between studies.
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Neurobiological factors: a noisier brain?

A key aspect to consider in EEG paediatric research are the brain differences between
children and adults resulting from neurodevelopment. Brain maturational processes in early
childhood include changes in synaptic density, myelination of white matter tracts (Friederici
et al., 2017) and increased skull thickness that influence the electrical volume conduction to
the scalp and, ultimately, the EEG signal (DeBoer et al., 2006). In addition, neural activity in
the developing brain is less synchronised (Muller et al., 2009), with more neural background

noise in children than adults (Vanvooren et al., 2015).

Development of brain structures and cognitive functions during early childhood is
reflected in ERPs components as the MMN/LDN, with significant differences in scalp
distribution, amplitude, peaks, and latency from the adult's responses. For neural oscillations,
there are age-related increases in the magnitude of alpha and beta bands and decreases for the

low-frequency range that results from brain maturation (Uhlhaas et al., 2010).

Participant-related factors: poor quality data.

Several reviews describe good practices in infant and children EEG (see Bell &
Cuevas, 2012; Brooker et al., 2020). Three common challenges in paediatric EEG
experiments include how to: (i) get the child's cooperation during testing, (ii) record clean

EEG data, and (iii) prevent the participants from dropping out from the studies (attrition).

Young children may get scared and refuse to wear the EEG cap or get fussy during
data collection (Norton et al., 2021). Importantly, cap refusal is higher in younger children
and children with special needs. This may bias the results, for example, excluding more
irritable and less compliant children, such as children with neurodevelopmental disorders

(Brooker et al., 2020). For paediatric EEG studies, participant attrition rates are high: up to
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75% for infants, 30-45% for 2-3 years old children and 20% for children at the age of four
years (Bell & Cuevas, 2012). This often results in small samples, reducing statistical power
and making the findings hard to generalise. In addition, it may discourage researchers from

studying children at more difficult ages, leading to gaps in knowledge in speech science.

Once a child accepts the cap, the next challenge is to obtain good-quality data. Some
measures as ERPs, require large amounts of data to isolate the brain signal from noise (Luck,
2014). This results in long testing times, which are hard to tolerate for young children. They
may become restless, bored, or sleepy, resulting in movement-related artifacts, alpha band
contamination or blinks (Debnath et al., 2020). Importantly, drastic differences in data quality
between participants or stimulus conditions may alter the results, for example, resulting in

ERP amplitude and latency differences (DeBoer et al., 2005).

Finally, defining strict participant inclusion/exclusion criteria may improve EEG data
quality by reducing sample heterogeneity but results in a lack of diversity that compromises
the generalisability of EEG findings. According to Norton et al. (2021), there is a need to
increase the participation of underrepresented groups in EEG studies, such as participants
from deprived backgrounds or racially, culturally and ethnically diverse (e.g., those with

thick hair or non-English speakers).

Experimental factors: stimuli and paradigms.

So far, much of the ERP work in speech perception has used highly controlled and
isolated stimuli, such as tones or phonemic contrasts in consonant/vowel in syllables (e.g.,
/ba/-/da/). Thus, they inform about acoustic and phonological discrimination but not about
higher-level linguistic modulations (e.g. words) for which they may lack ecological validity

to explain the complexity of speech perception (Alexandrou. Saarinen, Kujala & Salmelin,
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2018). Nevertheless, there is growing interest in studying speech perception in daily-life

contexts, using naturalistic stimuli as continuous speech (Walley, 2005).

Regarding EEG paradigms, ERP speech perception studies often use an oddball
paradigm, which is repetitive and hard to tolerate for children. Alternatively, the multi-feature
(or optimal) paradigm (Né&éatanen et al., 2004) represents an efficient tool to include multiple
acoustic contrasts and reduce ERP testing time without losing statistical power (Niemitalo-
Haapola et al., 2013). Considering potential clinical applications, EEG/ERP experiments have
been introducing paradigms and analysis techniques that reflect not only group-level but also

individual differences in speech perception, for example, machine learning methods.

Data analysis issues: EEG pre-processing and measures.

There are different toolboxes available for analysing adult EEG data. However,
because of the differences between children and adults, adult analysis cannot be extended to
paediatric EEG. So far, there is no gold standard on what pre-processing steps to use, how to
define a priori the electrodes or time windows of interest or the more suitable EEG measures

for comparing children and adults' neural responses to speech.

Regarding pre-processing steps for paediatric EEG, high inter-lab variability hinders
reproducibility and large-scale studies. Despite some recent standardisation attempts as the
MADE Pipeline (Debnath et al., 2020) and new pre-processing tools that minimise artefact-
related data loss, it is necessary to investigate how different methods work with children's
data. For example, EEG adult absolute thresholds for artefact rejection cannot be applied to
children's data because infants and young children show inherently greater EEG baseline
power in lower frequency ranges and higher amplitude ERPs than adults (Brooker, 2020),

requiring higher thresholds for artefact rejection.
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Moreover, a critical question is whether it is appropriate to compare adult and
children's EEG data quantitatively and what measures to use. For example, in the resting-state
EEG, adult and children frequency bands are not necessarily equivalent: band boundaries are
lower for infants and children (Saby & Marshall, 2012), whereas peak frequency and power
change with age (Bell & Cuevas, 2012). For ERP components, there are age-related
differences in morphology, latency and scalp topography (DeBoer et al., 2006). During
speech discrimination tasks, theta phase synchronisation increases, and power decreases from
childhood to adolescence (Bishop et al., 2011) and adolescence to adulthood (Mdller et al.,
2009). Paradoxically, larger amplitudes in EEG responses in children do not represent better

speech discrimination than adults but result from brain maturation (DeBoer et al., 2006).

Finally, children show high within and between-participant variability in EEG
amplitude and latency measures, especially for clinical groups. This variability results from
developmental differences in brain synchrony and may significantly affect EEG measures
based on signal averaging, such as ERPs. Signal averaging for isolating ERP components
removes important neural activity that contributes to cognitive processing, but that in children
may not be robustly time-locked to an event (Makeig et al., 2004). Alternatively, EEG
measures of oscillatory synchrony (PC, PLV, and ITC) could be more suitable to reflect

differences in cortical responses to speech than amplitude-based measures.

In summary, this literature review shows essential differences in speech processing
skills between children and adults, and between children with TLD and DLD. These
differences are associated with the maturation of auditory and language networks and
language knowledge acquisition during early childhood, among other factors. Importantly,
these multiple research areas (for example, evidence from EEG studies) need to be integrated

into language development models that are consistent with those proposed for adults.
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1.4 Thesis outline

Previous findings highlight the role of neural synchrony in normal brain development
and its potential importance for understanding neurodevelopmental disorders such as DLD
(Uhlhaas et al., 2010). Using EEG as an objective measure of brain oscillations, it would be
possible to characterise cortical responses to speech in young children with different language
skills. However, this requires determining what EEG measures and paradigms are sensitive to

language and speech-processing behavioural differences.

This thesis aims to investigate cortical activity associated with speech perception in
young children with different language developmental statuses (TLD and DLD) using a range
of EEG paradigms, also comparing children's responses to those observed in adults (expert

language status).

Specifically, this thesis addresses the following research questions:

(i) Do cortical responses associated with speech perception vary according to young

children's language status (typical versus impaired)?

(i) What EEG indices reflect group-level differences in language skills: expert (e.g.,

adult-like), typical development (TLD children) or atypical development (DLD children)?

(iii) Do EEG measures relate to children's behavioural measures of speech perception

and phonological processing?

We conducted four EEG experiments to address these questions: a resting state, multi-
feature MMN/LDN, and continuous speech perception paradigm. Children's speech
perception and phonological skills were also tested to determine relationships between their

neural responses and language performance.
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The general hypothesis is that during early childhood, brain oscillations involved in
speech processing will reflect neuro-maturation (age-related changes) but also, the effects of
acquired language knowledge. As speech perception relies on cortical oscillatory mechanisms
modulated by language knowledge, neural synchronisation in processing speech stimuli
should differ under different linguistic abilities. For example, language modulations may vary
during language acquisition because of the accumulation of language experience (knowledge)

and in language-impaired children because of limited top-down language influences.

Thus, as children acquire language, better language skills may enhance speech
representation at the cortical level until they reach adult-like speech perception. However,

this effect would be absent or less pronounced in children with DLD.

Specifically, my predictions (P) were:

P1: EEG indices would reflect more efficient speech processing in adults than in

children.

P2: EEG indices would reflect more efficient speech processing in children with TLD

than children with DLD at the same age.

P3: Better language skills will facilitate the perception of speech at the cortical level,

especially with higher-order linguistic content (e.g. lexical than functional words)

P4: Cortical responses (EEG) and behavioural measures of speech processing will

show a positive, direct association.

The first study of this thesis (Chapter 2) validated an ERP multifeature experiment
(Né&atanen et al., 2004) in a group of healthy Spanish-speaking adults, comparing cortical

discrimination responses (MMN/LDN) for speech stimuli versus their nonspeech analogues
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using very controlled stimuli (CVC monosyllables). In the second study (Chapter 3), we used
the stimuli from the adult experiment, but only in the speech condition to investigate
discrimination of phonemic contrasts in children with TLD and DLD (ages 4.7 to 5.7 years).
We compared ERP and time-frequency measures and their associations with phonological

awareness processing performance.

The third study (Chapter 4) used a less-controlled task-free paradigm to examine the
relationship between resting-state power, oscillatory lateralisation, and speech perception
tests between TLD and DLD children. The fourth experiment (Chapter 5) compared, for the
first time, speech tracking in children with DLD versus TLD, using multivariate temporal
response functions (MTRFs) to map EEG responses and continuous speech features (Di
Liberto et al., 2015). Finally, Chapter 6 discusses the potential neurophysiological
mechanisms underlying our EEG findings and their interpretation regarding current

knowledge in language neuroscience and speech perception development.

This thesis contributes to understanding the neural basis of speech perception in
children by exploring different measures of cortical activity related to speech perception. It
further informs research in speech perception development by using a range of paradigms
with different ecological validity, relating EEG to behavioural measures of phonological and
speech processing. In the future, these findings could help clinical practice by aiding the

diagnosis of speech and language disorders and monitoring interventions' efficacy.
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Chapter 2. Validating a multifeature experiment in adults

2.1 Introduction

For humans, spoken language is a relevant input for which our brain has an innate
preference (Zatorre & Gandour, 2007). At the same time, some linguistic content in the
speech input is perceived more easily than others. In the brain, this is supported by complex
mechanisms and involves integrating multiple bottom-up and top-down processes. However,
it is still being determined to what degree speech perception is guided by auditory and
linguistic features of the speech signal and how these features interact with prior language

knowledge (or language skills).

An objective, accurate measure to investigate how the brain perceives speech is the
Mismatch Negativity (MMN). The MMN can be elicited without conscious attention to the
stimuli, helping to separate attentional and linguistic processing. The MMN patterns are also
sensitive to different levels of linguistic representation in the speech signal, for example,
phonemic or lexical content. However, MMN experiments usually use a few contrasts,
providing little information on higher-order language influences. In addition, there is a need

to test previous MMN findings in new populations, for example, Spanish speakers.

This chapter investigated cortical discrimination of speech stimuli of varying
linguistic complexity. We aimed to validate an MMN experiment in adult Spanish speakers,
providing reference values for future studies with children (Chapter 3). Instead of a typical
oddball design, we used a multifeature (optimal) paradigm (Naaténen et al., 2004), partially
replicating a study by Gansonre et al. (2018). This allowed us to contrast multiple linguistics

content while considerably reducing the EEG testing time for future studies in children.

58



2.1.1 Language influences on speech perception

Speech perception is hierarchically organised, involving successive stages of
increasing complexity during which linguistic features are integrated (Cutler, 2008; Peelle et
al., 2010). During word recognition, a hierarchical sequence for speech processing involves
early, low-level acoustic features (e.g., pitch, amplitude, formants) and later, higher-level
sub-lexical phonological (individual sounds and syllables), lexical (words) and semantic
(word meanings) content (Kujala et al., 2007). However, to what extent each stage is
influenced by the linguistic properties of the input, language representations in our brain or
their interplay still needs to be fully understood. Although the amount of sensory detail in the
speech signal (speech intelligibility) is undoubtedly a crucial factor determining how well we
perceive spoken language, there is consistent evidence for top-down effects on different
speech perception stages. Perceiving speech (but not other sounds) would activate language
representations in the listener's brain, reducing the impact of acoustic variations in the input
and enhancing the perception of features relevant to speech comprehension (Cutler, 2008;

van Linden et a., 2007).

One type of top-down language modulation that shapes how the brain responds to
speech relates to an individual's experience with a given language (Leonard & Chang, 2014).
More experienced language users (e.g., adult-like, native speakers) will perceive a given
speech input more easily than less experienced or less language-proficient ones. A typical
example is the innate brain preference for our native language; multiple studies have
demonstrated that after the age of two years, cortical responses are more significant for native
than non-native phonemes, indicating better phonological discrimination for the language we
are familiar with (N&&ténen et al., 1997; Kuhl, 2010). This indicates that speech perception is
driven by implicit language knowledge acquired through cumulative experience, for example,

with our native language's phonological rules or vocabulary.

59



A second type of language top-down modulation on speech perception is the listener’s
language knowledge. Although the literature here is vast, a clear example of language
knowledge manipulation is the study by Sohoglu et al. (2012). They tested fourteen adults by
showing them a text before presenting spoken sentences with different levels of acoustic
degradation. They found that when participants knew sentence content beforehand (matching
text condition), their ratings of perceptual clarity were significantly better than when the text
did not correspond to the upcoming sentence (mismatching text condition), with prior
language knowledge predicting how the speech was perceived. The authors concluded that
increasing the amount of prior knowledge improved speech perception, similar to when the
speech signal was physically enhanced (greater intelligibility). However, other studies using
objective measures have found no such effects. Millman et al. (2015) used MEG to measure
cortical tracking of the speech envelope before and after training participants (n=16) to
understand unintelligible speech. They found no enhancement in the responses for the same
sentence after they became intelligible, concluding that speech perception was driven by
acoustic processing with no effects of prior language knowledge. This discrepancy between
subjective and objective measures could be explained to a great extent by the great variety of

paradigms used to investigate top-down language effects.

A third factor that interacts with language representations in the brain is the type of
linguistic content in the speech input, such as phonemic categories, lexical status, word
morphology and meaning. Previous studies indicate that some elements of speech are
perceived more easily than others, generally those that activate higher-order language
representations. Shtyrov et al. (2011) reported enhanced cortical responses for words than
non-words in adults (n=18), indicating easier phonological processing when phonemes
(native) are presented in a meaningful configuration (lexical status effect). Similarly, a study

by Mai, Minnet and Wang (2016) in adult Mandarin speakers (n=21) confirmed the effects of
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lexical status on different EEG measures when presenting sentences containing real words
and non-words with similar acoustical structures. The authors detected different EEG patterns
for real words and non-words, concluding that phonological and semantic tasks engage
different cortical networks during speech processing. This indicates that findings about
linguistic content effects on cortical speech processing may need further replication, ideally

in different languages.

Regarding neural mechanisms, it is believed that top-down language modulations
interact with incoming speech through top-down feedback loops from frontal to temporal
auditory areas. Notably, interactions between language knowledge and linguistic content
occur during the late and early stages of speech processing (less than 200 ms). Sohoglu et al.
(2012) reported that the effect of prior language knowledge involves activation in the STG
shortly after speech onset, even before sensory cortices are recruited. Similarly, there is
evidence of significant lexical effects peaking within 200 ms with enhanced cortical
responses for stimuli with lexical status (Shtyrov et al., 2011). Moreover, a provocative claim
by Leonard and Chang (2014) posits that neural activity in the STG reflects context-
dependent spectro-temporal representations of speech, meaning that this low-level speech

processing area would also encode linguistically and behaviourally relevant information.

Together, these findings indicate that prior language knowledge and the type of
linguistic representations in the speech input modulate speech perception in the brain, even at
low-level processing stages. However, a common issue with previous research investigating
these effects with neural measures is that they frequently use very small samples, very
different paradigms and have yet to replicate their findings. In this context, the MMN has
emerged as a reliable index suitable for studying the effects of language knowledge and

linguistic content on speech perception with millisecond precision.
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2.1.2 Speech perception and the MMN

The MMN is the negative frontal deflection elicited by the detection of any
unexpected auditory feature, e.g., frequency, duration, intensity, or speech contrast. It is
commonly elicited during passive listening using an oddball paradigm, consisting of an
infrequent (deviant) stimulus within a sequence of repeated (standard) sounds. The MMN is
measured on different waveforms computed by subtracting the ERP responses for the
standard from that of the deviant stimuli (Luck & Kappenmann, 2011). The amplitude of the
MMN is thought to reflect the magnitude of physical difference detected between a deviant
and the preceding standards, but also the stimulus probability, as deviant stimuli are less
likely to occur than standards. The latency varies according to the stimulus complexity, but
roughly, the MMN typically spans from 100-250 ms (Kappenman et al., 2021) with an
additional late discriminatory negativity (LDN) in the 350 (or earlier)-500 ms range. The
LDN is more reliable in young children, larger for speech than non-speech sounds and
decreases in amplitude with age (Cheour et al., 2001). Larger amplitudes and shorter latencies

are typically interpreted as more efficient cortical processing.

Since the 1990s, many studies have used the MMN to study speech perception in
passive listening conditions, measuring the detection of sub-lexical contrasts as phonological
differences in syllables and between larger units as words and sentences (Naatanen, 2003).
For example, Kuuluvainen et al. (2014) used EEG-MEG in healthy adults (n=15) to measure
cortical change detection of syllables with consonant, vowel, sound duration, frequency, and
intensity contrasts. After controlling for acoustic and linguistic differences, they reported
larger MMN for speech than for non-speech analogues. Thus, the MMN is useful to study
top-down modulations on speech perception and the effects of different linguistic content.

At early processing stages, larger MMNSs reflect an enhanced perception of speech
with higher-order linguistic content. For example, a study by van Linden et al, (2007) in
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adults (n=16) reported greater MMN amplitude when the stimulus lexical information helped
to disambiguate the phonemic content, demonstrating that lexical influences operate at pre-
lexical processing stages. Shtyrov et al. (2011) detected an early effect of word frequency at
100-120 ms originating bilaterally in the left inferior frontal areas, with significantly greater
MMN amplitude for high-frequency words. This indicates frontal top-down modulations
interplay with linguistic content at early processing stages. Similarly, a study in German
speakers (n=23) by Jacobsen et al. (2021) demonstrated early effects of word type in the
MMN amplitude, with more significant frontal responses for nouns than function words in

the 80-200 ms interval.

At later processing stages (>200 ms), modulations on the MMN include lexical status
and word type effects. Shtyrov et al. (2011) reported that a later lexicality effect originated
bilaterally in perisylvian areas, with significantly larger responses for word than for non-word
deviants in the 200-350-time window. Similarly, Gansonre et al. (2018) reported later
phonological, lexical, and lexical-semantic enhancement effects. They found significantly
larger negative responses for native vowels than for non-native analogues with a centrally
distributed peak at 248 ms. Real words elicited significantly larger negativity than non-words
at 320 ms, whereas action verbs exhibited a more robust frontal negative response than
concrete nouns, peaking at 310 ms. Together, these results indicate later MMN-like responses
consistent with the LDN time course. However, focusing on the LDN as a cortical measure
for adult speech perception studies could be less appropriate than the MMN because the LDN

decreases with age, and could be hard to differentiate from the N400 component.

An important methodological aspect is that most MMN studies use a simple oddball
paradigm with one standard stimulus interspersed with one or two deviants that differ in one
critical acoustic feature. Such strict acoustic control is hard to achieve in speech perception

research as speech naturally involves multiple phonological contrasts. Many studies try to
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control acoustic differences by restricting the number of speech contrasts, ending up with
very restricted distinctions such as /ba/-/da/. Although these conditions provide reasonable
experimental control, they limit the number of contrasts that can be studied in each
experiment, resulting in long EEG recording times if wanting to introduce more variables.
More importantly, such controlled conditions are not very informative about speech
perception, such as how low-level speech features are modulated by language knowledge and

linguistic content.

In response to this, a variant of the oddball paradigm, the multifeature paradigm,
attempted to sort out this limitation by including several deviants versus one standard,
allowing different contrasts in a much shorter time without losing statistical power (N&atanen
et al., 2004). Gansonre et al. (2018) used a multifeature paradigm to study the perception of
different speech contrasts in monosyllabic word forms in a group of adult Danish speakers
(n=21). Although they used parent waveforms! instead of the MMN difference waveforms,
their experiment demonstrated that it is possible to successfully elicit ERP responses for

multiple linguistic conditions in a single testing session.

From a theoretical perspective, there are different interpretations of the MMN. A
classical hypothesis is that the MMN reflects the formation of sensory memory traces and is
elicited as an error signal when an incoming deviant mismatches previous representations of
a standard stimulus (N&&tanen et al., 2005). Memory traces would involve language-specific
representations in the posterior left auditory cortex for speech perception, working as
templates for automatic speech sound recognition (Naatanen, 2003; N&atanen, et al., 1997;
Pulvermdller et al., 2001). Alternatively, the neural adaptation account suggests that the

MMN is not a response itself but a part of the auditory N1 component, which is suppressed

1 In recent MMN research, ‘parent waveforms’ (e.g., Kappenmann et al., 2021) refer to the original standard and
deviant grand averages before calculating the difference waveform deviant minus standard.
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and delayed, reflecting passive neural attenuation in the auditory cortex for repetitive sounds,
including speech (Jaaskelainen et al., 2004). This bottom-up, pre-attentive gating of novel
stimuli into conscious perception would leave out irrelevant, less-informative stimuli
(Heilbron & Chait, 2018). Finally, the predictive coding framework proposes that the MMN
is an index of “prediction error” between the brain’s prediction about future sensory events
and upcoming sensory information (Garrido et al., 2009). This error signal updates higher-
order processing levels and facilitates low-level processing of new inputs (Heilborn & Chait,
2018). Although predictive mechanisms are not exclusive to language, evidence supports
predictive coding during phonological, lexical, semantic, and grammatical processing

(Heilbron et al., 2022).

Although the MMN theories may overlap in some respects, as they are all somehow
based on memory, Heilbron and Chait (2018) pointed out an important distinction between
them: Predictions operate prospectively, representing future stimuli, whereas memory
comparisons act retrospectively by comparing the incoming input with previous traces. There
is a need for more MMN studies contrasting different language processing levels. To
determine which of these approaches better explains linguistic modulations on speech

perception, for example, using the multifeature paradigm.

2.1.3 The current study

This study investigated the effects of different types of linguistic content on the cortical
detection of speech contrasts in adults, as indexed by the MMN. Given the few studies
assessing cortical speech processing in Spanish speakers and the need for EEG paradigms
suitable for young children, we partially replicated an experiment by Gansonre et al. (2018)

in a group of Chilean adults (n=20). Using a multifeature paradigm, we investigated the
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MMN responses to phonological changes in a set of speech (S) deviants that differed
hierarchically in their linguistic content: native versus non-native phonemes in non-words,
non-words versus words, and function versus content words. We also compared the MMN for

each deviant type with the responses to their non-speech (NS) analogues (control condition).

The aims of this study were twofold; firstly, to determine if our experiment elicited a
consistent MMN (and LDN, for exploratory purposes), and secondly, if the MMN was

influenced by the linguistic differences between stimuli.

Thus, we addressed three questions:

Q) Are there significant MMN/LDN responses?
(i) If an MMN is present, are there any differences in amplitude or latency when
stimuli are presented in a speech versus a non-speech configuration?

(iii) Is there any effect of the linguistic content on the MMN patterns?

We hypothesized that our experiment would elicit robust MMN responses for all deviants
and that early effects of linguistic content would be observed as differences in the MMN
amplitude and latency. Specifically, we predicted an effect of linguistic content, with MNN

differences between pairs of speech and non-speech stimuli.

For contrasts in the speech condition, we predicted an effect of the linguistic processing
level, with different MMN responses for (i) native than non-native phonemes in non-words,
(1) words than non-words (lexical/ non-lexical status), and (iii) content words versus function
words (word class). However, for the direction of these effects, our hypotheses were
exploratory and considered possible outcomes according to the MMN frameworks described

earlier, summarised in Table 2.1.
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Table 2.1

Possible Linguistic Effects on the MMN According to Different Theories

Hypothesis MMN prediction Rationale
Predictive | either because
coding (a) no effect of condition or linguistic (a) the probability of occurrence is

content on the MMN,

or

(b) reduced MMN amplitude for more
predictable stimulus (speech),

because of less prediction error.

equal for all deviant types,

or

(b) language status could make the
speech stimuli easier to predict than
meaningless non-speech

analogues.

Memory Larger MMN amplitude for more If a language-specific memory effect

traces familiar, higher-order stimulus is present, we should observe larger
(speech than non-speech, but only for | responses because of stronger
words; for words than non-words, and | long-term memory traces.
for content than function words).

Neural either either

adaptation | (a) no difference in MMN between (a) all type of changes should

conditions,

or

(b) smaller responses for speech than
non-speech items, but with no
differences within the speech

condition.

trigger equal neural refreshment.
or
(b) repeated speech stimuli could

generate neural habituation faster.
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2.2 Methods

2.2.1 Participants

Twenty adults (age range 24.9-44.11 years, M=34.2, SD= 4.8, 12 female) were
recruited for the study through advertising on social media groups. All participants were
native Chilean Spanish-speaking adults who lived in London (UK), used Spanish as their first
language at home and, despite having English as a second language, did not speak a language
other than Spanish (Chilean variant) before the age of 5 years. None of the participants
reported a history of hearing loss, neurological or psychiatric conditions, or learning or

language difficulties, as determined by an online screening survey.

This study was approved by the Research Ethics Committee of the Division of
Psychology and Language Sciences, University College London (UCL). Before participating
in the study, all participants read an information sheet and provided written informed consent.

All participants received compensation of £15 for their time.

2.2.2 Stimuli

Two sets of acoustic stimuli were created: a ‘speech’ (S) and a ‘non-speech’ (NS)
condition. Each set consisted of five stimulus types: one standard stimulus (288 in total) and
four deviants (72 stimulus for each type, 288 deviants in total) with a total of 576 stimulus

per condition (S and NS).

Speech condition

Five CVC monosyllables were created according to the Spanish language phonotactic
rules. Stimuli were recorded by a female native Chilean Spanish speaker in an acoustically
shielded booth with a condenser microphone RODE NT-1A, an RME Fireface UC interface

and the Audacity software with 44.100 Hz sampling rate, stereo channels and a 16-bit format
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as settings. The recorded string was converted to mono, and each stimulus was cut from the

whole set to the nearest zero crossing, defining the stimulus beginning/end.

The five stimuli consisted of one standard (St) and four deviants (D1 to D4) that were
produced by changing the initial phoneme of the standard stimulus while keeping constant
the vowel nucleus and the final consonant. These phonemic changes resulted in acoustic and
phonological contrasts between the standard and deviant stimulus aiming to elicit the MMN
but also involved different levels of linguistic processing: (i) phonological: native versus non-
native phonemes in non-words (phonotactically allowed word forms without meaning), (ii)

lexical: non-words versus real words, and (iii) semantic: function versus content words.

Stimuli were controlled as much as possible for acoustic and linguistic differences
known to influence cortical speech processing measures, such as the MMN. According to
Guardia (2010), the initial phonemes were selected to maximize their similarity in terms of
linguistic (e.g., syllable structure, word length/stress) and lexical factors (age of acquisition
and oral frequency). Thus, the stimuli should meet the all the following criteria: (i) St and D2
are non-words with a Spanish native initial phoneme, (ii) D1 is a non-word with an initial
phoneme that is non-native in Spanish, (iii) D3 is a Chilean Spanish function word, (iv) D4 is
a Chilean Spanish content word, (v) D3 and D4 are similar in their age of acquisition and oral
frequency and are acquired before the age of 4.6 years (to be used in future experiments with

young children), according to databases by Corral et al., (2009) and Alonso et al., (2015).

As illustrated in Table 2.2, “fus”, a non-word in Spanish, was selected as the standard
(St) stimulus. To create deviant 1 (D1), the initial phoneme was changed into /[/, but the
vowel and final consonant were preserved (/u/ and /s/, respectively), resulting in the non-
word /fus/ (“shus”) which is non-native in Spanish. For deviant 2 (D2), the initial phoneme

was changed into /x/, a native Spanish phoneme that produced the non-word /xus/ (‘“hus”).
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For deviant 3 (D3), the initial phoneme was /t/, resulting in the function word /tus/ (“tus”,
meaning “yours”), and for deviant 4 (D4), the initial phoneme was /1/, producing the content
(lexical) word /lus/? (“luz”, meaning “light”). Although a fricative onset consonant (in St, D1
and D2) and the /u/ vowel nucleus could make the stimulus less salient (because of greater

noise and lower amplitude, respectively), only these CVC combinations met all our criteria.

Table 2.2

Linguistic Parameters for Stimuli in the Speech Condition

Type Class Initial Vowel Final Age of Oral
Consonant Consonant  Acquisition Frequency
St Non-word il fu/ Is/ -- --
Native,
labiodental,
unvoiced
fricative
D1 Non-word I/ fu/ /sl -- --
Non-Native,
postalveolar
, unvoiced
fricative
D2 Non-word Ix/ fu/ /sl -- --
Native,
velar,
unvoiced
fricative
D3 Function It/ ul Isl 4242 2.63°
word Native,
(determiner)  dental,
unvoiced,
alveolar
D4 Content word  /I/ fu/ Is/ 3.182 2530
(noun) Native,
alveolar,
voiced,
lateral
Note. St: Standard, D1: Deviant 1, D2: Deviant 2; D3: Deviant 3; D4: Deviant 4.
8 Subjective AoA in years (Alonso et al., 2015)
> Among the 100 most frequent words and monosyllables in Spanish (Corral et al., 2009)

2 Note that /lus/ is valid for the Chilean and other Hispano-American Spanish pronunciation but not totally for
peninsular Spanish, in which the phoneme /s/ is pronounced interdentally, as in many areas in Spain.
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Non-Speech condition.

A set of standard-deviant stimuli were spectrally matched to each one of the original
stimuli but could not be perceived as speech. These non-speech analogues acted as a control
condition, differentiating the MMN effects resulting from acoustic changes from any

potential linguistic effects.

The NS analogues were created from the original stimuli using TANDEM-
STRAIGHT (Kawahara et al., 2008), a speech modification system that decomposes the
speech into a carrier and a spectral filter. Before resynthesis, the spectral filter was averaged
across the entire frequency range, preserving the temporal fluctuations in amplitude and
voiced/unvoiced/mixed distinctions but no other variations in spectral content. The result was
similar to what would be obtained in a traditional single-channel vocoder (Dudley, 1939).
Finally, the ensemble of five non-speech sounds was spectrally matched to the average
spectrum of the five originals. The spectrograms for the stimulus in both conditions are

presented in Figure 2.1.

To control for acoustic factors, all stimuli were matched as much as possible in pitch,
intensity and duration using PRAAT (Boersma & Weenink, 2018). For stimulus with a
voiceless initial consonant (all except D4-S), the initial consonant was defined from time=0
to the last time point in which the signal was aperiodic. Vowel duration was defined as the
time from the start to the end of periodicity. The final consonant duration was defined from
the first aperiodic sample after the vowel end to the stimulus end time. The initial consonant
for D4-S (voiced) was identified from the vowel by visual inspection of the spectrogram, and
the vowel onset was considered as the time when there was a sudden and sustained rise in f 0,
confirmed by auditory inspection of the consonant-vowel transition. After pre-processing,

stereo format was restored. Table 2.3 presents the acoustic parameters for all stimuli.
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Figure 2.1

Spectrograms of Each Stimuli

(a)

Frequency (kHz)

Frequency (kHz)

Frequency (kHz)
Frequency (kHz)

Frequency (kHz)

Frequency (kHz)

Frequency (kHz)

Frequency (kHz)

Frequency (kHz)

Frequency (kHz)

Time (ms)

D3NS

Note. Column (a) Speech (S) condition; (b) Non-speech (NS) condition.
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Table 2.3

Acoustic Parameters for Stimulus in the Speech and Nonspeech Conditions

Mean values Vowel Consonant
gﬁgﬂﬂosn/ Duration Pitch Intensity? Duration Mean Mean _ Initial  Final
type (ms) (Hz) (dB) (ms) pitch  intensity (ms) (ms)

(Hz2) (dB)

Speech

St 610 264 66.7 240 264 70.8 140 210
D1 660 264 66.7 220 264 71.3 190 230
D2 630 267 66.7 210 268 71.5 170 240
D3 680 267 66.7 250 266 71.0 140 270
D4 660 264 66.7 230 269 70.7 130 280
Non-

speech

St 610 264 66.7 280 264 70.2 110 200
D1 660 264 66.7 240 265 71.1 170 230
D2 630 267 66.7 250 268 70.8 140 230
D3 680 267 66.7 290 267 70.5 110 260
D4 650 262 66.7 230 268 70.2 140 270

Note. St: Standard, D1: Deviant 1, D2: Deviant 2, D3: Deviant 3, D4: Deviant 4.
Stimulus duration ranged from 610 to 680 ms with a 15 ms ramp on/off segment.
bIntensity of all stimuli was normalised to the root-mean-square (RMS) at 66.7 dB

°VVowel intensity differences within 1 dB and in vowel pitch within 1 Hz for each S-NS pair.

Importantly, some inevitable differences in the acoustic complexity between stimulus
pairs in the S and NS condition persisted, even after maximum efforts to match them as can
be confirmed by visual inspection of the spectrograms in Figure 2.1. For example, D1-S has a

lower intensity in the initial fricative than its NS analogue.
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2.2.3 Procedure

Stimuli of the S and NS condition were divided into four blocks of 3 min 20 seconds
duration (8 blocks in total, with a total duration of 28 minutes). Each experimental block
consisted of an initial habituation sequence of 10 standards, and a multi-feature sequence of
144 stimuli (Figure 2.2). In the multi-feature sequence, the four deviants (12% of the trials
each) stimuli interspersed in a randomised order with the standard stimulus (50% of the
trials). The inter-stimulus interval (1SI) was randomly jittered between 1100-1200 ms, and the

presentation order of the speech and non-speech blocks was randomised across participants.

Figure 2.2

Structure of each Experimental Block for the Speech and Non-Speech Conditions

St =50%
D1-4 = 12% each (50% total)

Initial sequence: Multi-feature sequence:
10 Standard 72 Deviants (18 per type) + 72 Standard
[ | [ |
St St St St l St . St D2 St D1 St L
U

1SI: 1100-1200 ms

Block duration: 3 min 20 sec

Note. Each experimental block consisted of an initial sequence of 10 standards (white
squares), and a multifeature sequence, in which D1 (light blue), D2 (green), D3 (blue), and
D4 (pink) were randomly alternated with the standard. Total number of stimuli per block=

154. ISI: Inter-stimulus interval.
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Participants were tested in a single 2-hour session at the UCL Infant and Child
Language Lab. After providing informed consent, they completed a language background
questionnaire and received an air conduction pure tone audiometry according to the British
Society of Audiology procedures (BSA, 2011). They also completed the Block Design test of
the Weschler Abbreviated Scale of Intelligence, WASI (Weschler, 2011), a standardised
measure of nonverbal 1Q.

The participant’s hearing and nonverbal skills were assessed to confirm that they (i)
presented mean pure tone average (PTA) air-conduction thresholds <20 dB for both ears at
octave frequencies from 500-4000 Hz, or a threshold of <25 dB at any given frequency from
250-8000 Hz, and (ii) performed no more than 1 SD below the normative mean (M=50,
SD=5) on the Block Design test. Table 2.4 summarises participant’s auditory and non-verbal

test results.

Table 2.4

Participant’s Hearing Thresholds and Non-Verbal Scores

Measure M SD ClI (Lower-upper) Range
PTA right ear (dB HL) 6.2 3.7 4.4-738 0-13
PTA left ear (dB HL) 6.9 3.6 5.1-85 0-13
Block Design (T -score) @ 60.7 7.8 56.9 - 64.4 44 - 79

Note. n=20. Group Means, Standard Deviations (SD), Confidence Intervals (CI) for the
Mean (95%), and Ranges for pure tone average (PTA) and the Block Design test.

4 One missing value (n=19)
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2.2.4 EEG acquisition and pre-processing

EEG was recorded in a sound attenuated booth. Participants were instructed to sit in a
chair comfortably and still, ignoring the acoustic stimuli while watching a silent video, with
no response required. All auditory stimuli were presented free field at 70 dB SPL via one
loudspeaker placed in front of the participant.

Continuous EEG was recorded with a 32- channel Biosemi ActiveTwo System
(https://www.biosemi.com), at a 2048-Hz sampling rate. The electrodes were positioned
according to the 10-20 system in the following sites: Fp1/2 - AF3/4 - F7/8 - F3/4 - FC1/2 -
FC5/6- T7/8 - C3/4 - CP1/2 - CP5/6 - P7 /8- P3/4 - Pz - PO3/4 - O1/2 - Oz - Fz — Cz. Al and
A2 were placed on the left and right mastoids, respectively and CMS-DRL were used as
online reference. The vertical and horizontal electro-oculogram were recorded by electrodes
in the left supra and infraorbital sites and right and left eye canthus, respectively. For all
electrodes, DC offsets were kept under 25 pV.

The EEG was pre-processed using EEGLAB v.14 (Delorme & Makeig, 2004),
MATLAB v.2018a (The Mathworks Inc) and ERPLAB v.5.1.1.0 (Lopez-Calderon & Luck,
2014). Data were resampled to 500 Hz and re-referenced off-line to the average of both
mastoids. The continuous EEG was high-pass-filtered with an IR Butterworth filter (2nd
order, 12 dB/octave attenuation, half-frequency cut-offs 0.1Hz, zero-phase shift) to remove
slow drifts and DC offsets (Luck, 2014). Bad channels were removed after visual inspection
and Independent Component Analysis (ICA) was applied to reduce blinks and eye
movements. After ICA, the removed channels were interpolated, and data were re-referenced
to the head average.

A total of 619 epochs of 1000 ms duration were extracted for each participant, defined
from -200 to 800 ms, with baseline correction between -200 to 0 ms. Epochs with artifacts

exceeding an absolute threshold of 100 pV were excluded. The EEG noise level was
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quantified as the individual percentage of epochs rejected for each stimulus type and
condition, considering 30% of the trials per stimulus type as individual maximum artifact
rejection. No participant exceeded this criterion. Table 2.5 presents the group averages per

condition and stimulus type (see Appendix 2.1 for individual rejection values).

Table 2.5

Percentage of Rejected Epochs per Condition and Stimulus Type

Stimulus Type Speech Non-Speech

M SD M SD
St 11.8 12.4 10.7 9.3
D1 7.6 8.8 8.7 7.2
D2 9.2 7.9 9.0 7.8
D3 8.4 7.2 9.4 7.8
D4 8.8 6.6 11.9 15.3

Note. n=20. Group Means, Standard Deviations (SD) for the total percentage of rejected
epochs.

2.2.5 ERP data analysis

Individual ERP datasets were created for each participant and the grand average was
calculated across all subjects for each stimulus type in both conditions. Then, four difference
waves (DWSs) were computed for all the stimulus type per condition, by subtracting the
average responses for the standards from the average responses for each deviant type.
Difference waveforms were then analysed to determine if the MMN response was present
and quantify its amplitude and latency.

To reduce the number of statistical comparisons (Luck & Gaspelin, 2017), electrode

Fz was selected a priori for all data analyses as previous literature has reported it as a site of
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maximum MMN amplitude (N&&tanen et al, 2004). Pre-processed DWs at 500 Hz were
decimated for statistical analysis by a factor of 4 to 125 Hz, by low pass filtering with a
boxcar moving average and baseline correction from -194 to 0 ms.

For the first analysis, significant responses and their polarity were detected by point-
by-point, 2-tailed t-tests applied in the 50-450 ms time window. Using a broad time window
would allow us not only to detect the MMN but to explore other responses as the LDN for
informing future studies. A response was considered present if the amplitude of a DW was
significantly smaller than O pV for a continuous period of at least 16 ms (Gurthrie &
Buchwald, 1991). The MMN time window was defined between 100-250 ms whereas
exploratory LDN analysis comprised the 250-450 ms interval. All between and within-
condition analysis were performed in the MMN time window: peak latency was calculated as
the largest negative deflection in the 100-250 ms interval, and mean amplitude as the average
over a 50 ms interval centred in the peak latency. Qualitatively, we reported the temporal

patterns and scalp distribution for the MMN.

2.2.6 Statistical analysis

Statistical analyses were performed using SPSS v.27, Matlab 2018a and the Mass
Univariate ERP Toolbox, MUA (Groppe et al., 2011) and considered a critical alpha level of

0.05 for all analysis, except when correction for multiple comparisons was required.

MUA was used to identify determine reliable responses by performs point-by-point t-
tests throughout a given time window(s) and electrode(s) of interest, testing the null
hypothesis that the difference between a given ERP waveform is not significantly different
from O pV. The results of each test are expressed as a t-score for each time point, with greater

t-scores indicating more reliably differences (Groppe et al., 2011). As this is a validation
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study, the MUA approach was preferred over other MMN/LDN identification or
quantification methods (e.g., average measures over a time window), because it provides a
fine-grained analysis of the time course (start/ending points) and the direction (polarity) of
any significant responses for each DW type and between/within-condition effects.

To control for the substantial number of comparisons, the significance of each t-test
was assessed by applying a False Discovery Rate (FDR) control procedure at a 5% nominal
level (Benjamini & Hochberg, 1995). FDR controls for the average proportion of significant
test that are, in fact, false discoveries (type I error) within a family of comparisons, as occurs
across electrodes or between consecutive time points for the same electrode (Fields &
Kuperberg, 2020). The FDR correction assumes that a family of test are positively correlated
and ensures that the likelihood of false discoveries will be limited to the nominal level,
regardless their dependency (Benjamini & Hochberg, 1995). FDR-corrected p-values
referring the critical threshold for statistical significance are known as g-values. For example,
for a family-wise error rate of q=0.05 («=0.05), any t-test result with g < 5% will be

considered statistically significant (Groppe et al., 2011).

2.3 Results

2.3.1 ldentification of significant ERP responses

Figure 2.3 displays the ERP grand average waveforms for all stimulus in the S and NS
condition, indicates typical auditory responses for all the stimulus types. For the S condition
(Figure 2.3a), peaks on D1 and D2 are clearer for the standard stimulus, but the opposite
pattern is observed for D3 and D4. In the NS condition (Figure 2.3b) the amplitude of deviant

and standard stimuli looks very similar.
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Figure 2.3

Grand Average Parent Waveforms at Fz, for all Stimuli
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MMN/LDN identification in Difference Waveforms

The first validation step for our experiment focused on determining whether it elicited
statistically significant MMN and LDN responses in each of the difference waves and if so, in
describing their temporal patterns. We computed four difference waveforms (DW) from
individual ERP sets and averaged them across subjects for each condition resulting in two
pools of deviants; one for the speech (DW1-S, DW2-S, DW3-S and DW4-S) and another for
the non-speech condition (DW1-NS, DW2-NS, DW3-NS and DW4-NS).

MUA was applied at electrode Fz for each DW, to determine (a) if statistically
significant responses were present, (b) their latency and duration (start-end time points), and
(c) the polarity of other responses (positive or negative), using a broader time window around
50-450 ms (exact boundaries for a 125 Hz rate: 46-446 ms).

Significant responses of the same polarity (either positive or negative) were detected
for all DW types at similar latency ranges for both conditions (see Table 2.6). In general, the
duration of these responses was longer in the non-speech than in the speech condition, except
for DW type 2. Amongst these significant ERP responses, the MMN was identified as
negative deflections occurring in the 100-250-time window for an interval of at least 16 ms
(Guthrie & Buchwald, 1991).

The results of the MUA confirm the presence of significant MMN responses at Fz the
100-250 ms time window for all DW types in both conditions (Table 2.6, values in bold). In
addition, significant negative responses are observed for the 250-450 interval in both
conditions (Table 2.6, underlined values) for all DW types, except for DW2_S, suggesting
LDN responses are also present. Table 2.7 presents the parameters of the MUA in the 50-550
ms time window, with a family-wise alpha level of 5% (g=0.05) for each DW type, in both

conditions.
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Table 2.6

Significant ERP Responses Detected in the 50-450 ms Time Window

Speech Non-speech
DW Start/end Response Response Start/end  Response Response
type  time (ms) duration (ms) Polarity time (ms)  duration Polarity
(ms)

Dw1l - -- -- 78-102 24 Neg.
-- -- -- 102-126 24 Neg.
182-198 24 Neg. -- -- --
238 8 Pos. 214-246 32 Pos.
278-294 16 Neg. 262-318 56 Neg.
350-390 40 Pos. 342-398 56 Pos.

Dw2 102-118 16 Pos. -- -- --
158-182 24 Neg. 166-182 16 Neg.
222-246 24 Pos. 214-246 32 Pos.
-- -- -- 270-310 40 Neg.
358-366  8* Neg 358-404 60 Pos.

DW3 -- - -- 62-110 48 Neg.
190-230 40 Neg. 166-222 56 Neg.
278-334 56 Pos. 262-270 8 Pos.

366-374 8 Neg.
414-430 16 Neg.

DW4  86-110 24 Pos. 54-62 8 Pos.
126-174 48 Neg. 102-158 56 Neg.
214-278 64 Pos. 206-254 48 Pos.
326-374 48 Neg. 286-374 88 Neg.
-- -- -- 398-422 24 Pos.

Note. Time points and/or intervals for which the DW amplitude differed significantly from 0

MV, presented in chronological order after stimulus onset. Significant intervals

corresponding to MMN responses are marked in bold, in the shaded cells. Significant

intervals corresponding to the LDN response are underlined. (*) This response is too short to

be considered significant.

82



Table 2.7

Results of the Mass Univariate Analysis for the 50-450 ms Time Window

Speech Non-speech
Stimulus  Critical Test- Estimated Critical t- Test- Estimated
type t-scores wise upper scores wise upper
alpha bound FDR alpha  bound FDR

DW1 -2.85/2.85 0.01 0.6 -2.40/2.40 0.03 14
DW2 -2.80/2.80 0.01 0.7 -2.7312.73 0.01 1.0
DW3 -2.69 /2.69 0.02 0.9 -2.70/2.70 0.02 1.0
DW4 -2.41/2.41 0.03 14 -2.3712.37 0.03 1.7

Note. Critical t-scores (2-tailed) indicate the values at which the point-by-point t-scores
computed for each DW start to significantly deviate from 0 pV. The test-wise alpha
corresponds to the corrected q values whereas the estimated upper bound corresponds to the

expected proportion of false rejections of the null hypothesis, this is, the FDR.

To help understand the MMN/LDN patterns, MUA raster diagrams in both figures
were projected on the grand average difference waveforms. Figure 2.4 and 2.5 illustrates the
intervals of significant responses for each DW type in both conditions. Each rectangular bin
in the raster plot equals to 8 ms (at a 125 Hz sampling rate) and represents the value (q) of a
t-test at electrode Fz. Colour towards green-yellow and blue indicate significantly positive
and negative difference from zero, respectively. Grey squares, non-significant differences
from 0 pV. Significant MMN and LDN were detected for all stimulus in both condition,

except for LDN in DW2-S.
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Figure 2.4

Significant MMN/LDN Responses at Fz for all DW in the Speech Condition
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Note. Panel (a) DW1, (b) DW2, (c) DW3, and (d) DW4. Coloured bins in the raster plots
indicate the time periods when the response amplitude is significantly different from 0 pV, at
g=0.05, after correcting for multiple comparisons. Colour bar: t-scores for the MUA.
Significant MMN/LDN responses were detected for all deviants, except LDN in DW2. All

waveforms were low-pass-filter at 35 Hz (Butterworth 1IR) before plotting.
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Figure 2.5

Significant MMN/LDN Responses at Fz for all DW in the Non-Speech Condition
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Note. Panel (a) DW1, (b) DW2, (c) DW3, and (d) DW4. Coloured bins in the raster plots
indicate the time periods when the response amplitude is significantly different from 0 pV, at
g=0.05 after correcting for multiple comparisons. Colourbar: t-scores for the MUA. MMN
and LDN responses were detected for all NS deviants. All waveforms were low-pass-filter at

35 Hz (Butterworth 1IR) before plotting.
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2.3.2 Comparison of MMN responses between conditions.

The second analysis investigated between-conditions differences in MMN patterns for
each S-NS pair (Figure 2.6). All DW pairs showed some MMN overlap except for DW1,
which appeared much earlier and has longer duration in the NS than the S condition. In terms
of latency pair DW2 had an earlier onset and longer response for the S condition, whereas

DW3 and DW4 showed earlier MMN onsets and longer duration for NS stimuli.

Figure 2.6

Comparison of the Significant MMN Responses for Speech/Non-Speech Pairs at Fz
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Note. MMN: shaded area; S: continuous line, NS: dotted line.
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Differences in MMN Topography

In terms of the scalp topography, the MMN responses presented a similar pattern
between conditions for S and NS stimuli on each DW type (Figure 2.7). This pattern
consisted in amplitude shifts towards negative values with a frontal-central distribution that

was more pronounced for DW3 and DW4 than for DW1 and DW2, in both conditions.

Figure 2.7

Scalp Distribution of the MMN Effects for each DW Type

Speech

190-230 ms

102-126 ms 166-182 ms 166-222ms 102-158 ms

Note. First row: Speech condition, second row: Non-speech condition. Numbers indicate the
significant MMN interval for each DW type. Columns 1-4: DW type. Colourbar indicates
mean amplitude (1V) across the time range (green/blue: negative values, yellow/red: positive

values).
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Differences in the MMN latency

The MMN overlapped for each S-NS pair (except for DW1, with earlier onset for
NS), with longer responses in the NS condition except in DW2 (see Table 2.7). Peak negative
latency was measured in the 100-250 time window and averaged across participants (see

Table 2.8 for descriptive statistics).

Table 2.8

MMN Peak Negative Latency (ms) for all S-NS Pairs in the 100-250 Interval

Speech Non-speech
M SD Md M SD Md
DwW1 178.5 29.8 186 137.1 36.17 120
Dw2 167.4 22.5 174 172 26.35 172
DW3 202.5 23.2 209 186.4 23.36 193
DwW4 157 21.3 151 135.9 17.53 133

Note. n=20.

After confirming non-normal distributions for peak latency in all DW (except for
DW1-S, DW2-S and DW4-NS) by Shapiro-Wilk tests (results in Appendix 2.2), we
conducted planned comparison with pairwise Wilcoxon signed rank test (Bonferroni-
corrected alpha=.013). Results indicate significantly shorter peak latency in the NS than the
S condition for DW1 (Z=-2.857, p=.004, r =-0.452) and DW4 (Z=-2.999, p=.003, r =-
0.474) with large effect size, but no differences for DW2, (Z=-.841, p=.041. r =-0.133) and
DW3 (Z=-2.013, p=. 044, r =-0.318) with small and medium effect size, respectively. Figure

2.8 presents mean values for peak latency per condition and DW type.
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Figure 2.8

Box Plots for MMN Peak Latency Values in the Speech/Non-Speech Condition at Fz
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Note. n=20. (*) indicates significantly shorter latency in NS condition at the 0.13 level.

Differences in the MMN Amplitude
To get an initial insight of the MMN magnitude and reference values for future
studies, we calculated MMN mean amplitude over a 50 ms time window centred in the peak

latency (Calcus et al., 2020). Table 2.9 presents descriptive statistics for mean amplitude.

Table 2.9

MMN Mean Amplitude (uV) for all Speech/Non-Speech Pairs

Speech Non-speech
M SD M SD
Dw1 -.76 1.13 -91 .82
Dw2 -1.59 151 -.82 1.23
DwW3 -2.08 1.77 -2.58 1.25
Dw4 -1.58 1.11 -1.78 1.36

Note. n=20. Peak-centred mean amplitude M and SD in the MMN interval.
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In general, mean amplitude tended to be larger in the NS than the S condition, except
for DW2, that showed the opposite pattern (Figure 2.9). Non-significant Shapiro-Wilk

(append 2.4) tests indicated normal distribution for mean amplitude for all stimuli.

Figure 2.9

Box Plots for MMN Mean Amplitude in the Speech/Non-speech Condition at Fz
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Note. n=20. Peak-centred mean amplitude, all S-NS stimuli.

To avoid double-dipping®, we did not statistically compare peak-centred mean
amplitude between conditions. Instead, S versus NS analysis of MMN amplitude was based
on planned MUA comparisons of each S-NS pair over the whole 100-250 ms time window
and not on peak-centred mean amplitudesignificant MMN period. For future studies this

would be more informative about the time course of any effects than comparing mean latency

3 Or ‘circular inference’ refers to biasing results by using a data selection method that it is not
independent of the intended statistical contrast (Cohen, 2016; 2017).
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values. MUA demonstrated that the amplitude difference between conditions (S minus NS)
was significantly different from 0 pV, for all DW pairs. Table 2.10 presents the time points

with significant between-condition differences and the MUA results (q=0.05).

Table 2.10

MUA results for Between-Condition Amplitude Differences for the 100-250 ms Time Window

Time Duration Critical Test-wise FDR Estimated
points (ms) (ms) t-scores alpha Upper bound
DW1/S-NS 102-118 @ 16 -2.55/2.55 0.020 0.6
182-238 56
DW2/S-NS 102-110b 8 -4.02/4.02 0.001 0.1
DW3/S-NS 102-1102 8 -2.88/ 2.88 0.010 0.2

174- 1902 36

DW4/S-NS 102 -1262 24 -3.27/3.27 0.004 0.2

Note. MUA for MMN amplitude for all speech minus non-speech pairs.
aNS> S at g=0.05.

b Positive polarity interval, not an MMN.

For DW1, significant larger negativity was detected for NS than S between 102-118
ms, whereas the opposite was observed in the 182-238 ms interval, consistent with the non-
overlapping MMN on each condition for this pair (see Figure 2.10). For DW2/S, significantly
larger amplitude were observed in the 102-110 interval for the S than in the NS condition, but
for a positive polarity interval and only for 8 ms, so this should not be considered a MMN

difference. For DW3/S-NS, MMN amplitude was significantly larger for the NS condition in

91



the 102-110 ms, but only for 8 ms, and the 174-190 interval, for 36 ms. For DW4/S-NS,
MMN amplitude was significantly larger for the NS condition in the 102-126 interval.

Finally, an exploratory MUA in a later LDN interval (250-450ms) detected
significantly larger responses in the non-speech condition for DW1 (278-318 ms) and
between 270-358 ms for DW4. No significant differences in amplitude were observed for
DWa. Although a significant amplitude difference was observed for DW2 (286-302 ms),
previous analysis detected no LDN for this DW type.

In summary, we observed significantly larger MMN amplitude in the NS condition
for early DW1, DW3, and DW4, but the smaller for late DW1 and no differences for DW2.

MMN peak latency was significantly shorter in the NS condition only for DW1 and DW4.

2.3.3 Comparison of the MMN for different speech contrasts

Considering that there were inevitable acoustic differences between the initial
phonemes between speech stimuli, the final MUA was mostly focused on characterising the
MMN patterns for future comparisons with groups of children.

To compare deviants with lexical vs non-lexical status we merged the responses for
function and content words, into a new waveform “Words” (Wrds). For Words, MUA
indicated a significant MMN response between 118-150 ms (duration of 32 ms), with mean
peak latency at 154.4 ms (SD= 35.73) and mean amplitude of -1.55 uV (SD=1.08) along with
an LDN response between 366-446 ms, with mean peak latency at 400.1 ms (SD=24.14) and
mean amplitude of -1.72 pV (SD=1.68).

Figure 2.10 compares the significant MMNs (and LDNSs, for reference purposes) for
speech stimulus, contrasting three linguistic levels: (a) phonological (non-native versus native
phonemes in non-words), (b) lexical (non-words versus words), and (c) semantic (function

versus content words).
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Figure 2.10

MMN Amplitude Differences in the Speech Condition
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Note. Significant MMN responses for a) native (light blue) versus non-native (green)

phonemes in non-words, b) non-words (green) versus words (red), and c) content (blue)

versus function (pink) words. LDN shown only for illustrative purposes. (*) indicates

significant differences in MMN amplitude (q=0.05).
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Planned comparisons of peak latency using pairwise Wilcoxon signed rank test with
Bonferroni-corrected alpha=0.0167 indicated significant differences only for word type, with
shorter latencies for content than for function words (Z=-3.74 , p<.001, r=-0.6, large effect
size), but no differences between native and non-native phonemes in non-words (Z=-1.91, p=
.06, r=-.03) or between non-words and words (Z=-1.55, p=.121, r=-.025), both with small
effect. For the MMN amplitude, planned comparisons with MUA indicate significantly larger
responses for non-words than words, and for function words than content words, but no

differences between native and non-native phonemes in non-words (Table 2.11).

Table 2.11

MUA results for Amplitude differences between Stimuli in the Speech Condition

Significant time  Critical Test-wise  Estimated upper
points (ms) t-scores alpha bound FDR
Non-native vs -- -- >=0.017 --
native phonemes
(in non-words)
Non-words vs 166-198 -3.41/3.41  0.003 0.2
words
Function vs 102-126 -3.10/3.10 0.006 0.3
content words

Note. Results of the MUA with a family-wise alpha level of 5% (g=0.05),
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2.4 Discussion

2.4.1 Summary of findings

This study investigated the effects of the linguistic content of speech stimuli in the
MMN patterns, aiming to validate a multifeature experiment in Spanish-speaking adults for
future use in speech perception studies in young children. Our main results confirm our
hypotheses, indicating that (i) significant MMN/LDN were detected for all stimuli (except in
DW?2-S for LDN), demonstrating that our experiment successfully elicited the responses of
interest, (ii) between-condition differences were present, characterised by significantly larger
amplitude in for all pairs in the NS condition (except DW2), and significantly shorter peak
latency for DW1 and DW4 for the NS condition, suggesting different processing of linguistic
versus non-linguistic sounds, and (iii), in the S condition, the MMN amplitude was
significantly larger for non-words than words, and for function than content words, also with
significantly earlier peaks for content than function words, indicating an effect of linguistic
content. However, it is worth noting that despite their analogue acoustic structure, S-NS pairs

were not an exact acoustic match.

Nevertheless, our first finding confirms the suitability of the multi-feature paradigm to
contrast several linguistic and non-linguistic stimuli. Our MMN results are in line with
previous research using MUA that reported similar temporal and amplitude patterns, for
example, the CORE (Compendium of Open Resources and Experiments) initiative for ERP
standardisation, developed by leading scientists at the University of California (see
Kappenman’s et al., 2021). They reported MMN responses for contrasting tones distributed
over the medial frontocentral electrodes, detected in the 113- 231 ms time window, with a
peak latency of 187 ms and a mean amplitude of -1.86 pV, consistent with the patterns we

observed in our data.
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On the contrary, our exploratory analysis for the LDN indicated larger or equal
amplitude in the NS than in the S condition, contradicting previous findings about larger
LDN for S and its interpretations as an index of complex phonological processing (David et
al., 2020). The fact that LDN for DW2-S was too short to be considered significant could be
explained because we combined the MUA with Guthrie and Buchwald’s (1991)
recommendations, which could be too conservative and increase type Il errors. It is possible
that a less conservative approach would be able to identify an LDN response in DW2-S as
well, especially considering that an 8ms significant response is already present. For example,
instead of a priori defining time windows for analysis, it is possible to use peak-centred
intervals for MMN detection and measurement, as in Calcus et al. (2020). Although the
approach is less informative for a validation study like ours, future studies could use our

results to select empirically justified time windows of interest.

A second main finding of this study was that MMN differed significantly between S-
NS pairs. Larger responses in the NS condition for DW3 (function words), DW4 (content
words) and early DW1 (non-native non-words), but the opposite happened for late DW1.
This contradiction between early and late DW1 amplitude results could be explained because
there was no MMN overlap between this pair of stimuli as in the other pairs. Future studies
could elucidate it using measures other than point-by-point MUA (e.g., mean latency).
Notably, smaller MMN amplitude for DW3-S and DW4-S indicate smaller responses for
speech containing meaning than for their NS pair. Thus, our findings contradict previous
evidence of no amplitude differences between S and NS analogues (Sussman et al., 2004),
but also, those studies reporting significantly larger MMN amplitude for S than NS because

of a language enhancement effect (Kuuluvainen et al., 2014; Naatanen, 2011).

The patterns we observed for S-NS pairs could be explained because our participants

were all adult language users who processed their native speech automatically, especially if
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presented as isolated word forms. For them, the detection of NS may have been driven purely
by acoustic processing. In contrast, detecting S would activate feature-specific language top-
down effects (Heilbron et al., 2022) with smaller MMNs indexing more automatic processing
of easy-to-detect speech. A simple way to investigate this further could be to average the
MMN amplitude over the significant interval to analyse the main effects of the condition and
stimulus type and their interactions. However, for this study, this would constitute double-
dipping (Cohen, 2014). Regarding latency, some NS stimuli peaked earlier than the S ones
but with no apparent pattern regarding the linguistic content (DW1 and DW4). Importantly,

the MMN differences could be also explained by acoustic differences between S-NS pairs.

Although between-condition MMN differences in our study may reflect different
cortical processing for linguistic and non-linguistic stimuli, interpreting the direction of these
effects under the MMN hypotheses is not straightforward. Our findings do not support the
memory-based account because there was no speech enhancement effect for S over NS,
especially for meaningful words, whose long-term memory traces should be more robust than
for non-words. From the neural adaptation view, smaller responses for S than NS for words
could represent faster neural adaptation in the auditory cortex for less novel stimuli. Stimulus
repetition in our experiment could have suppressed the MMN amplitude, but this should be
equal for both conditions. Nevertheless, attenuation could be greater for S stimuli because
having only five stimuli per condition would have made the S stimuli easier to remember
(e.g. because of a more stable memory trace) and thus more likely to be suppressed than NS.
According to Baart and Samuel (2015), saturation by repetition of a small pool of stimulus
could confuse the lexical status of words and the non-lexical status of non-words. From the
predictive coding perspective, the contextual prediction would be easier for S than NS
stimuli, resulting in less prediction error and smaller MMN amplitudes for the S condition,

especially for stimuli that are “less surprising” because of easier-to-retain linguistic content.
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This is supported by evidence that predictive mechanisms do not only include anticipation
but top-down language predictions (Heilbron et al., 2022; Wacongne et al., 2021).

A third central finding of this study is the significant differences in the MMN
amplitude and latency between speech stimuli. Although their interpretation should be
cautious because of inevitable acoustic differences in the initial phonemes, previous research
indicates that our results could reflect genuine top-down language influences on low-level
auditory processing. Our final analysis showed that the MMN amplitude and latency
differences depended on the linguistic content only when meaning was involved, with lexical
and semantic but no purely phonological effects. Interestingly, larger MMNSs were detected
for less informative linguistic representations (non-words than words and function than
content words), which would be consistent with the predictive coding interpretation. Similar
findings were reported by Scharinger et al. (2016), who observed larger MMNSs for less
predictable than more predictable vowels, indicating a top-down effect of the stimulus
linguistic category on the MMN amplitude. In terms of MMN timing, the opposite pattern
was observed, with significantly shorter latency for content than function words.
Qualitatively, earlier onset was observed for more informative linguistic content as words
than non-words and content than function words, suggesting faster cortical responses for

higher-order linguistic content than for more phonological-based processing, as in non-words.

Notably, the direction of the linguistic content effects again contradicts previous
studies that reported enhanced amplitude for words versus non-words using similar designs
(N&éatanen et al., 2007). Methodological differences between studies could explain this
finding. For example, Gansonre et al. (2018) used a later time window (~300 ms after
stimulus onset) and ERP parent (non-subtracted) waves instead of difference waveforms,
reporting semantics effects for different classes of words but only in terms of scalp

topography. In addition, our study used MUA for between-condition analysis which was not
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optimal for comparing MMN amplitude for DW1S-NS as the significant intervals did not
overlap and may not necessarily correspond to the significant MMN. This reinforces the idea
that discrepancies in results between MMN studies may arise from methodological
differences, making it hard to compare findings across studies without a data analysis gold

standard and large-scale replication.

Overall, our results indicate that the magnitude of the MMN reflects top-down
language influences in line with predictive processing but contradicts previous findings by
demonstrating that easier, more automatic detection for more informative linguistic content is
reflected in the MMN as smaller amplitude for speech stimuli. On the contrary, the timing of

the MMN (latency) agrees with previous findings, at least at the single-word processing level.

2.4.2 Strengths, limitations, and future research

An important contribution of this study is that our experiment elicited consistent
MMN responses for all the DW types, characterising different aspects such as timing,
amplitude and scalp patterns, which can inform future studies in Spanish speakers. Moreover,
these responses were obtained in an EEG testing time as short as 30 minutes making these
materials and findings a valuable resource for future studies in groups of participants that are
less able to tolerate long testing sessions, for example, young children or clinical populations.
Another contribution of this study is that we provided empirical evidence of the effects of
linguistic content on the MMN amplitude and latency at the single-word level. However,
further research is needed to investigate to what extent the top-down effects operate beyond
isolated words (Hagoort, 2019).

An essential point for speech perception experiments is selecting good non-speech
analogues as control conditions to avoid potential acoustic confounds (Rosen & Iverson,
2007). The main limitation of this study is that, despite selecting adequate non-speech

analogues as a control condition, changing the initial phonemes entails inevitable acoustic
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differences that generate an MMN response but may also act as a confound when comparing
language effects between speech stimuli. Because this experiment is intended for children,
the selection of function and content words prioritised phonological processing factors, such
as the age of acquisition and oral frequency (Guarda, 2010), even if this implied larger
acoustic variations in the initial phonemes. For this reason, the initial consonants for non-
word stimuli involved only fricatives between standards and deviants, but the word stimuli
involved other differences: stopped and lateral distinctive features for function words and
voicing for content words, resulting in more pronounced acoustic/phonetic differences for
meaningful stimuli (D3 and D4). These differences are especially relevant when using
Spanish consonants, in which voiced/unvoiced contrasts are easier to detect (Guarda, 2010).
Thus, it is essential to acknowledge these differences in acoustic complexity between S-NS

pairs when interpreting our MMN results and conducting similar studies in the future.

Our statistical analysis attempted to reduce the influence of other acoustic differences
by contrasting only speech/non-speech stimuli that were analogue pairs. However, as
between-condition MUA requires subtracting the MMN non-speech for each corresponding
speech stimulus to test against 0 pV, the statistical power to detect true effects could have
been reduced when avoiding type Il error. Moreover, as MUA does not inform about effect
size and power, our results could have been affected by a small effect size and low power to
detect any potential effects of linguistic content. In the future, these results could be used as
reference values to a priori define more precise time windows of interest and use peak-
centred mean amplitude instead of MUA as it seems a more appropriate measure for
comparing different speech stimuli, especially those that do not overlap in time. This could
increase power without the risk of double-dipping.

A second limitation is that our decision to include multiple contrasts and two

experimental conditions, although beneficial from the perspective of time optimisation and
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confound control, resulted in a smaller number of deviant trials per stimulus type so we could
keep the testing session to a reasonable duration. Even when the minimum number of trials
that were obtained for each stimulus type (50 per deviant type and 200 for standards) is
considered adequate (Luck, 2014), in the future, the signal-to-noise ratio might have been
increased by reducing the number of deviants or by extending the number of deviants per
condition. Interestingly, this limitation could be solved by using new analysis methods that
are more powerful even with fewer trials, for example, linear modelling and multivariate

methods (see Chapter 5).

Finally, future research could further investigate the effect of language content on the
response temporal patterns using this paradigm, including a more detailed analysis of the
MMN latency and duration. In addition, time-frequency analysis could complement these
results, as the study of neural oscillations may be especially suitable for studying language
development and comparing different age groups. Thus, our next step is to analyse these data
using power and inter-trial phase coherence measures, comparing the results to those

obtained by children in the speech condition of this experiment.

2.4.3 Conclusions
In sum, this study showed the validity of our experiment in eliciting consistent MMN

responses that not only detected acoustic contrasts but support an effect of the stimulus
speech status and linguistic content. As predicted, linguistic modulations on the MMN
amplitude were observed as an effect of the stimulus speech versus non-speech configuration,
lexical status and word type, suggesting differences in the cortical processing of speech
depending on the linguistic content. However, these results also could be explained by
acoustic differences between our S-NS pairs. Importantly, this experiment can be replicated

in other Spanish-speaking populations or applied to different age/clinical groups.
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Chapter 3. Language modulations on speech perception in children with

typical language development and DLD

3.1 Introduction

Between the ages of 3 and 6 years old, children can understand spoken language
effortlessly, but they are still less proficient than adults. This suggests that there are
differences in how the brain of adults and children process speech, but many aspects in this
field are yet to be investigated. For example, it is unclear whether children exhibit the same
top-down modulations on speech perception observed in adults (see Chapter 2). In addition,
despite language acquisition follows well-defined trajectories, not all children present the
same skills at the same age, for example, those affected by Developmental Language
Disorder (DLD). Thus, children with typical language development (TLD) may process
speech differently than those with DLD, because of less effective or disrupted language top-
down modulations, as proposed by Bishop et al. (2012), although there is little evidence on

this regard.

So far, the mismatch negativity (MMN) and the late discriminative negativity LDN,
as well as their less-mature version, the mismatch response (MMR), have been widely used to
study language and speech perception development. However, there are methodological
issues when comparing adults and children ERPs (see Chapter 1), especially because of the
intrinsically smaller-scale responses in adults. This study addressed this issue by
complementing ERP measures with time-frequency (TF) analysis, using an amplitude-free

measure as inter-trial phase coherence, (ITPC) to inform about non-time-locked cortical

102



activity. We aimed to determine whether the MMRs (MMN/LDN) for different speech
content reflected group-level differences in top-down modulations because of different
language status, by comparing children with TLD and DLD, and children versus adults
(Chapter 2). For children, we also examined the associations between the MMRs and their

phonological skills.

3.1.1 MMR in speech perception development research

In infants and young children, the MMN and LDN may present a negative or positive
polarity, so mismatch response (MMR) is a generic term to refer them. Although negative,
MMN-like responses can be detected in the first six months of life (Cheour et al., 1998), there
is great variation within and between children, with some studies reporting positive MMRs
until the age of 6-7 years (Maurer et al., 2003). Like the adult MMN/LDN, the MMR reflects
the brain's sensitivity to physical and abstract changes in a sequence of regular inputs
(MacLean & Ward, 2014), as occurs in speech contrasts. Moreover, the MMR can be elicited
with speech stimuli using a multifeature paradigm to optimise data collection (Lovio, et al.,
2009; Niemitalo-Haapola et al., 2013), and during unattended listening, making it a valuable

measure in speech developmental research.

As for other ERPs, the MMR patterns change from birth to adulthood (De Haan,
2007; Sussman et al., 2008) reflecting typical auditory maturation (Morr et al, 2002). In
children, MMRs may show a more distributed scalp localization than in adults (Cheour,
2007), or reversed polarity (Paquette et al., 2013). However, there is great variability in the
literature about the MMR latency, amplitude, scalp distribution and polarity for each age,
especially in clinical groups (Bishop, 2007). Overall, the MMR seems to become more stable

with age, showing greater amplitude, shorter latency, and the typical negative polarity.
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MMRs in TLD children

In typically developing children, multiple studies have described age-related changes
for the MMR/MMN/LDN measures (see Naatanen et al, 2019). Naatanen (2003) states that
language-specific phonetic memory traces for the native language develop during the first
few months of life and are reflected in the MMN. For frequency deviants MMN peaks
between 120-400 ms post-deviant detection at age 3 years-old, whereas for 5-8-year-olds
MMN peak latencies for occur between 190 and 270 ms, a more adult-like range (Maurer et
al., 2003). When using smaller age bands (4-5- and 6—7-year-olds) the MMRs appears to be
delayed and longer in children (Shafer et al., 2010) whereas for older children (6-13 years),
latency becomes more like that observed in adults (Csepe, 1995). In general, the MMR
latency correlates negatively with age during early childhood because of neuromaturational
changes leading to faster information transmission in the brain (Bishop, et, al, 2010a; Shafer,
et al., 2000).

The MMR/MMN amplitude, however, seems not to follow a linear trajectory but a U-
shaped curve during development (De Haan, 2007) with adult-like amplitudes in infants but
significantly smaller responses in early childhood, until late childhood, when their amplitude
increases again until adolescence (Bishop, et, al, 2011). Paquette et al., (2013) reported
smaller MMRs in children than adults (n=14), with greater negativity in older (n=14, age 8-
13 years) than younger children (n=12, age 3-7 years) both for speech and non-speech
contrasts. Bishop, et al., (2010a) measured the MMRs for tones and syllables in children
(n=30, 7-12 years), teenagers (n=23, 13-16 years), and adults (n=32, 35-56 years), reporting
significant age-related increment in mean amplitude for the MMN and a decrease in the
LDN. Other studies report that over the age of 6 years, the MMN amplitude is as large as, or
even larger in children than in adults (Cheour et al., 2001; Csepe, 1995). Although the

literature reports inconsistent findings, there seems to be changes in the MMR latency and
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amplitude that suggest ongoing maturation of cortical speech processing during early
childhood.

As occurs in adults, the type of acoustic contrast determines the patterns of the MMR
in children, with different latency and amplitude values for non-speech versus speech stimuli
(Dehaene-Lambertz & Baillet, 1998; Paquette et al., 2013), and for speech with different
linguistic content (e.g., syllables versus words). For example, Kuuluvainen et al (2016) used a
multifeature paradigm to investigate cortical discrimination in 6-year-old typically
developing children (n=63), reporting larger MMN for contrasts in syllables than for their
acoustically matched non-speech equivalents. In young children, MMR is sensitive to
changes in various acoustic features of speech sounds, such as frequency, duration, intensity,
and phoneme identity (Kraus et al., 1993). However, the MMRs do not only depend on
processing of the acoustic features of speech but are influenced by psycho-linguistic factors

as phonological structure, word grammatical function and word distributional frequency.

Previous literature has described the effects of different linguistic content on the
MMR at different ages, for example, more consistent responses for native than non-native
phonemic contrasts between the ages of 6-12 months (Rivera-Gaxiola, et al., 2005). In
syllables, for vowel contrasts, a study in 3-year-old Finnish children showed MMN-like
responses peaking in the 300-400 ms range (Ceponieng, et al., 2003), whereas in French-
speakers aged 3 and 7 years-old, changes in initial consonants elicited MMN peaking at 270
ms (Paquette et al., 2013). Strotseva-Feinschmidt et al., (2015) studied discriminative
responses for two German function words differing in the final phoneme (articles der/den)
and frequency of occurrence in 34 children at age 3 years-old. They found that for der (high
frequency) both an MMN and a LDN response were observed, whereas the less-frequent
word den elicited only a LDN, suggesting easier processing of higher-frequency words. All

these differences in the MMR, MMN and LDN were attributed to linguistic content, but it is
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noteworthy that they could results from acoustic differences between the stimuli, for

example, different duration or spectral content.

In addition of the speech information itself, the MMRs are modulated by the linguistic
context in which the speech sounds are presented (Ceponiené et al., 2003). For example, there
is MMR enhancement when a deviant syllable occurs in a word compared to when it occurs
in isolation. David et al., (2020) investigated MMRs to non-words with different
phonological complexity in school-age children (n=22, age: 6-10 years) and adults. They
observed that for more complex syllables, the MMN was smaller, but the LDN was larger in
children than adults, in agreement with interpretations of the LDN as an index of speech
processing complexity (Kujala & Leminem, 2017). These findings indicate that the
MMN/LDN patterns not only age-dependant but influenced by the stimuli, contexts, and

measures used to study them.

In children with TLD there is evidence of associations of MMN patters with language
skills. From the age of 7.5 to 24 months, multiple studies have reported a positive correlation
between the MMN amplitude for native phonemic contrasts with behavioural phoneme
discrimination measures (Kuhl & Rivera-Gaxiola, 2008; Rivera-Gaxiola et al, 2005), and
suggest they may predict receptive language skills at later ages. For example Guttorm et al.,
(2010) found that the MMN measured at birth in infants with (n=12) and without (n=11) risk
of dyslexia predicted their language skills at age 5 years. A study by Linnavalli et al., (2017)
showed that children (n=70, age 5-6 years) with better phoneme processing performance
showed larger MMN that those with poorer behavioural results. Similarly, a study in pre-
schoolers (n=166, mean age= 5 years 6 months) by Norton et al., (2021) found significantly
larger MMNSs in the late window (300-500 ms) for /ba/-/da/ contrasts in children with typical

phonological awareness (PA) skills than in those with low PA skills. These results relate the
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MMN to phonological processing abilities, however, other studies show no relationship

between the MMN and behavioural measures (e.g., Bishop & Hardiman, 2010).

MMR findings in DLD

In children with DLD, cortical speech processing and its MMR signatures during
early childhood are less understood, especially when compared with other
neurodevelopmental disorders as dyslexia or autism (Nallet & Gervain, 2022). Nevertheless,
some studies have suggested that atypical cortical processing of speech may explain some
symptoms (Evans & Brown, 2016). Overall, studies have found that children with DLD
exhibit reduced MMR amplitude and/or delayed MMR latency compared to typically
developing children (Bishop & McArthur, 2005; Friederich et al., 2004; Kujala et al., 2007).
Some MMN findings suggest that children with DLD have difficulties in processing the
acoustic features of speech and in detecting phonemic contrasts. A review of MMN findings
(Kujala & Leminem, 2017) concluded that children with DLD show poorer and slower neural
discrimination of speech sound, resulting in smaller MMN amplitudes, delayed latencies,

atypical scalp distributions and less left hemisphere lateralization than TLD children.

However, other studies have reported no differences in MMR between children with
DLD and typically developing children. For example, a MEG study by Pihko et al. (2008) in
children between 5-7 years, compared cortical discrimination of syllables with changing
vowels or consonants and detected no MMN differences between children with DLD (n=11)
and controls (n=11). Similarly, Bishop, Hardiman, & Barry (2010b) compared discrimination
of tones and phonemes with small and large differences in children and teenagers with DLD
and TLD aged 7-16 years. They reported no group differences for the MMN and LDN
amplitude for large deviants, although LDN were reduced in the DLD group for the small
deviants. Thus, results so far are inconsistent and have important methodological differences,

hindering their interpretation and replication (Bishop, 2007).
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As in TLD children, several studies suggest a connection between the MMN/LDN
and language skills in DLD-affected children. Kujala et al. (2007) found that the MMR
amplitude correlated positively with language abilities in children with DLD (as in TLD
children), with stronger MMRs associated with better language outcomes. A review of MMN
findings in DLD by Kujala & Leminem (2017) indicates an amplitude reduction particularly
over the left scalp areas, and delayed latency in infants and children at familial risk for
language deficits or with DLD diagnosis. Furthermore, they linked atypical neural responses
with DLD, and indicate an association between the MMR and language skills in children be a
useful tool for predicting language outcomes in children with DLD. However, none of the
studies reviewed by Kujala & Leminem (2017) investigated processing of meaning, only of
phonemic contrasts in syllables (e.g., /ba/ versus /da/) and no null findings were reported in

this review.

Different factors may explain reduced MMRs in children with DLD, for example,
impaired neural mechanisms underlying the MMR generation, although there is little
evidence in this regard. Some studies have shown that MMR is generated by the same
sources as the MMN in the auditory cortex (N&atanen et al., 2007) which could involve some
cortical differences in children with DLD at this level, despite DLD is not an auditory deficit.
Another possibility is that the reduced MMR response in children with DLD could reflect
specific difficulties in processing speech sounds. Children with DLD can have poorer
phonological processing skills than typically developing children which may affect their
ability to detect changes in speech sounds, but not in other sound contrasts (Bishop et al.,
1999). So far, findings only seem to confirm that language processing networks in the brain

as well as the auditory pathways are still developing during early childhood.

This discrepancy and lack of evidence in MMR developmental findings is mostly

explained by the many different methodological approaches. For example, the lack of a gold
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standard method to determine the presence of an MMR, studies grouping participants in
broad age ranges instead of narrow bands, or the use of peak measures which are sensitive to
age differences in waveform variance may introduce spurious effects in children speech
perception studies (Bishop, et al., 2010a; 2010b; Bishop, 2007). In addition, most MMR
findings come from studies using non-speech and non-meaningful speech stimuli, which may
not be easily generalised to phonological or speech processing in natural settings. All these
factors limit the utility of the MMR, for example, as a tool to help explain speech perception

development.

3.1.2 Time-frequency ERP analysis and speech perception development

Although time-frequency analysis (TF has been less used than ERPs to study auditory
development, it may be a useful method to help further our understanding of language and
speech perception development. TF analysis preserves non-stimulus locked oscillatory
activity that is abundant in children and which otherwise are averaged-out by the ERP
technique (Maguire & Abel, 2013). Moreover, TF analysis tends to increase the SNR,
especially for frequencies below 20 Hz (Cohen, 2014) which is an advantage when dealing
with noisy data, as children’s, making it more reliable than time-domain measures for MMN
identification (Bishop & Hardiman, 2010). In MMN experiments, the amplitude of this
response has been considered to reflect phase realignment (increased synchrony) in the theta
range, (Bishop, et al., 2010b; Bishop & Hardiman, 2010; MacLean & Ward, 2014), whereas
the LDN would reflect event-related desynchronization in a broader range of low frequencies,

including delta, theta and alpha (Bishop et al. , 2010b).

In adults, studies using time frequency analysis of the MMN have found increased
inter-trial phase coherence (ITPC) for detection of deviant than standard non-speech sounds.

A study in adult’s (n=16) by Fuentemilla et al. (2008) found larger theta ITPC for duration
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deviants than for standards at temporal and frontal sites, and larger event-related spectral
perturbation (ERSP) for deviants at frontal sites only, interpreting them as evidence of
different MMN generators. Similarly, two studies by Hsiao and colleagues (n=10 adults)
showed larger theta phase locking values (PLV) and spectral power for duration deviants than
for standard stimuli (Hsiao et al., 2009; 2010). Bishop & Hardiman (2010) also examined
adult’s (n=17) responses to duration contrasts, reporting no changes in ERSP power but
significant increase in theta ITPC, which they considered an index of event-related phase-
resetting. Another study by Bishop, Hardiman & Barry (2010a) using tones and syllables
contrast concluded that MMN resulted from greater theta (4-7 Hz) phase synchronization for
deviants than for standards, correlating theta ITPC with behavioural discrimination thresholds
For frequency deviants, Ko et al., (2012) found that theta power and ITPC were larger at
frontal-central electrodes. Although these findings consistently indicate a role of increase
theta ITPC in auditory deviance detection, most of them were elicited by non-speech stimuli,

so it is unclear whether they can be generalised to speech perception.

MMN and theta oscillations in TLD children

In paediatric MMR research, few studies have used time-frequency analysis, but those
that have, report enhanced cortical synchronization at different frequency bands during
detection of deviants in comparison to standards, as has been also described in adults.
Previous studies suggest a relationship between increased stimulus-induced phase
synchronisation, and ERP changes between childhood and adolescence (Mller et al., 2009;
Poulsen et al., 2009). Studies in infants using speech stimuli suggest that age-related
increases in power and ITPC in the delta, theta and gamma bands between 6 and 12 months
of age may reflect selective enhancement and perceptual narrowing for native phonemes

(Kuhl, 2010; Ortiz-Mantilla, et al 2013).
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From childhood to early adolescence, time-frequency analysis of the MMN shows
increases in theta phase synchrony for detection of deviant in comparison to standards,
indicating more efficient sound processing with age. Bishop, Hardiman & Barry (2010a)
studied cortical discrimination of deviant tones and syllables in children (n=30, 7 -12 years),
adolescents (n=23, 13-16 years) and adults (n=32, 35-56 years), reporting theta phase locking
increases with age, with largest phase locking values for adults and larger for adolescents
than children. A longitudinal study by Bishop et al., (2011) in 7 and 9 years-old children
(n=150), showed that two years after a first EEG, there was an increase in theta inter-trial

phase coherence for tone contrasts in frontal but not in temporal regions.

Together, these findings support the idea that the maturation of the MMN neural
substrates is accompanied by age-related increases in oscillatory synchronization. During
early childhood synchrony increases seem to occur in the theta range and mostly in with
frontal than temporal scalp distribution, suggesting more involvement of top-down
processing. In adults, theta synchronization is thought to play a key role in syllabic
segmentation (Giraud & Poeppel, 2012). However, there is very little research about the role
of theta synchronisation in children with TLD and DLD, and how theta synchronisation is
related to manipulation of the speech linguistic content, with a lack of clarity about the

developmental trajectories.

Atypical oscillations in DLD

Although the role of oscillatory dynamics in DLD has been far less investigated than
in other neurodevelopmental disorders such as dyslexia or autism spectrum disorder (for a
review see Nallet & Gervain, 2022), some evidence indicates that atypical activity may as
well underlie language disorders. Bishop et al. (2010b) compared cortical discrimination of
tones and speech sounds in_children with DLD (7 to 16 years old) and TLD measuring low-

frequency-band synchronization in the MMN/LDN intervals. Although no between-group
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differences were detected in the MMN responses, they observed that the TLD but not the
DLD group, had a significant drop in power in the LDN interval in relation to the MMN
range for the low frequency bands (delta, theta, and alpha). The authors suggested that this
lack of event-related desynchronization for LDN but with an intact MMN indicates an
inability of disengage neural activity in the DLD group, after initially ‘normal’ auditory
change detection (Bishop et al., 2010). Although this is an interesting theory, no further
evidence has emerged regarding this interpretation.

Heim et al. (2011; 2013) studied oscillatory dynamics during rapid auditory
processing of tone doublets in children between 6-9 years with and without language
disorders. They found atypical gamma activity (29-52 Hz range) in the language-impaired
group, with significantly reduced amplitude and phase-locking values of early (45-75 ms)
oscillations for the second tone in the doublet. The authors interpreted these findings as
evidence of altered oscillatory timing in language-impaired children when processing rapid
sequences of tones. Again, they used non-speech or simple speech stimuli, making it hard to

differentiate higher order language modulations and effects of the stimulus linguistic content.

In conclusion, the MMR s a valuable tool for investigating the neural mechanisms
underlying speech processing in children. In typically developing children MMR has been
shown to be sensitive to speech contrasts, showing a positive correlation with language
development and somewhat identifiable developmental trajectory. In children with DLD,
MMR has been found to be reduced in amplitude and/or delayed in latency, suggesting
difficulties in processing the acoustic features of speech sounds. However, further research is
needed to determine important aspects as if MMRs are modulated by top-down language
effects in children if they are reduced or atypical in children with DLD, and how account for

important methodological issues, some of which will be addressed in the present study.
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3.1.3 The current study
The aim of this study was to verify the presence of adult-like MMN/LDN responses in
children with TLD and DLD for stimulus with different linguistic content and compare their

parameters with those observed in adults in our previous experiment (Chapter 2).

To account for the need of more cross-linguistic research in this field, we recruited a
group of Spanish-speaking children with DLD and age-matched controls from the same
preschool in Santiago, Chile. This would allow us to determine if a top-down effect of

language skills was present during early childhood and if it was reduced in DLD children.

Specifically, we addressed the following research questions:

Q) Is cortical speech processing modulated by top-down language skills in early
childhood?

(i) Do cortical responses to speech vary with children’s language proficiency

(e.g., phonological skills)?

Based on previous findings, we hypothesized that an MMR would be present in
children in response to phonological contrasts, but the patterns of these responses would vary
between the TLD and DLD groups, and between children and adults, because of the
differences in language skills between the groups and the interaction of these skills with the

linguistic content of the stimuli.

Specifically, we expected that responses at electrode Fz would be (1) more immature
(e.g., positive instead of negative polarity of MMRS), (2) less robust (e.g., smaller mean
amplitude), 3) less synchronized (e.g., reduced ERSP and ITPC) in DLD than TLD children,

and in children than adults, and 4) correlated with measures of phonological awareness.
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3.2 Methods

3.2.1 Participants

Twenty-nine Spanish-speaking children between 4.9 and 5.7-year-old were invited to
this study but twenty-seven completed this experiment, as two children refused to wear the
EEG gear. Participants were divided in two groups according to their language
developmental status: a group with a previous diagnosis of expressive-receptive
Developmental Language Disorder (DLD, n=16, 6 female, Mage 5.2 years, range 4.9-5.7
years) and a group of controls with typical language development (TLD, n=11, 7 female,
Mage 5.2 years, range 4.10-5.6 years). In addition, data from 20 adults from our previous

study (Chapter 2) was included for age-related comparisons.

Children in the DLD group were diagnosed at least one year before this study by a
Speech and Language Therapist (SLT), as part of the initial assessment for preschool
admission of children at risk or with parental concern of language difficulties. The diagnosis
was based on the Chilean legislation for Language Special Preschools?®, and is requested by
paediatricians, child neurologists or psiquiatrists whenever a language disorder is suspected.
The SLT diagnostic procedures include full parent or carer interview and medical history,
functional assessment of orofacial structures and hearing, speech sound production screening,
and three standardised language tests that assess comprehension and production skills. These
tests have been adapted and normed for Chilean children between the ages of 3.0 and 6.11
years and comprise the Exploratory Test of Spanish Grammar by A. Toronto (STSG; Pavez,
2003), the Test for Auditive Comprehension of Language by E. Carrow, Chilean Application

(TECAL,; Pavez, 2004), and the Test to Evaluate Processes of Phonological Simplification,

4 Decreet 170 and 1300, available at https://especial.mineduc.cl/wp-content/uploads/sites/31/2018/06/DTO-
170 21-ABR-2010.pdf, and https://especial.mineduc.cl/wp-
content/uploads/sites/31/2016/08/201304231710590.DecretoN1300.pdf
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revised version (TEPROSIF-R; Pavez, Maggiolo & Coloma, 2008). The STSG assesses the
comprehension and production of morfosyntactic structures, the TECAL measures
comprehension of vocabulary, morphology and syntax, whereas the TEPROSIF-R assesses
expressive language, measuring the amount and type of phonological simplification

processes.

Although for this study we were not able to access the school assessment records
because of privacy restrictions, all children in the DLD group had previously received a
diagnosis of expressive-receptive DLD variant. This provided some homogeneity for this
group, as all children met the following criteria according to the Chilean legislation: (i) being
affected by language difficulties that significantly impair their day to day communication, (ii)
exhibit significant poor performance in the three aforementioned language tests, indicated by
scores 2 SD below the age-expected norm, and (ii) not being affected by other concomitant
neurodevelopmental disorder, health condition or environmental factor that explains the
language deficit. Importantly, the tests used for diagnosis were not used again as variables in

this study to avoid introducing circularity, but their outcome provide a way to

To control for socioeconomic factors, all children were recruited from the same
preschool in Santiago, Chile, from the special education and mainstream division,
respectively. For the control group, children were invited to participate after checking they
were native monolingual Chilean Spanish-speakers, used Spanish as their first language at
home and had no history of any neurodevelopmental disorders, learning, language, or hearing
difficulties. For the DLD group, children were pre-selected by the preschool SLT, to make
sure they had no concomitant difficulties. Children who passed a hearing screening and were
able to complete a non-verbal reasoning task were invited to participate in the study. Table

3.1 presents the screening information for both groups of children.
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This study was conducted according to the Declaration of Helsinki and was approved
by the University College London (UCL) and the University of Chile, Research Ethics
Committees. In all cases, participant’s parents/guardians received an information sheet plus a
verbal explanation of the study, completed a developmental questionnaire and signed a
consent form before the screening phase. Children provided verbal assent before start testing.

Parents received £10 for travel expenses and children received a small age-appropriated gift.

Table 3.1

Participant’s Age, Hearing Levels and Non-Verbal Test Scores

TLD (n=11) DLD (n=16)
Measure M SD min-max M SD min-max
Age (months) 62.4 2.94 58-66 61.9 3.92 57-67
PTA left ear (dB HL) 20.9 1.69 20-25 20.6 91 20-22.5
PTA right ear (dB HL) 21.3 1.58 20-25 20.6 1.12  20-23.8
Block design (Z score) 18.1 1.58 15-19 15.7 2.98 10-19

Note. Group mean values, SD, and minimum/maximum values for age, play audiometry and

the Block Design test.

3.2.2 Stimuli

Participant’s phonological processing skills were assessed using the syllabic
subsection of the Phonological Awareness Assessment Test, PECFO (Varela & de Barbieri,
2015). This test has been normed and standardised for Chilean children between 4 and 7.11

years. The syllabic subsection of this test measures six different phonological awareness (PA)
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skills: syllable segmentation, initial syllable recognition, rhyme recognition, initial syllable
deletion, rhyme deletion and syllable inversion. Each task consisted of five items, with one
point assigned for each correct item and a maximum score of 30 for the subsection (Appendix
3.1).

For the EEG experiment, we used the multifeature experiment, stimuli and recording
settings as in the adult's experiment. However, this time we only used the stimuli for the

Speech condition, resulting in four blocks of 3 min 20 seconds duration (Chapter 2).

3.2.3 Procedure

Children were tested in three sessions, all conducted in separate days in Santiago,
Chile. The first session took place at the children’s preschool after their parent/guardian
signed the informed consent and answered a developmental questionnaire. Children who
provided verbal assent underwent a hearing screening consistent in otoscopy and a play
audiometry (pass/fail at 500-1000-2000-4000 Hz, 40 and 20 dB), and performed the Block

Design task.

The second session was conducted three months later in research facilities at
Neurosystems Lab, University of Chile. Here, the EEG was recorded in a sound attenuated
booth, with stereo stimuli presented sfree field at 70 dB through right and left loudspeakers at
90 cm in a 75 degree angle. During the experiment no response was required and children sat
comfortably in an armchair with their parent next to them while watching a silent cartoon in a
tablet (screen ), placed at eye level in front of them at a distance of 100 cm. Each EEG

session lasted around 15 minutes (with breaks when needed) plus a set up time of 20 minutes.
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The final session was held three weeks later, again at Neurosystems Lab, University
of Chile, and consisted of the phonological awareness task and speech perception tests for

experiment 3 (see Chapter 4).

3.2.4 Design

This study considered a between-subject design, for comparing speech processing
under different language status; typically developing, atypically developing and adult-like.
The between-subjects factor (1) was different language status (operationalised as ‘Group”),
with three levels; TLD children, DLD children, and adults (Ad). Our EEG dependent variable
(DV) was cortical responses to speech, operationalised as ERP (peak latency, in ms and mean
amplitude, in pV) and time-frequency measures (ERSP, in dB power and ITC, in a 0-1
range). At the behavioural level, the DV consisted of the phonological awareness scores for

the syllabic awareness test subsection.

3.2.5 EEG acquisition and processing

Continuous EEG was recorded with a 32-channels Biosemi system, at a 2048 Hz
sampling rate. Electrodes were positioned according to the 10-20 electrode system as in
Chapter 2, with offsets kept under 30 pV. Vertical and horizontal electrooculogram were
recorded in the right supraorbital area and right eye canthus, respectively. The EEG was
preprocessed with EEGLab and ERPLab.

EEG data were downsampled to 500 Hz and re-referenced off-line to the full head

average. A high-pass IIR Butterworth filter (non-causal, zero-phase shift, 2nd order) with cut-
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offs of 0.1Hz (roll-off 12 dB/octave attenuation, half amplitude -6dB, half-power -3dB), was

applied to the continuous EEG remove slow drifts (Luck, 2014).

An initial threshold of 350 pV was applied to remove data portions with excessively
large artifacts. To retain as much data as possible, we visually inspected each dataset and
removed noise-contaminated data portions and channels. Then, we performed ICA to remove
blinks, eye movements and other artifacts. After data cleaning, we interpolated the removed
channels and re-referenced the data to the full head average. Then, separate pipelines were

applied for the ERP and time-frequency analysis.

For ERP analysis, epochs were defined from -200 to 800 ms, with baseline correction
between -200 to 0 ms. In total, 619 epochs of 1000 ms duration were extracted per
participant. Epochs with artifacts exceeding an absolute threshold of 200 uV were excluded.
We quantified EEG noise level as the percentage of epochs rejected per participant for each
stimulus type and condition, with an individual maximum artifact rejection criterion of 35%
of the trials per stimulus type (see Table 3.2 for group measures and Appendix 3.2 for

individual rejection values) and a minimum of 44 trials per deviant condition.

All ERP statistical analysis were performed in the subtracted difference waveforms
(DW, deviant minus standard), using MUA, peak-centred mean amplitude and peak latency
as measures, calculated in two time windows: TW1 (100-250 ms) and TW2 (250-400 ms).
Importantly, no participants were excluded on any of the groups as all datasets were below

the rejection threshold after data cleaning and artifact correction.

Time-frequency analysis was performed with Fieldtrip (Oostenveld et al., 2011) in the
parent waves for each standard and deviant type, following previous literature (e.g., Gansonre
et al., 2018). We used Morlet wavelets for spectral decomposition of each trial into 19 log-

spaced frequencies, from 2 to 45 Hz. Morlet wavelets parameters were defined according to
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previous literature (e.g., Cohen, 2014), using 3 cycles at the lowest, and 14 at the highest

frequency (0.8 cycles increase), and a window length of 1670 ms.

Table 3.2

Percentage of Rejected Epochs per Condition and Stimulus Type

Stimulus Type TLD DLD

M (%) SD M (%) SD
Non-native Non-words 8.72 11.65 11.05 8.82
Native Non-words 7.07 8.12 10.64 6.91
Function Words 5.82 5.69 9.31 6.63
Content Words 6.33 8.70 8.77 7.25
Standard(NN-Nwords) 6.91 8.45 10.59 6.91
Total 10.03 9.56 10.33 6.93

Note. TLD, n=11, DLD, n=16. Group means (M) and standard Deviations (SD) for the

percentage of rejected epochs, in total and for each stimulus type.

To avoid edge artifacts, non-overlapping epochs of 3000 ms duration were defined
between -1000 to 2000 ms for each trial, and then averaged across deviant types for each
participant. Baseline correction was applied from -500 to -200 ms to avoid spectral leakeage
from the following epoch in the low frequencies. Running the decomposition trial by trial
allowed us to obtain induced activity and avoid cancelling out responses that were not time-
locked. As time-frequency analysis is sensitive to differences in the number of trials per

condition (Cohen, 2014), we found the participant with the minimum number of trials for a
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given condition (60 trials) and matched this number in all other participants and conditions by

randomly selecting 60 trials from each participant’s pool.

The brain’s oscillatory synchrony in a given frequency band was examined through two
time-frequency measures: ERSP and ITPC. ERSP quantified how much energy did the signal
had for each frequency at each time point and was measured as power change relative to the -
500 to -200 baseline (in dB), averaged across conditions for each group (Cohen, 2014). ITPC
was calculated as an index between 0 and 1, and reflected how consistently the oscillations

reach the same point in the cycle across stimulus types.

3.2.6 Statistical Analysis

Statistical analyses were conducted with Matlab, the MUA toolbox, and SPSS v26-29.
For the ERP analysis, we identified significant MMRs in the TLD and DLD groups using MUA
(successive point-by-point t-tests with FDR control) in a broad time window between 100 and
500 ms. Then, we ran between-groups comparisons of peak centred mean amplitude in an early

(TW1, 100-250) and late (TW2, 250-400) windows, for the children and adult groups.

For TF analysis, we wanted to avoid bias when selecting the time windows for ERSP
and ITPC. Thus, we determined regions of interest (ROI) for the theta and alpha bands in a
way that was blind to the stimulus type, by averaging together the responses for all stimulus
type for each group (Figure 3.1). We compared ERSP and ITPC between participant groups
and using separate mixed repeated measures ANOVA for each ROI, with Bonferroni correction
for multiple comparisons. Effects sizes were measured with eta squared (n?) and partial eta
squared (np?), considering large effect> 0.14; medium effects > 0.06; small effects > 0.01, and

Cohen’s d (large effect = 0.8; medium effect= 0.5; small effect= 0.2), when corresponding.
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3.3 Results

3.3.1 Phonological awareness test
After confirming data normality (Appendix 3.3), independent-samples t-tests revealed
that the DLD group (M=14.57, SD=4.67) showed significantly lower scores than the TLD
group (M=20.87, SD=5.86) for the phonological awareness test [t(19)=2.778, p=.012,] with a

small effect size, d=1.23. Figure 3.1 present mean values for the phonological awareness test.

Figure 3.1
Box Plots for Mean Scores on the Phonological Awareness Test for the Children Groups

*

30.00

25.00
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Phonological Awareness Test
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TLD DLD
Group

Note. (*) indicates significant difference at the 0.05 level.

3.3.2 ERP analysis
Grand averages
Grand average waveforms were computed at Fz for all stimulus types, indicating similar
patterns in the TLD and DLD group (Figure 3.2). Visual inspection of the waveforms in Figure
3.2 indicates obligatory auditory responses in both groups, with positive peaks around 200 and
300 ms, and negative responses before 200 and after 400 ms. Importantly, children responses

are considerably larger and more variable than Adult’s responses in Chapter 2 (Figure 3.2).
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Figure 3.2

Parent Waveforms at Fz, Grand Average for all Groups and Stimuli
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Scalp topography

Scalp distributions were computed for TW1 and TW2 (Figure 3.3). For TW1,
activation was predominantly frontal-central, with similar patterns in TLD and DLD children
for native non-words and function words. The TLD group showed greater positivity for non-
native non-words, but the opposite pattern for content words. For TW2, all responses tended

to central-posterior negativities, more broadly distributed in the DLD than the TLD group.

Figure 3.3

ERP Scalp Distribution for each Stimulus Type between Groups of Children

(a)
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TLD
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(b)

ERP - D1-NNat_NWrd, 250-400ms

TLD

DLD

Note. Panel (a) 100-250 ms; Panel (b) 250-400 ms. Left to right, column 1: non-native non-
words; 2; native non-words, 3: Function words; 4: Content words; 5: standard stimuli.

Colourbar: pv
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Identification of MMRs on Difference Waveforms

The first analysis focused on determining the presence of statistically significant

MMRs, and if so, on characterising their latency and polarity. Five difference waveforms (DW)

were computed at electrode Fz from individual ERP sets, and averaged across subjects on each

group: DW1: non-native, DW2, native, etc. Statistical significance was determined in the 100-

500 ms time window on data down sampled to 125 Hz. We used MUA by point-by-point t-

tests with Benjamini & Hochberg FDR control procedure to test the null hypothesis that a given

DW has a mean of 0 uV deflections against the alternative hypothesis is that the DW differs

from O pV (i.e., two-tailed test). Table 3.3 presents the results of the MUA.

Table 3.3

MUA Results for MMR Identification at Fz for TLD and DLD in the 100-500 ms Interval

TLD DLD

Critical Test- Upper Differences | Critical t- Test-wise Upper Differences
t- wise bound scores alpha bound
scores alpha FDR FDR

NN-NW  -3.24/ 0.009 0.6 12 -3.25/ 0.005 0.4 7
3.24 3.25

N-NW -3.07/ 0.012 0.7 14 -2.78 / 0.014 2.0 39
3.07 2.78

Function -3.19/ 0.010 0.6 11 -2.81/ 0.013 1.1 21
3.19 2.81

Content - 0.002 -- 0 -3.34/ 0.005 0.4 7

3.34

Words -3.74/ 0.004 0.3 6 -2.98 / 0.010 0.6 12

3.74 2.98

Note. NN-NW: non-native non-words; N-NW: native non-words; Function, Content and

Words (combined). Comparisons (all tests)= 57. TLD group, df =10; DLD group, df =15.
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Table 3.4 presents the cluster of significant responses detected in both groups in the

100-500 interval, indicating differences in their timing and polarity patterns. Negative

MMRs were detected only within 200 ms and positive ones only after 182 ms. Early, MMN-

like responses were not detected for non-native non-words (DW1), but were present for

Words in both groups, and only in TLD for native non-words (DW?2). Later, positive MMRs

were present for non-words (DW1 & DW?2) in both groups, and for function words (DW3)

only in the DLD group, but were absent for content words and words. No LDN-like

responses were detected on either group between 250-450 ms. Figures 3.4-3.8 illustrate the

significant MMR for each DW.

Table 3.4

Significant ERP Responses for all DW Types in the 100-500 ms Time Window

Group TLD DLD
Significant Duration  Polarity Significant Duration Polarity
DW Type
responses (ms) responses (ms)
(ms) (ms)
NN-Nwrd 294-382 88 Positive 278-334 56 Positive
102-134 32 Negative -- - --
N-NWrd (190-198) 8 Positive 182-346 164
Positive
286-342 56 Positive
102-182 80 Negative 102-182 80 Negative
Function -- -- -- (230-238) 8 Positive
- - - 294-374 80 Positive
Content (102-110) 8 Negative 102-150 48 Negative
Words 102-142 40 Negative 102-174 74 Negative

Note. NN-NW: non-native non-words; N-NW: native non-words. MMN-like responses are

marked with in bold type. Responses in brackets may be considered too short to be significant.
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Figure 3.4

Difference Waveforms per Group at Fz for DW1
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Figure 3.5

Difference Waveforms per Group at Fz for DW2
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Figure 3.6

Difference Waveforms per Group at Fz for DW3
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Figure 3.7

Difference Waveforms per Group at Fz for DW4
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line) stimuli. Time O = stimulus onset. Colourbar: t-scores for the MUA
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Figure 3.8

Difference Waveforms per Group at Fz for Words
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Note. MUA for the average of content and function words. (a) TLD group (continuous line);

(b) DLD group (dotted line) stimuli. Time 0 = stimulus onset. Colourbar: t-scores for the MUA
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MMR differences between TLD and DLD children

The second analysis determined if there were any differences in the MMN/MMR
amplitude between groups of children. Figure 3.9 contrasts the significant positive and
negative responses in both groups for each DW type. Visual inspection of the temporal
patterns suggests that onset latency for negative responses was similar between groups for
words and non-words, but differed for positive responses in function words. In terms of
duration, the negative responses were similar for DW3, but apparently shorter for DW4
earlier whereas the positive responses were longer for non-native nonwords (DW1) in the

TLD group, and for native nonwords (DW2) in the DLD group.

Next, we compared the amplitude of the responses between both groups of children
by performing MUA with FDR control procedure (Benjamini & Hochberg, 1995) on each
DLD-TLD DW pair. Point-by-point t-tests (2-tailed, g level of critical t-scores= 0.05)
indicated no between-group amplitude differences at electrode Fz, during the 100-250 ms or

the 250-400 ms interval (Table 3.5).

Table 3.5

MUA Results for MMR Amplitude Comparisons between TLD and DLD Children

100-250 ms 250-400 ms
All FDR adjusted p-values = All FDR adjusted p-values =
Non-native non-words 0.869 0.853
Native non-words 0.275 0.492
Function words 0.558 0.404
Content words 0.725 0618
0.978 0.478

Words

Note. t-score degrees of freedom=25, total comparisons = 19 (number of time points, exact

boundaries=102-246 and 246-398 ms)
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Figure 3.9

Comparison of MMRs in both Groups of Children for each DW Type

DW1: Non-native phoneme in non-word
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Comparison between children and adult MMRs

The third ERP analysis compared the latency and amplitude of the MMRs between
the groups of children, and with the adult’s responses from the MMN validation study
(Figure 3.10). Peak latency and mean amplitude (peak centred) were calculated as in Chapter
2 for TW1=100-250 and TW2=250-400 ms. Table 3.6 and 3.7 present the descriptive

statistics for peak latency and mean amplitude for all groups, respectively.

Table 3.6
Descriptive Statistics for MMR Peak Latency, for all Groups in TW1 and TW2

TW1
TLD DLD Adults
M SD M SD M SD
Non-native non-words 184.6 50.71 197.1 37.9 178.5 29.8
Native non-words 136.6 38.5 127.9 22.2 167.4 225
Function words 145.1 23.2 160.1 28.5 202.5 23.2
Content words 137.1 38.9 161.3 51.0 157.0 21.3
Words 131.8 21.7 160.0 38.0 154 .4 35.7
TW2
TLD DLD Adults
M SD M SD M SD
Non-native non-words 340.9 35.6 316.9 28.6 323.3 62.4
Native non-words 310.0 21.7 314.0 28.5 335.4 64.2
Function words 337.3 32.7 3294 32.0 364.9 65.1
Content words 321.6 42.3 338.6 42.0 371.2 41.4
Words 326.6 32.9 3304 34.2 400.1 241

Note. TLD, n=11; DLD, n=16; Adults, n=20.

In general, peak latency was longer in adults than children for TW1 and TW?2.

However, adult’s peak latency was measured in significant MMN/LDN clusters, which was
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not possible in children. For children, peak latency values were extracted from negative

deflections in TW1 and from positive deflections in TW2, regardless they were significant

responses or not. Thus, no further analysis was performed on peak latency measures.

For mean amplitude, in TW1 children exhibited larger negative values than adults,

and TLD children than DLD children. In TW2, adults showed larger negativities than

children for all stimuli except content words, and TLD children showed more negative values

than the DLD group for all stimulus types.

Table 3.7

Descriptive Statistics for MMR Peak-Centered Mean Amplitude, all Groups in TW1 and TW2

TW1
TLD DLD Adults
M SD M SD M SD
Non-native non-words -2.35 2.73 -1.57 2.16 -0.76 1.13
Native non-words -2.45 2.55 -1.19 2.02 -1.59 1.51
Function words -3.97 3.22 -3.16 2.55 -2.08 0.92
Content words -2.72 2.62 -2.60 1.68 -1.58 1.11
Words -3.06 2.26 -2.63 1.78 -0.95 0.92
TW2
TLD DLD Adults
M SD M SD M SD
Non-native non-words -0.81  2.80 -0.29 2.77 -1.45 1.48
Native non-words 0.85 3.56 1.78 3.08 -0.81 1.01
Function words -1.66  3.55 -0.03 2.17 -1.85 1.88
Content words -2.27  3.07 -1.67 2.30 -1.56 1.55
Words -1.58 2.50 -0.43 1.67 -1.72 1.68

Note. TLD, n=11; DLD, n=16; Adults, n=20.
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Figure 3.10

Comparison of Difference Waveforms between Children and Adults for each Type
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Note. Difference waveforms at Fz electrode for all stimuli. Continuous line: TLD group;

dotted line: DLD group, dashed line: adults. Data low-passed filtered at 35 Hz for plotting.
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For TW1 and TW2 Shapiro-Wilk test confirmed normal distribution (see Append 3.3)
for all measures, except for DW2-TDL in TW1. Thus, we examined mean amplitude
between-group differences for each TW using planned comparisons for each stimulus type
using one-way ANOVA, adjusting the significance level for the number of stimulus types
(0.05/ 5 comparisons, one per stimulus type=0.01). To account for unequal sample sizes and
unequal variances (Appendix 3.2), we used Tamhane’s post-hoc tests, with alpha= 0.01.

Table 3.8 presents the ANOVA results for peak-centred mean amplitude. Results
indicates a significant amplitude difference only for Words (combined difference wave) in
TW1 [F(2,44)= 7.855, p=.001], and only for non-native non-words in TW2 [F(2,44)= 4.701,
p=.014], with a large effect size in both cases (#°= 0. 263 and 52 =.176, respectively). For
TW1, post-hoc tests showed significantly larger negativities for Word stimuli in both groups
of children (TLD children M= -3.06, SD= 2.26; DLD children M= -2.63 SD=1.78), than in
adults (M= -0.95, SD=0.92). In TW2, native non-words showed less negative values in DLD

children (M= 1.78, SD= 3.08) than in adults (M= - 0.81, SD=1.01).

Table 3.8
Results of One-Way ANOVAs for Mean Amplitude Comparisons between Groups

TW1 F p n?

Non-native non-words 2.441 .099 .100
Native non-words 1.368 .265 .059
Function words 2.277 115 .094
Content words 2.139 .130 .089
Words 7.855 .001 (*) .263
TW2 F p n?

Non-native non-words 1.141 .329 .049
Native non-words 4.701 .014 (* 176
Function words 2.727 .076 .110
Content words .382 .685 .017
Words 2.275 115 .094

Note. For all tests, df = (2, 44). (*), significant at the 0.01 level.
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3.3.3 Time frequency analysis of MMRs

Spectral Power

As a data quality check, we first computed the spectrum of each stimulus type for
each group, measured as normalized power (UV2). As can be observed in Figure 3.11, we
could confirm that the 1/f pattern and typical peaks in the alpha band were present, indicating
that our measures reflected cortical dynamics. All groups exhibited an increase in power
around 10 Hz, consistent with alpha band activity. However, only the adults and TLD groups

showed additional peaks around 5 Hz and 20 Hz, which was wider in adults (to 30 Hz).

Figure 3.11

Spectral Decomposition for Children and Adults Waveforms (all Stimuli)
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Note. Normalised power spectra for all stimulus types. Gray arrows: Peaks at or below 5 Hz;

Purple arrows: Peaks around 10 Hz; Black arrows: Increases around or after 20 Hz.

138



Event-related spectral perturbation (ERSP)
The second TF analysis focused on determining if there were any between-group
differences in spectral power over time for each stimulus type, as indexed by the ERSP. Figure

3.12 presents ERSP for each stimulus type for TLD and DLD children and the adult’s group.

Figure 3.12

ERSP (Power Change over Time) for all Stimulus Types and Group
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change toward positive and negative values, respectively. Baseline = -500 to -200 ms.

139



To avoid biased selection of the time windows and frequency ranges of interest for
statistical analysis, we determined ROI by visual inspection of the plots containing the
responses for all stimulus types on each group pooled together (Figure 3.13). This analysis
identified one time range of increased activation (colour change towards yellow) in the theta
band for each group; for the TLD group, between 350-600 ms (3-6 Hz); for the DLD group
between 180-400 ms (3-6 Hz) and for the Adult group, between 200-420 ms (3-7 Hz). There
is an earlier onset in adults (~200 ms) and DLD children (~180 ms) than in the TLD group
(~350 ms). In the adults group though, there is a power decrease in the alpha range that
spreads from the start of the baseline period to the post-stimulus interval, despite the baseline
correction, suggesting this could be an artifact affecting this frequency range. For this reason,

ERSP analysis focused on the theta ROI.

Figure 3.13

ROIs Selection on Total Average ERSP for each Group
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Note. Total ERSP changes in (a) TLD children, (b) DLD children and, (c) Adult group. ROI 1:

3to 6 Hz in children, 3-7 Hz in the adult group. Baseline correction from -500 to -200 ms.

To compare ERSP between groups, dB power was averaged across ROI time points,

and collapsed across frequencies to get the average band power (theta band in this case).
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Table 3.9 presents the descriptive statistics for ERSP, whereas mean ERSP values on each

group for each stimulus type are compared in Figure 3.14.

Table 3.9
Descriptive Statistics for Average Theta Band ERSP (dB Power) for all Groups

TLD (n=11) DLD (n=16) Adults (n=20)

Mean SD Mean sb Mean  SD

Non-native non-words -.109 1.65 .001 1.25 -125 1.88
Native non-words .039 2.15 .008 1.27 -.072 2.16
Function words .032 2.43 .257 1.63 .267 2.01
Content words -.326 2.03 -.021 1.39 -.063 2.07
St (native non-word) -.428 1.81 -.041 1.34 -471 1.97

Note. dB power averaged across ROI time points and theta range.

To examine differences in ERSP power for each stimulus type between the groups of
children and adults we conducted a mixed repeated measures ANOVA with ‘Group’ as
between-subject factor and ‘Stimulus Type’ as within-subject factor. After checking for data
normality, and equality of variances, and of covariance matrices (Appendix 3.3), we used
Greenhouse-Geisser correction for unmet sphericity (Mauchly’s W=.355, p<.001, df =9). The
ANOVA revealed a significant effect of Stimulus Type [F(2.57,113)=3.358, p=.027], with a
medium effect size (ny,2 = .071) and adequate power= 0.70. Post-hoc pairwise tests on
Stimulus Type effects indicated significantly larger power change for standards (M= -.313,
SD=1.71) than for non-native non-words (M= -.078, SD=1.60), native non-words (M= -.008,
SD=1.86), and function words (M= .185, SD= 1.95), but not for content words (M=-.136,
SD=1.82). There was a non-significant effect of Group [F(1,44)=.048, p=.953], and a non-
significant Group*Stimulus Type interaction, [F(5.14.,113)=.505, p=.774], with a small

effect size (n,2 =.002 and ny? =.022, respectively) and low statistical power (0.6% and 19%).
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Figure 3.14

Box Plots for Theta ERSP (dB) Mean Values across ROI per Stimulus Type, all Groups
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Note. ERSP baseline=-500 to -200 ms. Between-groups differences are non-significant for

all stimulus types at the 0.05 level.

Inter-trial Phase Coherence (ITPC)
The final TF analysis focused on determining if there were any between-group
differences in phase coherence over time for each stimulus type, as indexed by ITPC. Figure

3.15 presents ITPC values for each stimulus type for TLD, DLD, and adult group.

ROIs for ITPC statistical analysis were determined by visual inspection of the plots
containing all stimulus types for each group (Figure 3.16). We identified ROI 1 in theta (3 to
7-8 Hz), with a similar onset and duration in TLD children and adults (150-400 ms) but

slightly shorter in the DLD group (160-350 ms). We also identified ROI 2 in alpha (8 to 10-
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12 Hz), with earlier onset and longer duration in adults (120-360) ms than in TLD (250-400)

and DLD children (275-330), the latter showing the shortest alpha ITPC increase.

Figure 3.15

Adults

ITPC Strength over Time for each Stimulus Type, all Groups
03 03 45 03
025 025 49 02s
02 02 Eﬁ 02
015 g 015 § gas 018 g
wk § wk B iy B
0.05 0.05 10 005
5
bg 500 1000 1500 ?

T'nme (ms) ‘nma (ms) Time (ms)

03
025
; e
0.15
g o €
005
0

500 1000 1500

D1

-500 0 500 1000 1500

Time (ms) Time (ms) Time (ms)
45 D2 03 03 03
025 025 028
02 & 02 2
H £ ot
015 & 015 % 015
g g E g L E
01 = g 01 =
005 005 005
[ 0
500 0 500 1000 1500 1500 500 500 1000 1500
Time (ms) Tmo (ms} Time (ms)

| .
-500 0 500 1000 1500 500 1000
Time (ms) Time (ms)
03
025
02 g ES
015 g
o
§ 0.1 é %
005
500 1000 1500 9 500 0 500 1000 1500
Time (ms) ﬂme (ms) Time (ms)

Note. Colour changes towards yellow indicates ITPC increases over time, and blue indicate

phase synchrony decrease.

143



Figure 3.16

ROIs Selection on Total Average ITPC for each Group
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Note. (a) TLD children, (b) DLD children and, (c) Adults. In all groups, ROI 1: 3 to 8 Hz

(theta band), ROI 2: 8-12 Hz (alpha band).

Table 3.10 presents the descriptive statistics for theta band (ROI 1). Adults showed

higher ITPC for meaningful stimuli (words than non-words), but in general, with no

difference for deviants and standard stimuli. In the TLD group, all deviants show higher

ITPC than the Standards. No such standard-deviant distinction is present in the DLD group.

Table 3.10

Descriptive Statistics for Average Theta ITPC for all Groups (ROI 1)

TLD DLD Adults

Mean SD Mean SD Mean SD

Non-native non-words 174 .027 154 .047 .196 .049
Native non-words 175 .052 .180 .046 .200 .050
Function words .186 .062 167 .046 .308 .082
Content words 181 .040 170 .051 .241 .076
St (native non-word) 147 .043 A72 .067 .196 .046

Note. ITPC averaged across ROI time points and theta range
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To compare theta ITPC (ROI 1), we conducted a mixed repeated measures ANOVA
with Stimulus Type as within-subjects factor and Group as between-subjects factor, after
confirming all the test assumptions were met (see Appendix 3.3). Results indicate a
significant main effect of Stimulus Type [F(4,176)= 6.75, p<.001], with a large effect size
(np2=0.133) and adequate power (99%). Post-hoc comparisons showed higher theta ITPC for
function (M= .22, SD=.094) and content words (M=.19, SD= .069), than for native non-

words (M=.18, SD=.049).

There was also a significant main effect of Group [F(2,44)=18.85, p< .001], with a
large effect size (ny,2=0.461) and adequate power (100%), with larger theta ITPC for the
Adult (M=.23, SD=.061) than for the TLD (M=.173, SD=.093) and DLD (M=.17, SD=.051)
groups. Finally, there was a significant Stimulus Type*Group interaction [F(8,176)=5.06,

p<.001], with a large effect size (n,2= 0.187), and adequate statistical power (99%).

The interaction was followed-up with one-way ANOVAs (Bonferroni-corrected
p=.01), comparing theta ITPC between groups for each Stimulus Type triad. For meaningless
stimuli (non-words), theta ITPC showed no significant between-group differences for non-
native non-words [F(2,44)=4.003, p= .025] or native non-words [F(2,44)=1.194, p= .313], as

well as for standard stimuli [F(2,44)=3.117, p=.054].

On the contrary, theta ITPC for meaningful stimuli showed significant between-group
differences. For function words, theta ITPC varied significantly between groups
[F(2,44)=23.129, p<.001], with Tukey HSD post-hoc comparisons indicating higher phase
coherence values in adults (M= .310, SD=.082) than in the TLD (M=.186, SD=.062) and
DLD (M=.167, SD=.047) groups, but with no differences between both groups of children.
Similarly, for content words, [F(2,44)=6.901, p=.002], Tukey HSD post-hoc test showed

significantly higher values in adults (M=. 241, SD=.076) than in TLD (M=.181, SD=.040)
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and DLD (M=.170, SD=.051) children, but no differences between children’s groups. Figure

3.17 illustrates theta ITPC mean values in all groups for each stimulus type.

Figure 3.17

Box Plots for Theta Band ITPC (ROI 1) for Stimulus Type, all Groups
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Note. ITPC range: 0-1. (***) significant at the 0.001 level. (**) significant at the 0.01 level.

The second statistical analysis of ITPC focused on the alpha band (ROI 2). Table
3.11, presents alpha ITPC descriptive statistics, indicating higher values for adults than for

children, but no clear pattern for differences between children’s groups.
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Table 3.11
Descriptive Statistics for Average ITPC for all Groups for ROI 2 (Alpha Band, 8-12 Hz)

TLD (n=11) DLD (n=16) Adults (n=20)

M SD M SD M SD
Non-native non-words .146 .043 .166 .065 [.175 .047
Native non-words .146 .053 176 .061 (223 .075
Function words .156 .054 127 .040 |.246 .082
Content words 134 .034 .159 .065 [.197 .052
St (native non-word) 143 .065 154 .074 1205 .065

Note: ITPC averaged across ROI 2 time points and collapsed over alpha range frequencies.

To compare alpha band ITPC (ROI 2) statistically, we conducted a mixed factorial
ANOVA with the same factors as for theta, after confirming all the test assumptions were met
(Append 3.3). Results indicate that the main effect of Stimulus Type was non-significant
[F(4,176)= 1.073, p=.371], with a small effect size (n,2= 0.024) and low statistical power
(34%). There was a significant effect of Group, [F(2,44)=14.84, p<0.001],with a large effect
size (np2=.401) and adequate power (99%), with Tamhane’s post-hoc comparisons indicating
significantly higher alpha ITPC in adults (M=.209, SD=.008) than the TLD (M=.144,
SD=.011), and the DLD (M=.156, SD=.009) groups at the p<.001 level. A significant Group*
Stimulus Type interaction was detected [F(8,176)=2.606, p=0.01], with a large effect size

(n2=.106) and adequate power (92%).

The interaction was followed-up with one-way ANOVAs (Tamhane post-hoc,
corrected p=0.01) to compare each Stimulus Type triads between groups. For function words,
results indicate significant between-group differences in alpha ITPC [F(2,44)=16.902,
p<.001] with a large effect size (n,2=.434), with post-hoc pairwise comparisons indicating

higher alpha ITPC in adults (M=.246, SD=.082) than in TLD (M=.156, SD=.056) and DLD
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(M=.127, SD=.039) children. Alpha ITPC was significantly higher in adults for native non-
words (M=.223, SD=.075, [F(2,44)=5.363, p=.008]), and content words (M=.197, SD=.051,
[F(2,44)=5.431, p=.008]), than in the TLD group (M=.145, SD=.054 for native non-words,
and M=.133, SD=.034, for content words), with a large effect size in both cases (n2=.196,

and n2=.198, respectively), but there were no differences with the DLD group. Figure 3.18

presents mean alpha ITPC for all groups.

Figure 3.18

Box Plots for Alpha Band ITPC (ROI 2) for Stimulus Type, all Groups
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Note. (*) indicates significant differences at .01 level.

Taken together, results from the TF analysis indicate an effect of the linguistic content
involving meaning (words) on cortical synchrony with higher ITPC in the theta band, and to a
less extent, in the alpha band. However, this effect was not detected for power change measures

(ERSP) and was only present in adults, not in children.
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3.3.4 Correlation between phonological awareness and EEG measures.

Finally, we determined whether there was an association between scores in the
phonological awareness test (PECFO) and EEG measures. As we had compared the TLD and
DLD groups in section 3.3.1, the current analysis pooled all children together, regardless their
language status. Pearson correlation was calculated separately for mean amplitude (TW1 and
TW2), ERPS and ITPC (ROI 1 and ROI 2) and phonological awareness scores (Table 3.12).

No significant correlations between mean amplitude, ERSP and ITPC ROI 2 and
phonological awareness scores were observed on TW1 or TW2 for any stimulus type. For
ITPC ROI 1 we only observed a significant negative correlation between theta ITPC for
standards and PECFO scores [r=-.467, p=.028], but this was no longer significant after

Bonferroni correction for multiple comparisons was applied to each measure (alpha=0.01).

Table 3.12

Correlation Analysis between Phonological Awareness Scores and EEG Measures

ERP measures

Non-native Native Function Content Words
non-words non-words words words (combined)
Mean amplitude TW1
PECFO r -.299 -.185 -.229 -.034 -.167
p 176 .409 .305 .879 458
Mean amplitude TW2
r -.194 -.043 -.305 -.169 -.353
p .388 .851 167 451 107
Time-frequency measures
Non-native Native Function Content Standard
non-words non-words words words (Nat-Nw)
PECFO ERSP theta
r .082 -.321 -.271 -.283 -.319
p 716 .145 .223 .201 147
ITCP theta (ROI 1)
r .206 -.183 -.112 .32 - .467
p .358 415 .619 146 .028
ITCP alpha (ROI 2)
r .039 -.368 .206 -.052 -.31
p .863 .092 .357 .818 .16

Note. r= Pearson’s correlation coefficient; p= significance value. Corrected alpha=0.01.
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3.4 Discussion
3.4.1 Summary of findings

This study aimed to compare cortical responses to speech with varying linguistic
content under different language status; children with TLD and DLD, and adults using a
range of ERP and time-frequency measures. As hypothesised, we detected significant MMRSs
for all speech stimuli in both groups of children, with different patterns than adults in terms
of polarity, mean amplitude and ITPC. However, contrary to our expectations, we found no
differences between TLD and DLD children on any EEG measure, nor correlation with
behavioural tests, although their phonological awareness scores were significantly lower in
the DLD group. The interactions between language status (‘Group’) and linguistic content
(‘Stimulus type’) confirmed our hypothesis about greater top-down language effects for
higher order linguistic content only in the adult group. These results suggest that language
top-down modulations on speech perception are present in adulthood but either may not have
developed yet in early childhood or may not be detectable with this EEG paradigm, for
example because of excessive noise or variability in our data. Importantly, we found no
evidence of impaired acoustic or speech processing in DLD, which suggests that speech
perception in children with DLD and TLD could be similar, although such null results should

be interpreted cautiously.

Specifically, our results confirm the presence of at least one significant negative or
positive MMR for all stimulus types in both groups of children. However, a key difference
with the adult group was the lack of significant early MMNs in children for most non-words,
and of later LDNs for all stimulus types. These findings contradict previous literature
reporting an early presence of the MMN (Cheour et al., 1998) and greater LDNs in children
than adults (Bishop et al., 2011). For example, Kuuluvainen et al. (2016) reported that

different speech and nonspeech contrasts elicited significant MMNSs between 200-350 ms and
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LDNs for the 350-500 interval. However, children in their study were 6—7-year-old, older
than our participant and their speech stimuli did not include meaning. An alternative
explanation for the lack of MMN/LDNSs relates to a possible attenuation effect of an extended
ISI duration. In young children, the MMR reflects sensory memory capacity which has been
reported to increase between the ages of 2 and 6 years resulting in progressively better
discrimination of memory traces at longer delays, this is ISIs over 500 ms (Glass, Sachse &
von Suchodoletz, 2008). In our experiment, we used an 1SI of 2000 ms to avoid neural
refractoriness (Morr et al., 2002), however, this could have had a detrimental effect in

eliciting the MMN/LDN.

As predicted, we observed that both groups of children exhibited immature responses
when compared to adults as indicated by positive MMRs during the MMN and LDN
intervals. Previous literature have described a positive polarity for the MMR for infants
(Cheour, 2007) and, for children, until the age of 7 years in response to complex stimuli
(Maurer et al., 2003). On the contrary, other studies in pre-schoolers (Kuuluvainen et al.,
2016; Strotseva-Feinschmidt et al., 2015) indicate one could expect a typical, adult-
resembling MMN/LDN patterns, even if occurring at longer latencies. However, we observed
positive polarity only for non-words, indicating that meaningless word forms elicited more
immature responses than words, maybe because the lack of meaning makes them more
complex to perceive. This interpretation contradicts the possible lack of top-down language
effects discussed earlier, but could be explained by the fact that point-by-point analysis
reveals differences that are no longer detectable when averaging values across a time-window
(e.g. because they cancel out) giving a clear example of the methodological issues in this
field. In addition, scalp patterns in children showed broad distributions, especially for TW2,
instead of the more focalised responses often seen in adults (Shafer et al., 2010) also

indicating less mature MMRs.
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Another indicator of immaturity is that MMRs in children exhibited greater latency
and longer duration (for example, a 164-ms-long MMR for native non-words in the DLD
group), making it hard to differentiate early and late MMRs for some stimuli and to compare
latencies between groups, particularly, for non-words. In the literature, responses in 3-year-
olds for monosyllabic function words differing in their final consonant peaked at 262 ms after
deviance (Maurer et al., 2003). Strotseva-Feinschmidt et al., (2015), reported that children
between 5-8 years, showed latencies between 180 and 350 ms, whereas Paquette et al, (2013)
showed that MMRs for phonemic contrasts in 3-7 year-old children peaked at 272 ms. These
findings are consistent with the latencies and MMR duration we observed for non-words but
occur much later than the responses we detected for function and content words. Again, this
could indicate easier and faster cortical processing of meaningful stimuli. For phoneme or
word deviants, Strotseva-Feinschmidt et al. (2015), who used similar stimuli as in our study
(contrasts between monosyllabic function words) in the same age group, reported overall
latencies of 400 ms for the MMN and 700 ms for the LDN, which are much longer. However,
the use of peak measures for ERPs may be sub-optimal (Bishop et al., 2011) as they are

sensitive to noise level (Luck, 2014), which can be high in paediatric EEG (Trainor, 2012).

Regarding the MMR mean amplitude, our findings are partially consistent with
previous literature. For example, Paquette et al, (2013) reported an amplitude of - .067 pV at
Fz for phonemic contrasts in 3—7-year-old children, which agrees with our results for non-
words in TW2 but not in TW1, in which children showed much larger negative values. The
lack of amplitude differences between children’s groups is consistent with multiple studies
failing to differentiate TLD and DLD groups based on speech-elicited MMRs (for a review
see Kujala & Leminem, 2017). When comparing children versus adults, our findings support
our prediction of significantly smaller amplitude in adults than children, but this occurred

only for Words in TW1. Contrary to our hypothesis, mean amplitude was smaller in children
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than adults, but only for the DLD group in TW2 for native non-words. This resembles

previous findings of smaller MMN amplitudes for 6-year-old children (Lovio, et al., 2009).

In terms of TF analysis, we confirmed less synchronized activity in children than
adults but only for words and when measured by ITPC but not by ERSP. Theta ERSP was
affected by the linguistic content (stimulus type), with reduced power change for standards
than for most deviants (except function words), which is consistent with the idea of increased
theta synchronysation for novel stimuli. Larger ERSP for deviants is consistent with findings
reported by Fuentemilla et al., (2008) and Hsiao et al., (2009; 2010). The lack of power
differences we observed between standards and function words could be explained by a
larger ERP negativity, thus, the lack of significant effect may result from acoustic
differences. However, if this is the case, we would expect to see a consistent pattern for
function words along all measures that was not present, for example, increased amplitude
with higher ERSP and ITPC. Importantly, there were no ERSP differences between groups of
children, or between children and adults contradicting our predictions, but in line with
findings reported by Bishop and Hardiman (2010). Also, it is worth considering some
methodological issues in our ERSP analysis: (i) Using visual inspection of the condition
average plots to determine ROIs was suboptimal, as despite performing baseline correction in
the adult plot, we observed unexplained negative alpha power before stimulus onset
suggesting a possible artifact and (ii) The effect size was small, except for ITPC, meaning

that some between-group differences may have gone undetected.

On the contrary, ITPC in the theta band (and to a less extent in alpha) showed a main
effect of linguistic content and language status, with a significant interaction between them,
all with large effect size. This is a key finding as it indicates higher synchrony in adults than
children but only for meaningful stimuli (function and content words), consistent with our

hypothesis of greater top-down language modulations for higher order linguistic
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representations in participants with more advanced language skills. Previous research has
linked increased theta ITPC to syllable encoding and discrimination (Ortiz-Mantilla et al.,
2022) whereas alpha ITPC is thought to reflect automatic allocation of attentional resources
for speech sounds and inhibition of task-irrelevant stimuli (Straul et al., 2014).

The presence of robust ITPC differences indicates more efficient responses to speech
in adults than children, which is in line with previous studies. This aligns with Skeide &
Friederici’s (2016) proposal of greater bottom-up and slow emergence of top-down
modulations after the age of six years. However, as there is no difference between TLD and
DLD children, it could be argued that our results come from brain maturational changes
(effect of age) rather than language top-down influences. If this were the case, we would not
have observed the interaction of language status and linguistic content in the Adult group.

Finally, phonological awareness test scores did not correlate with any EEG measure,
even though significantly lower scores were observed in the DLD than in the TLD group.
This contradicts previous evidence of better phonological skills associated with larger MMNs
for phonemic changes in 5-6 year-old children (Linnavalli, et,al., 2017), but is consistent with

many studies that report no clear links between ERPs and behavioural measures.

3.4.2 Strengths, limitations, and future research

To our knowledge, this is the first study to use a multifeature paradigm in Spanish-
speaking preschoolers with DLD diagnosis and to compare their responses to age-matched
TLD controls and adults. Moreover, few MMR studies in children have used not only
syllables or non-words but also words and validated the experiment in a previous study to
obtain reference adult response patterns.

One contribution of this study is that we confirmed that our multifeature experiment
was able to elicit robust MMR in young children presenting multiple speech deviants while

reducing the EEG testing time. In less than 20 minutes (plus set-up times), it was possible to
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collect enough clean data for all the children that underwent the EEG session, as
demonstrated by noise levels under 35% for all participants and stimulus type. Combining
artifact rejection and correction procedures, we were able to include the data of all the
participants, with a minimum of 42 trials per stimulus type which is well above the standard
threshold for paediatric studies (10 trials, according to Bell & Cuevas, 2012). This highlights
the importance of combining manual and automatic data cleaning procedures to improve data
quality (Cohen, 2017), helping to reduce data loss and sampling bias due to participant’s

exclusion (Bell & Cuevas, 2012).

Retaining all the participants was especially important for this study, as one of the
main limitations was the small sample size for each group, which was a consequence of the
COVID-19 pandemic restrictions for data collection. Although small samples are not
uncommon in children EEG studies because of difficult recruitment and high drop-out rates
(Bell & Cuevas, 2012), especially for including clinical groups, is worth noting that the
reduced number of children participants may have affected the statistical power of our results.
This is a relevant aspect to consider in paediatric EEG studies, as even children with typical
development show high inter-individual variability, which makes it harder to detect

differences between TLD and DLD children.

Importantly, differences in the language and cognitive skills within the DLD group
could have influenced the MMR results. Although all language-impaired children in this
study had an expressive-receptive disorder diagnosis, it was impossible to determine the
exact level of homogeneity in their language development and cognitive profiles. This could
have introduced higher variability in their MMR difficulting a distinction between the DLD
and TLD groups based on their cortical dynamics. Moreover, a large body of evidence

indicates that the language symptoms in DLD are dynamic over time (Bishop et al., 2016;
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2017), suggesting that identifying neural markers of language outcomes at the group level

could be more challenging than expected.

A second limitation is that, as mentioned in Chapter 2, our stimuli differed in their
acoustic structure. Acoustical matching of the initial phonemes for non-words was
considerably easier than for word stimuli, as they should also be matched in their age of
acquisition and oral frequency. Thus, larger acoustic differences rather than effects of
language knowledge or linguistic content may have driven some of our results, as in Lee et al.
(2012), who reported negative, adult-like MMRs for larger syllabic deviants and positive
MMRs for small deviants. However, if this were the case, we would expect a consistency
between the different EEG measures; for example, greater MMR amplitude should coincide
with greater ERSP and ITPC for the same type of stimulus, which we did not found.

An important remaining question is what EEG analysis and statistical methods are
more suitable when comparing cortical speech perception responses between groups of
children, and children versus adults, given the high diversity of latencies and amplitude
values, electrodes and time windows reported in the previous literature. This complicates the
a priori selection of time windows and electrodes for analysis, as findings vary substantially
across studies. A possible approach to reduce bias in our ERP analysis to follow the same
steps used in the TF analysis for determining ROIs for amplitude and latency, for example,

using global field power from the total group average as in (Francois et al., 2020).

Nevertheless, an important contribution of this study is that it confirms that ITPC is a
robust measure, probably a more suitable one for comparing children and adults, chiefly,
because ITPC results showed large effect sizes, which was not the case for the ERSP and
ERP measures. Moreover, the detected theta ITPC increases were independent of changes in
amplitude or power, as the MMN amplitude was not larger for adults than children, and the

ERSP showed no between-group differences. Thus, our findings corroborate the value of TF
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analysis, as a relevant complement to ERP measures, encouraging its use in further speech
perception development studies. However, it is important to note that ITPC distortions may

also occur, due to effects of noise or ERP amplitude (van Diepen & Mazaheri, 2018)

Future research in TLD/DLD groups could explore other EEG measures related with
speech perception, as resting-state analysis or linear modelling of continuous speech tracking,
helping to increase the ecological validity of the experiments. Another possibility is to
replicate this study in older children, ideally by a longitudinal, follow-up study to re-test these
same children at later age or a new group of older participants. Likewise, other statistical
methods could be more informative than MUA or ANOVA as these assume independence of
observations, which contradicts the multivariate nature of the EEG (Volpert-Esmond et al.,
2021). For example, multivariate pattern analysis (MVPA) could determine if children can be

correctly classified into groups based on individual EEG measures (Petit et al., 2020).

3.4.3 Conclusions

Taken together, these findings confirm that the adult group showed more consistent
speech processing responses than children, but in children this was not determined by their
typical or atypical language developmental status. Importantly, the fact that adults showed
greater ITPC in theta (and alpha) bands for function and content words, indicates that they
may detect phonemic changes better than children, but they do so when these contrasts are
contained in meaningful word forms and not in non-words. The lack of that top-down
language effects on the TLD/DLD groups suggest these emerge at some point in childhood
although later than the age range we studied, although it could also be explained by the
carachteristics of our sample and stimuli. Thus, future studies could explore language
modulations on speech processing in TLD/DLD children at older ages, for example, late

childhood or adolescence.
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Chapter 4. Resting-state oscillations and speech perception in children with

typical language development and DLD.

4.1 Introduction

Speech perception involves task-dependent changes in neural oscillations and also, in
resting-state (RS) rhythms; these corresponds to the spontaneous activation of cortical
networks when the brain is awake but not engaged in a task. The patterns of endogenous RS
activity in the EEG have been associated with different cognitive functions, including speech
and language processing, and show developmental changes that may predict language skills
at later stages. Thus, characterizing RS activity during early childhood could improve our

understanding of typical and atypical language development.

RS measures have enormous potential as clinical indices of cognitive development
because they require no response or stimuli, making data collection easier than for speech
perception experiments and much shorter (usually 3 -5 min of data). However, there is still
little research on the implications of RS EEG changes for speech perception and language

development during early childhood.

The primary aim of this chapter was to examine the relationship between RS
oscillations and language status in young children. We compared EEG resting-state power
and lateralization measures between Spanish-speaking children with TLD and DLD and
adults. A second aim was to relate children’s EEG RS measures to their performance in
speech perception tests. This study contributes to understanding oscillatory dynamics during

early childhood in TLD and DLD, comparing RS EEG patterns between children and adults.
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4.1.1 Speech perception development and resting state oscillations

In the brain, synchronised neural activity underlies a wide range of cognitive
processes, such as language and speech processing, even without a task. The changes in RS
neural dynamics can be quantified as variations in the spectral energy at different frequency
bands (for example, as spectral power) and reflect baseline excitability in neural networks
involved in different cognitive processes, such as speech perception (Houweling et al., 2020).
Thus, characterising the brain's intrinsic patterns in the EEG signal and their change along
development is valuable for understanding how the brain processes external stimuli and
determining how RS brain activity relates to speech perception skills and interacts with

language knowledge across the lifespan.

Previous research in adults has shown that (RS) brain activity predicts both neural
dynamics and behavioural performance during speech perception. For example, gamma
oscillations are involved in local and global scale synchrony (Buzsaki & Draguhn, 2004),

playing a key role in phonological processing (Meyer, 2018).

Breshears et al. (2018) recorded RS cortical local field potentials in the STG of eight
brain-surgery patients. They found that RS high gamma power (70-150 Hz) in the STG (both
hemispheres) correlated with the perception of speech (sentences) but not of acoustically
matched non-speech (rotated stimuli), indicating that 'tuning' of RS activity and phonemic
processing were task-dependent (Morillon et al., 2010). A MEG study by Houweling et al.
(2020) investigated the relationship between inter-individual differences (n=88 adults) in RS
power and speech perception under varying background noise levels. They found positive
associations between words-in-noise test performance and RS power (mainly in the superior
temporal gyrus) for high beta (21-29 Hz) in the LH and for low gamma oscillations (30-40

Hz) in the RH. These findings suggest that baseline neural activity in different bands provides
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an optimal neural context for speech perception, facilitating processing under adverse
listening conditions. However, these findings have not been systematically replicated in
children; although RS patterns change shows evident changes during development, it is
unknown what they involve for speech perception or how they might be influenced by age or

language abilities.

Developmental changes in power measures

On the EEG, it is possible to observe typical age-related changes in the RS rhythmic
(periodic) activity and background neural noise. The neural activity becomes more consistent
(coherent) with age and more spatially focalized because of cortical maturation and cognitive
changes (Eggermont & Ponton, 2003). This is observed in the EEG as a reduction in
broadband (absolute) power, a power redistribution, and changes in the topography and
boundaries of different frequency bands (Uhlhaas et al., 2009; 2010; Miskovic et al., 2015;
Rodriguez-Martinez et al., 2017). Thus, canonical adult bands are not necessarily equivalent
to children's ones (Ostlund, 2022), which seem to be lower (Saby & Marshall, 2012) but still
present the characteristic EEG structure (1/f, power decrease as a function of frequency). In
addition, neural background noise decreases from childhood to adolescence (Bishop et al.,
2012; Hammerer et al., 2013) and adulthood (VVanvooren et al., 2015), also reflected in the

RS EEG patterns.

In general, developmental changes in the RS EEG involve an age-related decrease in
spectral power for low frequencies and an increase for high frequencies (Lum et al., 2022;
Meng et al., 2021; Rodriguez-Martinez et al., 2015; Saby & Marshall, 2012). For example,
Yordanova & Kolev (2008) and Perone et al. (2018) described a decrease in theta (4-7 Hz)
and an increase in alpha (~7-13 Hz) power with age (n=50 children, 6-11 years old) with a
continuous decrease in power below 8 Hz during adolescence. According to Uhlhaas et al.

(2010), gamma-band oscillations emerge during early childhood and show developmental
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changes until adulthood, but the direction of these changes is unclear. A large-scale study
(n=707, age 3-12 years) by Takano and Ogawa (1998) reported a steep increase in RS gamma
power (35-45 Hz) in younger children between the ages of 3 (n=71) and 4 (n=65) years,
which was more pronounced for frontal and central channels, and become stable in older
children (4-12 years). On the contrary, another large study (n=156) by Tierney et al. (2013)
demonstrated less gamma power (31 to 50 Hz) in older participants than in young children
(n=35, 3-5 years), with strong negative correlations between gamma power and age from

early childhood to adulthood.

Notably, some evidence indicates that the patterns of RS power at different ages relate
to different brain maturational and cognitive changes. For example, power decrease is
associated with the grey matter reduction due to synaptic pruning (Tierney et al., 2013),
cortico-cortical myelination and changes in neurotransmission (Uhlhaas et al., 2009; 2010),
whereas high levels of theta power in infants and young children could reflect a

developmental state of optimal synaptic plasticity (Stroganova & Orekhova, 2007).

Speech perception development and RS power

Despite the apparent links between spectral power age-related changes and cognitive
development, very few studies have investigated the relationship between endogenous neural
activity and language and speech perception development in young children. However,
behavioural evidence consistently shows that their speech perception skills improve with age
(see Chapter 1). For example, Bradlow and Bent (2002) reported that children as young as
three years demonstrated speech perception difficulties in the presence of multi-talker noise,
although their performance improved with age. Thompson et al. (2016) reported an
association between age and speech in noise tests in children 3.0- to 4.9-year-olds. Similarly,
a study in school-aged children by Nittrouer et al. (2013) reported that their speech-in-babble

test scores improved with age and language experience. These findings indicate that older
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children perform better in speech in noise tests than younger ones during early childhood,

although it is difficult to separate the effects of age, attention and language skills.

However, there is less evidence about how speech perception in children is related to
RS EEG changes. Some studies indicate that resting-state EEG measures predict speech
perception development at later stages. Other studies have found a positive correlation
between greater high-frequency (HF) and low-frequency (LF) spectral power and better
speech perception and language abilities. Gou et al. (2011) found that frontal resting gamma
power (31-50 Hz) at 16, 24 and 36 months old significantly correlated with later performance
in language tests at the ages of 4 and 5 years (hon-word repetition, PLS-3 and CELF-P
sentence structure scores). The authors proposed that higher RS frontal gamma power
predicts later language development because it entails better attentional and working memory
processing (Gou et al., 2011). Likewise, a longitudinal study by Cantiani et al. (2019)
reported that increased left gamma power measured at the age of 6 months (n=84) correlated
with better language outcomes at the age of 24 months For the alpha band (7-10 Hz), Kwok
et al., (2019) found that alpha power inversely correlated with children’s (TLD, 4-6 years,
n=41) performance in a battery of language tests (CELF-5), interpreting these findings as

greater neural inhibition and less excitability related to attentional control.

In older TLD children (n=52 children, ~10-year-old), a study by Lum et al. (2022)
reported that RS theta power negatively correlated with sentence repetition. Similarly, a
longitudinal study by Meng et al. (2021) reported that theta power decreased predicted
expressive vocabulary at ages 9 and 11 years (n=53). In contrast, beta power increase from 7
to 9 years predicted receptive vocabulary at age 11. These changes suggest that RS
oscillatory patterns reflect typical brain development, although none of these studies have
distinguished what specific networks generate each type of RS pattern (e.g. attentional or
language).
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Although it seems clear that spontaneous brain activity plays an essential role in
speech perception and language development, there is strikingly little research about RS EEG
patterns in children with DLD. In other neurodevelopmental disorders, research suggests that
atypical RS oscillatory patterns may underlie cognitive and behavioural deficits (e.g., see
Bosl et al., 2011 and S for a study in children with ASD, and dyslexia, respectively), for
example, because of differences in cortical maturation or imbalances between neural
excitatory and inhibitory control (Donoghue et al., 2020). Thus, it is reasonable to think that
atypical RS patterns could occur in DLD. Nevertheless, some studies have already proposed
that, as RS gamma oscillations may predict later language development, they could be used
as a clinical index for screening infants at risk of language deficits (Cantiani et al., 2019).
However, to our knowledge, Benasich et al. (2008) is the only study examining the
relationship between the maturation of brain oscillations (gamma band) and the development

of language abilities in infants at higher risk of DLD.

Benasich et al. (2008) studied infants with a family history of DLD in a first-degree
relative (FH+, n= 22) and age-matched controls (FH—, n= 41), testing them longitudinally at
the ages of 16 (n=22), 24 (n=23), and 36 (n=18) months. They found that the FH+ group
showed consistently lower gamma power over frontal regions than the FH- controls and that
gamma power strongly correlated with language and cognitive skills at all ages. Specifically,
children with higher gamma power showed better inhibitory control and more mature
attention-shifting skills. Benasich et al. (2008) thus concluded that the emergence of high-
frequency neural synchrony might be critical for cognitive and linguistic development.
However, it is unclear what happens at later ages in children, for example, during early

childhood in children affected by DLD.

Overall, previous research suggests that RS EEG power measures can provide

valuable insights into the development of speech perception abilities and that children at risk
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for language impairments may present alterations in this process (Benasich et al., 2008).
However, there is a need for considerably more research and replication to corroborate or

disprove these findings.

4.1.2 Oscillatory hemispheric asymmetries and speech perception

Plenty of evidence indicates that lateralisation in neural oscillations is involved in
speech perception. The asymmetry (or significant lateralisation) of neural oscillations refers
to the differences in the activity patterns of neural oscillations at different frequencies
between the two cerebral hemispheres. This is a crucial feature of the brain's functional
organisation, and it is especially relevant for speech perception. In adults, a large body of
evidence indicates that both speech-evoked and resting state (endogenous) oscillations are
asymmetrical (see Meyer, 2018 for a review).

A predominant explanation of the role of oscillatory lateralisation in speech
processing is the Asymmetric Sampling in Time (AST) Hypothesis (Poeppel, 2001; 2003).
According to the AST theory, speech processing in non-primary auditory areas shows
functional asymmetries between hemispheres. These biases are related to differences in the
distribution of the centre frequency at which neuronal ensembles synchronise spontaneously
(at rest). In the right hemisphere (RH), neural ensembles are more skewed towards
synchronising at a theta rate (3—7 Hz), and in the left hemisphere (LH), they are skewed
towards low-gamma (20-50 Hz) frequencies (Giraud et al., 2007). During speech perception,
this RS asymmetry would "prime" the brain for sampling different features on each
hemisphere. The LH would be primed for extracting information over shorter intervals (20—
50 ms), processing fast acoustic changes, such as the transitions between consonant and
vowel sounds, whereas the RH would be primed for sampling speech over longer time

windows (~150-300 ms), required for prosodic processing (Giraud et al., 2007; Giraud &

164



Poeppel, 2012). However, there is less clarity about the exact developmental trajectories of
these RS oscillatory asymmetries.

During language acquisition, an important landmark is the establishment of left-
lateralised neural activity to support speech processing. Studies have shown that infants as
young as newborns exhibit left-lateralised neural responses to speech sounds (Pefia et al.,
2003), suggesting that the basic neural mechanisms for speech perception are present early in
life. A consistent leftward asymmetry for low gamma oscillations (20-55 Hz) seems to be in
place at the age of 3 years along, but contrary to adults, young children show no rightward
asymmetrical activity for the theta band (3-7 Hz), suggesting that the right auditory cortex
oscillatory specialisation develops later than in the LH (Thompson et al., 2016). However,
although it is established that RS oscillations and their lateralisation continue to develop
throughout childhood and adolescence, clear age-related patterns have not been described for
young children and children affected by DLD.

In TLD children, leftward lateralisation of RS oscillations in the gamma range (20-50
Hz) is present in early childhood and appears to be related to speech perception skills. One of
the few studies in this field was conducted by Thompson et al., 2016 on 65 children between
3 and 4.9 years old. The authors reported that RS gamma left lateralisation was more
pronounced in children with better speech in noise test performance. This suggests that a
greater asymmetry in RS HF activity facilitates speech sampling under challenging
conditions, which is consistent with the AST theory.

Previously, a popular theory of DLD indicated a crucial role of atypical brain
lateralisation and lack of language leftward asymmetry as neural correlates of this disorder
(see Mayes et al., 2015, for a review). However, most of the findings about language
lateralisation in DLD come from haemodynamic studies (e.g., fMRI, as in de Guibert et al.,

2011), and have not been linked to neural oscillations. For example, it has not been
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determined whether there is a lack of oscillatory priming on each hemisphere in DLD, as
could be expected from the AST hypothesis. Moreover, many studies have used handedness
as a behavioural proxy of language lateralisation, which may lack reliability, providing
contradictory and inconsistent evidence about the role of atypical hemispheric dominance in
DLD. An important a large-scale replication study (n=263 twins) by Wilson and Bishop
(2018) using fTMRI-fTCD found no evidence of greater prevalence of atypical laterality in
DLD-affected participants; even more, an important percentage of their TLD participants
showed no clear lateralisation, concluding that the lack of a functional asymmetry in the brain
may not necessarily involve poor language development.

To summarise, RS neural activity and lateralisation of oscillations are key aspects of
the brain's functional organisation, and their maturation is likely to play an essential role in
speech perception and language abilities in children. Understanding the factors that influence
this process can provide insights into the mechanisms underlying language acquisition and
lead to potential clinical uses of RS EEG, such as biomarkers or predictors of typical and

atypical speech and language development.

4.1.3 The current study

Despite the advantages of EEG in neurodevelopmental research, few studies have
investigated RS oscillations in speech perception and language development. To this day,
there is no evidence about how the RS patterns change with age or how they are related to the
maturation of brain language networks. There is no clarity about the link between RS patterns
and the maturation the ventral and dorsal language tracts, about role of oscillatory
lateralisation in language development and whether RS measures are related to behavioural

indices of speech perception, such as speech-in-noise or filtered speech tests. For example,
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most of the evidence supporting the AST hypothesis comes from adult studies, but it has not
been tested yet in young children with typical and atypical language skills.

In contrast with research in other neurodevelopmental disorders such as dyslexia or
autism, only one study links DLD and RS oscillations. However, it was conducted more than
a decade ago and in infants, not in children, and who did not have a diagnosis of DLD but
were at family risk of presenting it (Benasich et al., 2008). After a thorough literature search,
we confirmed that, to this date, no study had explored the role of atypical RS oscillatory
power or lateralisation in young children with DLD. So far, we do not know whether DLD-
affected children exhibit delayed, altered, or typical RS activity patterns and their role in
DLD behavioural symptoms. Understanding these aspects is extremely important given the
current need for objective clinical markers that could help to improve the identification of

children at risk of DLD at early ages.

Considering this knowledge gap, we conducted an RS EEG study to determine if
some previous findings could be replicated in DLD children. Namely, we looked at an
association between frontal gamma power and language skills (Gou et al., 2011) and between
HF leftward asymmetry and speech in noise performance (Thompson et al., 2016) or
language status (Benasich et al., 2008). However, as the amplitude of gamma oscillations is
small because of the 1/f spectral power distribution and has low SNR, we were aware it was
probably hard to study in young children. For this reason, we examined gamma oscillations

and activity for the theta, alpha and beta bands.

The first goal of this study was to characterise RS band power at lateralisation of
oscillations at different frequencies in young children with TLD and DLD and to compare
their responses to those observed in adults. A second goal was to compare the performance of
both groups of children in speech perception tests and determine whether there was a

relationship between behavioural and RS EEG measures.
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Thus, this study addressed the following research questions:

Q) What are the patterns of RS power and lateralisation of oscillations at different
bands for each group of participants?

(i) Are there any differences between the TLD, DLD and adult groups in RS average
band power and lateralisation indices at different frequency bands?

(iii) In TLD/DLD children, is any of the EEG variables associated with performance

in speech perception tests?

Considering that the literature on RS oscillations in TLD at this age is scarce and almost
inexistent for children with DLD, our hypotheses were exploratory and aimed to replicate
previous findings even though they represented different populations or age groups.

The primary hypothesis was that RS measures and developmental language status at the
group level would be positively associated. Thus, we predicted that TLD children would
exhibit (i) greater frontal resting gamma power and (ii) stronger HF asymmetry than children
with DLD. Between adults and children, we expected (i) reduced gamma power because of
brain maturational changes (e.g., Uhlhaas et al. 2009; 2010), and (ii) no differences in the
strength of the asymmetry, as this should be already established by the age of our sample
(Weiss-Croft & Baldeweg, 2015; Thompson et al., 2016).

The secondary hypothesis was that speech perception skills would show differences
based on children's language status (TLD/DLD) but also an association with EEG
lateralisation measures, as reported by Thompson et al. (2016). Thus, we expected TLD
children to perform significantly better than the DLD group in behavioural speech perception
tests. These test scores would be associated with all children's RS gamma band power HF
lateralisation indices. Finally, although we had no a priori hypothesis for the theta, alpha and
beta bands, we expected the typical 1/f structure in all groups but with a smaller amplitude in

adults, because of the age-related power decrease (Saby & Marshall, 2012).
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4.2 Methods

4.2.1 Participants

All demographics and recruitment procedures were the same as those used in Chapter
3, except by fewer adult participants in the current study (n=18, Mage= 33.7 years, SD=4.9,

age range=24.8-44.9, 11 female).

4.2.2 Speech perception measures

Speech perception tests inform about the ability to extract meaningful speech cues
from complex acoustic environments. For this study, we considered two low-redundancy
monoaural subtests (ASHA, 1996); a speech in babble and a filtered speech test obtained
from the "Santiago Auditory Processing Battery"” (Fuente, 2006). Each subtest consists of
fifty Spanish monosyllabic words divided into two lists of 20 stimuli (one list for each ear)
plus two practice items delivered via headphones. All stimulus in this battery were balanced

in their linguistic frequency and age of acquisition for Chilean Spanish (Appendices 4.1- 4.2)

The speech-in-babble subtest consists in recognising words embedded in multi-talker
babble, both presented in the same ear at 40 dB SL with a non-adaptive, fixed SNR equal to
0. This test simulates real-world listening scenarios and assesses an individual's ability to
segregate target speech in the presence of competing talk. The filtered speech subtest consists
of recognising low-pass-filtered monosyllables, in this case at 1500 Hz presented at 50 dB
SL. These tests manipulate the acoustic characteristics of speech to assess the ability to

process spoken stimuli with degraded spectral or temporal cues.

For each speech perception subtest, children were asked to repeat what they heard

(target word) vocally. Each correct answer scored 5%, with an age-expected values over 60%
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in TLD children, according to Chilean preliminar studies (e.g. Balmaceda et al., 2008). The
order of the subtests and starting ear were randomly determined to avoid the potential effects
of the presentation order. Before the tests, children received a Chilean articulatory screening
test (TAR, Barrios et al., 1987, see Appendix 4.3), to check their phonemic repertoire and

avoid confounds when scoring the speech perception tests.

4.2.3 Procedures

Children sat still in a quiet room next to their parents or carers. RS EEG was recorded
continuously for three minutes with eyes open (EO) according to previous studies, while
children fixed their gaze in a black tablet (8.7 inch screen) placed in front of them

(distance=100 cm) at eye level. All the other procedures were the same as those in Chapter 3.

4.2.4 EEG preprocessing

EEG analysis was performed with Matlab 2016-2022a, EEG Lab (Delorme &
Makeig, 2004) and Fieldtrip (Oostenvald et al., 2011). The continuous EEG was
downsampled to 500 Hz and referenced to electrode Cz; to improve the data quality, allowing
us to retain more epochs than the average reference. A high-pass Butterworth IIR filter with a
cut-off of 1 Hz was applied to reduce slow drifts and improve the ICA decomposition. The
continuous EEG was visually inspected to remove bad channels and data portions
contaminated with large artifacts. ICA was performed to eliminate activity from eye blinks,
eye movements, and muscular artifacts, according to the criteria described in Chapter 2. The

removed channels were interpolated, and data was re-referenced to the average.
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The preprocessed EEG was segmented into fifty-seven 2-second epochs (1000
samples) with 50% overlap, windowed with a Hanning taper to attenuate the edges and to
avoid ridge artifacts. This epoch length was chosen to ensure that low-frequency activity
would not be affected, as discussed by Thompson et al. (2017). For each epoch, the frequency
spectrum was computed between 2-60 Hz in steps of 0.5 Hz, using a Fast Fourier Transform,

resulting in 116 linearly spaced frequencies with a 0.5 Hz frequency resolution.

To get a general impression of the data, we computed global power at each channel
for all participants and averaged the spectral energy between 2-60 Hz for each group. To
avoid distortions resulting from the filter cut-off and line noise artefacts, a global power
analysis was restricted to the 2-45 Hz range (92 frequencies) and calculated across the
following frontal and central channels: Fp1-2, AF3-4, F7-8, F3-4, FC1-2, FC5-6, and Fz.
Then, power was binned into the theta (3-7 Hz), alpha (8-12 Hz), beta (13-25 Hz) and gamma

(25-45 Hz) bands and averaged within each band (e.g., as in Giraud et al., 2007).

The lateralisation of oscillations was calculated as in previous studies (e.g., Thompson
et al., 2016), dividing the EEG channels into two sets: left (FP1, AF3, F3, F7, FC1, FC5, T7,
C3, CP1, CP5, P3, P7, PO3, O1), and right (FP2, AF4, F4, F8, FC2, FC6, C4, T8, CP2, CP6,
P4, P8, PO4, 02), excluding the midline electrodes. Spectral power was averaged within each
electrode set between 2-45 Hz, and a “laterality index” (LI) was calculated at each frequency
with the following formula: LI= Absolute Power (Right — Left)/Absolute Power (Right +
Left). A number less than zero indicated a bias of oscillations towards the left hemisphere,
and higher than zero towards the right hemisphere. For each participant, the laterality indices
were averaged into a low-frequency bin (LF, 3—-7 Hz) for the theta range and a high-

frequency bin (HF, 20-45 Hz), corresponding to high beta and low gamma oscillations.
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4.2.5 Study design

This study was observational and involved within and between-group analysis. The
independent variable was language status, operationalized as the “Group” category, with
three levels: TLD, DLD and Adults. The dependent variables were all continuous and
included EEG measures of: (i) average band power (in uV?2) at the theta, alpha, beta and
gamma bands, (ii) oscillatory lateralization (positive, negative, or neutral indices), and (iii)

the percentage of correct responses for the speech in noise and filtered speech tests.

4.2.6 Statistical Analysis

Statistical analyses were performed with Matlab 2016-2022a and SPSS 22-29. We
first checked the data distributions for all the dependent variables to determine whether each
variable showed normality and linearity, so the appropriate statistical methods were applied
to test our hypotheses. When the assumptions for linear methods were not met, non-
parametric tests were preferred over Bootstrapping or permutations methods, as the former

perform better with small sample sizes.

We conducted planned comparisons between the three groups for the different RS
measures to test our primary hypothesis. We expected inherent differences between
frequencies for the average band power because of the 1/f spectral structure. However, our
focus of interest was determining between-group differences at each frequency range. Thus,
between-group comparisons were conducted separately for each band or laterality measure
using one-way analysis of variance ANOVA or Kruskar-Wallis tests if the normality or
linearity assumptions were unmet (see Appendix 4.4). To avoid inflating the family-wise
error because of running multiple tests, we used Bonferroni-corrected alpha even though it
was not strictly necessary, as this study is exploratory.
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To test the secondary hypothesis, we compared the performance for each speech
perception test only between the groups of children, as these tests were not conducted in the
adult group due to practical reasons (permission to use the adult APD test battery was not
granted at the time of testing). Firstly, we examined the between-group differences in the test
scores using independent samples t-tests or Mann-Whitney’s U if parametric assumptions
were unmet. Secondly, we explored the association between speech perception and EEG
measures (gamma power and HF asymmetry) using Pearson’s correlation or Spearman’s rank
if parametric and linear assumptions were unmet. When corresponding, all alpha levels were

Bonferroni-corrected for multiple comparisons.

Importantly, it was not possible to control for age and non-verbal test scores because
these screening variables (reported in Chapter 3) did not meet the required assumptions to be
used as covariates. Their distribution was not normal in the children’s groups, and there was
no linearity between the covariates and any of the DVs (see Appendix 4.4). Thus, age and
non-verbal scores were not adequate covariates and would have invalidated the results of any

analysis, including them as such (e.g., Analysis of Covariance, ANCOVA).

Finally, effect sizes were measured with eta squared (#?) considering large effect >
0.14, medium effects > 0.06, small effects > 0.01 and Cohen’s d (large effect = 0.8; medium
effect= 0.5; small effect= 0.2). The strength of associations was measured with Pearson’s (r)
or Spearman’s rank (p) correlation coefficients, considering 0.01-.019=negligible, 0.20-
0.29=weak, 0.30-0.39=moderate, 0.40-0.69=strong and 0.70 > very strong relationship

between the variables (Field, 2013).

173



4.3 Results

4.3.1 Behavioural Measures
To determine behavioural differences in speech perception between the groups of
children, we assessed their speech in babble and filtered speech perception skills. Table 4.1

presents the descriptive statistics for speech perception tests in the TLD and DLD groups.

Table 4.1

Descriptive Statistics for Speech Perception Tests, in the TLD and DLD Groups

TLD DLD
Test M SD M SD
Speech in Babble 62.50 13.43 55.54 14.18
Filtered speech 61.56 11.33 46.79 11.16

Note. Missing values excluded. TLD n=8, DLD, n=11.

Data was normally distributed in both groups for the speech in babble test (Appendix
4.4).Thus we compared the groups using independent samples t-tests. The TLD group
showed a higher percentage of correct responses (M=62.5, SD=13.43) than the DLD group
(M=55.54, SD=14.18), but this difference was non-significant, t(20)=1.13, p=0.272, with a

medium effect size (Cohen’s d=0.5). Figure 4.1 displays the mean values of each group.

For the filtered speech test, Mann-Whitney’s U indicated that the median percent
correct score was significantly higher in the TLD (Mdn=16.13) than in the DLD group
(Mdn=8.86), U =19, z =-2.56, p = .01, using an exact sampling distribution for U (Dineen &

Blakesley, 1973). Figure 4.2 displays the mean ranks for the groups of children.
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Figure 4.1

Box Plot for Mean Percent Correct Responses for the Speech in Babble Test in Children
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Note. Blue box: TLD (n=8), green box: DLD (n=11). Ns= non-significant at the 0.05 level.

Figure 4.2

Pyramid Plot for Mean Ranks, Filtered Speech Percent Correct Responses in Children
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Note. Blue bars: TLD (n=8), green bars: DLD (n=11). Differences are significant at a= 0.05.
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4.3.2 Resting-state EEG Measures

4.3.2.1 Spectral power analysis

Global power

As a data check, our first step was to compute the power spectra for each channel,
averaged across participants for each group (Figure 4.3). In all groups, the spectrum for all
electrodes shows the typical 1/f gradual decrease in power and the expected alpha peaks at
approximately 10 Hz, as expected in a typical resting state EEG. In addition, one of the
electrodes in the TLD group presents a peak at approximately 48 Hz, which is consistent with

remaining electric line noise.

Figure 4.3

Global Power for all Channels on each Group, 2-60 Hz

TLD Group DLD Group Adult Group

Power (uV?)
Power (uV?)

Note. Left: TLD group (n=11); middle: DLD group (n=16); right: Adult group (n=18).

To avoid the effects of the line noise peak at 50 Hz and the filter cut-off at 1 Hz, we
reduced the range of frequencies for analysis to 2-45 Hz. Figure 4.4 presents the power scalp

distribution for all groups, indicating a posterior positivity in children, and frontal-central
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negativities in adults. The isolated centroparietal activation in the DLD group is likely to

represent a remaining artifact.

Figure 4.4

Scalp Distribution of Spectral Power between 2-45 Hz, all Groups
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group (middle, n=16) and adult group (right, n=18).

Next, spectral power was averaged across all electrodes for each group (Figure 4.5).
The magnitude seems smaller in the adult than the children’s groups, ranging from 0.3 to 1.3
uVv2, whereas in the TLD (0-10 pVv?), and the DLD group (0-10 pV?2) the responses were
similar, except in the alpha band. All groups show a peak in the alpha band (larger for the
TLD group), followed by an energy decrease. In the TLD/DLD groups, the alpha peak

appears slightly below 10 Hz, whereas in adults looks at 10 Hz.
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Figure 4.5

Global Power Spectrum Collapsed across all Electrodes
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Note. Global power spectrum (0-45 Hz) averaged across all electrodes for each group.

Average band power

The first analysis examined between—group differences in average power at each
frequency band, calculated across electrodes Fpl-2, AF3-4, F7-8, F3-4, FC1-2, FC5-6, and

Fz. Table 4.2 displays the descriptive statistics at all frequency bands for each group.

Table 4.2

Descriptive Statistics for Average Band Power (uV?) per Frequency Band

TLD DLD Adults
Hz M SD M SD M SD
Theta 3-7 2.85 1.02 3.36 .88 .37 A7
Alpha 8-12 1.73 .86 1.32 .57 41 44
Beta 13-25 .32 A1 .32 .10 A1 .04
Gamma 25-45 A1 .06 .09 .05 .04 A2

Note. Adults=18, TLD n=11, DLD n=16.
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Figure 4.6 illustrates the average band power for each group, evidencing two relevant
features; (i) adults show smaller power than children at all frequencies, and (ii) the ratio
between theta and alpha seems smaller in adults than in children. Next, we performed
planned between-group comparisons for average power at each frequency band (see

Appendix 4.4 for data normality and variance homogeneity tests).

Figure 4.6

Box Plots for Average Band Power at each Frequency for all Groups
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Note. Adults (left, n=18), TLD (centre, n=11), and DLD (right, n=16) group.
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Average theta band power and scalp distributions are displayed in Figure 4.7, showing
a posterior scalp distribution and stronger activation in children than adults. One-way
ANOVA indicated a significant effect of Group [F(2,44)=80.434, p<.001] with a large effect
size #°=.793. Multiple comparisons with Tamhane’s correction for unequal variances (see
Appendix 4.4) indicated significantly lower theta power in adults (M= .37, SD=.17) than in
the TLD (M= 2.85, SD=1.02) and the DLD (M=3.36, SD=.88) groups, at the p<.001 level,

but no significant differences between the TLD and DLD groups.

Figure 4.7

Boxplots and Scalp Maps for Average Theta Band Power (3-7 Hz), all Groups
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Note. Boxplots (top) and scalp distribution (bottom) for average theta power for the Adult
(left, n=18), TLD (center, n=11), and DLD (right, n=16) groups. Colourbar scale for adults is
smaller for visualization. (***) = significant at the p <.001 level.
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Figure 4.8 illustrates mean values and scalp topography for average alpha power, showing
broader central and occipital activation in children than in adults. Independent-samples
Kruskal-Wallis test (Bonferroni-corrected alpha=. 017) indicated significant between-groups
differences, H (2,45) = 23.59, p <.001. Pairwise comparisons indicated significantly smaller
alpha power in adults (mean rank=11.50) than in the TLD (mean rank=33.00) and DLD

(mean rank=29.0) group at p<.001, but no differences between the children groups.

Figure 4.8

Box Plots and Scalp Maps for Average Alpha Band Power (8-12 Hz), all Groups
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Note. Boxplots (top and scalp distribution (bottom) for average alpha power for the Adult
(left, n=18), TLD (centre, n=11), and DLD (right, n=16) group. Colourbar scale for adults is
smaller for visualization. (***) =significant at the p <.001 level.
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Beta band average power and scalp distribution are presented in Figure 4.9, showing

comparatively greater posterior activation in adults than children, although in a smaller power

scale. One-way ANOVA indicates between-group differences F(2,44)=32.65, p<.001, with a

large effect size #%=.61. Multiple comparisons with Tamhane’s correction for unequal

variances indicated significantly smaller beta power in adults (M= .11, SD=.044) than in the

TLD (M=.32, SD=.11) and the DLD group (M= .32, SD=10) at the p<.001 level, but with no

differences between the children’s groups.

Figure 4.9

Box Plots and Scalp Maps for Average Beta Band Power (13-25 Hz), all Groups
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Note. Boxplots (top) and scalp distribution (bottom) for average beta power for the Adult
(left, n=18), TLD (centre, n=11), and DLD (right, n=16) group. Colourbar scale for adults is

smaller for visualization. (***) is significant at the p <.001 level.
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Figure 4.10 displays the mean values and topography of gamma-band power, suggesting
frontal and posterior activation in adults and broadly distributed effects in children, with a
right parietal focus of activation in the TLD group. Independent samples Kruskal-Wallis test
indicates significant differences between the mean ranks for the adults (10.84), TLD (32.41)
and DLD (30.09) group, H (2, 45) =25.57, p <.001. Pairwise comparisons indicated
significantly smaller gamma power in adults than in the TLD and DLD group at the p<.001

level, but again, with no differences between children groups.

Figure 4.10

Box Plots and Scalp Maps for Average Gamma Band Power (30-45 Hz), all Groups
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Note. Boxplots (top) and scalp distribution (bottom) for average gamma power for the Adult
(left, n=18), TLD (centre, n=11), and DLD (right, n=16) group. Colourbar scale for adults is
smaller for visualization. (***) is significant at the p <.001 level.
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Band ratio analysis

To account for the apparent differences between the frequency band’s power ratios
between the groups, we compared theta/alpha and theta/beta power ratios using independent-
samples Kruskal-Wallis tests (see Appendix 4.4). As this is an exploratory analysis, no alpha
correction was used. Figures 4.11 and 4.12 display the average rank of each group for
theta/alpha and theta/beta power ratios, respectively.

For the theta/alpha ratio, we detected significant differences between the mean ranks for
the Adult (17.5), TLD (19.5) and DLD (31.63) groups, H (2, 45) =10.86, p =.004. Pairwise
comparisons indicated a significantly smaller theta/alpha power ratio in adults (M=1.63,
SD=.97) than in the DLD group (M=2.82, SD=.96), and in TLD (M=1.81, SD=.55) than in
DLD children, with no differences between the adult and TLD group. These results indicate

that those groups with better language skills presented significant smaller theta/alpha ratio.

Figure 4.11

Box Plots for Theta/Alpha Ratio Mean Ranks, all Groups
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Note. Boxplots for theta/alpha mean ranks for the Adult (left, n=18), TLD (centre, n=11), and
DLD (right, n=16) group. (**) is significant at the p <.01 level.
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For the theta/beta power ratio, there were significant between-groups differences in the
mean ranks for adults (9.67), TLD (28.73) and DLD (34.06) children, H (2, 45) = 31.99, p <
001. Pairwise comparisons indicated a significantly smaller theta/alpha power ratio in adults
(M=1.63, SD=.97) than in both groups of children at the p<.001 level, but no differences
between the TLD (M=2.82, SD=.96) and the DLD group (M=1.81, SD=.55). These results

indicate that smaller theta/beta ratio was related to the participant’s age, but not to their

language skills.

Figure 4.12

Box Plots for Theta/Beta Ratio Mean Ranks, all Groups
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Note. Boxplots for theta/beta mean ranks for the Adult (left, n=18), TLD (centre, n=11), and

DLD (right, n=16) group. (***) is significant at the p <.001 level.
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4.3.2.2 Hemispheric lateralization

Average laterality indices per group

To determine any differences in the lateralisation of oscillations, we first computed the
laterality indices at each frequency for all participants. Figure 4.13 illustrates the
lateralisation indices at each frequency in each group. In the TLD group (plot a), oscillations
are left-lateralised from approximately 10 to 28 Hz and over 32 Hz, with no lateralisation
between 2 and 8 Hz. In the DLD group (plot b), oscillations are right-lateralised from
approximately 12 Hz and higher, with no lateralisation between 2-12 Hz. In the Adult group
(plot c), oscillations below 25 Hz are right-lateralised and left-lateralised over 25 Hz, but the
magnitude of this lateralisation seems smaller than in the TLD group. This indicates that

lateralisation patterns are similar between adults and TLD children but not DLD children.

Asymmetry of oscillations

Each participant's laterality indices were averaged into a low-frequency bin (LF, 3-7
Hz) corresponding to the theta range and a high-frequency bin (HF, 20-45 Hz) corresponding
to high beta and low gamma oscillations. Table 4.3 presents the descriptive statistics for
laterality indices for each group. Mean values for LF and HF oscillations appear close to zero

in all groups, meaning there is no lateralization.

Table 4.3

Descriptive Statistics for Laterality Indices

TLD DLD Adults
Hz M SD M SD M SD
LF 3-7 .01 .07 -.02 .06 .03 .06
HF 20-45 .001 .06 .013 A1 -.002 .09

Note: TLD, n=11; DLD, n=16; Adults, n=18.
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Figure 4.13

HF and LF Lateralisation Indices for all Groups

(a) Laterality Index - AdCH
45
40
35
%
&2
fa
15
10
5
026 02 015 '01 005 005 01 015
Lmaﬂxtylndox
(b)
Laterality Index - TLD
45
ol
35
T
g2
E
15
b | Right
5
026 02 015 01 005 0 005 01 015
Laterality Index
(c) Laterality Index - DLD
.
0}
35+
Enf
£l
ia
15}
10
s}

025 02 015 01 005

005 01 015
uneramy Index

Note. (a) Adult group, (b) TLD group, (c) DLD group.
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After confirming a normal distribution for LF and HF oscillations in both groups
(Appendix 4.4), within-group analyses were conducted using one-sample t-tests (one-sided)
to determine if LF and HF laterality indices differed significantly from zero A significant
difference from zero would indicate a hemispheric asymmetry for a given frequency range.
We also compared LF and HF lateralization indices within each group using paired sample t-
tests to determine any differences in the degree of lateralization between both ranges. For

each analysis, alpha was adjusted to 0.17 to correct for multiple comparisons (0.05/3).

Table 4.4 displays the results of the within-group analysis for each group. Results
showed that neither the LF (3-7 Hz) nor the HF (20-45 Hz) laterality indices differed
significantly from zero. Likewise, the differences in lateralization between LF and HF
oscillations were non-significant for all groups. These findings indicate no asymmetry was

detected in any group, with a small effect size in all the tests (below 0.5).

Table 4.4

Within-Subjects Analysis for Laterality/Asymmetry Measures

Group  Asymmetry t-test type df t p Cohen’s d
measure (one sided)

TLD LF vs zero One sample 10 501 314 151
HF vs zero One sample 10 .048 481 .015
LF vs HF Paired sample 10 491 317 .148

DLD LF vs zero One sample 15 -1.17 .130 -.292
HF vs zero One sample 15 .459 .326 115
LF vs HF Paired sample 15 -1.233 118 -.308

Adults  LF vs zero One sample 17 1.84 .04 43
HF vs zero One sample 17 -.09 46 .09
LF vs HF Paired sample 17 1.15 .133 A1

Note. LF: Low-frequency oscillations; HF: High-frequency oscillations. TLD, n=11; DLD,
n=16; Adults n=18. Bonferroni- corrected alpha= 0.017. All tests non-significant (ns).
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Next, we compared the lateralisation indices for LF (Figure 4.14) and HF oscillations
(Figure 4.15) between the TLD, DLD and Adult groups. Separate one-way ANOVA with
Bonferroni-corrected alpha (0.17) indicated no between-group differences for LF
[F(2,44)=2.01, p=.147, n2=.087] or HF [F(2,44)=.122, p=.885, #2=.006] with small effect

sizes in both cases.

Figure 4.14

Box Plots s for LF Lateralisation Indices, all Groups
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Note. LF lateralisation mean values for the Adult (orange, n=18), TLD (blue, n=11), and

DLD (green, n=16) group. Results are non-significant at alpha= 0.17.
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Figure 4.15

Box Plots for HF Lateralisation Indices, all Groups
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Note. HF lateralisation mean values for the Adult (orange, n=18), TLD (blue, n=11), and
DLD (green, n=16) group. Results are non-significant at alpha= 0.17.

4.3.3 EEG versus Behavioural Measures

To test the secondary hypothesis, we examined if there was an association between
children’s performance in speech perception tests and RS measures (gamma-band power and
HF lateralization indices). As we had previously compared behavioural results between
groups, this time we pooled all children together (n=22), addressing the possibility of
equivalent cognitive mechanisms regardless of the children’s language status. Planned
correlation analysis comprised gamma-band power and HF oscillatory lateralisation versus
speech perception tests and was Bonferroni-corrected for multiple comparisons (corrected

alpha= 0.05/4=.013). In addition, a complementary correlation analysis was conducted
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between theta-band power ratio and speech perception measures, although without correcting

for multiple comparisons, as this was an exploratory analysis.

4.3.3.1 Gamma power versus speech tests

For the speech in noise test, Spearman’s analysis indicated no significant correlation
(r(20)=.145 p =.519) between the percentage of correct answers and average gamma-band
power (Figure 4.16). Similarly, there was no significant correlation between the percentage of
correct answers for the filtered speech test and the average gamma power at frontal-central

electrodes (r = -.086, p = .703), as can be observed in the scatter plot in Figure 4.17.

Figure 4.16

A Scatter Plot Illustrating Speech in Babble Performance versus Gamma Band Power
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Note. Blue dots: TLD group (n=8), green dots: DLD group (n=16). Correlation is non-

significant at the .013 level.
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Figure 4.17

A Scatter Plot Illustrating Filtered Speech Performance versus Gamma Band Power
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Note. Blue dots: TLD group (n=8), green dots: DLD group (n=16). Correlation is non-

significant at the .013 level.

4.3.3.2 Asymmetry vs Behavioural measures

Finally, we assessed the relationship between the lateralisation of cortical oscillatory
activity at high frequencies and speech perception performance via correlation analysis on the

pool of all children (n=22).

Pearson’s analysis showed no significant correlation (r=.039 p =.863) between the
speech in babble test and the laterality indices for high frequency oscillations, illustrated in
Figure 4.18. For the filtered speech test, Spearman’s test indicates no significant correlation (r
(20) =-.119, p =.598) between the percentage of correct answers in the filtered speech test
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and the laterality indices for high frequency oscillations. The relationship between both

variables is displayed in Figure 4.19.

Figure 4.18

A Scatter Plot Illustrating Speech in Babble Performance versus HF Lateralisation Indices
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Note. Blue dots: TLD group (n=8), green dots: DLD group (n=16). Correlation is non-

significant at the .013 level.
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Figure 4.19

A Scatter Plot Illustrating Filtered Speech Performance versus HF Lateralisation Indices

Group
90.00 TLD

DLD
80.00
70.00

50.00

50.00

Filtered Speech (% correct)

40.00

30.00
-.30 -.20 -10 .00 A0 20

HF Lateralisation Index

Note. Blue dots: TLD group (n=8), green dots: DLD group (n=16). Correlation is non-

significant at the .013 level.

4.3.3.3 Theta/Alpha ratio versus Behavioural Measures

To further explore the findings about theta/alpha ratio differences between all groups,
we investigated the association between this EEG measure and the speech in babble (Figure

4.20) and filtered speech (Figure 4.21) test results using Spearman’s correlation analysis.

For the speech in babble test, results indicated no correlation with the theta/alpha
power ratio values, (r(20)=-.00, p=.996, 95% CI [-.433 .432]). On the contrary, there was a
significant, strong negative correlation between filtered speech test scores and theta/alpha
ratio, (r (20) = -.49, p=.022, Cl 95% [-.759 -.068]), indicating that detection of filtered speech

is higher when the ratio between theta and alpha power is smaller.
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Figure 4.20

A Scatter Plot Illustrating Speech in Babble Performance versus Theta/Alpha Ratio
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Note. Blue: TLD group (n=8), green: DLD group (n=16). Non-significant at a= 0.05.

Figure 4.21

A Scatter Plot Illustrating Filtered Speech Performance versus Theta/Alpha Ratio
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Note. Blue: TLD group (n=8), green: DLD group (n=16). (*) Significant at o= 0.05.
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4.4 Discussion

4.4.1 Summary of findings

The aims of this study were twofold: (i) to examine differences in RS EEG measures
in children with TLD, DLD, and adults, and (ii) to investigate children's performance in
speech perception tests and their association with HF oscillations. As expected, we confirmed
that adults showed significantly lower band average power than children for all the frequency
ranges. However, the results do not support our primary hypothesis, as none of the average
power or lateralisation measures differed between children with DLD and their TLD peers.
Moreover, there was no evidence of significant LF or HF asymmetry, which does not support

the idea of RS oscillation priming.

Our secondary hypothesis was only partially supported, as children with TLD showed
significantly better speech perception performance. However, this was only for one of the
two tests, and, contrary to what we expected from the previous literature, there was no
correlation between behavioural and high-frequency EEG measures (gamma power and HF
lateralisation). As RS measures were similar in the TLD and DLD groups, the differences in
band power between children and adults likely reflect brain maturation (age) and not an

influence of language typical/atypical status.

Finally, there were significant differences in the theta-alpha ratio between all our
groups (adults<TLD<DLD) and an inverse correlation between the theta-alpha ratio and
filtered speech scores in children, suggesting that these measures could be more sensitive to
pick-up differences between the TLD and DLD group. However, such differences may not
necessarily originate in between-group language differences but in other factors, for example,

non-verbal skills.
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Multiple previous studies have described the difference we detected between children
and adults in spectral energy. We observed similar patterns in theta, alpha, beta and gamma
bands as those described by Perone et al. (2018), Tierney et al. (2013), and Yordanova and
Kolev (2008). However, we could not confirm the increase in gamma power reported by
Takano and Ogawa (1998). In addition, a visual inspection of our data’s global spectrum
indicates that the alpha peak in children occurs at slightly lower frequencies (~8 Hz) than in
adults (10 Hz), which aligns with previous studies such as Kwok et al. (2019). Thus, the
patterns for RS global and average band power observed in our groups are consistent with the
developmental trajectories described in the previous literature, showing an evident flattening

of spectral power between early childhood and adulthood.

However, our study could not replicate previous findings about positive associations
between frontal resting gamma power and language development, as Benasich et al. (2008)
and Gou et al. (2011) reported in infants aged 6 to 36 months. We expected higher frontal
gamma power in the TLD group associated with their better language skills; however, this
was refuted by the absence of power differences between our children groups and lack of
correlation between EEG and speech perception measures. This result could be explained by
the fact that participants in previous studies were younger than in ours and their age range
was considerably broader. Thus, such differences may have disappeared by the age of our
samples (early childhood). A feasible way to further examine this point would be to re-test
our children's groups in the future and see whether the gamma power recorded in this study
predicts their later language skills. Another possible explanation is that our study could not
detect the effects of language skills on oscillatory lateralisation, for example, because of the
high variability of linguistic profiles between children and small effect size. In the future, we

could replicate this experiment in a more homogeneous sample of children with DLD.
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A key aspect is that we found no evidence of significant hemispheric RS lateralisation
(asymmetry) for the frequency ranges related to phonemic (HF) or syllabic processing (LF) in
any group, meaning that our findings do not support the AST hypothesis. For the LF range,
we replicated Thompson et al.'s (2016) findings of centrally distributed LF oscillations with
similar mean group indices -0.002) and effect sizes. However, we did not observe the HF
leftward bias reported in their study, which we would have expected, at least in the adult
group, according to the AST hypothesis. A possible alternative explanation is that in our
study, the effect sizes for lateralisation (less than d=0.5) are smaller than in Thompson's (d=
1.14), which could have prevented us from detecting potential asymmetry in our groups.
Indeed, visual inspection of the lateralisation plots in Figure 4.13 suggests language-related

differences in the laterality indices between groups, although they were non-significant.

Importantly, EEG methodological aspects must be considered when interpreting the
laterality results. For example, to determine asymmetry, performing point-by-point t-tests or
permutation tests instead of conventional t-tests could improve the sensitivity to detect
clusters of significantly lateralised oscillations. Secondly, to avoid an electric line noise peak
in the TLD group, we defined the HF range between 25-45 Hz, whereas Benasich et al.
(2008), Gou et al. (2011) and Thompson et al. (2017) used 30-51 Hz. This shift in HF
boundaries could have affected our results by introducing more high-beta and less high-
gamma band activity in our HF range. In addition, it is worth noting that lateralisation indices
are a power-based measure; thus, if spectral power shows age-related reduction, it may not be
appropriate to directly compare adult indices to children's ones without some scaling or

normalisation procedure.

An unexpected finding of this study was the significant difference in the theta/alpha
and theta/beta power band ratios between groups. Theta/alpha band ratios were smaller in
adults than children and in TLD than in DLD children. We also observed that theta/alpha
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ratios were inversely correlated with filtered speech test scores in children. This supports
previous findings by Kwok et al. (2019) of an inverse correlation between alpha power and
language skills in children at similar ages. However, although the differences in theta/alpha
ratio that were consistent with our group's language status, we should not consider them a
confirmation of the RS-language skills relationship without controlling for the effect of non-
verbal abilities. This also applies to the differences we observed in theta/beta ratio, which was
significantly smaller in adults than children but with no difference between the TLD and
DLD groups. Although our results suggest that the theta/beta ratio is sensitive to age

differences but not language status, it is essential to interpret these findings cautiously.

That being said, band ratio results in this study indicate not only a developmental
decrease in global power but also a relative decrease in theta band power and an increase in
alpha and beta power. However, the functional significance of EEG band power ratios has not
been fully established yet. On the one hand, there are studies considering them a reliable
measure of cognitive performance or even as clinical biomarkers of cognitive dysfunction in
different types of neuropsychiatric disorders such as dementia, Attention Deficit
Hyperactivity Disorder (ADHD) and Parkinson's Disease (e.g. Azami et al., 2023; Donoghue
et al., 2020; Picken et al., 2019; Schmidt et al., 2013). On the other hand, some studies
indicate that band ratio measures reflect periodic and aperiodic spectral activity, potentially

conflating power measures and leading to incorrect interpretations (Donoghue et al., 2020).

In RS EEG, greater alpha and beta power has been associated with increased arousal
and top-down attentional control (Klimesch, 2012), which in our study could indicate greater
alertness and wakefulness in adults than children. Although the functional interpretation of
RS theta power is less clear, recent studies suggest that it reflects cognitive control processes

and may increase during excessive monitoring, shifting or updating operations (Clements et
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al., 2021). Another possible speculation is that age-related reduction in theta power could
reflect brain maturational changes and also increases in network synchronization, resulting in
more efficient local and long-range theta connectivity through more consistent phases rather
than amplitude signalling.

More recently, the beta/theta ratio has been proposed as a marker of cognitive
processing capacity, which could be altered in individuals with cognitive disorders. For
example, a study by Picken et al. (2019) in 41 adults with ADHD found an elevated
theta/beta ratio in this clinical group. Similarly, a study by Tramell et al. (2017) showed that
theta/alpha ratio was related to cognitive abilities modulated by age in both young (below 30
years) and older (over 70 years) neurotypical adults (n=16 and n=20, respectively). However,
the question about the origin of band ratio differences remains open and needs to be
addressed in future studies to determine the functional significance and define their
developmental trajectories.

For our secondary hypothesis, we partially confirmed previous findings, as children
with better language skills (TLD) outperformed those with DLD only for the Filtered Speech
and not for the Speech-in-Babble test. In addition, we did not find any evidence of an
association between speech perception performance and RS EEG measures, except for a
negative correlation between theta/alpha ratio and filtered speech scores. This contradicts
findings by Benasich et al. (2008), Gou et al. (2011) and Thompson et al. (2017), indicating
that the vast majority of our RS measures of cortical activity do not reflect our participant's

language status (adult-like, TLD or DLD), or the children's speech perception skills.

Regarding the behavioural results, better performance in speech perception tests in
children with TLD than DLD group is consistent with previous studies (e.g. Goswami et al.,
2015). However, we did not observe this difference for the speech in the noise test, although

it has been previously reported (e.g. Ziegler et al., 2011). These results could not be explained
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by differences between the group's hearing levels as they were equal. However, they may
have to do with the difference in phonological processing skills between the TLD and DLD
groups (see screening and PECFO results in Chapter 3) or more general cognitive skills, as
arousal or attention levels. Importantly, these tests evaluate different aspects of speech
processing; speech in babble assesses the ability to separate a target from the background,
and filtered speech requires the brain to complete a degraded signal. Speech-processing skills
could develop differently in children with TLD and DLD, explaining the difference in
performance and the negative correlation with theta/alpha band power ratio. Future research
could explore the association between speech perception skills and RS measures in young

children with and without DLD.

4.4.2 Strengths, limitations, and future research

This study's main contribution is that it quantifies RS EEG activity during early
childhood, characterizing the RS oscillatory patterns in young children with typical and
atypical language development. So far, we are unaware of any research examining spectral
power and lateralization measures in these groups and investigating their relationship with
speech perception measures. Pursuing this line of research is especially important in language
neurodevelopmental research, as by understanding and monitoring children's RS EEG
activity, researchers and clinicians may be able to identify those who are at risk for
neurodevelopmental disorders (e.g. DLD) and provide early intervention to support them.

However, there are several limitations to the present study. As discussed in Chapter 3,
the first limitation is the small sample size, which was further reduced as some children did
not attend the third study session (behavioural tests). The final sample size of 8 subjects in
the TLD group and 14 in the DLD groups limits the strengths of our findings, in particular
those about behavioural tests. In the future, more studies must confirm these results in a

larger, more representative sample of children.
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A second limitation is that due to the particular characteristics of our data, we could
not perform some statistical analysis that could have been more informative than the current
ones. We were not able to use the participant's age and non-verbal scores as covariates
because these variables did not meet the required assumptions (e.g. normality and linearity
between the covariate and DV, for an ANCOVA) even after attempting to transform them
(e.g. RMS, log or exponentially). Although linear mixed-effects models would have been a
good option to deal with missing data in the speech perception tests, our data did not meet the
required assumptions for these models, which could have invalidated their results (Heise et
al., 2022). Importantly, this indicates that linear methods may not always be optimal for
detecting developmental patterns in RS EEG data, as pointed out by Bosl et al. (2011). They
investigated the non-linear complexity of the RS EEG signal using modified entropy at
multiple scales (MMSE), a measure that has shown age-related increases. Using machine-
learning algorithms, they were able to classify infants at risk of ASD (n=46) and controls
(n=33) at different ages with high accuracy based on this measure. Thus, future research

could surpass this limitation by implementing non-parametric, non-linear analysis methods.

In terms of the EEG methods, a third limitation is that the band power and laterality
measures used in this study are both based on the amplitude of the spectral energy, which, as
discussed in Chapter 1, is affected by individual variation in EEG, neural noise, small
samples, and small effect sizes, especially when using group averages. Thus, future research
could investigate other RS EEG measures less reliant on spectral power. For example,
functional connectivity analysis could inform about the degree of synchronization of neural
populations at rest. Notably, there is growing research interest in the role of aperiodic
(arrhythmic) electrophysiological activity, which is abundant in children's EEG measures and
reflects excitatory and inhibitory balance in cortical networks (see Ostlund et al., 2020

toolbox and tutorial). Including aperiodic measures in the parameterization of the neural
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power spectra (e.g. aperiodic offsets and exponents) and functional connectivity measures
could contribute to more accurate descriptions of cognitive and language development

(Donoghue et al., 2020).

Finally, another limitation is that the behavioural tests in this study may not have
reflected children's speech perception performance in their daily life. As with many clinical
measures, the APD battery tests consist only of isolated words, so it could be argued that they
primarily reflect auditory than speech perception skills, as at the single word level, speech
processing cannot be modulated by linguistic processing or language skills (e.g. as predictive
processing or use of linguistic context). In addition, we cannot rule out that fatigue, boredom
or inattention may have hindered children's performance in the speech perception tests, as
usually happens when testing preschoolers. Future studies could use more ecological

behavioural measures, such as the perception of sentences or continuous speech.

4.4.3 Conclusions

Together these findings confirm that EEG resting state activity is stronger in children
than adults, but do not support the idea of differences in spectral power between the TLD and
DLD group. This is consistent with our findings from Chapter 3, that top-down language
effects emerge at some point in childhood although later than the age range we studied.
Importantly, the lack of significant oscillatory asymmetry in all our groups, and correlation
between speech perception measures and gamma oscillatory activity does not replicate
previous findings and does not provide any evidence to support previous theories of atypical
brain lateralisation in DLD, such as the AST hypothesis. An unexpected result, though was
that the ratio between theta and alpha band power was significantly different between all
groups and inversely correlated to filtered speech performance, suggesting that future studies

could further explore the functional significance of this ratio.
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Chapter 5. Neural tracking of continuous speech in young children with

typical and atypical language development

5.1 Introduction

In daily life, speech perception is a complex task that frequently occurs in challenging
listening conditions. Although young children can understand continuous speech fairly well,
the mechanisms and neural circuits that support adult-like speech perception are still to be
refined over time through neuromaturation, experience and language development. In adults,
multiple studies have shown that cortical tracking of acoustic and linguistic speech features is
a crucial brain mechanism for natural speech processing. However, the developmental
trajectories of cortical speech tracking and its relationship with language acquisition remain

unknown.

Although plenty of studies have investigated speech perception development at the
brain level, a persistent criticism is that highly controlled paradigms (e.g., ERPs) lack
ecological validity, as they do not reflect the full complexity of speech perception in natural
settings (Hamilton & Huth, 2020). Thus, there has been growing interest in investigating
neural speech tracking in children, its relationship with language skills and its potential role

in neurodevelopmental disorders, although no study has yet focused on DLD.

This chapter investigates the perception of continuous speech in young children with
TLD and DLD, focusing on characterising their patterns of neural tracking of acoustic and
lexical speech features. This study aims to shed light on the neural processes involved in
continuous speech perception and their relationship with language skills during early
childhood.
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5.1.1 Neural tracking of speech

Cortical encoding of speech features

One crucial aspect of speech processing is extracting relevant information from the
continuous speech stream to be encoded as neural activity. Cortical tracking® of speech refers
to the brain's ability to align its neural activity with different features in the speech signal
(Brodbeck & Simon, 2020), allowing the brain to compute the speech information at multiple
timescales and levels of representation. In the last two decades, cortical speech tracking has
emerged as an essential mechanism to explain how the brain encodes and processes

continuous speech and has been actively investigated in adults.

At the acoustic level, an important source of information for the brain is the temporal
envelope of speech, which represents slow amplitude modulations of the speech signal over
time. During speech perception, the temporal modulations convey important information
about speech cues like phonemes (manner of articulation, voicing or vowel identity),
syllables, and prosodic contours (Rosen, 1992). In adults, extensive research has shown that
neural responses in the auditory cortex align with the amplitude envelope of continuous
speech (Ding & Simon, 2014). When represented in the frequency domain, multiple studies
report phase synchronisation between cortical responses (EEG) and the speech envelope at
low frequencies (<10 Hz) but also in the gamma band (for a review, see Alexandrou et al.,
2018). This synchronisation is usually referred to in the literature as ‘coherence’, a measure of
cross-correlation between spectral densities. However, neural tracking is not restricted to
low-level acoustics (Gillis et al., 2021) but extends to higher-order linguistic representations

(Kbésem & Van Wassenhove, 2017).

5 This study will consider speech 'tracking' as time-synchronised and “'entrainment' as phase-synchronised
activity (for a review, see Gillis et al., 2022).
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Cortical tracking of abstract, linguistic features present in the continuous speech
signal has been demonstrated in several experiments, for example, for phonemic categories,
lexical information, syntax and meaning (see Gillis et al., 2022, for a review), reflecting an
internal, hierarchical organisation in the brain. It also implies that neural coupling with
speech features occurs beyond primary cortical areas (e.g., Al), suggesting that linguistic
neural tracking could be used as an objective measure of higher-order speech comprehension.
For example, a MEG study by Ding et al. (2016) in 47 adults demonstrated that cortical
tracking of abstract linguistic structures (words, phrases, and sentences) could be dissociated
from acoustic processing, reflecting internal language knowledge (Ding et al., 2016).
Similarly, an EEG study in 29 adults by Gillis et al. (2021) demonstrated that information
about word frequency and the amount of phoneme/word surprise in the speech input were

tracked beyond the speech acoustic properties.

Other studies focused on semantic processing have investigated how the brain tracks
the amount of novelty in the speech input, for example, measuring a word's level of
predictability according to their context. Several studies have reported that words with greater
surprisal or dissimilarity elicit negative deflections like an ERP N400 response (Broderick et
al., 2018). In addition, there is also evidence of neural tracking of the speech syntactic
structure (Niesen et al., 2023). Overall, previous findings support the idea that speech

tracking reflects a processing hierarchy (Heilbron et al., 2022).

Importantly, multiple studies demonstrate that speech tracking is driven by input
properties and strongly modulated by top-down mechanisms such as attention and prior
language knowledge (Di Liberto et al., 2015; Reetzke et al., 2021). For example, there is
robust evidence of an enhancement of neural tracking for attended than non-attended speech
(Alexandrou et al., 2018), for speech in a native than in non-native languages (Pena &

Melloni, 2012), and when the language content is known to the listener, for example by
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semantic priming of previously unintelligible sentences (e,g, Baltzell et al., 2017),

suggesting that bottom-up/top-down interactions consistently modulate speech tracking.

Measures of speech cortical tracking

Previous studies have used different measures of speech cortical tracking, making it
possible to extract EEG components related to different speech features (Crosse & Lalor,
2016). A straightforward method is to quantify direct cross-correlations between the speech
envelope and the EEG responses at different time lags, like on ERP analysis (see Abrahams
et al., 2009; Rios-Lopez et al., 2020). This type of analysis can be performed in the frequency
domain, for example, converting both signals into spectral representations and determining
the degree of coherence (phase synchrony) at a given oscillatory band. Despite this approach
is computationally simple, it is suboptimal because it results in significant noise being
introduced by the high correlation between speech and acoustic features (Crosse et al., 2016).

More recently, linear modelling methods have sorted out this issue using regularised
regression to predict the relationship between cortical responses and speech stimuli while
controlling for correlated features. These methods estimate Temporal Response Functions
(TRFs) that describe how the response variable (e.g., the neural component in the EEG)
depends linearly on the explanatory variables over time at a given time lag (Crosse et al.,
2015). Univariate TRFs are used in encoding (or ‘forward") models to independently predict a
neural response from a presented speech stimulus at each EEG channel. In contrast,
multivariate TRFs are used in decoding (or 'backward') models to reconstruct the speech
stimuli using information from all the EEG channels. In both cases, the predictive accuracy
between the actual and predicted data is assessed by the degree of correlation between
signals, for example, using Pearson's r coefficient, with greater correlation values

representing more robust neural tracking (Crosse et al., 2015; 2021).
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Importantly, encoding and decoding models have different advantages and
disadvantages and can complement each other to address different research questions. As
Jessen et al. (2021) pointed out, encoding models are easy to interpret regarding neural
activity because the TRF weights represent brain activation patterns calculated independently
for each channel. However, they require a priori selection of the channels for analysis. On the
contrary, decoding models combine the cortical responses at different EEG channels for
reconstructing the speech stimulus, weighting them according to how much information they
provide, which has two advantages: (i) it improves the signal-to-noise ratio by cancelling
noise out, and (ii) it makes unnecessary to select the EEG channels beforehand. This makes
backward models more sensitive than forward ones, thus more suitable for use in populations
with noisy data, such as children or clinical groups. However, decoding models cannot be
directly interpreted or related to scalp patterns because their weights represent the filters used
to extract the information from the EEG and not necessarily each channel's activation (Gillis
et al. (2022). To sort this issue, Haufe et al. (2014) proposed a method to forward-transform

backward models, allowing their neurophysiological interpretation.

Notably, forward and backward linear modelling are well-validated methods to
investigate neural tracking of the speech envelope and different linguistic features, either as
continuous or categorical inputs (Broderick & Simon, 2020). For example, Sassenhagen
(2019) describes how to model EEG responses to linguistic features in continuous speech
(e.g., phonemes, word type, or lexical frequency) by coding them into a multivariate design
matrix and using them as regressors for the EEG. Other authors recommend backward
models for continuous speech features (e.g., amplitude envelope or spectrogram) and forward
models for discrete ones (e.g., phonemic or lexical information) because decoding these
features may require non-linear data transformations (Crosse et al., 2021; Gillis et al., 2022).

Then, it is possible to compare the reconstruction accuracy values for different speech
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features to determine how well each type of linguistic information uniquely reflects in the

EEG (Di Liberto et al., 2015).

Moreover, speech acoustic and linguistic features can be combined in mTRFs models
to represent the EEG content more accurately, considering that EEG signal results from
overlapping neural responses to different speech features that occur at different latencies. For
example, Di Liberto et al. (2015) demonstrated that mMTRF models perform better when
including the speech acoustic envelope and linguistic information (phonetic features) are

combined in the same encoding model.

5.1.2 Functional Implications of Speech Tracking

So far, there is agreement about the key role of speech cortical tracking for spoken
language comprehension. However, previous studies have yielded mixed results about the
functional role of neural tracking. Nevertheless, although there is no evidence of a 1:1
correspondence between cortical tracking and speech comprehension, some brain-speech

associations have been established, mainly for envelope entrainment.

Firstly, from the perspective of the speaker's physical features, cortical tracking of the
envelope is critical for speech intelligibility. Previous studies indicate that manipulations of
the speech envelope severely affect phoneme and sentence recognition, and, on the contrary,
some findings suggest that when the envelope is preserved, frequency degradations do not
deteriorate too much the speech intelligibility (Kubanek et al., 2013). This could be explained
because the speech envelope contains energy changes important for speech intelligibility, for
example, informing about phonemic and syllabic transitions. However, it does not imply that
envelope tracking is sufficient for successful speech comprehension. Indeed, there is
evidence that the spectro-temporal fine structure is also necessary for speech comprehension
(Ding & S, 2014).
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Secondly, a substantial amount of research indicates a relationship between speech
perception performance and envelope neural tracking, although the interpretation of this link
is not straightforward. Some evidence indicates that individuals who show stronger envelope
tracking (e.g., a greater correlation between the EEG and speech signals) perform better in
speech perception tasks, especially under challenging listening conditions (Ding & Simon,
2014). On the other hand, older and hearing-impaired people exhibit enhanced envelope
tracking, despite speech perception deficits common in these populations, meaning that an
over-represented envelope may accompany poor speech comprehension (Brodbeck & Simon,
2020; Palana et al., 2022). These mixed results make it hard to determine if more robust
entrainment facilitates speech comprehension or whether it indexes greater listening effort or

attention (Song & lverson, 2018).

Finally, the degree of cortical entrainment is determined by the task demands and
experimental contrasts being studied. As summarised by Alexandrou's review (2018),
research in this field has used a variety of paradigms to study speech neural tracking, with
evidence of greater envelope tracking for intelligible than for unintelligible sentences,
normal-rate than time-compressed speech, for attended than unattended speech or when
perceiving clear speech versus speech in noise. Other studies indicate that envelope tracking
is robust to background noise, at least until the noise doubles the signal (Ding & Simon,
2013). This indicates that the degree of neural tracking depends on the listening conditions,
for example, if they involve active or passively listening or simultaneous tasks. Nevertheless,
it is possible that semantic processing still happens under unattended listening to speech

(Brodbeck et al., 2018).

In sum, although there is agreement about the importance of speech neural tracking
for speech comprehension, there is less clarity about its functional significance; so far, it

seems to be related to the stimulus intelligibility but also to attention and listening effort,
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individual and task characteristics, most likely involving a mixture of acoustic, cognitive, and

linguistic factors.

5.1.3 Age-related differences in cortical speech tracking

Across developmental stages, there are age-related changes in how auditory and
language information is weighted in the brain for speech processing, resulting from the
neuromaturation of cognitive and language networks and the accumulation of language
knowledge. From infancy to adolescence, perceptual reliance on acoustic cues decreases,
whereas linguistic knowledge increases as children become more proficient language users
(Skeide & Frederici, 2016). This means that sensitivity to acoustic and linguistic information
is different between infants, children, and adults. Consequently, it will likely involve
developmental changes in cortical tracking of speech features at different language

acquisition stages.

Importantly, it has been established that acoustically driven entrainment is already
present at early stages, although its strength seems to change across age groups and frequency
bands. For example, early findings showed that theta synchronisation between the EEG and
slow/fast amplitude modulations in non-speech stimuli was present in newborns (Telkemeyer
et al., 2009). For speech, studies using encoding models indicate robust low-frequency (1-8
Hz) envelope tracking is present in 7-months infants (Jessen et al., 2019; Kalashnikova et al.,
2018). A longitudinal study in young children by Rios-Lopez et al. (2020) demonstrated that
envelope tracking was present at four years old but only for the delta range. Notably, they
reported age-related increases in delta entrainment between the ages of 4-5 (n=32), 5-6 (n=
34), and 6-7 years (n= 33). These initial results suggest developmental changes in how the
information in the speech envelope is represented in the EEG at different frequency bands.

However, some studies used direct cross-correlation and not regularised regression measures.
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As in adults, envelope tracking in children is modulated by top-down factors,
especially in adverse listening conditions. A MEG study by Vander Ghinst et al. (2019)
compared cortical responses in children (6- to 9-year-old) and adults when perceiving
attended speech in different levels of multi-talker noise (noiseless, and SNRs=5, 0, and 5
dB). They found significant cross-coherence between the EEG and attended speech stimuli in
the delta (<1-4 Hz) and theta range (4-8 Hz) in all SNR conditions in adults, but for children,
values were adult-like only below 4 Hz. Importantly, disruption of neural tracking in the theta
band for increasing noise was more significant in children than adults, suggesting that cortical
tracking at the syllabic rate is not mature during late childhood and may be related to

children's poorer speech in noise performance.

One aspect in which neural envelope tracking seems functionally relevant is acoustic-
phonological mapping. According to Leong & Goswami (2014, 2015), there is a relationship
between phonological development and sensitivity to changes in speech spectro-temporal
patterns. Envelope tracking would allow the representation in the brain of phonological units
as phonemes, syllables, and stress patterns, supporting the acquisition of phonology in young
children. This is confirmed by a recent MEG study by Bertels et al. (2023) that demonstrated
maturational changes in cortical tracking of phrases and syllables presented with different
background noise levels (n=144, ages 5 to 27 years). Their results indicate that whereas
tracking of slower linguistic elements (e.g., prosodic cues) is in place since infancy, access to
fine-grained information at the syllable level matures later, with marked improvements
around the age of 9 years old that are associated with better speech comprehension

performance, especially in noisy conditions.

In addition, age-related improvements in higher-order linguistic tracking may support
the development of other speech comprehension skills, such as word recognition or syntactic

processing. Niesen et al., 2023, studied cortical tracking of syntactic structures using
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sentences with removed prosodic cues and found similar left-dominant patterns in adults
(n=20) and children (n=20, 7-9 years), although children showed less tracking accuracy.
When multi-talker background noise was added to the sentences, children and adults showed
reduced tracking of the syntactic structure. However, only adults showed increased neural

tracking for monosyllabic words, suggesting that syntactic tracking was absent in children.

Together, these findings suggest that cortical tracking shows differences for acoustic
and linguistic speech components and age-related changes, although the patterns have not
been described yet. So far, it seems that acoustic tracking is present at birth and develops
during childhood, especially for the syllabic rate (theta band). However, there is little
research about lexical tracking in children, indicating a need of more studies to determine the

role of speech tracking in language acquisition.

Language disorders and atypical speech tracking

Considering the evidence of a critical role of cortical entrainment in speech, clinical
populations affected by speech processing deficits could exhibit atypical neural speech
tracking. This makes it especially important to characterise cortical responses during
continuous speech processing to determine whether different patterns can be identified
between typical and atypical populations. As many studies have pointed out (e.g., Gillis et al.,
2022; Molinaro et al., 2016) neural tracking analysis have enormous potential as clinical tools
for diagnosis and treatment.

For example, a recent systematic review by Palana et al. (2022) examined cortical
entrainment in speech processing deficits, confirming that older people and individuals with
hearing impairments exhibit a cortical overrepresentation of the speech envelope. However,
recent evidence shows that both acoustic and linguistic speech tracking declines in older

adults (Gillis et al., 2023). In adults and adolescents with autism spectrum disorder (ASD),
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there is evidence of reduced left-lateralised tracking of envelope modulations and atypical
theta-gamma interactions, which predicted the severity of language deficits. Moreover,
although this confirms that speech perception deficits are associated with cortical tracking
abnormalities, there is little evidence in children with and without neurodevelopmental
disorders. This is exemplified in Palana's (2022) review, which shows that very few studies
have investigated speech tracking in children; by July 2020, only 5 of the 25 papers they
reviewed included underage participants, and only one of them (Di Liberto et al., 2018)

included children younger than seven years.

Nevertheless, some evidence indicates reduced or atypical envelope tracking in older
children and adolescents with speech processing disorders. Di Liberto et al. (2018) showed
significantly smaller envelope tracking in the delta-theta range in children with dyslexia
(n=10, age 9-13 years) than TLD controls (n=10, age 9-13 years) and adults (n=10, 25-40
years). The strength of neural tracking also correlated with phonological and reading skills in
all the groups. Despite the small sample size study, their results are consistent with previous
findings showing atypical patterns of entrainment between hemispheres in older poor readers
(Abrams et al., 2009) and reduced speech envelope tracking in low frequencies in dyslexic
children (Leong & Goswami, 2014, 2015; Power et al., 2016). Recently, Goswami (2022) has
proposed that impaired neural alignment with the speech envelope in DLD could be linked to
phonological processing deficits in this disorder (Temporal Sampling hypothesis, see chapter

1), although this has not been experimentally tested.

To summarise, previous evidence shows that cortical speech tracking is necessary to
efficiently map sensory information into higher-level linguistic representations at multiple
levels (Jochaut et al., 2015). However, there is a great need for replication and further
research to determine the developmental trajectories and role of speech tracking in DLD and

other neurodevelopmental disorders. Importantly, many previous studies do not provide
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average and dispersion values for their measures, making it difficult to establish a trajectory
for neural tracking development in typical and atypically developing children and compare

findings between studies.

5.1.4 The current study

This study investigates the patterns of speech cortical tracking in natural listening
conditions during early childhood to deepen our understanding of speech perception
development and its relationship to typical and atypical language acquisition. We aimed to
investigate cortical responses to continuous speech in two groups of Spanish-speaking
children between 4.7 and 5.7 years old; a group with DLD diagnosis (n=17), and a TLD

group (n=12), comparing their responses to those observed in neurotypical adults (n=17).

EEG responses were recorded during unattended listening of 18 short stories (average
data per participant= 12.5 minutes) to estimate individual Multivariate Temporal Response
Functions (MTRFs) using backward linear modelling. This allowed us to predict the speech
acoustic and lexical frequency envelopes from the EEG and compare these models at the
group level (Crosse et al., 2016) to determine how acoustic and linguistic features in the

speech signal are represented in children's cortical responses.

Thus, in this experiment, we were interested in characterising the mTRFs decoding
patterns for speech low-level acoustic features and higher-order lexical information as a

neural component in the EEG signal reflecting speech cortical tracking.

Specifically, in this study, we asked:

Q) Are there any differences in neural tracking of speech between children and

adults? And if so, for what speech components?
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(i) Do children with DLD show differences from TLD children in the patterns of

speech neural tracking? If so, in what speech features?

Since, to our knowledge, this was the first study investigating neural tracking of
speech in children with DLD, our hypotheses were exploratory and based on previous
findings for other age groups and clinical populations (e.g., ASD or dyslexia). Firstly,
considering that neural speech tracking is present at early ages and increases from childhood
to adulthood, we hypothesised that both children's and adults' mTRFs would show a
significant correlation with the speech stimuli but expected a greater cortical synchronisation

(stronger responses) in adults, indicating more efficient speech representation.

Secondly, as speech tracking is modulated by language abilities (i.e., word
knowledge), we expected more efficient tracking in those participants with better language
skills, this is, in adults than children and TLD than DLD children because of greater top-
down language modulations, even under unattended conditions because of more automatic
acoustic and lexical speech processing. Finally, we hypothesised the effects of language
differences to be larger for lexical than acoustic tracking measures, varying according to the

linguistic properties of each word (lexical frequency) rather than due to acoustic processing.

By utilising advanced EEG modelling methods in ecologically valid conditions, we
sought to shed light on the neural mechanisms underlying speech processing in natural
settings during early childhood and their relationship to language skills. They might have
important clinical implications for developing new diagnostic tools and interventions for

speech perception deficits or language disorders in young children.

216



5.2 Methods

5.2.1 Participants

All recruitment procedures were the same as those described in Chapter 3. The total
number of participants for this experiment was 46, including 12 children with TLD (Mage=
5.05, SD=0.48), 17 children with DLD (Mage=5.13, SD=0.35), and 17 adults (Mage=33.4,
SD=4.3). As expected, the age of the adults was significantly higher than that of the children

[F(2,45)=617.247, p<.001, np3=.966], but with no differences between the TLD/DLD groups.

5.2.2 Stimuli

The stimuli consisted of 18 short stories in Spanish, extracted from ‘Cuentos
programa Chile Crece’, a website of the Chilean government with resources for 2-4 year-olds

(http://www.crececontigo.gob.cl/actividades-para-compartir/cuentos/4/?filtroetapa=ninos-y-

ninas-de-2-a-4-anos) (Appendix 5.1). The stories were narrated by a native Chilean Spanish

female speaker and recorded in an anechoic chamber at 44.1 kHz into separate audio files
(.wav). A 50 ms ramp-on/off segment was added at the beginning and end of each track,
respectively, using Praat software (Boersma & Weenink, 2018). The stimulus duration ranged
from 46.99 to 56.22 sec (M =50.94; SD =2.66). Next, we extracted the acoustic and lexical

information in the speech signals.

Acoustic envelope

The broadband amplitude envelope was extracted for each audio file by applying a
Hilbert transform and then high and low-pass-filtered at 2 Hz and 38 Hz, respectively, with a
zero-phase Butterworth filter to keep the frequencies of interest for the EEG. Then, the
envelope was normalised, dividing it by the root-mean-squared of its amplitude and

downsampled to 64 Hz to speed up computations.
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Lexical features

To study the neural processing of the lexical information in the speech stimuli, we
extracted the parameters for each word in all the stories according to their lexical frequency,
onset and offset times, duration, and word class (function or content word). Function words
occur with high frequency in a given language but produce little lexical activity in the brain.
In contrast, content words are less frequent but produce higher brain activation, which is

dependent on their contextual predictability (the less predictable, the higher activity).

For each story, the corresponding audio file and text transcript were aligned using
WebMAUS, an online forced alignment tool (Kisler et al., 2017) that allows words to be
segmented and annotated into separate layers (phonemes, syllables, words). Audio-text
alignment was manually corrected using Praat, and the resulting vectors with the onset/offset
times for each word were extracted to an Excel spreadsheet. The duration of each word was
calculated as word Offset — word Onset, in seconds. Figure 5.1 exemplifies the audio/text

alignment and different levels of representation of an 8-sec speech segment.

The lexical database for this study comprised 801 unique words extracted from all 18
stories. Each word was classified according to its grammatical class into function or content
(lexical) words®, consistent with the ERP analysis in Chapter 3. The linguistic information for
determining the word classes was extracted from the database by Sadowsky et al. (2012,
https://sadowsky.cl/lifcach.html). In addition, word frequency values, normalised per million
words (pmw), were assigned to each word according to the latest update of the Reference

Corpus of the Current Spanish (CREA) https://corpus.rae.es/Ifrecuencias.html).

8 Function words are those with structural (grammatical) use, including conjunctions (C), determiners (D),
interjections (1), pronouns (PN) and prepositions (PP). Content words are those that convey meaning, including
adjectives (AJ), adverbs (AV), nouns (N) and verbs (V).
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Figure 5.1

Extraction of Different Speech Features for an Example Waveform
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Note. First eight seconds of story 2. First row: Audio waveform at 44.1 kHz; Second row:
Spectrogram; Third row; Word segmentation; Fourth row; ortographic output from

WebMaus; Fifth row: Phonemic segmentation.

The final database consisted of a matrix of the following dimensions: 801 unique
words X 7 speech features; amplitude envelope, word onset, word offset, content word,
function word, word duration, and word frequency. All the words on each story were
assigned their corresponding values from the database and converted into vectors at the same
sampling rate as the EEG data (64 Hz) for later alignment, coded as follows for each sample:
word onset (1=true 0=false), word offset (1=true 0=false), word type=function words (1=true

O=false, categorical), word type=content words (1=true O=false, categorical), word duration
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(numeric, in ms), and oral word frequency, normalised per million words (numeric,

continuous).

It is worth noting that, although we built a database with several lexical features, for
this thesis, we focused on modelling lexical mTRFs using a numerical proxy of word class,
leaving the other features as a database for future analysis. This is because these lexical
representations are mutually redundant and highly correlated (Crosse et al., 2021). Thus, we
decided to choose the one that has been more robustly described in previous studies. Initially,
we attempted to use word predictability, as has been done in previous studies (e.g., Brocked
& Simon, 2020), calculating a predictability index for each word according to its previous
context using ChatGPT-3. However, this proved unsuccessful because even though

ChatGPT-3 performed adequately for stories written in English, it did poorly for Spanish.

Thus, we decided to use the oral word frequency (lexical frequency) as a measure of
lexical content because it is correlated to word class; function words (closed class) exhibit
high lexical frequency, whereas content words (open class) are less frequent. For these
purposes, we converted each word’s normalised value (pmw) to a log 10 scale and multiplied
it by 1000 before mTRF modelling (Crosse et al., 2021). Figure 5.2 displays the distribution

of lexical frequency values after logarithmic scaling.

Considering that the acoustic onset does not necessarily coincide with the most
prominent part of the word and previous work in our lab showed better correlations when
using the whole word duration rather than just the response to the onsets, lexical frequency
values were extended over each word’s duration to create the lexical envelope (Figure 5.3).
This allowed us to reconstruct a continuous representation from the originally sparse lexical
vectors that contained mostly zeros and few numerical values, overcoming an important

challenge of backward models (Gillis et al., 2021).
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Figure 5.2

Histogram for Word Lexical Frequency Values
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Note. Distribution of lexical frequency values (log scale) for the whole set of unique words in

the speech stimuli.

Figure 5.3

Example of the Log-Transformed Lexical Frequency Envelope
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Note. Example of the envelope created from the log-transformed lexical frequency values for
the stories listened to by participant AACHOL. The vector of lexical frequency values after the

log transformation is plotted in a 0-1000 sample segment.
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5.2.3 Procedures

All stimuli were presented free-field at 70 dB SPL while the participants watched a
silent cartoon. No response was required. During the experiment, a trigger pulse was
delivered to each EEG file indicating the start of each story to align the audio tracks with the

EEG data. All other procedures were the same as those described in Chapter 3.

5.2.4 EEG preprocessing

EEG data were analysed in MATLAB (versions R2018a-2023; MathWorks,
Natick, MA), using EEGLab (Delorme & Makeig, 2004), the mTRF toolbox (Crosse et al.,
2016), and custom made scripts, following the recommendations of Crosse et al. (2021).

EEG data were downsampled to 512 Hz and referenced to the average mastoids for
the adult and to electrode Cz for the children groups. Continuous data were high-passed
filtered at 1 Hz and then low-passed filtered at 40 Hz with a non-causal zero-phase
Butterworth filter. Channel rejection and ICA were performed according to the criteria
described in Chapter 2. Then, removed channels were spherically interpolated, and data were
re-referenced to the average.

An important aspect when fitting mTRF models is to avoid significant differences in
the amount and quality of data between participants (Crosse et al., 2021; Jessen et al., 2021),
ideally defining a priori a minimum of artifact-free data per participant. In our study, the
minimum amount of clean data for a single participant was 5.12 minutes (312 seconds), and
the maximum was 15.27 minutes for participants who listened to the complete set of 18
stories (see Appendix 5.2), as seen in Table 5.1. Thus, our study's lowest amount of
individual data is well above the minimum of 100 seconds used in previous studies for

acoustic TRF modelling (e.g., Jessen et al., 2019; Kalashnikova et al., 2018). However, the
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amount of data was significantly larger for the adult group [F (2, 45) =25.45, p<.001, np2=,
542], although it did not differ between the groups of children, indicating data amount could
be an essential factor to control in the statistical analysis, although it should not be used as a

covariate if a non-linear relationship with the EEG measures is present.

Table 5.1

Average amount of Clean EEG Data per Group

Recording time (min) TLD DLD Adults
Mean 11.53 10.9 14.92
SD 1.88 2.25 .81
Range (min-max) 8.55-15.27 5.12-15.27 12.73-15.27

Note. TLD, n=12; DLD, n=17; Adults, n=17.

After data cleaning, each EEG dataset was cut around the trigger pulse to produce
separate files for each story of the same as the audio files (duration from 46.99 to 56.22
seconds). EEG data were visually inspected after the initial cleaning, and those that presented
significant remaining noise were rejected from the analysis. Then, for each story, we aligned
the starting points for EEG and the stimulus matrices according to their trigger pulses,
creating a structure containing the EEG data (columns 1:32) matched with the speech features

of interest (columns 33:39) coded as continuous or categorical variables.

EEG data was further down-sampled to 64 Hz, and files for each participant were
concatenated after removing the initial second of each story and EEG data to avoid modelling
the auditory response to the stimulus onset (Crosse et al., 2021). EEG datasets were filtered

as the acoustic envelope (2-32 Hz) and between 1-32 Hz for lexical analysis to avoid
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preprocessing filtering artifacts around the 1 and 40 Hz edges. Before modelling, individual
EEG was normalized using z-scores (Crosse et al., 2021). Finally, the matrices with the
stimulus features and the EEG responses were organized with rows corresponding to
observations and columns to variables and served as input for the decoder, aligning their

starting points to the triggers.

5.2.5 Multivariate TRF analysis

Individual decoding (backward) models were estimated and averaged at the group
level to describe the mapping between speech features and neural responses. Multivariate
Temporal Response Functions (mTRFs) were used to reconstruct the speech signal from the
EEG using the mTRF Toolbox (Crosse et al., 2015). The correlation between the original
speech stimuli and the model prediction was used to measure cortical tracking for a given
speech feature (greater correlation = greater neural response). Individual models were chosen
as their performance is better than generic (subject-independent) ones, especially when the
groups show high within and between participant variability, as if frequent in children or
clinical populations (Jessen et al., 2021). Decoding models were preferred over encoding
ones because they are more sensitive than encoding ones, as they include data from all the
EEG channels in a multivariate manner, addressing at the same time their correlation (Crosse
et al., 2016). The suitability of individual over generic and decoding over encoding was

confirmed empirically by preliminary data analysis.

To improve the model fit, we used ridge regression for modelling (Crosse et al.,
2016), a type of regularised regression that applies a penalty term (L) to estimate reliable

coefficients and avoid overfitting” when using regressors that may be highly correlated, such

7 Overfitting occurs when the TRF model reflects the particularities of the training dataset (noise, outliers) and
does not generalise well to new, unseen data, resulting in poor prediction accuracy (Crosse et al., 2016).
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as neighbouring EEG channels and speech features. Optimal lambda values were estimated
individually to account for the high inter-individual variability within our children’s groups

(Jessen et al., 2021) and then averaged within groups,

Before modelling, the datasets of each participant were separated into a training and a
testing set, containing 80% and 20% of the data, respectively. As neural responses do not
occur simultaneously with the speech input, we used time lags from -100 to 600 ms to
estimate the mTRFs, as those were consistent with previous studies on speech acoustic and

lexical processing and our ERP findings from Chapter 3.

Model training (estimation)

In the training stage, we estimated the mTRFs between each one of the EEG
response-speech stimulus pairs at each time point. To minimize the difference between the
predicted values from the model and the actual values in the data, we empirically determined
the optimal strength of the ridge regularization parameter (A, lambda), iterating testing and
training of the model across different A values (ranging from 10—7 to 107) in the training set.
For this step, data should differ from that for training (Poldrack et al., 2020), so a
recommended procedure to avoid collecting additional data is performing successive k-fold,
leave-one-out cross-validations on the training set. This means iterating between different
lambda values to find the one that provides the best fit for the model parameters (Jessen et al.,
2021). Thus, we divided the training sets into five equal parts (folds) and modelled 4/5 of the
data to derive a prediction for the left-out 1/5 segment, iterating and rotating the sets until all
were used for testing. The resulting correlation coefficients were averaged across folds to
determine which lambda value provided better model performance, measured as the higher
correlation coefficients (Pearson’s r) and lower mean squared error (MSE) in the lambda
tuning curves (Crosse et al., 2016). Once the optimal lambda was determined, we used it to

estimate the mTRFs.
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Model testing (evaluation)

In the testing phase, we evaluated how well the mTRF model generalized to new,
independent data, testing the backward model in the remaining 20% of the data. The accuracy
of the model to predict the speech stimulus was determined by comparing the reconstructed
and the actual speech features (e.g., the amplitude envelope), again using Pearson’s
coefficient (r) and mean squared error (MSE) as prediction accuracy measures. The strength
of the correlation (r value) represents the degree of cortical tracking of a given speech feature,
whereas the error is the amount of variance the model cannot predict (Jessen et al., 2021).

These training and testing procedures were replicated separately for the stimuli

acoustic envelope and lexical frequency data.

5.2.6 Study Design and Variables.

This observational, exploratory study measured cortical tracking of speech between
groups of children with TLD, DLD and adults. Speech tracking was defined as the temporal
synchronisation between cortical responses (neural oscillations) and two levels of speech
representation: the acoustic amplitude envelope (in arbitrary units, a.u.) and word lexical
frequency (log-scaled). As in Chapters 3 and 4, the independent variable was the language
status of each group (TLD, DLD or adult-like). The dependent variable was the strength of
the neural tracking (Jessen et al.., 2021), operationalised in two measures: (i) mTRFs
amplitude values over time (in a.u.), and (ii) the model predictive accuracy, quantified by

Pearson’s r coefficients.

5.2.7 Statistical analysis

Both for the acoustic and lexical backward models, the first analysis focused on

determining the model predictive power for each group, measuring whether the correlation
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values between the predicted envelopes and the actual speech stimuli significantly differed
from the chance level. We used a permutation-based approach to create null distributions of r
values for each participant, randomly sampling 100 pairs from the original EEG and speech
stimuli, modelling them, and averaging the resulting coefficients into one vector of the same
duration as the mTRF-predicted stimuli. Then, the actual mTRF correlation values were
compared with the null distributions using paired-sample t-tests (or the non-parametric

equivalent), which would indicate if our models performed above chance.

In the second analysis, we determined if there were differences between the groups of
participants in the strength of neural tracking for the speech acoustic and lexical features.
After checking for the required assumptions, we used mixed repeated-measures ANOVA to
compare the model outputs (MTRFs and correlation coefficient values) for the acoustic and
lexical envelope tracking, with ‘Group’ as a between-subject factor (3 levels:
Adults/TLD/DLD) and ‘Neural tracking’ as a within-subjects factor (2 levels: Acoustic

envelope/Lexical Frequency).

The third analysis examined the mTRF patterns over time, considering this neural
response's amplitude, polarity, and scalp distribution at different latencies. Importantly, as the
decoder mTRF weights cannot be interpreted at the neurophysiological level, we inverted
them into a forward model, according to the previous literature, following Haufe et al.
procedures (2014). Finally, we explored the relationship between neural tracking and
behavioural measures in the groups of children, using linear mixed-effects models to
determine if mMTRF accuracy measures (r coefficients) predicted the performance in

phonological awareness (Chapter 3) and filtered speech tests (Chapter 4).
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5.3 Results

5.3.1 Model Integrity

Firstly, we evaluated the integrity of each mTRF backward model, determining if the
performance metrics were above-chance level as Crosse et al. (2021) recommended. Using a
permutation approach, we created a null distribution of 100 r values for each participant,
randomly matching EEG and stimulus pairs, from which mTRF/correlation coefficients were
estimated and pairwise compared at the group level with those obtained from modelling
actual speech-EEG pairs.

For the acoustic envelope tracking, Pearson’s correlation coefficients were
significantly higher for ‘true’ values than from those in the null distribution (TLD, Z= -2.667,
p=.008; DLD, Z=-3.636, p<.001; Adults, Z=-3.621, p<.001). At the individual level,
statistically significant neural tracking was detected in 67.7% of the TLD children, 76.5% of
the DLD children and 88.3% of the adults, as indicated by r values above the 95th percentile
in comparison to the null distributions.

Likewise, for the lexical frequency envelope, statistically significant tracking was
detected in all our groups of participants, with higher correlation coefficients (r) for actual
speech-EEG data models than for null distributions (TLD, t(11)= 8.85, p<.001; DLD, t(16)=
10.559, p< .001; Adults, Z=-3.621, p<.001). Individually, significant neural tracking was
detected in 100% of the children and 88.24% of the adults (r values >95th percentile of the
null distributions).

These results indicate that the mTRF models actually reflected the neural responses
for the acoustic and lexical frequency information, in all the participant’s groups. In addition,
there was no significant correlation between r values for the acoustic and lexical envelope

(r=-.231, p=.469), suggesting that these measures reflect different cortical processing levels.
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5.3.2 Model reconstruction accuracy (performance)

Our second analysis examined between-groups differences in the model’s predictive
accuracy measures (r coefficients) for the speech acoustic and lexical frequency envelopes.
Descriptive statistics for the model performance measures are displayed in Table 5.2,

indicating overall r values ranging from 0.115 and 0. 155.

Table 5.2

Descriptive Statistics for r Values, Acoustic and Lexical Frequency Envelopes.

Acoustic TLD DLD Adults

M 115 123 142

SD .046 .053 .034
Range (min-max) (.04 - .19) (.03-.19) (.06 - .18)
95% Conf. Inter. for Mean .086 - .144 .096 - .150 125 -.159
Lexical TLD DLD Adults

M .154 .155 115

SD .040 .070 .059
Range (min-max) .13 (.07 -.20) .27(.02 -.29) .23(.00-.23)
95% Conf. Inter. for Mean .129-.180 .119-.192 .085-.145

Note. TLD, n=12; DLD, n=17; Adults, n=17.

To determine if group-level differences were present, we performed a mixed repeated
measures ANOVA using Greenhouse-Geisser correction for unmet sphericity (Mauchly’s
W=1, p<.001), after confirming r values were normally distributed for the acoustic and
lexical mTRFs (Appendix 5.3). The results showed a non-significant main effect of ‘Group’
[F(2,43)=0.283, p=.755] or ‘Neural tracking’ [F(1,43)=2.210, p=.144], both with small effect
size (Mp?=.049 and np?=.013, respectively) and low statistical power (9% and 31%,
respectively), indicating no difference in the prediction performance for the acoustic and
lexical frequency envelopes, and no differences between groups for the models for either
speech feature. However, there was a significant Group*Neural tracking interaction

[F(2,43)=4.919, p=.012], with a large effect size (np?>=.186) and adequate power (80%).
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Interaction follow-up (paired-samples t-tests) indicated significantly lower neural
tracking for the lexical than for the acoustic envelope in Adults (Macous=.142, Mlexfq=.114,
[t(16)=1.752, p=.049, d=.065]), whereas children showed the opposite pattern, with
significantly greater tracking of the lexical than the acoustic envelope in the TLD
(Macous=.115, Mlexfq=.154, [t(11)=-2.015, p=.035., d=.067]) and DLD groups
(Macous=.122, Mlexfqg=.155, [t(16)=-2.036, p=.029, d=.065]), all with small effect sizes.
These results indicate that, although all groups showed similar cortical tracking of the speech
stimuli, the neural response to the acoustic and lexical information varied within each group,
suggesting that although both speech features are represented in the EEG, their relative
importance may vary across the lifespan. Figure 5.4 displays group means for the acoustic

and lexical frequency r coefficients.

Figure 5.4
Box Plots Comparing Correlation Coefficients for Acoustic and Lexical Tracking
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frequency (dark grey boxes) envelopes. (*) significant at the .05 level.
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5.3.3 Analysis of mMTRF Model Weights

MTRF patterns

The third analysis focused on the mTRF temporal and spatial patterns. To get a
channel-independent idea of the strength of neural tracking over time, we computed global
field power (GFP) for each group, calculated as the standard deviation of the mTRFs, and
averaged across all EEG channels and participants. The response amplitude (GFP) was
plotted at each time lag for the acoustic (Figure 5.5a) and lexical frequency (Figure 5.6a)
envelopes and forward-converted for neurophysiological interpretation (Figure 5.5b and
5.6b), as recommended in Haufe et al. (2014).

In Adults, the forward-converted GFP plots for the acoustic envelope showed a long
positivity between ~100-400 ms, with two peaks, at ~50-100ms and 180-250 ms (Figure 5.5b,
first row). We observed a similar pattern in children but with longer duration (~100-550 ms)
and positive peaks at ~100 ms and between ~180-420 ms (Figure 5.5b, second and third row).
The latency and polarity of these responses are similar to that of the P1 and P3 auditory ERP

components, and their magnitude was larger in adults than in children.

For the lexical frequency envelope, forward-converted mTRFs for the Adult group
(Figure 5.6b, first row) showed an early negative deflection before 200 ms, a positive peak
between 200-300 ms and a long negative deflection between 300-600 ms, resembling an
N400 ERP response. TLD and DLD children (Figure 5.6b) showed noisier waveforms with
high initial values (time=0), in which it is hard to distinguish positive deflections. However,
negative ones are present between ~ 50-200, ~420-600 ms for the TLD group and from ~200-
300 ms and ~400-600 ms in the DLD group. The scale of the lexical mTRFs was larger in
adults than in children and TLD than in DLD children (Figure 5.6b). Compared to the

acoustic envelope, all the groups showed much larger mTRFs for lexical frequency.
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Figure 5.5

mTRF Waveforms for the Acoustic Envelope GFP (Decoder and Forward-Converted)
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Note. GFP waveforms for the group-averaged mTRF, (a) from decoding weights, (b) from
forward-converted weights. Top plot (orange): Adults (n=17), middle plot (blue): TLD,
(n=12), bottom plot (green): DLD (n=17). TLD and DLD curves were smoothed for plotting

with a 5-point moving average window. All values in arbitrary units (a.u.)
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Figure 5.6

mTRF Waveforms for the Lexical Envelope GFP (Decoder and Forward-Converted)
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Note. GFP waveforms for the group-averaged mTRF, (a) from decoding weights, (b) from

forward-converted weights. Top plot (orange): Adults (n=17), middle plot (blue): TLD,

(n=12), bottom plot (green): DLD (n=17). TLD and DLD curves were smoothed for plotting

with a 5-point moving average window. All values in arbitrary units (a.u.)
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In the forward-converted GFP waveforms, we identified the time lags at which the
weights were maximal in each group, defining intervals for mTRF mean amplitude analysis
without double-dipping. According to the GFP peaks, for the acoustic envelope, the time
range of interest was defined between 100-300 ms, whereas for the lexical frequency
envelope, it comprised the range between 400-600 ms, which coincide with the early acoustic
and lexical processing time windows in ERP research, and the hierarchical timeline of
language processing in the brain. To illustrate the sensors that contributed most to the speech
reconstructions (Crosse et al., 2016), forward-converted weights for each group were
averaged across these time windows and plotted as scalp maps for the acoustic (Figure 5.7a),
and lexical frequency envelope (Figure 5.7b).

For the acoustic mMTRFs (100-300 ms), adults showed a broad bilateral frontal-central
positivity and posterior negativity in a range of 1.5/-1.5 a.u, similar to a P300 ERP. In the
TLD group, the acoustic mTRF had a central-posterior negative activation and a focal right
temporal positive source. In contrast, the DLD group exhibited a left-lateralized frontal-
temporal positive source and two negative sources: a left posterior and a right parietal one.

For both groups of children, the magnitude of the response was in the 0.6/ -0.6 (a.u.) range.

The scalp topography for lexical mTRF (400-600 ms) showed a clear dipole in the
adult group (Figure 5.7b, first row), with a marked left frontotemporal positivity and right-
predominant temporal-posterior negativity, in a range of 20/-20 a.u. Both groups of children
show a right-central positive source which extends frontally in the TLD group, and a negative
posterior polarity, more centrally focalised in the DLD than the TLD group, which has two
focuses, one on each hemisphere. In the children’s groups, the magnitude of the activation is
approximately half as in the adults (TLD in the 10/-10 a.u. range, and DLD in the 8/-8 a.u.

range). The posterior negative scalp patterns resemble an N400 ERP response.
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Figure 5.7

Topography of the mTRF Forward-Converted Weights (Mean Amplitude)

(a) Acoustic (100-300 ms) (b) Lexical Frequency (400-600 ms)

Adults Adults

Note. Scalp maps showing the amplitude of the forward-converted mTRFs, averaged across
the intervals of maximal GFP. Adult (top row, n=17), TLD (middle row, n=12) and DLD
(bottom row, n=17) group. Responses for (a) Acoustic envelope, (b) Lexical frequency

envelope.
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MTRF statistical analysis

Next, we examined whether our groups' mTRFs amplitude for each speech feature
significantly differed. To do so, we averaged the forward-converted mTRFs across two sets
of electrodes to obtain an individual value for each speech feature; a frontocentral cluster for
the auditory response (Fz, F3, F4, FC1, FC2, FC5, and FC6) in the 100-300 ms time window,
and a centro-parietal cluster for the lexical response (C3, C4, CP1, CP2, Pz, P3 and P4), in
the 400-600 ms window. Electrodes were chosen according to previous literature (e.g., Jessen
etal., 2021; Song & lverson, 2018) and avoided electrode Cz,, as this was used as a
preprocessing reference for the children groups. Table 5.2 displays the descriptive statistics
for the mTRF group-level measures, whereas Figures 5.8 and 5.9 present mean amplitude
group-level values in the auditory (100-300 ms) and lexical (400-600 ms) intervals, showing
a much larger mTRF for the lexical than the acoustical features in the adult group that was
not observed in children. Although mTRFs have no clear interpretation yet, larger lexical

responses in adults could indicate better neural tracking.

Table 5.3

Descriptive Statistics, Group mTRFs for Acoustic and Lexical Frequency Envelopes

Acoustic TLD DLD Adults

M 0.092 0.138 1.39

SD 0.28 0.83 1.95

Range (min-max) 1.10 (-0.35-0.76) 3.26(-1.24-2.01) 8.22(-0.48-7.75)
95% Conf. Interval -0.085 - 0.270 -0.286-0.563 0.383- 2.389
Lexical Frequency TLD DLD Adults

M -0.05 -1.19 -9.68

SD 8.95 7.10 30.05

Range (min-max) 35.43(-17.58-17.85) 25.55(-20.21-5.34)  148.88(-71.40-77.49)
95% Conf. Interval -5.735 -5.635 -4.838-2.461 -25.140 — 5.766

Note. TLD, n=12; DLD, n=17; Adults, n=17.
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Given that most of the mTRF distributions were non-normal for the acoustic (for
Adults, W= .732, p<.001; TLD, W= .882, p=.094; DLD, W= .849, p=.010 ), and lexical
frequency envelopes (Adults, W= .849, p=.010; TLD, W= .968, p=.886; DLD, W=.788, p=
.001), Independent-Samples Kruskal-Wallis tests were conducted to investigate between-
group differences in the strength of the neural tracking. For the acoustic envelope mTRFs,
results indicate a significant difference in amplitude between Groups (H(2)=12.615, p=
.002), with a mean rank of 32.65 for Adults, 17.25 for TLD children and 18.76 for DLD
children. Post-hoc comparisons with Mann-Whitney U tests (Bonferroni-corrected alpha)
indicated a significant difference in the mTRF amplitude between adults and children [TLD,
U =31, p<.001; DLD, U =60, p=.001], but no difference between the groups of children [U
=08, p =.439], suggesting greater auditory tracking of the speech envelope in adults than
children. Higher positive values suggest a more pronounced auditory response for the speech
acoustic envelope in adults than children, but no evidence of language effects on the

children‘s acoustic tracking.

Similarly, there was a significant difference between Groups in the amplitude of the
mTRF for the lexical frequency envelope (H (2) = 8.153, p=.017), with a mean rank of 16.18
for Adults, 26.75 for TLD children and 28.53 for DLD children. Post-hoc comparisons with
the Mann-Whitney U test indicate a significant difference between adults and DLD children
[U =60, p=.001] but no difference with TLD children [U = 57, p=.024] or between the
groups of children [U = 96, p =.405], using corrected alpha at the 0.017 level. This indicates
that lexical tracking is greater in adults than in DLD children but similar between children
and between adults/TLD children. A greater negative amplitude indicates significantly
greater processing of word lexical frequency (N400-like effect) in adults than DLD children,

but similar between groups of children and between TLD children and adults.
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Figure 5.8

mTRF Amplitude Mean Values for the Acoustic Envelope on each Group
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Note. TLD, n=12, DLD, n=17, and Adults, n=17. (**) indicates significance at a=0.01 level.

Figure 5.9

mTRF Amplitude Mean values for the Lexical Frequency Envelope on each Group
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Note. TLD, n=12, DLD, n=17, and Adults, n=17. (*) indicates significance at a=0.05 level.
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5.3.4 Neural tracking versus phonological measures

Our last analysis examined whether the degree of speech neural tracking predicted the
children’s scores in phonological awareness and filtered speech perception measures. As
between-group differences in these tests were detected in chapters 3 and 4, respectively, we
pooled all children together regardless of their groups for the current analysis. After
confirming data assumptions (see Appendix 5.3), two separate linear mixed-effects models
were estimated using maximum likelihood (ML); one model for phonological awareness and
one for filtered speech test scores. In both models, group, acoustic and lexical r coefficients
were treated as fixed effects, whereas ‘Subject’ (participant) was used as a random intercept,

with the variance component as the covariance structure.

The results for both LME models are presented in Table 5.4. Statistical analysis
revealed that neither acoustic r coefficients nor lexical r coefficients were significant
predictors of phonological awareness performance ([t(18)=-.010 , p=0.993], and [t(18)=
.893, p=.384], respectively. This indicates that the strength of neural tracking of the acoustic
or lexical frequency envelopes does not predict performance in phonological awareness tasks.
Similarly, acoustic r coefficients and lexical r coefficients did not significantly predict the
children’s scores in filtered speech perception tests, with [t(18)=-.902, p= 0.379, and

[t(18)=1.56, p=0.137], respectively.

Together, these results indicate that after controlling for random effects, r coefficient
values obtained from decoding models for the acoustic and lexical frequency speech envelope

did not predict test results.
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Table 5.4

Results of Linear Mixed-Effect Models for Behavioural Tests and mTRF Accuracy Measures

Phonological Awareness

Filtered Speech

Predictors Estimates Cl p Estimates Cl p
(Intercept) 11.38 2.61-20.15 .014 | 42.21 21.93-62.52 <.001
Acoustic r values -.215 -47.61-47.18 993 | -47.10 -156.82-62.63 .379
Lexical r values 16.57 -22.41-55.55 .384 | 66.93 23.31-157.17 .137

Random Effects (participant)

o? 10.81 57.93

X2 1.658 3.315-35.25 .097 | 1.658 17.77-188.87 .097
ICC 0.5 0.5

Observations 29 29

Marginal R? / 0.356 / 0.307/

Conditional R? 0.678 0.654

Note: o= variance; x2 =Wald’s Z; ICC =Intra-cluster coefficient. Phonological Awareness df

=22, Filtered Speech df =18. Bold font types indicate statistical significance at the 0.05 level.
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5.4 Discussion

5.4.1 Summary of findings

This study investigated cortical tracking of continuous speech, comparing responses
to the amplitude envelope and word lexical frequency in children with TLD, DLD and adults.
We provided experimental evidence of robust cortical tracking of speech acoustic and lexical
features in young children, with no between-group differences in the strength of the neural
responses to the speech, regardless of children's language status. However, we observed
different speech tracking patterns between children and adults; within-group analysis
indicated that adults showed significantly lower r coefficients for lexical than acoustic
information, whereas children presented the inverse pattern. In addition, we observed
significantly larger mTRF amplitude in adults than in children at early (auditory) and later
(lexical) processing stages. Finally, the acoustic and lexical tracking strength did not
significantly predict phonological awareness and filtered speech perception tasks.

These results demonstrate that cortical tracking of speech acoustic and lexical
information is robust and already in place by age 4.5 years, showing similar magnitude in
children and adults, even under unattended listening conditions. However, cortical tracking
did not differ between children with typical and atypical language development, which may
be explained by an absence of speech processing deficits in children with DLD, at least for
acoustic and lexical information. However, it could also be explained by high EEG and
behavioural variability in our groups of children. Nevertheless, that the lack of differences
between children with DLD and TLD and the finding that neural tracking does not predict
phonological skills or the ability to perceive degraded speech could be determined by age
(e.g., neuromaturation), and might change during development.

When interpreting mTRF results, an essential aspect is whether they reflect speech

neural processing or arise from linear modelling problems. Thus, the first relevant finding of
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this study is that, for all our groups, the accuracy of our decoding models was significantly
above the chance level, both for the acoustic and lexical features. Correlations significantly
above zero indicate that the r values reflected cortical speech tracking. In addition, the
interaction detected between 'Group’ and 'Neural tracking measure' (acoustic/lexical)
demonstrates that the lexical mTRF is not merely picking up acoustic tracking but represents
an independent, unique contribution of lexical processing. This is supported by the fact that
children and adults showed opposite patterns for acoustic and lexical features patterns, which
would not be seen if both responses resulted from the same underlying neural process. That
being said, word duration could be an intermediary factor at play here, as usually content
word are less frequent than function words but have longer duration. This means that the
lexical frequency values for content words are represented in more datapoints than those for
function words, which could have influenced the backward models.

A second important consideration is that these results align with the range of r values
and temporal-spatial patterns reported by previous studies. In adults, Crosse et al. (2015)
reported mean correlations of 0.13 for backward mTRFs models in adults when listening to
clear speech. Moreover, our correlation results are strikingly similar to those reported by
Jessen et al. (2019), who detected average r values of 0.21 in 7-month-old infants and adults.
We also corroborated their findings regarding latency (adults at 300-400 ms and infants at
250-500 ms) and frontocentral topography of the acoustic TRF, although their responses
showed later negative deflections (after 500 ms). In our study, the forward-transformed
decoder weights showed frontal positivity in all three groups. However, this was bilateral
only for adults and lateralised in children (rightward for the TLD and leftward for the DLD
group). In addition, our results partially supported those reported by Vander Ghinst et al.

(2019), who detected similar speech acoustic tracking in children than adults at frequencies
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below 4 Hz, but significantly lower for children between 4-8 Hz. However, their study used
attended listening and coherence measures and not mTRFs.

It is worth noting that correlation values are usually low for speech neural tracking,
especially for encoding models, as they arise for an intrinsically noisy neural signal like the
EEG. For example, Di Liberto et al. (2015) reported auditory envelope tracking values
between r= 0.04-0.05 when using forward models. Importantly, r values tend to decrease for
larger amounts of data, as in smaller datasets, correlations are more likely to reflect the
sample particularities than the population patterns. Thus, leading authors in the field
recommend not to interpret r values 'per se' (Crosse et al., 2021; Jessen et al., 2021), as they
would only be comparable if resulting from models with the same parameters. Instead, it is
suggested to use other methods for linear model comparison to balance the number of
parameters and observations (e.g., data amount).

A third aspect to consider is why, contrary to our hypothesis, we found no differences
in correlation values for acoustic and lexical tracking and no between-group differences for
these speech features during unattended listening. This suggests that children and adults have
the same degree of acoustic and linguistic tracking or that our study failed to detect any
lexical tracking effect, meaning that the lexical correlation values we detected reflected the
brain's acoustic response. However, the significant Group*Speech feature interaction
demonstrates that r values in our study reflect linguistic processing, as different patterns of
neural tracking were observed in children and adults for acoustic and lexical information.
This interaction indicates that our results likely reflect age-related differences in speech
cortical tracking (e.g., neuromaturation), although with no evidence of any modulations of
children's language status, as we had expected.

The analysis of forward-converted mTRF patterns is somewhat consistent with the

correlation results, showing tracking responses of significantly larger amplitude in adults than
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children for acoustic (100-300 interval) and lexical frequency (400-600 ms) features,
indicating more pronounced P100-200 and N400 effects in adults. This supports previous
literature indicating clearer, larger auditory peaks in adults than children (see Wunderlich &
Cone-Wesson, 2006 for a review). However, our results for neural tracking of lexical features
contradict previous studies such as Niesen et al. (2023), who reported immature, lower
cortical tracking of lexical units in school-aged children than adults. However, their study had
essential differences from the present one, making it hard to compare findings; they used
SNR maps to measure and assess spectral correlation and used sentences composed only of
monosyllabic words instead of natural speech.

Crucially, our findings can be interpreted differently at the functional level. For
acoustic tracking results, the more straightforward interpretation is that adults show more
efficient tracking of low-level speech features as the acoustic envelope, even when they are
not attending to the stimulus. On the contrary, children show weaker acoustic tracking, but
this seems not to be explained by differences in their language abilities (TLD/DLD status,
phonological test scores) or speech perception skills, and could be related to the fact that at
this age, their auditory system is still developing. Notably, some previous studies using clear
speech stimuli, indicate no differences in acoustic envelope tracking for attended and
unattended conditions, meaning that involuntary attention (and not only task-directed
attention) is a relevant factor for acoustic envelope tracking (Brodbeck & Simon, 2020).
Thus, for intelligible, easy-to-perceive speech as in our study (e.g., high SNRs, no
background noise), we could still observe a good amount of automatic auditory tracking,
especially in adults, as keeping some 'housekeeping' register of environmental sounds is
behaviourally relevant.

Contrary to our hypothesis of neural tracking reflecting our group's language status,

we found no evidence of atypical tracking in DLD children, despite their poorer phonological
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skills, which contradicts the hypothesis of impaired acoustic envelope tracking explaining
phonological deficits in this group (Goswami, 2011; 2022). It is more likely that greater
lexical tracking in children indicates that they are less able to ignore the narrated stories
rather than the unlikely alternative of young children showing greater top-down language
effects and better lexical processing than adults. Although this study did not control for
attentional factors as we were looking at automatic speech processing, the adult's brain may
be more efficient than children’s at inhibiting attention to lexical content they have been
instructed to ignore, which would explain smaller r values for lexical tracking in adults.
However, this interpretation contradicts our findings of larger N400-like responses in adults'
mTRFs, which, according to the vast ERP literature, are likely indexing better lexical
processing. Thus, combining both mTRF findings in a single functional interpretation seems
not straightforward and leaves an open question about how well neural tracking measures

reflect the interplay of acoustic and linguistic processing during speech perception.

Moreover, our study did not detect any association between neural tracking and
children's previous performance on phonological awareness and filtered speech perception
tests. Acoustic and lexical mMTRF accuracy values did not predict children's filtered speech
test scores as we expected according to previous findings indicating high correlation of
acoustic mTRFs r values with speech intelligibility (Crosse et al., 2015; Ding & Simons,
2013). However, these results could be explained because our experiment tested children on
different speech stimuli (single words) than those that elicited neural tracking (full stories),
rendering these comparisons inadequate. Similarly, we found that speech tracking (r values)
did not predict phonological test scores, even though the TLD group performed significantly
better than the DLD group. This contradicts previous literature that reported an association

between acoustic envelope tracking and phonological skills using decoding models
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(Keshavarzi et al., 2022). However, we did not examine the correlations at the spectral level

(phase coherence) as these authors did.

Finally, at the neurophysiological level, our findings support the idea that language
networks involved in processing syntactically simple speech (as our stories) are already
established by the age of 4-5 years. These networks include, for example, the ventral tracts
V1-V2, and dorsal tract D1, which are thought to be involved in speech acoustic and lexical
processing, as well as in the processing of canonical grammatical structures (Friederici et al.,
2017, see Chapter 1.2.1). However, our finding of smaller mTRF magnitude and less mature
scalp patterns in children than adults indicates that these networks may not be fully developed
at the age of our TLD/DLD groups. On the other hand, the lack of differences in neural
tracking measures between the TLD and DLD groups could be explained because our stimuli
were age-appropriate materials without syntactic complexities, which may have needed to be

more sensitive to detect functional differences between TLD and DLD children.

5.4.2 Strengths, limitations, and future research

One of the main strengths of this study is that it demonstrates that decoding models
are a feasible method to study natural speech processing in young children, not only at the
acoustic but at the lexical level. Our results demonstrate robust speech cortical tracking not
only in adults but in both groups of children, despite their small sample sizes and high
variability in EEG magnitudes. The findings of this study contribute to a deeper
understanding of the neural basis of speech processing in young children, revealing an early
development of cortical tracking for the speech acoustic and lexical content, even in children

with atypical language development.
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An essential contribution to the DLD research field is that we found no evidence of
atypical neural tracking of the acoustic or lexical envelopes in the DLD group despite this
group showing poorer phonological and filtered speech test performance than TLD children.
This is relevant as it demonstrates that this key speech-processing mechanism is preserved in
children with DLD, thus contradicting previous hypothesis of its causal role in this disorder.

Notably, some relevant methodological aspects must be considered when interpreting
backward models. In this study, three main methodological factors may have influenced our
results: an unbalanced amount of data between children and adults, the type of lexical
analysis we used, and the characteristics of our groups of children. However, one strength of

this study is that we had a large amount of clean data for all participants.

The amount and quality of data are relevant factors for modelling the amplitude
envelope tracking (Crosse et al., 2021). For small and medium-sized datasets, correlation
values increase with the amount of good data. However, for large datasets, r values decrease
because they are no longer driven by the sample particularities (outliers). Some previous
children's studies have set a minimum of 100 seconds per participant (e.g., Jessen et al.,
2021), which in our study was largely surpassed. Although having enough clean data for all
participants is one of the strengths of our study, uncontrolled between-group differences in
the amount of data may have influenced our results, for example, leading to artificially higher

correlation values in the groups of children.

In future studies, addressing the potential bias introduced by data imbalances between
participants will be important. For example, we could have randomly discarded epochs in
adults’ data to match the number of epochs in the three groups. However, we decided to retain
as much data as possible and set the minimum individual data requirement at 300 sec, three

times the minimum amount reported in previous studies (Jessen et al., 2021).
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In addition, the operationalisation of lexical features could have been suboptimal to
detecting group-level differences between TLD and DLD children, even when previous
studies have reported that lexical frequency is a sensitive measure of linguistic processing
(see Gillis et al. 2022). A strength of using mTRF models is that many analyses can be
performed in the same datasets. In the future, instead of using continuous values for lexical
frequency, we could divide the words into high and low-frequency ones. In addition, future
research could investigate the effects of semantic similarity with this data or replicate this

experiment by introducing new variables such as attention or background noise.

Finally, the previous literature has pointed out that encoding and decoding models
may not perform very well in groups of participants that show significant variability because
the model training usually captures the data's particular features (e.g., outliers) and
generalises poorly, which may result in model overfitting and spurious group differences
(Crosse et al., 2021). In our data, for example, we observed a great range for the optimal
lambda values within groups, and poorer performance of generic than individual models
during preliminary analysis, both indicators of great intra and inter-subject variability.
Children could have been more affected by fatigue and boredom than adults, leading to
differences in the strength of neural tracking between the initial and final stories. These
potential effects were not controlled (e.g., by randomising the story presentation order), as we
attempted to secure having as many EEG responses for the same stories across groups in case
generic models showed better performance. Thus, future research should address these

methodological issues.

Regardless of these limitations, a final aspect to consider is that the word database and
stories created for this experiment are a significant methodological contribution. These
materials can be used in future studies with children, for example, to confirm these findings

or obtain normative values in larger samples. The materials will be made freely available to

248



other researchers in the field, increasing their utility according to open science practices. In
addition, this database can be easily expanded to include additional speech features such as
phonemic, spectral, or syntactic features, allowing us to re-analyse our EEG data with new

layers of information that could improve mTRF performance.

5.4.3 Conclusions

In conclusion, this study demonstrates that adult-like neural tracking of the speech
acoustic and lexical frequency envelope is already in place between the ages of 4.7 to 5.7 years,
with no evidence of being modulated by language abilities but by neuromaturation (age), at
least, under unattended listening conditions. Importantly, it demonstrates intact processing of
the speech acoustic envelope in the DLD group, supporting previous findings of a non-auditory
origin for this disorder and indicating no relationship between phonological skills and speech

neural tracking.
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Chapter 6. General Discussion

6.1 Overall Summary of Findings

Over the last decades, much research has focused on understanding how language is
processed in the brain, with major technological advances in neuroimaging and data analysis
methods providing invaluable evidence to support language processing models in adults.
However, we still lack a model of language acquisition that integrates neurobiological and
behavioural data to explain age-related changes in typical and atypical development. The
main goal of this thesis was to provide electrophysiological evidence on the role of neural
oscillations in children's speech perception using different EEG paradigms and analysis
methods. Specifically, | wanted to investigate how cortical oscillatory activity relates to
speech perception in language development and if atypical neural patterns were present in

children with DLD.

My central hypothesis was that, as children grow up and language processing
networks become more efficient, so would their neural responses to speech, resulting in more
synchronised EEG signals (although not necessarily in larger ones) until reaching adult-like
speech processing. This better signalling would be not only dependent on age-related brain
changes but enhanced by language knowledge via top-down processing. As predicted in
Chapter 1 (page 46), | expected greater language effects in adults than children (P1) and in
TLD than in DLD children (P2), which would be detected at the cortical level through
different EEG paradigms. This central hypothesis was partially supported by the experiments
of this thesis, as we detected significant differences in most EEG measures between children

and adults, but in most measures, no differences between TLD and DLD children (no support
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for P2). This indicates that top-down language effects we observed in adults were not present
yet in children, thus, did not modulate children EEG responses as age did (partially
supporting P3). Finally, most EEG measures were not correlated or did not predict
behavioural performance on phonological awareness or speech perception tests, providing

little evidence to support P4.

The first experiment (Chapter 2) aimed to validate an ERP multi-feature paradigm in
a group of adults to be used later in children's studies. Although acoustic differences between
S-NS stimuli should be taken into account when interpreting our findings, we confirmed that
the experiment elicited significant MMN/LDN responses for speech monosyllables and their
NS analogues, and also confirmed our hypothesis of a language effect in phonemic change
detection. However, rather than enhanced responses for more informative speech stimuli, we
found that the effects of language content were consistent with the predictive processing
framework, with smaller amplitude for less novel stimuli. On the other hand, the MMN
latency showed significantly earlier peaks for words than non-words and content than
function words, corroborating that neural processing is faster for higher-order linguistic
content. These results confirm my third prediction (P3), indicating an interaction between

linguistic content on the MMN responses.

In the second experiment (Chapter 3), we used the previously validated multi-feature
experiment (speech condition) to test a group of children with TLD and DLD. Here, we
extended the MMN/LDN analysis to time-frequency measures to include measures of neural
synchrony and not only amplitude. As predicted, children showed significant but immature
MMRs in the MMN/LDN intervals but no differences between the TLD and DLD groups on
any EEG measures. Moreover, the EEG did not correlate with phonological awareness test

scores, even though the TLD group performed significantly better than the DLD group. In
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adults, however, we observed more synchronised activity than in children but only for words
and confirmed our hypothesis of greater language effects for higher-order linguistic content.
These results does not support my second prediction (P2) and suggest that adult-like language
modulations on speech perception may not be in place in children this age, or that our

experiment failed to detect them, for example, because of higher variability in children.

The third experiment (Chapter 4) investigated whether there were any differences in
the baseline cortical activity between children with TLD and DLD and with the group of
adults, using EEG resting-state measures. We replicated previous findings in adults showing
significantly lower average power than children for all the frequency bands. However,
contrary to our hypothesis, there was no difference between TLD and DLD children in power
or oscillatory hemispheric lateralisation. Despite children with TLD performing significantly
better in the filtered speech perception test, there was no correlation between behavioural and
EEG measures (gamma power and HF lateralisation) either. However, an unexpected finding
was that the theta/alpha ratio was significantly smaller in groups with better language skills

(adults<TLD<DLD) and inversely correlated with filtered speech scores in children.

My fourth experiment (Chapter 5) investigated cortical speech tracking using
backward modelling (mTRFs) of EEG responses to continuous speech. We found significant
cortical tracking for speech acoustic and lexical features in all groups. However, there were
no differences between the TLD and DLD children and no relationship between mTRF
measures and children's behavioural scores. Although these results indicate no effects of
language differences between TLD-DLD children, the patterns of neural tracking in adults
could indicate an effect of neuromaturation and age-related changes in speech cortical

tracking, as they showed stronger, more mature auditory and lexical responses.
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In summary, the main findings of this thesis indicate that (i) there were significant
differences between adults and children's EEG responses, but no evidence of language effects
in children, despite these being robustly detected in adults, (ii) there is no evidence of
atypical cortical asymmetry or speech processing EEG responses in children with DLD, other
than a reduced resting-state theta/alpha ratio, and (iii) most EEG measures do not reflect
children behavioural test performance, except for an inverse correlation between theta/alpha
ratio and filtered speech processing. Thus, it is possible that the differences between children
and adults arise from brain maturation and not an effect of typical/atypical language
development, but also from methodological issues, for example, related to the characteristics
of the TLD/DLD groups. The results of these four studies need to be considered in an
integrated manner into the broader context of current language neuroscience and EEG

knowledge.

6.2 Results in the context of language neuroscience

Despite all theoretical and methodological progress, today, it is still not possible to
describe the entire sequence of changes in the brain that allow children to achieve adult-like
language processing. Experimental findings like those reported in this thesis must be
interpreted feasibly within the language neuroscience context to understand early childhood's
intricate speech perception mechanisms. Thus, it is essential to integrate the results of this
thesis under current adult language models and our knowledge about the development of
cortical language networks (Saby & Marshall, 2012) in order to explain speech perception

and language development.

Firstly, at the level of brain level, a straightforward interpretation of our findings is

that the differences between children and adults detected in most EEG measures are related to
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brain maturation. Although there is little information about the developmental patterns of
speech neural tracking, a significant body of ERP literature reports U-shaped trajectories for
the amplitude of different auditory ERP measures, which are the reflection of age-related
changes in the brain's white and grey matter densities, skull thickness and neural
synchronisation (de Haan, 2007; Uhlhaas et al., 2009; 2010). Our ERP and resting-state
results confirm that children exhibit EEG signals of greater amplitude than adults, even
though this is unlikely to represent better cortical speech processing in children. This suggests
that oscillatory magnitude should be interpreted differently in adults and developing brains.
On the other hand, we confirmed that when perceiving speech contrasts, children show longer
latencies and less phase synchronisation (ITPC) than adults, indicating that these measures
may more accurately reflect age-related differences in speech processing. In contrast, we
observed that at the age of our groups (4.7-5.7 years), children's rhythms are quite analogue
to those observed in adults in terms of frequency bands, except for the alpha band peaking

around 8 Hz instead of the adult-like peak at 10 Hz.

In terms of brain structure, we know that by the age of our TLD-DLD groups, the
ventral language tracts V1-V2 and dorsal D1 are already in place (Friederici et al., 2017), as
well as functional language lateralisation (Thompson et al., 2016). The early development of
these neural pathways allows children to process ‘easy' stimuli as clear, continuous speech
and isolated phonemic contrasts quite well at the acoustic and lexical levels. As our
experiments did not involve complex syntax (processed in tract D2, not fully developed until
after the age of seven years) and did not require important top-down modulations (as in
attended or challenging listening conditions), it is possible that our stimuli did not require
recruitment of pathway D2. This could have minimised the speech processing differences
between TLD and DLD children, especially considering that grammatical processing deficits

are a core symptom od DLD. Although this could explain the lack of EEG differences
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between TLD and DLD in children, it does not explain why children's responses significantly
differed from those in adults and why adults showed significant language effects (experiment

2) and lexical processing effects (experiment 4).

The functional differences we observed between children and adults in speech-related
cortical responses may be explained by differences in top-down language and attentional
modulations. Although for children, the developmental trajectories of these effects are less
defined, some studies indicate that bottom-up (stimulus-driven) processing directs speech
perception approximately until the age of 3 years old, and after that, there is a progressive
increase of top-down (language-driven) modulations until adulthood (Meyer et al., 2018;
Skeide & Friederici, 2016), although this theory has not been investigated systematically. Our
finding of top-down language influences present in adults but not yet in young children
supports this timeline, confirming developmental differences in top-down modulations on
speech perception during early childhood, and represents an essential contribution from the

current thesis.

A remaining open question is to what extent it is possible to dissociate domain-
specific and language-specific top-down effects in young children. Although we confirmed
our hypothesis of greater lexical processing in adults than children, under these experimental
conditions it is not possible to isolate the contributions of language-specific modulations from
domain-general cognitive mechanisms. For example, the differences we observed in
oscillatory power or neural tracking measures could be influenced by involuntary attention
switching or differences in inhibitory control. Future research could explore how to
determine the contributions of language and general cognitive processing to different EEG

measures when testing young children.
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Thirdly, it is important to consider the implications of these results for the current
theories of typical and atypical language acquisition. In searching for a neural marker of DLD
and other language disorders, several studies have proposed that atypical cortical dynamics
may explain language processing difficulties, such as atypical language lateralisation
(Badcock et al., 2012) or ERP responses (Kujala & Leminem, 2017). However, none of our
results supports these explanations, apart from the already discussed differences in
theta/alpha ratio between TLD and DLD children, which might be explained by cognitive and
not by language differences. Instead, our null findings could be explained by similar, rather
than different cortical dynamics for speech processing in children with DLD and those with
TLD. If this is the case, this would contradict several past and current accounts of DLD
proposing that low-level processing deficits could explain some behavioural deficits (e.g.in
phonological processing) in this clinical population (see Goswami, 2022). In addition, our
results did not replicate previous findings in individuals with dyslexia that indicate atypical
oscillatory activity and auditory tracking in this disorder, also relating them to phonological

deficits (e.g., Di Liberto et al., 2018).

Finally, it is crucial to reconsider the meaning of EEG findings when explaining
language acquisition in the brain. So far, an obstacle to building an integrative model of
language development is that the adult measures of brain activity may or may not represent
the same things in children. For example, larger ERP deflections are typically interpreted as
better cortical processing in adults. However, in children, it is not possible to determine
whether greater amplitude in children represents ERP developmental curves, ERP responses
to speech contrasts or their overlap. There is a need to determine the most suitable measures
for studying speech and language development. Our results show that ITPC and latency could
be better indices of more efficient cortical processing than amplitude-based measures.

Moreover, it is essential to consider other measures and paradigms, for example, examining
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the potential role of neural noise and variability in language acquisition (Ostlund et al., 2022)
or what larger EEG responses represent in developing cortical networks, for example, for

neuronal energy balance during bottom-up processing (Vergara et al., 2019).

6.3 Methodological considerations and future directions

6.3.1 Methodological contributions

Several studies have pointed out that the evidence relating EEG and behavioural
measures is full of inconsistencies and lacks replication (Sabi & Marshall, 2012). One of the
strengths of this thesis is that all the experiments aimed to replicate previous studies (e.g.,
using similar methods). Although several of our predictions were not met, reproducing
previous experiments helps furthering the current understanding of language development,
and increases the validity of the limited EEG literature in this field. At the same time, this
thesis addressed the importance of innovation in developmental science by using state-of-the-
art methods, extending decoding models to study lexical processing, and including a clinical
group that has not been studied before using a continuous speech paradigm (children with

DLD).

A second strength of this thesis is that it demonstrates that data collection in
challenging populations can be optimised using age-appropriate protocols and environmental
adjustments. We collected data for three experiments with preschool-aged children in a single
EEG session of approximately 40 minutes. This was possible because the ERP optimal
paradigm was time-efficient, leaving enough time for the resting state and the continuous
speech experiments. In addition, children tolerated well the testing time as they were

distracted watching cartoons and not asked to perform any task.
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Moreover, this thesis demonstrated that with some environmental adjustments, it is
possible to get clean data in young children, even in clinical groups such as DLD. In my
opinion, some relevant environmental factors that enabled successful data collection were: (i)
the experimenter's skills and training to interact with children and parents, (ii) having at least
one assistant for data collection, as this helps to speed up the EEG set-up and to distract the
child, (iii) having everyone in the room so that children can be seated next to their parents,
and the researchers close to them, so we could easily monitor if the child was still or needed a
break, and check any problem with the EEG very quickly (e.g. to adjust channel’s

impedance).

Using these new paradigms and adjustments, we demonstrated the feasibility of
conducting successful, reproducible EEG experiments in young children. This was a central
goal of this thesis, as many researchers (as we were initially) may feel discouraged to test this
age group because it poses extra challenges, contributing to a vicious cycle of lack of EEG

evidence in early language development.

Finally, this thesis contributes to the global open science initiative, as all our
experimental materials, scripts and datasets will be made freely available to other researchers

upon request after the results of this thesis are published.

6.3.2 Methodological limitations

When interpreting the results of this thesis, it is essential to consider their
generalisability and how our findings might have been affected by potential sources of bias at
different levels. An important limitation to address concerns the possible presence of
sampling bias. Firstly, all the experiments were conducted in the same three groups of

participants, and all children were recruited from the same school in Chile. Although the
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invitation for the study was sent to all the children in the school that fit the inclusion criteria,
from the 37 children that were invited, 34 passed the screening, and only 29 came to the EEG
experiment, with two participants dropping-out during this session. Although these are low
participant exclusion/drop-out rates, the size of our groups was small, particularly the control
group (TLD), which should be considered when interpreting these findings.

Although we initially calculated that a larger sample size was needed (n=25 per
group) for this thesis, the data collection process was severely disrupted by the COVID-19
pandemic, which impeded a second overseas trip to test more children from this school. Thus,
we postponed collecting new data and emphasised acquiring more advanced EEG analysis
skills. In the future, it is necessary to determine whether the findings of this thesis can be
generalised to the broader population, replicating these experiments in a larger sample of
children with typical language development and DLD diagnosis, for example, at different
ages. In the short term, we have planned to conduct a final study at UCL's ICL Lab using

these experiments to test bilingual children in a broader age range.

In addition, it is worth considering that there is usually high variability between
children regarding their cognitive, language and social skills, even in typically developing
groups. Even though children attended the same school allowed us to control for differences
in socioeconomic status and medical history, and the screening process controlled for
differences in children's age or hearing levels between the children with TLD and DLD, we
did not control for the heterogeneity of language profiles in DLD children. Despite our DLD
children being clinically diagnosed before the study according to valid SLT criteria, the
variability in their language profiles (in the TLD group) may indicate that their cortical
responses to speech are too different for being categorised only into typical/atypical groups. It

would be interesting in the future, for example, to investigate the association of language and
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EEG profiles at the individual level (e.g., how many children with DLD showed speech

perception skills within the typical range).

Notably, the utility of binary classifications of children into control and clinical
groups when investigating neurodevelopmental disorders is a long-lasting debate among
language development clinicians and researchers. Although growing evidence indicates that
children's language profiles are heterogeneous and change dynamically during development
(Bishop et al., 2016; 2017), there is no agreement on how we can operationalise this

continuum between typical and atypical language skills in developmental research.

In terms of background literature, an essential realisation from this PhD thesis is that
there are still few EEG studies addressing the neural basis of language acquisition and any
possible cortical signatures of DLD. This striking lack of EEG research in younger children
was pointed out more than 15 years ago (de Haan, 2007) but remains an issue, explaining our
limited understanding of cortical dynamics in early language development. On top of that, the
heterogeneity of methodological approaches in the existing literature makes it very hard to

compare and generalise findings across EEG studies on speech perception development.

In this scenario, an important contribution of this PhD thesis is that it builds upon
several previous studies, confirming that replication and innovation in research are not
mutually exclusive. However, some key findings of this thesis indicated null results, for
example, no language top-down modulations in children and no left-lateralisation of
oscillations. Thus, although we aimed for maximum confound control, some experimental
aspects in this thesis need to be reconsidered in future studies. For example, the speech
stimuli could focus on materials testing tract D2, as discussed in Chapter 5. Because these
networks develop later and grammatical deficits are an important symptom of DLD, stimulus

requiring D2 processing could reveal more subtle differences between children's groups.
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Another aspect is that, although there is plenty of options for signal processing in
EEG research, in practice, it can be difficult to determine "a priori' what are the most
appropriate, especially for exploratory studies. For example, despite efforts such as the
CORE or MADE initiatives, there is no gold standard for the EEG processing pipeline or
selection of channels and time windows for analysis. During this thesis, one of the greatest
challenges was to decide the best data analysis steps for each experiment when each choice
may substantially change the outcome of a given study (Clayson et al., 2021) or introduce
biases (Cohen, 2017). In the future, this thesis may help inform the decision-making process
of new EEG studies, for example, by providing easy-to-replicate pre-processing pipelines and

data analysis methods for the different EEG paradigms.

Similarly, selecting statistical methods was a challenging aspect of all the
experiments. Although the statistical analysis plan was carefully outlined beforehand when
deciding on the experimental design, the collected data was full of non-normal distributions,
non-linearities and high within and between-participant variability, which sometimes made it
impossible to go ahead with the planned or most recommended methods. In this regard, |
opted for maximum transparency in the reports, providing justifications when unplanned or

suboptimal data analysis methods were used.

Notably, although data analysis difficulties are related to the small size of our sample,
some effects appeared to be robust enough to show group-level differences and the
experiment had sufficient power to detect them. For example, latency and synchrony
measures are more informative when studying groups of children at different ages or for
comparing children and adults. However, these findings need to be replicated in future

studies.
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6.4 Concluding remarks.

In sum, the current thesis provides new evidence about cortical speech processing
during early childhood in typical and atypical language acquisition, indicating developmental
changes in EEG responses between early childhood and adulthood, and no differences

between children with and without DLD in cortical measures of speech processing.

The results of this thesis contribute to the field of language acquisition and could
inform future models of language development that satisfies multiple levels of explanations,
from neurons to behaviour. Importantly, our findings reinforce the need of revisiting
theoretical assumptions about how to interpret EEG measures in children and of conducting
larger studies to disentangle the effects of neuromaturation, cogntive and language

development on speech perception.

In addition, the findings and EEG methods used in this thesis have great potential to
inform future clinical measures of speech perception. Although we found no evidence of a
neural marker for DLD, this thesis identified some EEG measures that are robust enough to
compare and even differentiate adults and children. Hopefully, these results will lay the basis
for future studies on the development of language top-down effects on speech perception and

speech perception development in TLD and DLD.

262



References

Aboitiz, F. (2017). A brain for speech: A view from evolutionary neuroanatomy. Springer.

Abrams, D. A., Nicol, T., Zecker, S., & Kraus, N. (2009). Abnormal cortical processing of the
syllable rate of speech in poor readers. The Journal of Neuroscience: the official journal of the
Society for Neuroscience, 29(24), 7686—7693. doi.org/10.1523/JNEUROSCI.5242-08.2009

Alexandrou, A. M., Saarinen, T., Kujala, J., & Salmelin, R. (2020). Cortical entrainment: what we can
learn from studying naturalistic speech perception. Language, Cognition and Neuroscience,
35(6), 681-693. https://doi.org/10.1080/23273798.2018.1518534

Alonso, M. A., Fernandez, A., & Diez, E. (2015). Subjective age-of-acquisition norms for 7,039
Spanish words. Behavior research methods, 47(1), 268-274.doi.org/10.3758/s13428-014-0454-2

American Speech-Language-Hearing Association. 1996. Central Auditory Processing: Current status
of research and implications for clinical practice. American Journal of Audiology. 5 (2): 41-54.

Azami, H., Zrenner, C., Brooks, H. et al. Beta to theta power ratio in EEG periodic components as a
potential biomarker in mild cognitive impairment and Alzheimer’s dementia. Alz Res Therapy

15, 133 (2023). https://doi.org/10.1186/s13195-023-01280-z

Baart, M., & Samuel, A. G. (2015). Early processing of auditory lexical predictions revealed by ERPs.
Neuroscience Letters, 585, 98-102. https://doi.org/10.1016/j.neulet.2014.11.044

Badcock, N. A., Bishop, D. V., Hardiman, M. J., Barry, J. G., & Watkins, K. E. (2012). Co-
localisation of abnormal brain structure and function in specific language impairment. Brain and
Language, 120(3), 310-320. https://doi.org/10.1016/j.bandl.2011.10.006

Bailey, P. J., & Snowling, M. J. (2002). Auditory processing and the development of language and
literacy. British Medical Bulletin, 63(1), 135-146.

Baltzell, L. S., Srinivasan, R., & Richards, V. M. (2017). The effect of prior knowledge and
intelligibility on the cortical entrainment response to speech. Journal of Neurophysiology, 118(6),
3144-3151. https://doi.org/10.1152/jn.00023.2017

Balmaceda Romero, V., Beiza Mas, M., Diaz Espina, J., Vargas Leclérc, S., & Vasquez Lara, P.
(2008). Obtencidn de valores normativos para una bateria de pruebas de Procesamiento Auditivo

(Central) en nifios de entre 5.0 y 6.11 afios de edad.

Barrios, P., Benavides, C., Benavides, L. & Dellafiori. C. (1987). Evaluacion de la conducta
linglistica de nifios de centros abiertos de 4 a 4.11 afios. Seminario para optar al titulo de

Fonoaudidlogo, Facultad de Medicina, Universidad de Chile.

263


https://doi.org/10.1523/JNEUROSCI.5242-08.2009
https://doi.org/10.1080/23273798.2018.1518534
https://doi.org/10.1016/j.neulet.2014.11.044
https://doi.org/10.1016/j.bandl.2011.10.006
https://doi.org/10.1152/jn.00023.2017

Bastiaansen, M., & Hagoort, P. (2006). Oscillatory neuronal dynamics during language
comprehension. Progress in Brain Research, 159, 179-196. https://doi.org/10.1016/S0079-
6123(06)59012-0

Baltzell, L. S., Srinivasan, R., & Richards, V. M. (2017). The effect of prior knowledge and
intelligibility on the cortical entrainment response to speech. Journal of Neurophysiology, 118(6),
3144-3151. https://doi.org/10.1152/jn.00023.2017

Beese, C., Meyer, L., Vassileiou, B., & Friederici, A. D. (2017). Temporally and spatially distinct
theta oscillations dissociate a language-specific from a domain-general processing mechanism
across the age trajectory. Scientific Reports, 7(1), 11202. doi.org/10.1038/s41598-017-11632-z

Bell, M. A., & Cuevas, K. (2012). Using EEG to study cognitive development: Issues and practices.
Journal of Cognition and Development, 13(3), 281-294.
https://doi.org/10.1080/15248372.2012.691143

Benasich, A. A., Gou, Z., Choudhury, N., & Harris, K. D. (2008). Early cognitive and language skills
are linked to resting frontal gamma power across the first 3 years. Behavioural Brain Research,
195(2), 215-222. https://doi.org/10.1016/j.bbr.2008.08.049

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological),
57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Bertels, J., Niesen, M., Destoky, F., Coolen, T., Vander Ghinst, M., Wens, V., ... & Bourguignon, M.
(2023). Neurodevelopmental oscillatory basis of speech processing in noise. Developmental
Cognitive Neuroscience, 59, 101181, https://doi.org/10.1016/j.dcn.2022.101181

Bishop, D. V. M. (2007). Using mismatch negativity to study central auditory processing in
developmental language and literacy impairments: Where are we, and where should we be
going? Psychological Bulletin, 133(4), 651-672. https://doi.org/10.1037/0033-2909.133.4.651

Bishop, D.V.M. (2013). Cerebral asymmetry and language development: cause, correlate, or
consequence? Science. 2013; 340(6138) doi: 10.1126/science.1230531.

Bishop, D.V. M., Anderson, M., Reid, C., & Fox, A. M. (2011). Auditory development between 7 and
11 years: an event-related potential (ERP) study. PLoS One, 6(5), €18993.
https://doi.org/10.1371/journal.pone.0018993

Bishop, D.V. M., Carlyon, R. P., Deeks, J. M., & Bishop, S. J. (1999). Auditory temporal processing

impairment: Neither necessary nor sufficient for causing language impairment in children.

264


https://doi.org/10.1016/S0079-6123(06)59012-0
https://doi.org/10.1016/S0079-6123(06)59012-0
https://doi.org/10.1152/jn.00023.2017
https://doi.org/10.1038/s41598-017-11632-z
https://doi.org/10.1080/15248372.2012.691143
https://doi.org/10.1016/j.bbr.2008.08.049
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.dcn.2022.101181
https://psycnet.apa.org/doi/10.1037/0033-2909.133.4.651
https://doi.org/10.1371/journal.pone.0018993

Journal of Speech, Language, and Hearing Research, 42(6), 1295-1310.
https://doi.org/10.1044/jslhr.4206.1295

Bishop, D. V. M., & Hardiman, M. J. (2010). Measurement of mismatch negativity in individuals: a
study using single-trial analysis. Psychophysiology, 47(4), 697-705.
https://doi.org/10.1111%2Fj.1469-8986.2009.00970.x

Bishop, D. V. M., Hardiman, M. J., & Barry, J. G. (2010a). Is auditory discrimination mature by
middle childhood? A study using time-frequency analysis of mismatch responses from 7 years to

adulthood. Developmental Science, 14(2), 402-416.

Bishop, D.V. M., Hardiman, M. J., & Barry, J. G. (2010b). Lower-frequency event-related
desynchronization: a signature of late mismatch responses to sounds, which is reduced or absent
in children with specific language impairment. Journal of Neuroscience, 30(46), 15578-15584.
https://doi.org/10.1523/JNEUROSCI.2217-10.2010

Bishop, D. V. M., Hardiman, M. J., & Barry, J. G. (2012). Auditory deficit as a consequence rather
than endophenotype of specific language impairment: electrophysiological evidence. PLoS One,
7(5), €35851. https://doi.org/10.1371/journal.pone.0035851

Bishop, D. V., M. & McArthur, G. M. (2005). Individual differences in auditory processing in
specific language impairment: a follow-up study using event-related potentials and behavioural
thresholds. Cortex: A journal devoted to the study of the nervous system and behavior, 41(3),
327-341. https://doi.org/10.1016/s0010-9452(08)70270-3

Bishop, D. V., M. & Snowling, M. J. (2004). Developmental dyslexia and specific language
impairment: Same or different? Psychological Bulletin, 130(6), 858.

Bishop, D.V. M., Snowling, M. J., Thompson, P. A., Greenhalgh, T., & Catalise Consortium. (2016).
CATALISE: A multinational and multidisciplinary Delphi consensus study. Identifying language
impairments in children. PLOS One, 11(7), e0158753.

Bishop, D.V. M., Snowling, M. J., Thompson, P. A., Greenhalgh, T., Catalise-2 Consortium, 9Adams,
C., ... & House, A. (2017). Phase 2 of CATALISE: A multinational and multidisciplinary Delphi
consensus study of problems with language development: Terminology. Journal of Child
Psychology and Psychiatry, 58(10), 1068-1080.

Boersma, P.& Weenink, D. (2018). Praat: doing phonetics by computer [Computer program].
Version 6.2.06, retrieved 23 January 2022 from https://www.praat.org.

Bosl, W., Tierney, A., Tager-Flusberg, H., & Nelson, C. (2011). EEG complexity as a biomarker for
autism spectrum disorder risk. BMC Medicine, 9(1), 1-16. /doi.org/10.1186/1741-7015-9-18

265


https://doi.org/10.1044/jslhr.4206.1295
https://doi.org/10.1111%2Fj.1469-8986.2009.00970.x
https://doi.org/10.1523/JNEUROSCI.2217-10.2010
https://doi.org/10.1371/journal.pone.0035851
https://doi.org/10.1016/s0010-9452(08)70270-3
https://www.praat.org/
https://doi.org/10.1186/1741-7015-9-18

Bradlow, A. R., & Bent, T. (2002). The clear speech effect for non-native listeners. The Journal of the
Acoustical Society of America, 112(1), 272-284. https://doi.org/10.1121/1.1487837

Brauer, J., Anwander, A., & Friederici, A. D. (2011). Neuroanatomical prerequisites for language
functions in the maturing brain. Cerebral Cortex, 21(2), 459-466.
https://doi.org/10.1093/cercor/bhq108

Brauer, J., Anwander, A., Perani, D., & Friederici, A. D. (2013). Dorsal and ventral pathways in
language development. Brain and Language, 127(2), 289-295.
https://doi.org/10.1016/j.bandl.2013.03.001

Breshears, J. D., Hamilton, L. S., & Chang, E. F. (2018). Spontaneous Neural Activity in the Superior
Temporal Gyrus Recapitulates Tuning for Speech Features. Frontiers in Human Neuroscience,
12, 360. https://doi.org/10.3389/fnhum.2018.00360

British Society of Audiology. (2011). Recommended procedure: pure-tone air-conduction and bone-
conduction threshold audiometry with and without masking. Read. Br. Soc. Audiology. Available

on http://www.thebsa.org.uk/

Brodbeck, C., & Simon, J. Z. (2020). Continuous speech processing. Current Opinion in Physiology,
18, 25-31. https://doi.org/10.1016/j.cophys.2020.07.014

Broderick, M. P., Anderson, A. J., Di Liberto, G. M., Crosse, M. J., & Lalor, E. C. (2018).
Electrophysiological correlates of semantic dissimilarity reflect the comprehension of natural,
narrative speech. Current Biology, 28(5), 803-809. https://doi.org/10.1016/j.cub.2018.01.080

Brooker, R. J., Bates, J. E., Buss, K. A.,..., & Schmidt, L. A. (2020). Conducting Event-Related
Potential (ERP) Research with Young Children: A Review of Components, Special
Considerations and Recommendations for Research on Cognition and Emotion. Journal of
psychophysiology, 34(3), 137-158. https://doi.org/10.1027/0269-8803/a000243

Buzsaki, G. (2006). Rhythms of the Brain. Oxford university press.

Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679),
1926-1929. https://doi.org/10.1126/science.1099745

Calcus, A., Tuomainen, O., Campos, A., Rosen, S., & Halliday, L. F. (2019). Functional brain
alterations following mild-to-moderate sensorineural hearing loss in children. Elife, 8, e46965.
https://doi.org/10.7554/eLife.46965

Cantiani, C., Ortiz-Mantilla, S., Riva, V., Piazza, C., Bettoni, R., Musacchia, G., ... & Benasich, A. A.

(2019). Reduced left-lateralized pattern of event-related EEG oscillations in infants at familial

266


https://doi.org/10.1121/1.1487837
https://doi.org/10.1093/cercor/bhq108
https://doi.org/10.1016/j.bandl.2013.03.001
https://doi.org/10.3389/fnhum.2018.00360
http://www.thebsa.org.uk/
https://doi.org/10.1016/j.cophys.2020.07.014
https://doi.org/10.1016/j.cub.2018.01.080
https://doi.org/10.1027/0269-8803/a000243
https://doi.org/10.1126/science.1099745
https://doi.org/10.7554/eLife.46965

risk for language and learning impairment. Neuroimage: Clinical, 22, 101778.
https://doi.org/10.1016/j.nicl.2019.101778

Ceponiené, R., Lepistd, T., Alku, P., Aro, H., & Naatanen, R. (2003). Event-related potential indices
of auditory vowel processing in 3-year-old children. Clinical neurophysiology: official journal of
the International Federation of Clinical Neurophysiology, 114(4), 652—661.
https://doi.org/10.1016/s1388-2457(02)00436-4

Cheour, M., Alho, K., Ceponiené, R., Reinikainen, K., Sainio, K., Pohjavuori, M., ... & Naatanen, R.
(1998). Maturation of mismatch negativity in infants. International Journal of Psychophysiology,
29(2), 217-226. https://doi.org/10.1016/S0167-8760(98)00017-8

Cheour, M., Korpilahti, P., Martynova, O., & Lang, A. H. (2001). Mismatch negativity and late
discriminative negativity in investigating speech perception and learning in children and infants.
Audiology & Neuro-otology, 6(1), 2-11. https://doi.org/10.1159/000046804

Cheour, M. (2007). Development of mismatch negativity (MMN) during infancy. In M. de Haan
(Ed.), Infant EEG and event-related potentials (pp. 171-198). Psychology Press.

Clayson, P. E., Baldwin, S. A., Rocha, H. A., & Larson, M. J. (2021). The data-processing multiverse
of event-related potentials (ERPs): A roadmap for the optimization and standardization of ERP
processing and reduction pipelines. Neurolmage, 245, 118712.
https://doi.org/10.1016/j.neuroimage.2022.119443

Clements, G. M., Bowie, D. C., Gyurkovics, M., Low, K. A., Fabiani, M., & Gratton, G. (2021).
Spontaneous Alpha and Theta Oscillations Are Related to Complementary Aspects of Cognitive
Control in Younger and Older Adults. Frontiers in human neuroscience, 15, 621620.
https://doi.org/10.3389/fnhum.2021.621620

Cohen M. X. (2017). Rigor and replication in time-frequency analyses of cognitive electrophysiology
data. International journal of psychophysiology: official journal of the International
Organization of Psychophysiology, 111, 80-87. https://doi.org/10.1016/j.ijpsycho.2016.02.001

Cohen, M. X. (2014). Analyzing neural time series data: theory and practice. MIT press.
Cohen M. X. (2016). Where does EEG come from and what does it mean? Trends in Neurosciences,
40(4), 208-218. https://doi.org/10.1016/j.tins.2017.02.004

Corral, S., Ferrero, M. & Goikoetxea, E. LEXIN: A lexical database from Spanish kindergarten and
first-grade readers. Behavior Research Methods 41, 1009-1017 (2009).
https://doi.org/10.3758/BRM.41.4.1009

267


https://doi.org/10.1016/j.nicl.2019.101778
https://doi.org/10.1016/s1388-2457(02)00436-4
https://doi.org/10.1016/S0167-8760(98)00017-8
https://doi.org/10.1159/000046804
https://doi.org/10.1016/j.neuroimage.2022.119443
https://doi.org/10.1016/j.ijpsycho.2016.02.001
https://doi.org/10.1016/j.tins.2017.02.004
https://doi.org/10.3758/BRM.41.4.1009

Crosse, M. J., Butler, J. S., & Lalor, E. C. (2015). Congruent Visual Speech Enhances Cortical
Entrainment to Continuous Auditory Speech in Noise-Free Conditions. The Journal of
neuroscience: the official journal of the Society for Neuroscience, 35(42), 14195-14204.
https://doi.org/10.1523/JNEUROSCI.1829-15.2015

Crosse, M. J., Di Liberto, G. M., Bednar, A., & Lalor, E. C. (2016). The multivariate temporal
response function (MTRF) toolbox: a MATLAB toolbox for relating neural signals to continuous
stimuli. Frontiers in Human Neuroscience, 10, 604. https://doi.org/10.3389/fnhum.2016.00604

Crosse, M. J., Zuk, N. J., Di Liberto, G. M., Nidiffer, A. R., Molholm, S., & Lalor, E. C. (2021).
Linear modeling of neurophysiological responses to speech and other continuous stimuli:
methodological considerations for applied research. Frontiers in Neuroscience, 15, 705621.
https://doi.org/10.3389/fnins.2021.705621

Csépe, V. (1995). On the origin and development of the mismatch negativity. Ear and Hearing, 16(1),
91-104. 16(1): p 91-104, February 1995.

Cutler, A. (2008). The 34th Sir Frederick Bartlett Lecture: The abstract representations in speech
processing. Quarterly Journal of Experimental Psychology, 61(11), 1601-1619.
https://doi.org/10.1080/13803390802218542

David, C., Roux, S., Bonnet-Brilhault, F., Ferré, S., & Gomot, M. (2020). Brain responses to change
in phonological structures of varying complexity in children and adults. Psychophysiology, 57(9),
€13621. https://doi.org/10.1111/psyp.13621

Davis, M. H., & Johnsrude, I. S. (2003). Hierarchical processing in spoken language comprehension.
Journal of Neuroscience, 23(8), 3423-3431. https://doi.org/10.1523/JNEUROSCI.23-08-
03423.2003

Debnath, R., Buzzell, G. A., Morales, S., Bowers, M. E., Leach, S. C., & Fox, N. A. (2020). The
Maryland analysis of developmental EEG (MADE) pipeline. Psychophysiology, 57(6), e13580.
https://doi.org/10.1111/psyp.13580

DeBoer, T., Scott, L. S., & Nelson, C. A. (2006 ). Methods of acquiring and analyzing infant
event-related potentials. In M. de Haan (Ed.), Infant EEG and Event-Related Potentials (pp. 5 —
38). London, UK, Psychology Press

de Guibert, C., Maumet, C., Jannin, P., Ferré, J. C., Tréguier, C., Barillot, C., Le Rumeur, E., Allaire,
C., & Biraben, A. (2011). Abnormal functional lateralization and activity of language brain areas
in typical specific language impairment (developmental dysphasia). Brain: A journal of
neurology, 134(Pt 10), 3044-3058. https://doi.org/10.1093/brain/awrl41

268


https://doi.org/10.1523/JNEUROSCI.1829-15.2015
https://doi.org/10.3389/fnhum.2016.00604
https://doi.org/10.3389/fnins.2021.705621
https://doi.org/10.1080/13803390802218542
https://doi.org/10.1111/psyp.13621
https://doi.org/10.1523/JNEUROSCI.23-08-03423.2003
https://doi.org/10.1523/JNEUROSCI.23-08-03423.2003
https://doi.org/10.1111/psyp.13580
https://doi.org/10.1093/brain/awr141

de Haan, M. (Ed.). (2007). Infant EEG and Event-Related Potentials (1st ed.). Psychology Press.
https://doi.org/10.4324/9780203759660

Dehaene-Lambertz, G., & Baillet, S. (1998). A phonological representation in the infant brain.
Neuroreport, 9(8), 1885-1888. 9(8):p 1885-1888, June 1, 1998.

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG
dynamics including independent component analysis. J Neurosci Methods 134(1):9-21
https://doi.org/10.1016/j.jneumeth.2003.10.009

Di Liberto, G. M., & Lalor, E. C. (2017). Indexing cortical entrainment to natural speech at the
phonemic level: Methodological considerations for applied research. Hearing Research, 348, 70-
77. https://doi.org/10.1016/j.heares.2017.02.015

Di Liberto, G. M., O’Sullivan, J. A., & Lalor, E. C. (2015). Low-frequency cortical entrainment to
speech reflects phoneme-level processing. Current Biology, 25(19), 2457-2465
http://dx.doi.org/10.1016/j.cub.2015.08.030

Di Liberto, G. M., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., & Lalor, E. C. (2018).
Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in
dyslexia. Neurolmage, 175, 70-79. https://doi.org/10.1016/j.neuroimage.2018.03.072

Dineen, L. C., & Blakesley, B. C. (1973). Algorithm AS 62: Generator for the sampling distribution
of the Mann-Whitney U statistic. Applied Statistics, 22, 269-273. https://doi.org/10.2307/2346934

Ding, N., Melloni, L., Zhang, H. et al. Cortical tracking of hierarchical linguistic structures in
connected speech. Nat Neurosci 19, 158-164 (2016). https://doi.org/10.1038/nn.4186

Ding, N., & Simon, J. Z. (2013). Adaptive temporal encoding leads to a background-insensitive
cortical representation of speech. Journal of Neuroscience, 33(13), 5728-5735. doi:
10.1523/JNEUROSCI.5297-12.2013.

Ding, N., & Simon, J. Z. (2014). Cortical entrainment to continuous speech: functional roles and
interpretations. Frontiers in Human Neuroscience, 8, 311.
https://doi.org/10.3389/fnhum.2014.00311

Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D. (2014). Acoustic landmarks drive delta—theta
oscillations to enable speech comprehension by facilitating perceptual parsing. Neurolmage, 85,
761-768. https://doi.org/10.1016/j.neuroimage.2013.06.035

Doesburg, S. M., Tingling, K., MacDonald, M. J., & Pang, E. W. (2016). Development of network
synchronization predicts language abilities. Journal of Cognitive Neuroscience, 28(1), 55-68.
https://doi.org/10.1162/jocn_a_00879

269


https://doi.org/10.4324/9780203759660
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.heares.2017.02.015
http://dx.doi.org/10.1016/j.cub.2015.08.030
https://doi.org/10.1016/j.neuroimage.2018.03.072
https://doi.org/10.2307/2346934
https://doi.org/10.1038/nn.4186
https://doi.org/10.3389/fnhum.2014.00311
https://doi.org/10.1016/j.neuroimage.2013.06.035
https://doi.org/10.1162/jocn_a_00879

Donoghue, T., Dominguez, J., & Voytek, B. (2020). Electrophysiological Frequency Band Ratio
Measures Conflate Periodic and Aperiodic Neural Activity. eNeuro, 7(6), ENeuro.0192-20.2020.
https://doi.org/10.1523/ENEURO.0192-20.2020

Dudley, H. (1939). “Remaking speech,” J. Acoust. Soc. Am. 11, 169-177.
https://doi.org/10.1121/1.1916020

Eggermont, J. J., & Ponton, C. W. (2003). Auditory-evoked potential studies of cortical maturation in
normal hearing and implanted children: correlations with changes in structure and speech
perception. Acta Oto-Laryngologica, 123(2), 249-252.
https://doi.org/10.1080/0036554021000028098

Evans, J. L., & Brown, T. T. (2016). Specific language impairment. In Neurobiology of Language
(pp. 899-912). Academic press https://doi.org/10.1016/B978-0-12-407794-2.00072-9

Field, A. (2013). Discovering statistics using IBM SPSS statistics. London: Sage.
Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R (Vol. 3). London: Sage.

Fields, E. C., & Kuperberg, G. R. (2020). Having your cake and eating it too: Flexibility and power
with mass univariate statistics for ERP data. Psychophysiology, 57(2), e13468.
https://doi.org/10.1111/psyp.13468

Francgois, C, Rodriguez-Fornells, A, Teixido, M, Agut, T, Bosch, L. Attenuated brain responses to
speech sounds in moderate preterm infants at term age. Dev Sci. 2021; 24:e12990.
https://doi.org/10.1111/desc.12990

Friedrich, M., Weber, C., & Friederici, A. D. (2004). Electrophysiological evidence for delayed
mismatch response in infants at-risk for specific language impairment. Psychophysiology, 41(5),
772-782, https://doi.org/10.1111/j.1469-8986.2004.00202.x

Friederici, A. D. The neural basis of language development and its impairment. Neuron 52, 941-952
(2006). https://doi.org/10.1016/j.neuron.2006.12.002

Friederici, A. D. (2011). The brain basis of language processing: from structure to function.
Physiological Reviews, 91(4), 1357-1392 https://doi.org/10.1152/physrev.00006.2011

Friederici A. D. (2012a). The cortical language circuit: from auditory perception to sentence
comprehension. Trends in Cognitive Sciences, 16(5), 262—268.
https://doi.org/10.1016/j.tics.2012.04.001

Friederici, A. D. (2012b). Language development and the ontogeny of the dorsal pathway. Frontiers
in Evolutionary Neuroscience, 4, 3.https://doi.org/10.3389/fnevo.2012.00003

270


https://doi.org/10.1523/ENEURO.0192-20.2020
https://doi.org/10.1121/1.1916020
https://doi.org/10.1080/0036554021000028098
https://doi.org/10.1016/B978-0-12-407794-2.00072-9
https://doi.org/10.1111/psyp.13468
https://doi.org/10.1111/desc.12990
https://doi.org/10.1111/j.1469-8986.2004.00202.x
https://doi.org/10.1016/j.neuron.2006.12.002
https://doi.org/10.1152/physrev.00006.2011
https://doi.org/10.1016/j.tics.2012.04.001
https://doi.org/10.3389/fnevo.2012.00003

Friederici, A. D. (2015). White-matter pathways for speech and language processing. Handbook of
clinical neurology, 129, 177-186. https://doi.org/10.1016/B978-0-444-62630-1.00010-X

Friederici, A.D., Chomsky, N., Berwick, R.C. et al. Language, mind and brain. Nat Hum Behav 1,
713-722 (2017). https://doi.org/10.1038/s41562-017-0184-4

Friederici, A. D., & Gierhan, S. M. (2013). The language network. Current opinion in Neurobiology,
23(2), 250-254. https://doi.org/10.1016/j.conb.2012.10.002

Fuente, A. & McPherson, B. (2006). Auditory Processing test for Spanish -
Speaking adults: An initial study. International Journal of Audiology. 45: 645 —659.

Fuentemilla, L. L., Marco-Pallarés, J., Munte, T. F., & Grau, C. (2008). Theta EEG oscillatory
activity and auditory change detection. Brain Research, 1220, 93-101.
https://doi.org/10.1016/j.brainres.2007.07.079

Gansonre, C., Hgjlund, A., Leminen, A., Bailey, C., & Shtyrov, Y. (2018). Task-free auditory EEG
paradigm for probing multiple levels of speech processing in the brain. Psychophysiology,
55(11), e13216. https://doi.org/10.1111/psyp.13216

Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: a
review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453-463.
https://doi.org/10.1016/j.clinph.2008.11.029

Gillis, M., Kries, J., Vandermosten, M., & Francart, T. (2023). Neural tracking of linguistic and

acoustic speech representations decreases with advancing age. Neurolmage, 267, 119841.

Gillis, M., Vanthornhout, J., Simon, Tom Francart, & Brodbeck, C.( 2021). Neural Markers of
Speech Comprehension: Measuring EEG Tracking of Linguistic Speech Representations,
Controlling the Speech Acoustics. Journal of Neuroscience, 41 (50) 10316-10329; DOI:
10.1523/JNEUROSCI.0812-21.2021

Gillis, M., Van Canneyt, J., Francart, T. & Vanthornhout, J. (2022). Neural tracking as a diagnostic
tool to assess the auditory pathway. Hearing Research, Volume 426, 108607, ISSN 0378-5955,
https://doi.org/10.1016/j.heares.2022.108607

Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: emerging
computational principles and operations. Nature Neuroscience, 15(4), 511-517.
https://doi.org/10.1038/nn.3063

Giraud, A.-L., Kleinschmidt, A., Poeppel, D., Lund, T. E., Frackowiak, R. S. J., and Laufs, H. (2007).
Endogenous cortical rhythms determine cerebral specialization for speech perception and
production. Neuron 56, 1127-1134. https://doi.org/10.1016/j.neuron.2007.09.038

271


https://doi.org/10.1016/B978-0-444-62630-1.00010-X
https://doi.org/10.1038/s41562-017-0184-4
https://doi.org/10.1016/j.conb.2012.10.002
https://doi.org/10.1016/j.brainres.2007.07.079
https://doi.org/10.1111/psyp.13216
https://doi.org/10.1016/j.clinph.2008.11.029
https://doi.org/10.1016/j.heares.2022.108607
https://doi.org/10.1038/nn.3063
https://doi.org/10.1016/j.neuron.2007.09.038

Glass, E., Sachse, S., & von Suchodoletz, W. (2008). Development of auditory sensory memory from
2 to 6 years: an MMN study. Journal of Neural Transmission, 115, 1221-1229.
https://doi.org/10.1007/s00702-008-0088-6

Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in
Cognitive Sciences, 15(1), 3-10. https://doi.org/10.1016/j.tics.2010.10.001

Goswami U. (2022). Language acquisition and speech rhythm patterns: an auditory neuroscience
perspective. Royal Society Open Science, 9(7), 211855. https://doi.org/10.1098/rs0s.211855

Gou, Z., Choudhury, N., & Benasich, A. A. (2011). Resting frontal gamma power at 16, 24 and 36
months predicts individual differences in language and cognition at 4 and 5 years. Behavioural
Brain Research, 220(2), 263-270. https://doi.org/10.1016/j.bbr.2011.01.048

Groppe, D.M., Urbach, T.P. and Kutas, M. (2011), Mass univariate analysis of event-related brain
potentials/fields I: A critical tutorial review. Psychophysiology, 48: 1711-1725.
https://doi.org/10.1111/j.1469-8986.2011.01273.

Guardia Gutiérrez, P. A. (2010). The effect of linguistic, phonetic and lexical factors on phonological
skills and reading acquisition in Spanish: A longitudinal study (Doctoral dissertation, University
of Cambridge). Available on https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608697

Guthrie, D., & Buchwald, J. S. (1991). Significance testing of difference potentials.
Psychophysiology, 28(2), 240-244. https://doi.org/10.1111/].1469-8986.1991.tb00417.x

Guttorm, T. K., Leppénen, P. H. T., Hdmél&inen, J. A., Eklund, K. M., & Lyytinen, H. J. (2010).
Newborn Event-Related Potentials Predict Poorer Pre-Reading Skills in Children at Risk for
Dyslexia. Journal of Learning Disabilities, 43(5), 391-401.
https://doi.org/10.1177/0022219409345005

Hamilton, L. S., & Huth, A. G. (2020). The revolution will not be controlled: natural stimuli in speech
neuroscience. Language, Cognition, and Neuroscience, 35(5), 573-582, DOI:
10.1080/23273798.2018.1499946

Hammerer, D., Li, S. C., Volkle, M., Miiller, V., & Lindenberger, U. (2013). A lifespan comparison
of the reliability, test-retest stability, and signal-to-noise ratio of event-related potentials assessed
during performance monitoring. Psychophysiology, 50(1), 111-123.
https://doi.org/10.1111/j.1469-8986.2012.01476.x

Hagoort, P. (2019). The neurobiology of language beyond single-word processing. Science,
366(6461), 55-58. https://doi.org/10.1126/science.aax0289

272


https://doi.org/10.1007/s00702-008-0088-6
https://doi.org/10.1016/j.tics.2010.10.001
https://doi.org/10.1098/rsos.211855
https://doi.org/10.1016/j.bbr.2011.01.048
https://doi.org/10.1111/j.1469-8986.2011.01273
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608697
https://doi.org/10.1111/j.1469-8986.1991.tb00417.x
https://doi.org/10.1177/0022219409345005
https://doi.org/10.1111/j.1469-8986.2012.01476.x
https://doi.org/10.1126/science.aax0289

Hazan, V., & Barrett, S. (2000). The development of phonemic categorization in children aged 6-12.
Journal of Phonetics, 28(4), 377-396. https://doi.org/10.1006/jph0.2000.0121

Heilbron, M., & Chait, M. (2018). Great expectations: is there evidence for predictive coding in
auditory cortex?. Neuroscience, 389, 54-73. DOI: 10.1016/j.neuroscience.2017.07.061

Heilbron, M., Armeni, K., Schoffelen, J. M., Hagoort, P., & De Lange, F. P. (2022). A hierarchy of
linguistic predictions during natural language comprehension. Proceedings of the National
Academy of Sciences, 119(32), €2201968119 https://doi.org/10.1073/pnas.2201968119

Heim, S., Friedman, J. T., Keil, A., & Benasich, A. A. (2011). Reduced sensory oscillatory activity
during rapid auditory processing as a correlate of language-learning impairment. Journal of
Neurolinguistics, 24(5), 538-555. DOI: 10.1016/j.jneuroling.2010.09.006

Heim, S., Keil, A., Choudhury, N., Thomas Friedman, J., & Benasich, A. A. (2013). Early gamma
oscillations during rapid auditory processing in children with a language-learning impairment:
changes in neural mass activity after training. Neuropsychologia, 51(5), 990-1001.
https://doi.org/10.1016/j.neuropsychologia.2013.01.011

Hickok, G., & Poeppel, D. (2016). Neural basis of speech perception. Neurobiology of Language,
299-310. https://doi.org/10.1016/B978-0-12-407794-2.00025-0

Houweling, T., Becker, R., & Hervais-Adelman, A. (2020). The noise-resilient brain; Resting-state
oscillatory activity predicts words-in-noise recognition. Brain and Language, 202, 104727.
https://doi.org/10.1016/j.bandl.2019.104727

Hsiao, F. J., Cheng, C. H., Liao, K. K., & Lin, Y. Y. (2010). Cortico-cortical phase synchrony in
auditory mismatch processing. Biological Psychology, 84(2), 336-345.
https://doi.org/10.1016/j.biopsycho.2010.03.019

Hsiao, F. J., Wu, Z. A., Ho, L. T., & Lin, Y. Y. (2009). Theta oscillation during auditory change
detection: an MEG study. Biological Psychology, 81(1), 58-66.
https://doi.org/10.1016/j.biopsycho.2009.01.007

Hudson, M. R., & Jones, N. C. (2022). Deciphering the code: Identifying true gamma neural
oscillations. Experimental neurology, 357, 114205.
https://doi.org/10.1016/j.expneurol.2022.114205

Jaaskelainen, 1. P., Ahveninen, J., Bonmassar, G., Dale, A. M., llmoniemi, R. J., Levénen, S., ... &
Belliveau, J. W. (2004). Human posterior auditory cortex gates novel sounds to consciousness.
Proceedings of the National Academy of Sciences, 101(17), 6809-6814.
https://doi.org/10.1073/pnas.0303760101

273


https://doi.org/10.1006/jpho.2000.0121
https://doi.org/10.1073/pnas.2201968119
https://doi.org/10.1016/j.neuropsychologia.2013.01.011
https://doi.org/10.1016/B978-0-12-407794-2.00025-0
https://doi.org/10.1016/j.bandl.2019.104727
https://doi.org/10.1016/j.biopsycho.2010.03.019
https://doi.org/10.1016/j.biopsycho.2009.01.007
https://doi.org/10.1073/pnas.0303760101

Jacobsen, T., BaR, P., Roye, A., Winkler, I., Schréger, E., & Horvath, J. (2021). Word class and word
frequency in the MMN looking glass. Brain and Language, 218, 104964.
https://doi.org/10.1016/j.bandl.2021.104964

Jackson, A.F. and Bolger, D.J. (2014), Neurophysiological bases of EEG. Psychophysiol, 51: 1061-
1071. https://doi.org/10.1111/psyp.12283

Jessen, S., Fiedler, L., Munte, T. F., & Obleser, J. (2019). Quantifying the individual auditory and
visual brain response in 7-month-old infants watching a brief cartoon movie. Neurolmage, 202,
116060. https://doi.org/10.1016/j.neuroimage.2019.116060

Jessen, S., Obleser, J., & Tune, S. (2021). Neural tracking in infants—An analytical tool for
multisensory social processing in development. Developmental Cognitive Neuroscience, 52,
101034. doi: 10.1016/j.dcn.2021.101034

Jochaut, D., Lehongre, K., Saitovitch, A., Devauchelle, A. D., Olasagasti, I., Chabane, N. ... &
Giraud, A. L. (2015). Atypical coordination of cortical oscillations in response to speech in
autism. Frontiers in Human Neuroscience, 9, 171. https://doi.org/10.3389/fnhum.2015.00171

Kalashnikova, M., Peter, V., Di Liberto, G.M. et al. Infant-directed speech facilitates seven-month-old
infants’ cortical tracking of speech. Sci Rep 8, 13745 (2018). doi:10.1038/s41598-018-32150-6

Kappenman, E. S., Farrens, J. L., Zhang, W., Stewart, A. X., & Luck, S. J. (2021). ERP CORE: An
open resource for human event-related potential research. Neurolmage, 225, 117465.
https://doi.org/10.1016/j.neuroimage.2020.117465

Kawahara, H., Morise, M., Takahashi, T., Nisimura, R., Irino, T., & Banno, H. (2008). “TANDEM-
STRAIGHT: A temporally stable power spectral representation for periodic signals and
applications to interference-free spectrum, FO, and aperiodicity estimation,” in Proceedings of

International Conference on Acoustics, Speech and Signal Processing, pp. 3933-3936.

Kikuchi, M., Shitamichi, K., Yoshimura, Y., Ueno, S., Remijn, G. B., Hirosawa, T., . Minabe, Y.
(2011). Lateralized theta wave connectivity and language performance in 2- to 5-year-old
children. J Neurosci, 31(42), 14984-14988. doi:10.1523/jneurosci.2785-11.2011

Kisler, T. and Reichel U. D. and Schiel, F. (2017). WebMAUS: Multilingual processing of speech via
web services, Computer Speech & Language, Volume 45, September 2017, pages 326-347,
https://doi.org/10.1016/j.csl.2017.01.005

Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information.
Trends in cognitive sciences, 16(12), 606-617.

274


https://doi.org/10.1016/j.bandl.2021.104964
https://doi.org/10.1111/psyp.12283
https://doi.org/10.1016/j.neuroimage.2019.116060
https://doi.org/10.3389/fnhum.2015.00171
https://doi.org/10.1038/s41598-018-32150-6
https://doi.org/10.1016/j.neuroimage.2020.117465
https://doi.org/10.1016/j.csl.2017.01.005

Ko, D., Kwon, S., Lee, G. T., Im, C. H., Kim, K. H., & Jung, K. Y. (2012). Theta oscillation related to
the auditory discrimination process in mismatch negativity: oddball versus control paradigm.
Journal of Clinical Neurology, 8(1), 35-42. https://doi.org/10.3988/jcn.2012.8.1.35

Kosem, A., & Van Wassenhove, V. (2017). Distinct contributions of low-and high-frequency neural
oscillations to speech comprehension. Language, Cognition and Neuroscience, 32(5), 536-544.
https://doi.org/10.1080/23273798.2016.1238495

Kraus, N., McGee, T., Micco, A., Sharma, A., Carrell, T., & Nicol, T. (1993). Mismatch negativity in
school-age children to speech stimuli that are just perceptibly different. Electroencephalography
and Clinical Neurophysiology/Evoked Potentials Section, 88(2), 123-130.
https://doi.org/10.1016/0168-5597(93)90063-U

Kubanek, J., Brunner, P., Gunduz, A., Poeppel, D., & Schalk, G. (2013). The tracking of speech
envelope in the human cortex. PloS One, 8(1), €53398. doi.org/10.1371/journal.pone.0053398

Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67(5), 713-727. DOI
10.1016/j.neuron.2010.08.038

Kuhl, P., & Rivera-Gaxiola, M. (2008). Neural substrates of language acquisition. Annu. Rev.
Neurosci., 31, 511-534. https://doi.org/10.1146/annurev.neuro.30.051606.094321

Kujala, T., & Leminen, M. (2017). Low-level neural auditory discrimination dysfunctions in specific
language impairment—A review on mismatch negativity findings. Developmental Cognitive
Neuroscience, 28, 65-75. DOI: 10.1016/j.dcn.2017.10.005

Kujala, T., Tervaniemi, M., & Schroger, E. (2007). The mismatch negativity in cognitive and clinical
neuroscience: theoretical and methodological considerations. Biological Psychology, 74(1), 1-19.
https://doi.org/10.1016/j.biopsycho.2006.06.001

Kuuluvainen, S., Nevalainen, P., Sorokin, A., Mittag, M., Partanen, E., Putkinen, V., & Kujala, T.
(2014). The neural basis of sublexical speech and corresponding nonspeech processing: a
combined EEG-MEG study. Brain and Language, 130, 19-32.
https://doi.org/10.1016/j.bandl.2014.01.008

Kuuluvainen, S., Alku, P., Makkonen, T., Lipsanen, J., & Kujala, T. (2016). Cortical speech and non-
speech discrimination in relation to cognitive measures in preschool children. European Journal
of Neuroscience, 43(6), 738-750. https://doi.org/10.1111/ejn.13141

Kwok, E. Y., Cardy, J. O., Allman, B. L., Allen, P., & Herrmann, B. (2019). Dynamics of
spontaneous alpha activity correlate with language ability in young children. Behavioural Brain
Research, 359, 56-65 https://doi.org/10.1016/j.bbr.2018.10.024

275


https://doi.org/10.3988/jcn.2012.8.1.35
https://doi.org/10.1080/23273798.2016.1238495
https://doi.org/10.1016/0168-5597(93)90063-U
https://doi.org/10.1371/journal.pone.0053398
https://doi.org/10.1146/annurev.neuro.30.051606.094321
https://doi.org/10.1016/j.biopsycho.2006.06.001
https://doi.org/10.1016/j.bandl.2014.01.008
https://doi.org/10.1111/ejn.13141
https://doi.org/10.1016/j.bbr.2018.10.024

Ladanyi, E., Persici, V., Fiveash, A., Tillmann, B., & Gordon, R. L. (2020). Is atypical rhythm a risk
factor for developmental speech and language disorders? Wiley interdisciplinary reviews.
Cognitive Science, 11(5), €1528. https://doi.org/10.1002/wcs.1528

Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE. Entrainment of neuronal oscillations as a
mechanism of attentional selection. Science. 2008;320: 110-113 DOI: 10.1126/science.1154735

Lakatos, P., Gross, J., & Thut, G. (2019). A new unifying account of the roles of neuronal
entrainment. Current Biology, 29(18), R890-R905. https://doi.org/10.1016/j.cub.2019.07.075

Lee, C. Y., Yen, H. L., Yeh, P. W., Lin, W. H., Cheng, Y. Y., Tzeng, Y. L., & Wu, H. C. (2012).
Mismatch responses to lexical tone, initial consonant, and vowel in Mandarin-speaking
preschoolers. Neuropsychologia, 50(14), 3228-3239.
https://doi.org/10.1016/j.neuropsychologia.2012.08.025

Leonard, L. B. (2014). Children with specific language impairment. MIT press.

Leonard, M. K., & Chang, E. F. (2014). Dynamic speech representations in the human temporal
lobe. Trends in Cognitive Sciences, 18(9), 472-479. doi: 10.1016/j.tics.2014.05.001

Leong, V., & Goswami, U. (2014). Impaired extraction of speech rhythm from temporal modulation
patterns in speech in developmental dyslexia. Frontiers in Human Neuroscience, 8, 96.
https://doi.org/10.3389/fnhum.2014.00096

Leong, V., & Goswami, U. (2015). Acoustic-emergent phonology in the amplitude envelope of child-
directed speech. PloS One, 10(12), e0144411. https://doi.org/10.1371/journal.pone.0144411

Linnavalli, T., Putkinen, V., Huotilainen, M., & Tervaniemi, M. (2017). Phoneme processing skills
are reflected in children's MMN responses. Neuropsychologia, 101, 76-84.
https://doi.org/10.1016/j.neuropsychologia.2017.05.013

Lohvansuu, K., Hamaléinen, J. A., Ervast, L., Lyytinen, H., & Leppanen, P. H. (2018). Longitudinal

interactions between brain and cognitive measures on reading development from 6 months to 14
years. Neuropsychologia, 108, 6-12. https://doi.org/10.1016/j.neuropsychologia.2017.11.018

Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-
related potentials. Frontiers in Human Neuroscience, 8, 213.
https://doi.org/10.3389/fnhum.2014.00213

Lovio, R., Pakarinen, S., Huotilainen, M., Alku, P., Silvennoinen, S., Nditénen, R., & Kujala, T.
(2009). Auditory discrimination profiles of speech sound changes in 6-year-old children as
determined with the multi-feature MMN paradigm. Clinical Neurophysiology, 120(5), 916-921.
https://doi.org/10.1016/j.clinph.2009.03.010

276


https://doi.org/10.1002/wcs.1528
https://doi.org/10.1126/science.1154735
https://doi.org/10.1016/j.cub.2019.07.075
https://doi.org/10.1016/j.neuropsychologia.2012.08.025
https://doi.org/10.3389/fnhum.2014.00096
https://doi.org/10.1371/journal.pone.0144411
https://doi.org/10.1016/j.neuropsychologia.2017.05.013
https://doi.org/10.1016/j.neuropsychologia.2017.11.018
https://doi.org/10.3389/fnhum.2014.00213
https://doi.org/10.1016/j.clinph.2009.03.010

Luck, S. J. (2014). An introduction to the event-related potential technique. MIT press.
Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment
(and why you shouldn't). Psychophysiology, 54(1), 146-157. https://doi.org/10.1111/psyp.12639

Luck, S. J., & Kappenman, E. S. (Eds.). (2011). The Oxford handbook of event-related potential
components. Oxford University Press.

Lum, J. A., Clark, G. M., Bigelow, F. J., & Enticott, P. G. (2022). Resting state
electroencephalography (EEQG) correlates with children’s language skills: Evidence from sentence

repetition. Brain and Language, 230, 105137. https://doi.org/10.1016/j.bandl.2022.105137

Maguire, M. J., & Abel, A. D. (2013). What changes in neural oscillations can reveal about
developmental cognitive neuroscience: Language development as a case in point. Developmental
Cognitive Neuroscience, 6, 125-136. https://doi.org/10.1016/j.dcn.2013.08.002

Mai, G., Minett, J. W., & Wang, W. S. Y. (2016). Delta, theta, beta, and gamma brain oscillations
index levels of auditory sentence processing. Neuroimage, 133, 516-528.
https://doi.org/10.1016/j.neuroimage.2016.02.064

Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics.
Trends in Cognitive Sciences, 8(5), 204-210. https://doi.org/10.1016/j.tics.2004.03.008

Martin, A. E., & Doumas, L. A. (2017). A mechanism for the cortical computation of hierarchical
linguistic structure. PLoS Biology, 15(3), e2000663 https://doi.org/10.1371/journal.pbio.2000663

Maurer, U., Bucher, K., Brem, S., & Brandeis, D. (2003). Development of the automatic mismatch
response: from frontal positivity in kindergarten children to the mismatch negativity. Clinical
Neurophysiology, 114(5), 808-817 doi: 10.1016/s1388-2457(03)00032-4

Mayes, A. K., Reilly, S., & Morgan, A. T. (2015). Neural correlates of childhood language disorder:
A systematic review. Developmental Medicine & Child Neurology, 57(8), 706-717.
https://doi.org/10.1111/dmcn.12714

Meng, X., Sun, C., Du, B,, Liu, L., Zhang, Y., Dong, Q., ... & Nan, Y. (2022). The development of
brain rhythms at rest and its impact on vocabulary acquisition. Developmental Science, 25(2),
e13157. https://doi.org/10.1111/desc.13157

Meyer, L. (2018). The neural oscillations of speech processing and language comprehension: state of
the art and emerging mechanisms. European Journal of Neuroscience, 48(7), 2609-2621.
https://doi.org/10.1111/ejn.13748

277


https://doi.org/10.1111/psyp.12639
https://doi.org/10.1016/j.bandl.2022.105137
https://doi.org/10.1016/j.dcn.2013.08.002
https://doi.org/10.1016/j.neuroimage.2016.02.064
https://doi.org/10.1016/j.tics.2004.03.008
https://doi.org/10.1371/journal.pbio.2000663
https://doi.org/10.1111/dmcn.12714
https://doi.org/10.1111/desc.13157
https://doi.org/10.1111/ejn.13748

Meyer, L., Sun, Y., & Martin, A. E. (2020). Synchronous, but not entrained: exogenous and
endogenous cortical rhythms of speech and language processing. Language, Cognition and
Neuroscience, 35(9), 1089-1099. https://doi.org/10.1080/23273798.2019.1693050

Millman, R. E., Johnson, S. R., & Prendergast, G. (2015). The role of phase-locking to the temporal
envelope of speech in auditory perception and speech intelligibility. Journal of Cognitive
Neuroscience, 27(3), 533-545. doi: https://doi.org/10.1162/jocn_a_00719

Miskovic, V., Ma, X., Chou, C. A, Fan, M., Owens, M., Sayama, H., & Gibb, B. E. (2015).
Developmental changes in spontaneous electrocortical activity and network organization from
early to late childhood. Neuroimage, 118, 237-247.
https://doi.org/10.1016/j.neuroimage.2015.06.013

Molinaro, N., Lizarazu, M., Lallier, M., Bourguignon, M., & Carreiras, M. (2016). Out-of-synchrony
speech entrainment in developmental dyslexia. Human Brain Mapping, 37(8), 2767-2783.
https://doi.org/10.1002/hbm.23206

Morillon, B., Lehongre, K., Frackowiak, R. S., Ducorps, A., Kleinschmidt, A., Poeppel, D., & Giraud,
A. L. (2010). Neurophysiological origin of human brain asymmetry for speech and language.
Proceedings of the National Academy of Sciences, 107(43), 18688-18693.
https://doi.org/10.1073/pnas.1007189107

Morr, M. L., Shafer, V. L., Kreuzer, J. A., & Kurtzberg, D. (2002). Maturation of mismatch negativity
in typically developing infants and preschool children. Ear and Hearing, 23(2), 118-136.
https://doi.org/10.1097/00003446-200204000-00005

Musacchia, G., Choudhury, N. A., Ortiz-Mantilla, S., Realpe-Bonilla, T., Roesler, C. P., & Benasich,
A. A. (2013). Oscillatory support for rapid frequency change processing in infants.
Neuropsychologia, 51(13), 2812-2824. https://doi.org/10.1016/j.neuropsychologia.2013.09.006

Miiller, V., Gruber, W., Klimesch, W., & Lindenberger, U. (2009). Lifespan differences in cortical
dynamics of auditory perception. Developmental Science, 12(6), 839-853.
https://doi.org/10.1111/j.1467-7687.2009.00834.x

Né&atanen, R. (2003). Mismatch negativity: clinical research and possible applications. International
Journal of Psychophysiology, 48(2), 179-188. https://doi.org/10.1016/S0167-8760(03)00053-9

Né&atanen, R., & Alho, K. (1997). Mismatch negativity—the measure for central sound representation
accuracy. Audiology and Neurotology, 2(5), 341-353.
https://doi.org/10.1159/000259255

278


https://doi.org/10.1080/23273798.2019.1693050
https://doi.org/10.1162/jocn_a_00719
https://doi.org/10.1016/j.neuroimage.2015.06.013
https://doi.org/10.1002/hbm.23206
https://doi.org/10.1073/pnas.1007189107
https://doi.org/10.1097/00003446-200204000-00005
https://doi.org/10.1016/j.neuropsychologia.2013.09.006
https://doi.org/10.1111/j.1467-7687.2009.00834.x
https://doi.org/10.1016/S0167-8760(03)00053-9
https://doi.org/10.1159/000259255

Nidtdnen, R., Jacobsen, T., & Winkler, I. (2005). Memory-based or afferent processes in mismatch
negativity (MMN): A review of the evidence. Psychophysiology, 42(1), 25-32.
https://doi.org/10.1111/j.1469-8986.2005.00256.x

Nadténen, R., Kujala, T. & Light, G. (2019). 'The development of MMN', The Mismatch Negativity:
A Window to the Brain (Oxford; online edn, Oxford Academic, 23 May 2019),
https://doi.org/10.1093/0s0/9780198705079.003.0003 , accessed 5 May 2023.

Naatanen R, Lehtokoski A, Lennes M, Cheour M, Huotilainen M, livonen A, Vainio M, Alku P,
liImoniemi RJ, Luuk A, Allik J, Sinkkonen J, Alho K. Language-specific phoneme
representations revealed by electric and magnetic brain responses. Nature. 1997 Jan
30;385(6615):432-4. doi: 10.1038/385432a0. PMID: 9009189.

Nadténen, R., Pakarinen, S., Rinne, T., & Takegata, R. (2004). The Mismatch Negativity (MMN):
Towards the optimal paradigm. Clinical Neurophysiology, 115, 140-144.

Néaatanen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic
research of central auditory processing: a review. Clinical Neurophysiology, 118(12), 2544-2590.

Nallet, C. & Gervain, J. (2022) Atypical neural oscillations in response to speech in infants and
children with speech and language impairments: a systematic review, Hearing, Balance and
Communication, 20:3, 145-154, https://doi.org/10.1080/21695717.2022.2084864

Newbury, D. F., & Monaco, A. P. (2010). Genetic advances in the study of speech and language
disorders. Neuron, 68(2), 309-320. DOI 10.1016/j.neuron.2010.10.001

Niemitalo-Haapola, E., Lapinlampi, S., Kujala, T., Alku, P., Kujala, T., Suominen, K., & Jansson-
Verkasalo, E. (2013). Linguistic multi-feature paradigm as an eligible measure of central auditory
processing and novelty detection in 2-year-old children. Cognitive Neuroscience, 4(2), 99-106.
https://doi:10.1080/17588928.2013.781146

Neuman, A. C., Wroblewski, M., Hajicek, J., & Rubinstein, A. (2010). Combined effects of noise and
reverberation on speech recognition performance of normal-hearing children and adults. Ear and
Hearing, 31(3), 336-344. DOI: 10.1097/AUD.0b013e3181d3d514

Niesen, M., Bourguignon, M., Bertels, J., Vander Ghinst, M., Wens, V., Goldman, S., & De Tiege, X.
(2023). Cortical tracking of lexical speech units in a multi-talker background is immature in
school-aged children. Neurolmage, 265, 119770.
https://doi.org/10.1016/j.neuroimage.2022.119770

Nittrouer, S., Caldwell-Tarr, A., Tarr, E., Lowenstein, J. H., Rice, C., & Moberly, A. C. (2013).

Improving speech-in-noise recognition for children with hearing loss: Potential effects of

279


https://doi.org/10.1111/j.1469-8986.2005.00256.x
https://doi.org/10.1093/oso/9780198705079.003.0003
https://doi.org/10.1080/21695717.2022.2084864
https://doi:10.1080/17588928.2013.781146
https://doi.org/10.1016/j.neuroimage.2022.119770

language abilities, binaural summation, and head shadow. International Journal of Audiology,
52(8), 513-525. _https://doi.org/10.3109/14992027.2013.792957

Norton, E. S., MacNeill, L. A., Harriott, E. M., Allen, N., Krogh-Jespersen, S., Smyser, C.D., ... &
Wakschlag, L. (2021). EEG/ERP as a pragmatic method to expand the reach of infant-toddler
neuroimaging in HBCD: Promises and challenges. Developmental Cognitive Neuroscience, 51,
100988. https://doi.org/10.1016/j.dcn.2021.100988

Obleser, J., & Kayser, C. (2019). Neural entrainment and attentional selection in the listening brain.
Trends in Cognitive Sciences, 23(11), 913-926. https://doi.org/10.1016/j.tics.2019.08.004

Ortiz Barajas, M. C., Guevara, R., & Gervain, J. (2021). The origins and development of speech
envelope tracking during the first months of life. Developmental Cognitive Neuroscience, 48,
100915. https://doi.org/10.1016/j.dcn.2021.100915

Ortiz-Mantilla, S., Hamaldinen, J. A., Musacchia, G., & Benasich, A. A. (2013). Enhancement of
gamma oscillations indicates preferential processing of native over foreign phonemic contrasts in
infants. Journal of Neuroscience, 33(48), 18746-18754.
https://doi.org/10.1523/JNEUROSCI.3260-13.2013

Ortiz-Mantilla, S., Roesler, C. P., Realpe-Bonilla, T., & Benasich, A. A. (2022). Modulation of Theta
Phase Synchrony during Syllable Processing as a Function of Interactive Acoustic Experience in
Infancy. Cerebral Cortex (New York, N.Y.: 1991), 32(5), 919-932.
https://doi.org/10.1093/cercor/bhab256

Oostenveld, R., Fries, P., Maris, E. & Schoffelen, JM. FieldTrip: Open Source Software for Advanced
Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and
Neuroscience, 2011; 2011:156869. https://doi.org/10.1155/2011/156869

Ostlund, B., Donoghue, T., Anaya, B., Gunther, K. E., Karalunas, S. L., Voytek, B., & Pérez-Edgar,
K. E. (2022). Spectral parameterization for studying neurodevelopment: How and why.
Developmental Cognitive Neuroscience, 54, 101073 https://doi.org/10.1016/j.dcn.2022.101073

Palana, J., Schwartz, S., & Tager-Flusberg, H. (2022). Evaluating the use of cortical entrainment to
measure atypical speech processing: a systematic review. Neuroscience & Biobehavioral
Reviews, 133, 104506 https://doi.org/10.1016/j.neubiorev.2021.12.029

Paquette, N., Vannasing, P., Lefrancois, M., Lefebvre, F., Roy, M. S., McKerral, M. ... & Gallagher,
A. (2013). Neurophysiological correlates of auditory and language development: a mismatch
negativity study. Developmental Neuropsychology, 38(6), 386-401.
https://doi.org/10.1080/87565641.2013.805218

280


https://doi.org/10.3109/14992027.2013.792957
https://doi.org/10.1016/j.dcn.2021.100988
https://doi.org/10.1016/j.tics.2019.08.004
https://doi.org/10.1016/j.dcn.2021.100915
https://doi.org/10.1523/JNEUROSCI.3260-13.2013
https://doi.org/10.1093/cercor/bhab256
https://doi.org/10.1155/2011/156869
https://doi.org/10.1016/j.dcn.2022.101073
https://doi.org/10.1016/j.neubiorev.2021.12.029
https://doi.org/10.1080/87565641.2013.805218

Park, H., Ince, R. A., Schyns, P. G., Thut, G., & Gross, J. (2015). Frontal top-down signals increase
coupling of auditory low-frequency oscillations to continuous speech in human listeners. Current
Biology, 25(12), 1649-1653. http://dx.doi.org/10.1016/j.cub.2015.04.049

Pavez, M. (2003). Test exploratorio de gramatica espafiola de A. Toronto, Aplicacién en Chile.
Santiago, Ediciones Universidad Catdlica de Chile.

Pavez, M. (2004). Test de Comprension Auditiva del Lenguaje de E. Carrow, Aplicacion en Chile.

Santiago, Chile. Escuela de Fonoaudiologia, Facultad de Medicina, Universidad de Chile.

Pavez, M., Coloma, C. J., & Maggiolo, M. (2008). Test para evaluar procesos de simplificacion
fonologica: Teprosif-R (2a ed.). Eds. Universidad Catolica de Chile.

Peelle, J. E., Johnsrude, I., & Davis, M. H. (2010). Hierarchical processing for speech in human
auditory cortex and beyond. Frontiers in Human Neuroscience, 4, 1735.
https://doi.org/10.3389/fnhum.2010.00051

Pefia, M., Maki, A., Kovaci¢, D., Dehaene-Lambertz, G., Koizumi, H., Bouquet, F., & Mehler, J.
(2003). Sounds and silence: an optical topography study of language recognition at birth.
Proceedings of the National Academy of Sciences, 100(20), 11702-11705.
https://doi.org/10.1073/pnas.1934290100

Pefia, M., & Melloni, L. (2012). Brain oscillations during spoken sentence processing. Journal of
Cognitive Neuroscience, 24(5), 1149-1164. https://doi.org/10.1162/jocn_a_ 00144

Perone, S., Palanisamy, J., & Carlson, S. M. (2018). Age-related change in brain rhythms from early
to middle childhood: Links to executive function. Developmental Science, 21(6), e12691.
https://doi.org/10.1111/desc.12691

Petit, S., Badcock, N. A., Grootswagers, T., & Woolgar, A. (2020). Unconstrained multivariate EEG
decoding can help detect lexical-semantic processing in individual children. Scientific Reports,
10(1), 10849. https://doi.org/10.1038/s41598-020-67407-6

Poeppel, D. (2001). Pure word deafness and the bilateral processing of the speech code. Cognitive
Science, 25(5), 679-693. https://doi.org/10.1016/S0364-0213(01)00050-7

Poeppel, D. (2003). The analysis of speech in different temporal integration windows: cerebral
lateralization as ‘asymmetric sampling in time’. Speech Communication, 41(1), 245-255.
https://doi.org/10.1016/S0167-6393(02)00107-3

Poeppel, D., & Assaneo, M. F. (2020). Speech rhythms and their neural foundations. Nature Reviews
Neuroscience, 21(6), 322-334. https://doi.org/10.1038/s41583-020-0304-4

281


http://dx.doi.org/10.1016/j.cub.2015.04.049
https://doi.org/10.3389/fnhum.2010.00051
https://doi.org/10.1073/pnas.1934290100
https://doi.org/10.1162/jocn_a_00144
https://doi.org/10.1111/desc.12691
https://doi.org/10.1038/s41598-020-67407-6
https://doi.org/10.1016/S0364-0213(01)00050-7
https://doi.org/10.1016/S0167-6393(02)00107-3
https://doi.org/10.1038/s41583-020-0304-4

Poulsen, C., Picton, T. W., & Paus, T. (2009). Age-related changes in transient and oscillatory brain
responses to auditory stimulation during early adolescence. Developmental Science, 12(2), 220-
235. https://doi.org/10.1111/j.1467-7687.2008.00760.x

Power, A. J., Colling, L. J., Mead, N., Barnes, L., & Goswami, U. (2016). Neural encoding of the
speech envelope by children with developmental dyslexia. Brain and Language, 160, 1-10.
https://doi.org/10.1016/j.bandl.2016.06.006

Pulvermiller, F., T. Kujala, Y. Shtyrov, J. Simola, H. Tiitinen, P. Alku, K. Alho, S. Martinkauppi,
R.J. llmoniemi, R. Naatéanen, Memory traces for words as revealed by the mismatch negativity,
Neurolmage 14 (2001) 607-616.

Ramus, F., Marshall, C. R., Rosen, S., & van der Lely, H. K. (2013). Phonological deficits in specific
language impairment and developmental dyslexia: Towards a multidimensional model. Brain,
136(2), 630-645, doi: 10.1093/brain/aws356

Reetzke, R., Gnanateja, G. N., & Chandrasekaran, B. (2021). Neural tracking of the speech envelope
is differentially modulated by attention and language experience. Brain and Language, 213,
104891. https://doi.org/10.1016/j.bandl.2020.104891

Richards, S., & Goswami, U. (2019). Impaired recognition of metrical and syntactic boundaries in
children with developmental language disorders. Brain Sciences, 9(2), 33
https://doi.org/10.3390/brainsci9020033

Rios-L6pez, P., Molinaro, N., Bourguignon, M., & Lallier, M. (2020). Development of neural
oscillatory activity in response to speech in children from 4 to 6 years old. Developmental
Science, 23(6), €12947. https://doi.org/10.1111/desc.12947

Rivera-Gaxiola, M., Silva-Pereyra, J., & Kuhl, P. K. (2005). Brain potentials to native and non-native
speech contrasts in 7-and 11-month-old American infants. Developmental Science, 8(2), 162-172.
https://doi.org/10.1111/j.1467-7687.2005.00403.x

Rodriguez-Martinez, E. 1., Barriga-Paulino, C. I., Rojas-Benjumea, M. A., & Gémez, C. M. (2015).
Co-maturation of theta and low-beta rhythms during child development. Brain Topography,
28(2), 250-260. https://doi.org/10.1007/s10548-014-0369-3

Rodriguez-Martinez, E. I., Ruiz-Martinez, F. J., Barriga Paulino, C. I., & Gémez, C. M. (2017).
Frequency shift in topography of spontaneous brain rhythms from childhood to adulthood.
Cognitive Neurodynamics, 11(1), 23-33. https://doi.org/10.1007/s11571-016-9402-4

282


https://doi.org/10.1111/j.1467-7687.2008.00760.x
https://doi.org/10.1016/j.bandl.2016.06.006
https://doi.org/10.1016/j.bandl.2020.104891
https://doi.org/10.3390/brainsci9020033
https://doi.org/10.1111/desc.12947
https://doi.org/10.1111/j.1467-7687.2005.00403.x
https://doi.org/10.1007/s10548-014-0369-3
https://doi.org/10.1007/s11571-016-9402-4

Rosen, S. (1992). Temporal information in speech: acoustic, auditory, and linguistic aspects.
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,
336(1278), 367-373.

Rosen, S. (2003). Auditory processing in dyslexia and specific language impairment: Is there a
deficit? What is its nature? Does it explain anything? Journal of Phonetics, 31(3-4), 509-527.
https://doi.org/10.1016/S0095-4470(03)00046-9

Saby, J. N., & Marshall, P. J. (2012). The utility of EEG band power analysis in the study of infancy
and early childhood. Developmental Neuropsychology, 37(3), 253-273.
https://doi.org/10.1080/87565641.2011.614663

Sadowsky, Scott, & Martinez-Gamboa, R. 2012. LIFCACH 2.0: Word Frequency List of Chilean
Spanish (Lista de Frecuencias de Palabras del Castellano de Chile), version 2.0. Zenodo.
http://doi.org/10.5281/zen0do.268043

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants.
Science, 274(5294), 1926-1928. https://doi.org/10.1126/science.274.5294.1926

Sanes, D. H., & Woolley, S. M. (2011). A behavioral framework to guide research on central auditory
development and plasticity. Neuron, 72(6), 912-929.
https://doi.org/10.1016/j.neuron.2011.12.005

Sassenhagen, J. (2019). How to analyse electrophysiological responses to naturalistic language with
time-resolved multiple regression. Language, Cognition and Neuroscience, 34(4), 474-490.
https://doi.org/10.1080/23273798.2018.1502458

Scharinger, M., Monahan, P. J., & Idsardi, W. J. (2016). Linguistic category structure influences early
auditory processing: Converging evidence from mismatch responses and cortical oscillations.
Neurolmage, 128, 293-301. https://doi.org/10.1016/j.neuroimage.2016.01.003

Schmidt, M. T., Kanda, P. A., Basile, L. F., da Silva Lopes, H. F., Baratho, R., Demario, J. L., Jorge,
M. S., Nardi, A. E., Machado, S., lanof, J. N., Nitrini, R., & Anghinah, R. (2013). Index of
alpha/theta ratio of the electroencephalogram: a new marker for Alzheimer's disease. Frontiers in
Aging Neuroscience, 5, 60. https://doi.org/10.3389/fnagi.2013.00060

Schwartz, R. G. (Ed.). (2017). Handbook of child language disorders. Psychology press.

Shafer, V. L., Morr, M. L., Kreuzer, J. A., & Kurtzberg, D. (2000). Maturation of mismatch negativity
in school-age children. Ear and Hearing, 21(3), 242-251. https://doi.org/10.1097/00003446-
200006000-00008

283


https://doi.org/10.1016/S0095-4470(03)00046-9
https://doi.org/10.1080/87565641.2011.614663
http://doi.org/10.5281/zenodo.268043
https://doi.org/10.1126/science.274.5294.1926
https://doi.org/10.1016/j.neuron.2011.12.005
https://doi.org/10.1080/23273798.2018.1502458
https://doi.org/10.1016/j.neuroimage.2016.01.003
https://doi.org/10.3389/fnagi.2013.00060
https://doi.org/10.1097/00003446-200006000-00008
https://doi.org/10.1097/00003446-200006000-00008

Shafer, V. L., Yan, H. Y., & Datta, H. (2010). Maturation of speech discrimination in 4-to 7-yr-old
children as indexed by event-related potential mismatch responses. Ear and Hearing, 31(6), 735-
745. DOI: 10.1097/AUD.0b013e3181e5d1a7

Shtyrov, Y., Kimppa, L., Pulvermiller, F., & Kujala, T. (2011). Event-related potentials reflecting the
frequency of unattended spoken words: A neuronal index of connection strength in lexical
memory circuits? Neuroimage, 55(2), 658-668. https://doi.org/10.1371/journal.pone.0022999

Skeide, M. A., & Friederici, A. D. (2016). The ontogeny of the cortical language network. Nature
reviews. Neuroscience, 17(5), 323-332. https://doi.org/10.1038/nrn.2016.23
Skeide, M. A., Brauer, J. & Friederici, A. D., (2015). Brain functional and structural predictors of

language performance. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhv042

Skipper, J. 1. (2014). Echoes of the spoken past: how auditory cortex hears context during speech
perception. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1651),
20130297. https://doi.org/10.1098/rstb.2013.0297

Sohoglu, E., Peelle, J. E., Carlyon, R. P., & Davis, M. H. (2012). Predictive top-down integration of
prior knowledge during speech perception. Journal of Neuroscience, 32 (25), 8443-8453. DOI:
https://doi.org/10.1523/JNEUROSCI1.5069-11.2012

Song, J., & Iverson, P. (2018). Listening effort during speech perception enhances auditory and
lexical processing for non-native listeners and accents. Cognition, 179, 163-170.
https://doi.org/10.1016/j.cognition.2018.06.001

Song, J., Martin, L., & Iverson, P. (2020). Auditory neural tracking and lexical processing of speech
in noise: Masker type, spatial location, and language experience. The Journal of the Acoustical
Society of America, 148(1), 253. https://doi.org/10.1121/10.0001477

StrauB, A., Wadstmann, M., & Obleser, J. (2014). Cortical alpha oscillations as a tool for auditory
selective inhibition. Frontiers in Human Neuroscience, 8, 350.
https://doi.org/10.3389/fnhum.2014.00350

Stroganova, T. A. and Orekhova, E. V. 2007. “EEG and infant states”. In Infant EEG and event-
related potentials, Edited by: de Hann, M. 251-287. New York, NY: Psychology Press.

Sussman, E., Kujala, T., Halmetoja, J., Lyytinen, H., Alku, P., & Naatanen, R. (2004). Automatic and
controlled processing of acoustic and phonetic contrasts. Hearing Research, 190(1-2), 128-140.
https://doi.org/10.1016/S0378-5955(04)00016-4

284


https://doi.org/10.1371/journal.pone.0022999
https://doi.org/10.1038/nrn.2016.23
http://dx.doi.org/10.1093/cercor/bhv042
https://doi.org/10.1098/rstb.2013.0297
https://doi.org/10.1523/JNEUROSCI.5069-11.2012
https://doi.org/10.1016/j.cognition.2018.06.001
https://doi.org/10.1121/10.0001477
https://doi.org/10.3389/fnhum.2014.00350
https://doi.org/10.1016/S0378-5955(04)00016-4

Takano, T., & Ogawa, T. (1998). Characterization of developmental changes in EEG-gamma band
activity during childhood using the autoregressive model. Pediatrics International, 40(5), 446-
452. https://doi.org/10.1111/].1442-200X.1998.th01966.x

Tallal P, Miller SL, Jenkins WM, Merzenich MM. The role of temporal processing in developmental
language-based learning disorders: research and clinical implications. In:

Blachman BA. (ed) Foundations of Reading Acquisition and Dyslexia: Implications for Early
Intervention. Mahwah, NJ: Lawrence Erlbaum, 1997; 49-66

Thompson, E. C., Carr, K. W., White-Schwoch, T., Otto-Meyer, S., & Kraus, N. (2017). Individual
differences in speech-in-noise perception parallel neural speech processing and attention in
preschoolers. Hearing Research, 344, 148-157. https://doi.org/10.1016/j.heares.2016.11.007

Thompson, E. C., Krizman, J., White-Schwaoch, T., Nicol, T., Estabrook, R., & Kraus, N. (2019).
Neurophysiological, linguistic, and cognitive predictors of children’s ability to perceive speech in
noise. Developmental Cognitive Neuroscience, 39, 100672.
https://doi.org/10.1016/j.dcn.2019.100672

Thompson, E. C., Woodruff Carr, K., White-Schwoch, T., Tierney, A., Nicol, T., & Kraus, N. (2016).
Hemispheric asymmetry of endogenous neural oscillations in young children: implications for
hearing speech in noise. Scientific Reports, 6(1), 19737. https://doi.org/10.1038/srep19737

Tierney, A., Strait, D. L., O’Connell, S., & Kraus, N. (2013). Developmental changes in resting
gamma power from age three to adulthood. Clinical neurophysiology: official journal of the
International Federation of Clinical Neurophysiology, 124(5), 1040.
https://doi.org/10.1016%2Fj.clinph.2012.09.023

Tomblin, J. B., Records, N. L., Buckwalter, P., Zhang, X., Smith, E., & O’Brien, M. (1997).
Prevalence of specific language impairment in kindergarten children. Journal of Speech,
Language, and Hearing Research, 40(6), 1245-1260. https://doi.org/10.1044/jslhr.4006.1245

Trainor, J. L., Samuel, S. S., Desjardins, N. R., & Sonnadara, R. R. (2001). Measuring temporal
resolution in infants using mismatch negativity. NeuroReport, 12(11), 2443-8,
https://doi.org/10.1097/00001756-200108080-00031

Uhlhaas, P. J., Roux, F., Singer, W., Haenschel, C., Sireteanu, R., & Rodriguez, E. (2009). The
development of neural synchrony reflects late maturation and restructuring of functional
networks in humans. Proceedings of the National Academy of Sciences, 106(24), 9866-9871.
https://doi.org/10.1073/pnas.0900390106

285


https://doi.org/10.1111/j.1442-200X.1998.tb01966.x
https://doi.org/10.1016/j.heares.2016.11.007
https://doi.org/10.1016/j.dcn.2019.100672
https://doi.org/10.1038/srep19737
https://doi.org/10.1016%2Fj.clinph.2012.09.023
https://doi.org/10.1044/jslhr.4006.1245
https://doi.org/10.1097/00001756-200108080-00031
https://doi.org/10.1073/pnas.0900390106

Uhlhaas, P. J., Roux, F., Rodriguez, E., Rotarska-Jagiela, A., & Singer, W. (2010). Neural synchrony
and the development of cortical networks. Trends in Cognitive Sciences, 14(2), 72-80.
https://doi.org/10.1016/j.tics.2009.12.002

van Diepen, R. M., & Mazaheri, A. (2018). The caveats of observing inter-trial phase-coherence in
cognitive neuroscience. Scientific Reports, 8(1), 2990. doi.org/10.1038/s41598-018-20423-7

van Linden, S., Stekelenburg, J. Tuomainen, J.& Vroomen, J. (2007). Lexical effects on auditory
speech perception: an electrophysiological study, Neurosci. Lett. 420, 49-52. DOI:
10.1016/j.neulet.2007.04.006

Volpert-Esmond, H. I., Page-Gould, E., & Bartholow, B. D. (2021). Using multilevel models for the
analysis of event-related potentials. International Journal of Psychophysiology, 162, 145-156.
https://doi.org/10.1016/j.ijpsycho.2021.02.006

Walley, A. C. (2008). Speech perception in childhood. In D. B. Pisoni & R. E. Remez (Eds.), The
handbook of speech perception (pp. 449-468). Blackwell Publishing.

Weiss-Croft, L. J., & Baldeweg, T. (2015). Maturation of language networks in children: A systematic
review of 22 years of functional MRI. Neurolmage, 123, 269-281.
https://doi.org/10.1016/j.neuroimage.2015.07.046

Vander Ghinst, M., Bourguignon, M., Niesen, M., Wens, V., Hassid, S., Choufani, G., Jousméki, V.,
Hari, R., Goldman, S., & De Tiége, X. (2019). Cortical Tracking of Speech-in-Noise Develops
from Childhood to Adulthood. The Journal of Neuroscience: The official journal of the Society
for Neuroscience, 39(15), 2938-2950. https://doi.org/10.1523/JNEUROSCI.1732-18.2019

Vanvooren, S., Hofmann, M., Poelmans, H., Ghesquiére, P., & Wouters, J. (2015). Theta, beta and
gamma rate modulations in the developing auditory system. Hearing Research, 327, 153-162.
https://doi.org/10.1016/j.heares.2015.06.011

Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: phase
synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229-239.
https://doi.org/10.1038/35067550

Varela Moraga, V. M., & Barbieri, Z. D. (2015). PECFO. Prueba de evaluacion de conciencia

fonoldgica: manual anual y set de laminas.

Vergara, R. C., Jaramillo-Riveri, S., Luarte, A., Moénne-Loccoz, C., Fuentes, R., Couve, A., &
Maldonado, P. E. (2019). The Energy Homeostasis Principle: Neuronal Energy Regulation
Drives Local Network Dynamics Generating Behavior. Frontiers in Computational
Neuroscience, 13, 49. https://doi.org/10.3389/fncom.2019.00049

286


https://doi.org/10.1016/j.tics.2009.12.002
https://doi.org/10.1038/s41598-018-20423-z
https://doi.org/10.1016/j.ijpsycho.2021.02.006
https://doi.org/10.1016/j.neuroimage.2015.07.046
https://doi.org/10.1523/JNEUROSCI.1732-18.2019
https://doi.org/10.1016/j.heares.2015.06.011
https://doi.org/10.1038/35067550
https://doi.org/10.3389/fncom.2019.00049

Wang, L., Krishnan, A., & Gandour, J. T. (2021). Neural tracking of the temporal envelope of speech
in children. Journal of Speech, Language, and Hearing Research, 64(3), 758-769. doi:
10.1016/j.bandl.2020.104891

Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011).
Evidence for a hierarchy of predictions and prediction errors in human cortex. Proceedings of the
National Academy of Sciences of the United States of America, 108(51), 20754-20759.
https://doi.org/10.1073/pnas.1117807108

Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence—Second Edition Manual.

Bloomington, MN: Pearson.

Wilson, A. C., & Bishop, D. V. M. (2018). Resounding failure to replicate links between
developmental language disorder and cerebral lateralisation. PeerJ, 6, e4217.
https://doi.org/10.7717/peerj.421

Waunderlich, J. L., & Cone-Wesson, B. K. (2006). Maturation of CAEP in infants and children: a
review. Hearing Research, 212(1-2), 212-223. DOI: 10.1016/j.heares.2005.11.008

Yordanova, J., & Kolev, V. (2008). Event-related brain oscillations in normal development. In L. A.
Schmidt & S. J. Segalowitz (Eds.), Developmental Psychophysiology: Theory, Systems, and
Methods (pp. 15-68). Cambridge University Press.

Zatorre R. & Gandour J (2008). Neural specializations for speech and pitch: moving beyond the
dichotomies. Phil. Trans. R. Soc. B3631087-1104 http://doi.org/10.1098/rstb.2007.2161

Ziegler, J. C., Pech-Georgel, C., George, F., & Lorenzi, C. (2011). Noise on, voicing off: Speech
perception deficits in children with specific language impairment. Journal of Experimental Child
Psychology, 110(3), 362-37 https://doi.org/10.1016/j.jecp.2011.05.001

Zoefel, B., Archer-Boyd, A., & Davis, M. H. (2018). Phase entrainment of brain oscillations causally
modulates neural responses to intelligible speech. Current Biology, 28(3), 401-408.
https://doi.org/10.1016/j.cub.2017.11.071

Zuk, N. J., Murphy, J. W., Reilly, R. B., & Lalor, E. C. (2021). Envelope reconstruction of speech and
music highlights stronger tracking of speech at low frequencies. PLoS Computational Biology,
17(9), e1009358. https://doi.org/10.1371/journal.pcbi.1009358

287


https://doi.org/10.1073/pnas.1117807108
https://doi.org/10.7717/peerj.421
http://doi.org/10.1098/rstb.2007.2161
https://doi.org/10.1016/j.jecp.2011.05.001
https://doi.org/10.1016/j.cub.2017.11.071
https://doi.org/10.1371/journal.pcbi.1009358

Appendices

Appendix 2.1

Epoch Rejection Percentages per Participants for the Speech and Non-Speech Condition

TOTAL EPOCH REJECTION (%)

Participant Speech Nonspeech

St Devl Dev2 Dev3 Dev4 St Devl Dev2 Dev3 Dev4
ADCH_01 7.9 41 8.3 9.7 9.7 229 194 180 208 22.2
ADCH_02 4.8 0.0 2.7 8.3 4.1 236 166 20.8 194 20.8
ADCH_03 7.6 6.9 8.3 41 6.9 225 125 180 111 18.0
ADCH_04 111 6.9 9.7 13.8 9.7 9.3 9.7 9.7 6.9 6.9
ADCH_05 4.5 2.7 4.1 2.7 4.1 2.0 2.7 2.7 2.7 2.7
ADCH_06 1.7 0.0 2.7 2.7 0.0 5.2 5.5 4.1 9.7 2.7
ADCH_07 14.9 15.2 111 15.2 15.2 3.1 4.1 0.0 2.7 1.3
ADCH_08 26.3 27.7 22.2 23.6 18.0 34 8.3 2.7 4.1 0.0
ADCH_09 0.0 0.0 0.0 0.0 0.0 2.0 4.1 2.7 2.7 2.7
ADCH_10 1.3 0.0 2.7 0.0 0.0 1.0 2.7 0.0 0.0 1.3
ADCH_11 11.8 9.7 111 8.3 11.1 13.1 4.1 13.8 11.1 12.5
ADCH_12 18.4 12.5 19.4 111 15.2 15.2 16.6 11.1 13.8 11.1
ADCH_13 7.2 4.1 8.3 8.3 4.1 100 8.3 9.7 16.6 6.9
ADCH_14 1.3 1.3 2.7 1.3 4.1 4.5 2.7 2.7 6.9 2.7
ADCH_15 34 1.3 2.7 55 55 0.0 0.0 0.0 0.0 0.0
ADCH_16 26.3 25.0 26.3 194 16.6 26.7 20.8 22.2 23.6 22.2
ADCH_17 1.0 0.00 4.1 1.3 2.7 8.6 2.7 8.3 8.3 1.3
ADCH_18 51.7 0.0 0.0 0.0 16.6 13 0.0 0.0 0.0 66.6
ADCH_19 184 18.0 194 194 22.2 125 111 13.8 5.5 12.5
ADCH_20 17.0 18.0 18.6 15.2 11.1 28.1 236 20.8 23.6 25.0
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Appendix 2.2

Normality Tests (Shapiro-Wilk) for the Speech and Non-Speech Condition (Experiment 1, Adults)

ERP Time Stimulus Speech Non-Speech
Measure Window Type W p W p
Peak DwW1 0.916 .084 .837 .003
Latency TW1 Dw?2 0.971 .768 .856 .007
Dw3 0.811 .001 .813 .001
Dw4 0.805 .001 970 748
Words 0.76 <.001 - -
DwW1 0.736 <.001 .681 <.001
TW2 Dw2 0.82 .002 .868 011
Dw3 0.835 .003 .902 .045
Dw4 0.944 .285 .902 .046
Words 0.976 .865 -- --
DwW1 0.943 277 978 .899
Mean TW1 Dw2 0.97 .761 .909 .062
Amplitude Dw3 0.922 .109 .957 485
DW4 0.981 .943 937 .208
Words 0.927 133 -- --
DW1 0.929 151 .962 576
TW2 Dw?2 0.979 .92 977 .896
Dw3 0.961 574 .955 447
Dw4 0.849 .005 .961 .555
Words 0.857 .007 - --

Note. Significant tests are indicated in bold fonts. All df = 20
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Appendix 3.1

Phonological awareness Test Forms

Prueba de Evaluacién de la Conciencia Fonoldgica
PROTOCOLO DE REGISTRO GENERAL DE LA PRUEBA

Prof. Flga. Virginia Varela M.
Prof. Flga. Zulema De Barbieri O.

Nombre: . Edaag:

Fecha de nacimiento: Fecha de evaluacion:

CONCIENCIA SILABICA

|. Segmentacidn silabica Ejempio: naranja = 111 (tres)

Respuesta | Respuesta X
Estimulo raota nifio Puntaje
1. Mono Il (dos) 0-1
2. Semaforo | llll (cuatro) 0-1
3. Carabinero |1l (cinco) 0-1
4, Pan I (una) 0-1
5. Tomate Il {tres) 0-1
Total:

Il. ldentificacion de silaba inicial

Ejemplo: lapiz = lana

Estimule Respuastas Puntaje
1. Maleta Mono MANO Raqueta 0-1
2. Palo PATO Pelo Gato 0-1
3. Toro Tina Loro TOMATE 0-1
4. Casa CAMA Estrefia Gato 0-1
5. Goma Pelota GOTA Copa 0-1
Total:

290




11l. Identificacion de silaba final

Ejemplo: gato = zapato

Estimulo Respuestas Puntaje
1. Pelota PEINETA Lana Mosca 0-1
2. Pluma CAMA Plato Luna 0-1
3. Casa Lana Vaso MESA 0-1
4. Naranja Jirafa OREJA Conejo 0-1
5. Espejo Espada 0JO Esponja 0-1
Total:

IV. Omisién de silaba inicial

Ejemplo: cortina = tina

Estimulo Respuestas Puntaje
1. Repolio Remo POLLO Pozo 0-1
2. Zapato PATO Tiza Casa 0-1
3. Cuncuna Luna Copa CUNA 0-1
4. Candado Codo DADO Dedo 0-1
5. Koala ALA Rana Cola 0-1
Total:

V. Omision de silaba final

Ejemplo: casata = casa

Estimulo Respuestas Puntaje
1. Pifiata Pelo PINA Pizza 0-1
2. Cometa COME Cama Mesa 0-1
3. Llavero Conejo LLAVE Perro 0-1
4. Paloma Pila Pato PALO 0-1
5. Pelota PELO Pala Moto 0-1
Total:

VL. Inversién silabica

Ejemplo: llasi = silla '

Estimulo Respuestas Puntaje
1. Nalu Cuna LUNA Nariz 0-1
2. Cafo FOCA Boca Café 0-1
3. Vella Estrella Chala LLAVE 0-1
4. Mago Mano Gota GOMA 0-1
5. Maca Pala CAMA Taza 0-1
Total:
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Appendix 3.2

Children Individual Artifact Rejection Values

TOTAL EPOCH REJECTION (%)

TLD (n=11)

St Devl Dev2 Dev3 Dev4 Total
P03 16.8 194 194 18.1 15.3 17.4
P04 2.4 2.8 0 2.8 5.6 2.6
P05 0.9 14 0 0 0 0.6
P06 25.3 18.1 23.6 194 23.6 23.4
P07 17.1 13.9 18.1 15.3 20.8 17
P11 6.1 11.1 6.9 11.1 5.6 7.3
P14 13.7 13.9 15.3 11.1 11.1 13.3
P15 27.1 20.7 23.6 26.4 30.6 26.3
P16 3.4 8.3 2.8 6.9 5.6 4.5
P17 12.5 8.3 5.6 12.5 9.7 10.9
P19 12.5 16.7 15.3 8.3 8.3 12.3
DLD (n=16)

St Devl Dev2 Dev3 Dev4 Total
LO1 11.9 14.1 9.7 16.7 11.1 12.4
LO3 13.1 194 16.7 16.7 18.1 15.3
LO4 11.9 12.5 12.5 6.9 6.9 10.9
LO5 10.4 13.9 12.5 6.9 12.5 10.9
LO6 12.8 125 11.1 9.7 9.7 11.9
LO7 7.3 5.6 8.3 5.6 6.9 7
LO8 155 19.4 23.6 20.8 13.9 17.4
LO9 1.2 0 14 0 14 1
L11 18.6 194 194 23.6 16.7 19.2
L12 16.8 125 18.1 11.1 5.6 14.4
L14 23.2 18.1 18.1 22.2 16.7 21.1
L15 7.9 5.6 5.6 2.8 6.9 6.7
L16 20.7 33.3 16.7 20 24.1 22
L17 6.4 9.7 8.3 8.3 11.1 7.8
L19 13.8 8.3 12.5 11.3 5.6 11.7
L21 25.1 19.4 22.2 20.8 16.7 22.6
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Appendix 3.3
ANOVA Assumptions Check for Experiment 2 (MMR)

Mean Amplitude (100-250 ms, Peak Centred)

Homogeneity of Variancea Normalityb
DW type Levene dfl df2 p Group Shapiro-Wilk  df p
Statistic Statistic
DW1 3.7 2 44 .033 | Adults .943 20 277
TLD .975 11 .935
DLD .92 16 .168
DwW2 0.429 2 44 .654 | Adults .97 20 761
TLD .79 11 .007
DLD .939 16 .336
Words 4.659 2 44 .015 | Adults .927 20 133
TLD .929 11 .398
DLD .98 16 .966
DW3 5.104 2 44 .01 Adults .922 20 .109
TLD .865 11 .066
DLD .946 16 436
DW4 5.046 2 44 .011 | Adults .981 20 .943
TLD .922 11 334
DLD .933 16 276
Phonological Awareness Test
TLD .873 8 162
DLD .909 14 151
Within Subjects Effect: Stimulus Type
Equality of Covariance Sphericityd
Matricese
BoxXsM F dfl  df2 p Mauchly's W Approx. df p
Chin2
93.16 2.538 30 3795 <.001|0.181 72.46 9 <.001

Note. Significant tests are indicated in bold fonts.
2 Tests the null hypothesis of equal variances across groups
b Tests the null hypothesis of a normal data distribution

¢ Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal
across groups.

d Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed
dependent variables is proportional to an identity matrix.
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Appendix 3.4
ANOVA Assumptions Check for Experiment 2 (MMR), Variable: Mean Amplitude TW2

Mean Amplitude (250-400 ms, Peak Centred)

Homogeneity of Variancea Normality?
DW type Levene dfl df2 p Group Shapiro-Wilk  df p
Statistic Statistic

DW1 4.087 2 44 .024 Adults .929 20 151
TLD 916 11 .288
DLD .983 16 .981

DW2 4.533 2 44 .016 Adults 979 20 920
TLD .910 11 242
DLD .878 16 .036

Words 1.048 2 44 .359 Adults .857 20 .007
TLD 767 11 .003
DLD .959 16 .645

DW3 3.070 2 44 .056 Adults .961 20 574
TLD .970 11 .884
DLD .939 16 .340

DW4 4.675 2 44 .014 Adults .849 20 .005
TLD .937 11 489
DLD .946 16 433

Within Subjects Effect: Stimulus Type

Equality of Covariance Sphericityd
Matricesc
Box'sM F dfl df2 p Mauchly's Approx. df p
w Chin2
109.75 2.99 30 3795 <.001 |.240 60.53 9 <.001

Note. Significant tests are indicated in bold fonts.
2 Tests the null hypothesis of equal variances across groups
b Tests the null hypothesis of a normal data distribution

¢ Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal
across groups.

d Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed
dependent variables is proportional to an identity matrix.
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Appendix 3.5

ANOVA Assumptions Check for Experiment 2 (MMR), Variable: ERSP

ERSP
Homogeneity of Variancea Normalityb
Stimulus Levene dfl df2 p Group Shapiro-Wilk df p
Type Statistic Statistic
D1 2.043 2 44 142 Adults .940 20 .235
TLD .881 11 .108
DLD 919 16 .163
D2 1.657 2 44 .202 Adults .965 20 .658
TLD .894 11 157
DLD .922 16 .180
D3 274 2 44 .762 Adults .959 20 519
TLD .859 11 .056
DLD .955 16 573
D4 1.033 2 44 .364 Adults .969 20 .726
TLD .788 11 .007
DLD .963 16 711
St 1.005 2 44 374 Adults 955 20 441
TLD .903 11 .203
DLD .960 16 .661
Within Subjects Effect: Stimulus Type
Equality of Covariance Sphericityd
Matricesc
BoxsM F dfl df2 p Mauchly's  Approx. Chi*2 df p
w
69.32 1.89 30 3795 .002 |.355 43.91 9 <.001

Note. Significant tests are indicated in bold fonts.

a Tests the null hypothesis of equal variances across groups

b Tests the null hypothesis of a normal data distribution

¢ Tests the null hypothesis that the observed covariance matrices of the dependent variables

are equal across groups.

d Tests the null hypothesis that the error covariance matrix of the orthonormalized

transformed dependent variables is proportional to an identity matrix.
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Appendix 3

.6

ANOVA Assumptions Check for Experiment 2 (MMR), Variable: ITPC

ROI 1
Homogeneity of Variancea Normality®
Stimulus  Levene dfl  df2 p Group Shapiro-Wilk df p
Type Statistic Statistic
D1 2.806 2 44 .071 Adults 953 20 407
TLD 967 11 86
DLD 891 16 .059
D2 316 2 44 731 Adults 928 20 141
TLD 932 11 428
DLD 879 16 .037
D3 2.198 2 44 .123 Adults 965 20 64
TLD 928 11 39
DLD 931 16 25
D4 2.291 2 44 113 Adults 944 20 286
TLD 945 11 583
DLD 968 16 811
St 2.746 2 44 .075 Adults 872 20 .013
TLD 983 11 982
DLD 926 16 211
ROI2
Homogeneity of Variancea Normalityb
Stimulus  Levene  dfl df2 p Group Shapiro-Wilk df p
Type Statistic Statistic
D1 1.748 2 44 .186 Adults .97 20 .761
TLD .849 11 .042
DLD .981 16 .97
D2 .980 2 44 .383 Adults 941 20 .245
TLD 972 11 .903
DLD .945 16 419
D3 4.083 2 44 .024 Adults .961 20 .555
TLD 915 11 278
DLD .956 16 .592
D4 1.916 2 44 .159 Adults 912 20 .069
TLD .933 11 439
DLD 877 16 .035
St 453 2 44 .639 Adults 97 20 761
TLD .849 11 .042
DLD .981 16 .97
Equality of Covariance Matricesc Sphericityd
ROI Box's M F dfl  df2 p \I\//Ivauchly's Approx. Chi"2 di p
1 35.75 974 30 3795 .506 779 10.57 9 .306
2 36.03 982 30 3795 .495 .845 7.13 9 .624

Note. Significant tests are indicated in bold fonts. 2, b, 4,

as in Appendix 3.5.
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Appendix 4.1

Speech in Babble (Noise) Test Form

Speach-mm-noize
Subtest 1 and 2
SWE. 0 dB
Words: 40 dB BL
Noise: 40 dB 2L

[(Average 0.5, 1 and 2 kE=)

Mams;
Date:

Nords (Ear: Score Nords (Ear: Score
Eosa (practice) Pate (practice)
Vela (practice) Mapa (practice)
Frio Bosque
Mube Lanz
Lache Fila
Suma Mido
Tormra Antaz
Cme Hilo
Eile Mhiaza
Llave Lupa
Mudo Sopa
Lafiz Trizte
Caza Hyo
Cerdo Cerca
Izla Dedo
MManeo Torra
Chuezo Grands
Tarta Luna
Crenta Vate
Crato Chegue
Pera Cebra
Padre Pramio

Score: Right Ear

; Left Ear:

T
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Appendix 4.2
Filtered Speech Test Form

Filtered Speech
Subtest | and 2
Fight and Left Ear

Stimul prezentation: 30 dB SL (average 0.5, 1 and 2 kHz)

Mama;
Diate;

Nords (Ear: ) | Score Nords (Ear: Score
Trgzo (practica) Campo (practice)
hioto {practice) Banco (practice)
Foea Lapiz
Suma Tinz
Prima Torta
Mieva Lafras
Miero Pelo
Perro HNiio
(Casa Dado
Hudo Feo
Tarde Verde
Cizme Silla
Carna Eres
Loro Crema
Cmta (ranja
Blando Fio
Drucha Masza
HNeero HNudo
Trizte Pesa
Dienta Chiste
Ellos Cuna
Lanz Sobre

Scorez: Right Ear: Left Ear;,
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Appendix 4.3

Articulation screening (T.A.R) Test Form

TEST DEARTICULACI ON A LA REPETICION (T.A.R)

MNombre:
Fecha de Macimienta: Edad:
Examinader: Fecha de Evaluzacon:
[FONEMAS | Silaba Inicial Silaba Media Silaba Final Silaba Trabada
_E B | Bote Cabeza Hube Oibjeta
& P Pato Zapato Copa Apto
k] M| Mano Carnisa Smma Canmpo
g . .:.E F |Foca Bifals Café Aftosa
| 8¢ D Dama Cadena Codo Pared
& T Tapa Baotella Mata Ema
| =1
w | Sapo Cocina Taza Pasto
E Hido Fansra Mlani Canto
7 L |Luma Calnga Pala Dulce
= R Poroto Caro Torta
| | Rosa Carroza Perro
ER
s | ¥ (e Payaso Malla
E | N |Faw Puiiete Cafia
£ | CH | Chala Lachuga Moche
= K Caza Paguetz Tace Acto
3 G Gato Laguma Tugo Sigmo
- 7 Tose Tejido Caja Reloj
| ) Drifoncs Vocalicos )
Piano Vielm Dinca
Vaina Auwo Fui
Difonos Consonanticos
Tabla Clave Flecha Dragon
Begla _ Brazo Frum __ Crema _
Premio Atlas Tigre Plato
Rey ____
' Palabr as Polisi|abicas
Carabinero Amegalladora
Panaderia Helicoptero
Capemcita Bicicleta
| Frases
1.El perro salta.
2 La mifia rubia come.
3_Ana foe al jardin con su gatita.
4 La guagua lloraba porque tenia hambre.
5.El mono que estaba dentro de la jaula se perdio.
5. Tuanito se metio debajo de la cama para que 0o lo pillara su mama
Observaciones.
Fuma v Tmmbre
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Appendix 4.4

Normality and Variance Homogeneity Tests for Experiment 3 (Resting State EEG)

Test
Normality Homogeneity of Variances
Measure Group Shapiro-  df p Levene dfl df2 p
Wilk Statistic
Statistic
Age Adults 0.959 18 .592
TLD children 0.743 11 .002
DLD children 0.855 16 .016
Theta Band Adults 0.936 18 .246 9.285 2 42 <.001
Power TLD children  0.973 11 917
DLD children 0.892 16 .059
Alpha Band Adults 0.737 18 <.001 4,187 2 42 .022
Power TLD children  0.934 11 456
DLD children 0.866 16 .023
Beta Band Adults 0.932 18 214 5.606 2 42 .007
Power TLD children  0.967 11 859
DLD children 0.91 16 .118
Gamma Band Adults 0.795 18 .001 5.133 2 42 .01
Power TLD children  0.826 11 02
DLD children 0.797 16 .002
Laterality Index  Adults 0.933 18 .224 1.275 2 42 .29
LF TLD children  0.945 11 576
DLD children 0.901 16 .083
Laterality Index  Adults 0.912 18 .093 1.941 2 42 .156
HF TLD children  0.875 11 091
DLD children 0.945 16 42
Theta/Alpha Adults 0.927 18 173 4.54 2 42 .016
Ratio TLD children  0.946 11 597
DLD children 0.853 16 .015
Theta/Beta Adults 0.971 18 .813 2.801 2 42 .072
Ratio TLD children  0.95 11 647
DLD children 0.865 16 .023
Speech in TLD children 0.967 8 .872
Babble DLD children  0.96 14 718
Filtered Speech  TLD children 0.816 8 .043
DLD children 0.951 14 572

Note. Bold fonts indicate test is significant at the p=0.05 level (non-normal data distribution).
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Appendix 5.1

Continuous speech stimuli

Al agua patito

A un patito pequefito, hermaso, inteligente v amarillo, le gustaba jugar, correr, cantar, saltar
y nadar. Pero no le gustaba bafiarse. Su mama preocupada, le cred una cancién. Temando
la esponja v el jabon, en el bafio decia: “Al agua patito nos vamos a bafiar, con el jaboncito a
refregar’. El pafite escucho a la mama y se escondio debajo de la cama, pero su mama siguio
llamandolo. El patito curioso guiso ver qué hacia su mama en el bafo v... iGuag! —oritd el
patito. Su mama jugaba v cantaba entretenida con la espuma en la tina. jLo estaba pasando

muy bien! El patito corrié a sumergirse en la tina, para cantar la cancion v jugar con su mama.

Word gount 122

Antonia v |a sefiora gallina

Todas las tardes Antonia, que vivia en el campo, recolectaba los huevitos de la sefiora Gallina.
Pero hubo un dia en que la sefiora Gallina no se levanid mas de su nido. Antonia se puso
triste ¥ con paciencia la visitaba con maiz v agua para convencerla a salir. Hasta que una
tarde al ir a verla, para gran sorpresa, sintid el pio gig de muchos pollitog gque =& asomaban
por sus alas. Ahi supo que durante veintin dias |a sefora gallina estuvo cuidando de sus
huevos para convertirlos en doce lindos politos traviesos. Ahora anda feliz con su familia
ensefiandoles a comer granitos v bichitos. Antonia se siente muy orgullosa de su amiga la

sefiora Gallina.

Word count: 122

El bail del

Habia una vez, en un lugar en medio del bosgue, una linda casita, donde vivia el pequefio
Felipe. & &l le gustaba salir a jugar con los animales: corderos, vacas v coloridas mariposas.
Un dia jugando, Felipe se tropezd con algo v cayd al suelo. Al levantar su cabeza, se enconird
com un gran badl. Se imagind que habia un tesoro. Feliz, lo abrio y adivinen lo que encontrd.
Salo habia un libro viejo. Muy triste se fue a su casa, porque no habia lo que &l esperaba. Al
otro dia, cuando despertd, fue donde estaba el ball. Tomd el libro viejo vy lo abrid.
Comenzaron a salir colores v sonidos. jEra un libro magico! Felipe se dio cuenfa que
realmente habia encontrado un gran tesoro.

Word count- 130

El conejitc de las orejas largas

Amanecia en el bosgue cuando el Congjito de las Orejas Largas salio de casa con su traje
azul y una canasta, para comprar verduras vy frutas. Saltando entre pinos v zarzamoras, de

donde comenzaron a salir zorzales, perros y ratoncitos para ayudarlo con sus compras, llegd
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a la feria. Eligic zanahorias, lechugas, rabanites, para fortalecer la vista y los dientes. Tambign
manzanas con vitaminas para endulzar el postre, y todas las frutas que le recomendaron los
vendedores para llevar. A su regreso, la mesa estaba servida y sus hermanitog, con las patitas
lavadas, esperaban para almorzar. Después de lavarse los dientes y dormir siesta, en premio,

saldrian a jugar con sus amigos los animalitos, aves e insectos del bosgque.

Word gount 123

El cumplearios del sefior ledn

Estaban conversando, la jirafa v la elefanta, muy animadas, v ;sabes de qué hablaban?
Querian celebrarle el cumpleafnios al sefior ledn e invitar a todos los animales de la selva. La
paloma vy don bdho fueron los encargados de avisar por todas partes. Al ofro dia, con un sol
radiante se pusieron a frabajar. Hicieron una gran torta que alcanzaria para todos. Formaron
una gran orquesta y tenfan todo preparado. El monito titi fue el encargado de ir a buscar al
ledn v su familia, que no sabian nada. Cuando llegd, &l ledn se emociond mucha v S puso
muy feliz. Le cantaron el cumpleanos feliz, y comenzo la celebracion que durd toda una

SEMmana.

Word gount 120

El gato de la tia Pepa

Cachazudo, el gato de la tia Pepa, era muy flojo. Dormia casi todo el dia y solo se despertaba
para comer y para ir al bafio. Un dia, escuchd a la tia Pepa gritar desde la cocina: “jratan,
raton!” Tratd de levantarse, pero se sentia muy pesade v le costaba mucho moverse.
Cachazudo se sintio triste, pues queria mucho a Ia Tia Pepa y no la pudo ayudar. Penso:
“estoy muy gordo, por eso me cansoe”. Entonces decidic comer solo lo necesario y hacer
ejercicio todos los dias. Tiempo después, nuevamente Cachazudo sintid gritar a la Tia Pepa:
“jratdn, ratan!”, pero ahora si 52 movid y rapidamente ahuyentd al raton, lo que puso muy

felices a los dos.

Word gount 124

El pez Saltarin

Un pez llamado Saltarin se enconiraba en un arrecife cuando, de repente, aparecid una
ballena gimiendo de dolor. “; Qué te pasa?™, pregunto el pez. “Es que s& me incrustd un coral
en mi aleta v siento mucho dolor®. ©; En qué te puedo ayudar?”, exclamd Saltarin. “; Podrias
sacarmele? . *jClaro que si1”, contesta Saltarin, tratando de llegar a su aleta. Después de firar
y firar, no pudo sacarlo, porgue estaba demasiado incrustado. Sin dudarlo, Saltarin reunio a

[
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todos sus amigos peces para que lo ayudaran v empezaron a firar v firar hasta que lograron
amancarlo. Se escucha un Oltime gemido de la ballena, pero al final sonrid y agradecio a

Saltarin y a sus amigos por todo el esfuerzo que hicieron por ayudaria.

Word gount 124

El viaie de Tomas

Tomas tenia mucho suefio. Su papa llegd del trabajo, I abrazd v lo besd. Su mama lo acostd
v le contd un cuento. Esa tarde, Tomas habia jugado con sus amigos v les habia prestado su
bicicleta nueva. Ellos no tenian bicicleta y &l quiso que la usaran primero. Tomas estaba
cansado, pero eso no le impedia sofar. Sofid que volaba. Recornio los distintos planetas, pero
&n ninguna habia nifios, gente grande, arboles, pajaros, ni juguetes como en la Tiera, que
se veia a lo lejos como un puntito diminuto. Penso: “jQué chiguitita se ve y yo crefa que era
tan grande! jLes diré a todos que es |a mas linda y que debemos cuidarla bien para que nos

dure hario!”.

Word count 125

Pepita arafia

Pepita araiia, se creia superior, porque con sus ocho largas patas, llegaba a todos lades. Un
dia, vio a Jaimito gusano y le preguntd: °; Come te mueves, =i no tienes patas?" Y se largo a
reir. Jaimito un poco encjado, respondio: “Mo necesito patas, me arrastro com mi cuerpo”.
Luego vio @ Rosita colibr y le preguntd; “; Como te mueves? “Soy un pdjaro vy tengo alas
para volar' —le dijo. Finalmente, vio a Freddy pez y le preguntd: “; Como haces para moverte,
=i no fienes patas ni alas? Freddy respondid: “vo tengo aletas y con ellas nado a través del
océano”. Pepita quedd sorprendida y se dio cuenta que todos eran tan especiales como ella.
Agi, decidio no molestar mas a los animales.

Word count: 125

Sebastian v el volantin

Sebastian amaba las nubes. Siempre las miraba en el cielo, y descubria sus movimientos y
formas. Las que mas le gustaban eran esas blancas, como azicar de algodan, limpiecitas en
el cielo azul. Queria tocarlas, pero no alcanzaba. Enfonces pensa algo genial: tomd su
volantin y lo elevd, para que le trajera un pedacito de nube amarrade a su cola. El volantin
vold y vold cada vez mas lgjos, hasta que Sebastian no lo pudo ver. Sl lo sentia tirando de
su mano. Llegd |a noche y Sebastian, cansado, empezd a recoger su volantin. De pronto lo
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vio mury pequenio, con algo que brillaba en su cola. jUna estrella luminosal Sebastian aprendia
que, algunas veces, logramos mas de lo que sofiamos.

Word count- 125

Elena v la chinita perdida

Esta era una chinita gue, por error, vold en la direccion contraria para volver a su hogar, en
un hermoso jardin. Entra por la ventana del dormitorio de la pequefia Elena, quien, encantada
con su rojo encendido v puntitos negros, tratd de afraparla. Cansada, 1a chinita se posd en su
mano. La nifia, feliz, penso en dejarla dentro de una cajita de fosforos, para jugar con ella.
Pero luego recapacito, pensando que se sentiria sola y triste. Valientemente, en la noche
oscura, 2alio al jardin levandola en la palma v le dijo; “jVuelal” Agradecida, la chinita le dejé

una de sus manchitas en la palma izquierda, la cual quedo alll para siempre, como un lunar.

Word gount 120

Mo me comere esas verduras

iMo, no comeré esas verduras! Isabelita mira el plato con carita enojada, v dijo “esto no 3& ve
nada rico”. Las verduras reunidas en el plato decidieron hablar con la pequeiia. Alli estaba el
rojo tomate, la dulce zanahoria con su anaranjada elegancia, ¥ la mas fresca de todas que
era la verde espinaca. Iniciaron el discurso. “Seforita, ; no sabe usted gue gracias a nosotros
usted puede =er una nifia sana y hermosa, con dientes y huesos fuertes?". La pequefa quedd
maravillada, y como ella era una princesita, decidio probar aguellas parlanchinas verduras.

Poco a poco, las sabored y se puso feliz porque ademas de ser muy buenas, eran riquisimas.

Word count- 115

El sapo Sapito

Cierto dia, el sapo Sapito sin permiso salio de su charco y se fue a pasear, porgue el mundo
queria conguistar con su guitarra y su morral. Después de mucho caminar en una esguina se
puso a cantar. Siguiendo camino llegd a un portal y ahi mismo se puso a descansar. Dando
mas vueltas a don gato y a dofia cigarra los va a saludar. Llega la noche v se da cuenta cuan

lejos esta de su hogar y muy asustado se puso a llorar. Pero de pronto, una voz escucha
llamar- es su mama quien lo sale a buscar. Contento el sapito a mama va a abrazar y le

promete qUe NUNCa Mas sin permiso Se ira a pasear.

Word count- 123
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Marina v las preguntas

Marina, una nifna linda v curiosa, siempre estaba preguntando. ;Por qué?, ;Como?,
iCuando?, y muchas ofras cosas. Queria saberlo todo. Le preguntaba a la mama, si los
pajaros volaban como los aviones. Al papa, sila misica salia de las cabezas de |as personas.
Al abuelo, si los volantines tenian alas. Al tio, si log elefantes comian cerezas. Y a la abuela,
5i laz palabras se inventaban solas. Marina ez una cadena interminable de preguntas. Cada
vez que alguien responde, aparecen nuevas dudas en su cabecita, gue funciona v funciona
sin parar. Por suerte todos, los adultos que amaban a Marina, respondian sus preguntas, vy
se enfretenian pensando: jQue bueno es preguntar!

Word gount- 116

El principe Ambrogic

El principe Ambresio era un nifio muy simpatico v fravieso. Vivia con el rey y 1a reina en un
enorme casfillo, rodeado de lujo y riqguezas. Tenia un cuarto lleno de juguetes, pero no
siempre podia jugar con elles. Claro, porgue €l principe Ambrosio era el personaje de un libro
de cuentos, un hermoso libro con ilustraciones a todo color. Asi es que, cada vez que alguien
cerraba el libro después de l2erlo o de mirarlo, |a luz del castillo y de todo el reino e apagaba,
y €l tenia gque dormir, aungue no guisiera, a veces por mucho tiempo. El principe Ambrosio

solo era feliz cuando alguien abria el libro y leia sus aventuras.

Word gount: 115

El gue guarda siempre fiene

iMama! gritaba alegremente Felipe, “mira cuantas monedas me trajo el ratoncito de los
dientes”, al fiempo que dejaba ver un pufiado de monedas en sus manitos. “Con estas
maonedas te haré un regalo”, dijo el pequefio nifio. La madre agradecida, dijo al nifio, “mientras
es0 ocurre, te voy a explicar gue siempre s bueno ahorrar’. ; Ahorrar?, jqué es eso?, dijo el
nifio. “Ahomrar es guardar un poco de lo que tienes, para cuando no fengas”, contestd la
mama, mientras formaba dos grupos de monedas. Felipe mird a su madre y le prequntd °; cual
de los dos mentoncites vamos a guardar?” La mama contesto con dulce voz, “el que guieras,
lo importante es ahorrar, porque el guarda siempre tiene”.

Word gount- 123

La ardilla Erody
En un gran arbol de nueces vivia la ardilla Enody. Erody era muy egoista v no dejaba que
nadie subiera al arbol. Todos los dias ella miraba desde lo alto al resto de los animales jugar
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y divertirse y ella no bajaba por femor a perder sus ricas nueces. Por eso siempre estaba
triste v sola. Un dia, al ir a buscar nueces a lo mas alto del arbol, Erpdy se cayad quedando
muy mal herida. Loz animales del bogque cuidaron de ella hasta que mejord. Efpdy se sintio

feliz al saber que no estaba sola v que podia compartir SUS NUECES CON SUS NUEVOS aMigos.

Word coynt- 109

Susanita la mosguita

Susanita era una mosquita que le encantaba volar con la boca abierta. Su mama siempre le
decia: “Cierra |a boca nifia que se te puede entrar un humano®. Susanita que era pofiadita,
cierfo dia =e tragd a un sefor flacuchento. La mama desesperada llamé al doctor. Llegd un
masco vesfido de blanco, el cual al no saber qué hacer, convocd a un moscilngn experto.
Entre zumbidos v aleteos se pusieron de acuerdo en darle una salsa de azdcar y mantequilla
para deslizar al hombre hacia afuera. Susanita, ademas, debid realizar un corto vuelo rasante
y oftro en caida libre. El hombre salid muy molesto embetunado de azdcar v mantequilla.

Desde ese dia, Susanita practica sus vueles con la boca cerrada

Word count- 123
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Appendix 5.2

Data Amount per Participant
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Appendix 5.3

Normality and Variance Homogeneity Tests for Experiment 4 (Neural Tracking)

r values
Homogeneity of Variancea Normalityb

Neural Levene dfl df2 p Group Shapiro- df p
Tracking Statistic Wilk
Measure Statistic
Acoustic 2.257 2 43 117 Adults .873 17 .025
Envelope TLD 972 12 934

DLD 910 17 101
Lexical 1.505 2 43 234 Adults .981 17 .969
Frequency TLD .875 12 077
Envelope DLD .964 17 .699

Within Subjects Effect

Equality of Covariance Matricesc Sphericityd
Box's M dfl df2 p Mauchly's Approx. df p
w Chin2
Factor: 9.42 6 23610 .188 1.0 .000 0
Tracking
Measure

Note. Significant tests are indicated in bold fonts.
2 Tests the null hypothesis of equal variances across groups
b Tests the null hypothesis of a normal data distribution

¢ Tests the null hypothesis that the observed covariance matrices of the dependent variables
are equal across groups.

d Tests the null hypothesis that the error covariance matrix of the orthonormalized
transformed dependent variables is proportional to an identity matrix.

308



