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Abstract 

 

 

Early childhood is a period of important linguistic development; however, measuring 

the neural correlates of speech perception at this age is challenging. So far, there is no clarity 

about whether, between the ages of 3-6 years old, brain dynamics associated with speech 

perception (i) are different from those observed in adults, (ii) show atypical patterns in 

children with language difficulties, or (iii) are modulated by language skills.   

This thesis aimed to examine cortical dynamics related to speech perception in 

children from 4.7 to 5.7 years old with typical language development (TLD, n=12) and 

developmental language disorder (DLD, n=17) and compare them to that observed in 

neurotypical adults (n=20). I used electroencephalography (EEG) to investigate whether 

young children exhibit top-down modulations on cortical speech processing and whether 

TLD and DLD children differed in different measures of cortical oscillatory synchrony.   

Considering previous findings, we expected different EEG measures to reflect more 

efficient speech perception for participants with better language skills and stimuli with more 

informative linguistic content. We also expected an association between children's EEG 

responses and phonological and speech perception task performance.   

Experiment 1 validated a task-free, ERP multifeature paradigm in adults to determine 

whether contrasts between speech stimuli elicited consistent MMN and LDN responses, 

compared to a non-speech control condition. In Experiment 2, we used the multifeature 

experiment in the speech condition to determine whether the MMN and LDN were present in 

children and if they resembled the adult's responses. Here, we complemented ERPs analysis 

with time-frequency measures, evaluating the synchrony of the neural responses 
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independently from their amplitude (power). We also assessed the children's phonological 

awareness skills and investigated their association with EEG measures.  

Experiment 3 examined the relationship between language skills (TLD/DLD children 

and adults) and the power and lateralisation of endogenous oscillations. We also related EEG 

resting-state measures to children's performance in speech-in-noise and filtered speech 

perception tests. Finally, in Experiment 4, we explored more ecological speech perception 

measures, recording EEG responses to unattended continuous speech. We then compared 

cortical entrainment to different speech features between children and adults.  

Our results demonstrated age-related differences in EEG responses between adults 

and children, confirming that increases in neural synchrony are relevant for cortical 

development. A central finding is that adults also exhibited a significant effect of the 

linguistic content, with greater cortical synchrony for lexical stimuli, but this effect was 

absent in children. This indicates that adult-like top-down language modulations on speech 

perception could not be already in place during early childhood.    

Notably, there was no evidence of differences between TLD and DLD children on 

most EEG measures, despite TLD children performing significantly better than DLD in 

phonological awareness and filtered speech perception tasks. These results indicate that 

cortical speech processing at the acoustic and lexical level may be preserved in young 

children with DLD. Although it is essential to consider methodological limitations when 

interpreting these findings, they were consistent across experiments. 

This thesis contributes to understanding the cortical dynamics of speech perception in 

young children. Our findings are relevant to inform oscillatory models of typical and atypical 

language development and future objective clinical measures of speech processing. 
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Impact statement 

 

 

This research holds potential benefits for both the industry and the general public, 

ultimately impacting society as a whole. The findings of this thesis can contribute to 

advancements in the field of speech processing, particularly in understanding how the brain 

processes and comprehends spoken language. 

Industry partners 

The evidence gathered in this thesis contributes to uncovering the neural patterns 

underlying speech perception in children and adults. This outcome directly benefits the 

healthcare industry, as it provides initial values for different EEG measures that can inform 

the development of objective speech processing measures for clinical assessment, with 

applications in audiology, neurology, speech and language therapy (SLT), and paediatrics. 

The EEG measures related to speech processing indicated important differences in 

cortical activation patterns between adults and young children. This outcome can drive 

advancements in the hearing aid industry, such as developing new algorithms for hearing aid 

devices in which speech, auditory and linguistics features are weighted differently according 

to the user’s age. 

The results of this thesis could also aid the development of more refined speech 

recognition technologies. Improved speech recognition systems have broad applications 

across industries, ranging from call centres and transcription services to voice-controlled 

devices. Moreover, the insights gained from this thesis can contribute to developing assistive 

technologies (e.g., brain-computer interfaces, BCIs) for individuals with severe speech 

impairments, enabling them to communicate more effectively and independently.  
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General public and society 

This research has the potential to impact the academic field in different ways by 

providing new evidence about the EEG signatures of speech processing during early 

childhood under typical and atypical language conditions. The findings and EEG analysis 

methods could be disseminated through national and international scholarly journals, 

conferences, educational instances, translational research, or academic collaborations. In 

addition, one practical outcome of this thesis is a database of continuous speech stimuli in 

Spanish, with information about their acoustic envelope values, lexical frequency, duration, 

and word type, among other features. This database will be made freely available for other 

researchers and could be expanded to include new levels of speech information, e.g. 

morphological or phonological. 

Understanding the brain's speech processing mechanisms can aid in developing new, 

targeted interventions to support individuals with communication difficulties such as speech 

and language disorders, dyslexia, or aphasia, ultimately improving their quality of life and 

social interactions. This thesis could also benefit professional practice and public health 

outcomes in speech and language disorders, helping the development of objective speech 

perception measures that can be used in infants and young children and fostering earlier 

detection and intervention in different disorders.  

This research can have educational implications in a broader societal context, 

providing new insights into the fundamental principles of language learning and acquisition. 

The findings of this thesis can inform educational approaches, curriculum development, and 

school policies, promoting more effective language teaching methods and support for learners 

with special needs. Enhanced language learning can lead to better educational outcomes, 

better global communication, and increased opportunities for individuals in various domains. 
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Chapter 1. General Introduction 

 

 

Speech perception is a crucial component of daily communication that involves 

transforming an acoustic signal into cortical representations for accessing linguistic meaning. 

Recent language processing models provide plausible explanations regarding where 

(neuroanatomy) and how (mechanisms) our brain perceives speech, emphasising the 

importance of neural synchronisation and the role of language and cognitive factors in 

shaping speech perception. However, these models mainly consider evidence from adult 

studies, resulting in a discontinuity in the theories of cortical speech processing between 

adults and children. Overall, we do not know what specific changes in the children brain 

allow them to, eventually, perceive speech as adults, at what ages these changes occur, or 

whether this development is disrupted in children with language disorders.  

The gap in knowledge regarding the neural correlates of speech perception 

development could be explained by two factors: (i) with any neuroimaging or 

electrophysiological method, measuring brain activity in young children is a challenging task 

that many researchers rather avoid, and (ii) although there is an important body of evidence 

from different methods (EEG, fMRI, behavioural measures), these findings have not been 

systematically integrated into a developmental model of language processing. 

Understanding the neural basis of speech perception in children is theoretically 

relevant because early childhood is a period of significant language development, in which 

spoken language is one of the bases for children’s communicative skills and literacy 

acquisition. It is also during early childhood when many children with language disorders are 
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first diagnosed, suggesting that some atypical patterns in language processing could become 

more apparent at this age. 

Considering this context, the goal of my PhD was to investigate the cortical dynamics 

related to speech perception during early childhood (between the ages of 3-6 years) under the 

framework of neural oscillatory synchrony. This thesis addressed the gap in previous research 

by using different EEG paradigms to study speech perception in young children with typical 

language development (TLD) and with Developmental Language Disorder (DLD). EEG was 

chosen as it is a widely used method for studying neural oscillations and to acknowledge the 

need of determining what EEG paradigms and analysis techniques are most suitable for 

investigating speech perception in children. 

Considering the importance of speech perception for children’s communicative 

development and educational attainment, this thesis aims to provide new evidence for 

understanding how children’s brains perceive speech in TLD and DLD. Considering the high 

prevalence of DLD among school-age children (around 7%, according to Tomblin et al., 

1997), I investigated whether children with DLD exhibit atypical speech processing at the 

cortical level when compared to TLD peers. In the future, this work could be integrated into a 

developmental model of speech perception in the TLD/DLD brain, helping to inform DLD 

research and clinical work. 

In this first chapter, I will set the theoretical framework for this thesis, outlining 

relevant aspects for the EEG experiments in chapters 2-5. Thus, Chapter 1 reviews the 

literature about speech perception in adults and young children (with typical and atypical 

language development) integrating multiple oscillatory findings, and presents EEG 

methodological considerations for speech perception research in early childhood. 
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1.1 Speech perception in the adult brain 

1.1.1 Brain substrates for speech perception 

Neuroanatomy of speech perception 

To understand how speech perception networks develop in children, we first need to 

identify the language networks in the adult brain. Current models in language neuroscience 

agree that there are two main networks for speech and language processing: a ventral and 

dorsal pathway (Hickok & Poeppel, 2016; Friederici, 2012a; Friederici & Gierhan, 2013). 

The ventral pathway participates in the early stages of speech perception; low-level acoustic, 

phonological, and lexical processing that involves temporal regions in both hemispheres, 

including the primary auditory cortices. The dorsal pathway participates in left-lateralised 

phonological processing, sensorimotor integration for speech production, syntactic and 

lexical-semantic processing, involving left temporal and frontal regions, as the posterior 

superior temporal cortex (pSTC) and the Inferior Frontal Gyrus (IFG),   

On each language pathway, different tracts can be identified, which are of importance 

when comparing adults and children. The dorsal pathway has two subcomponents: tract 

Dorsal 1, the superior longitudinal fascicle (SLF), relevant for auditory to motor mapping and 

language acquisition (Friederici, 2011), and Dorsal 2, the arcuate fascicle (AF), involved in 

complex syntactic functions, such as processing distant syntactic dependencies, embedded 

structures, and non-canonical sentences (Brauer et al., 2011). The ventral pathway also has 

two subcomponents: a superficial tract (Ventral 1) corresponding to the inferior-frontal-

occipital fascicle (IFOF) that is involved in semantic processing (Friederici & Gierhan, 

2013), and a deep tract Ventral 2, with two subcomponents: the IFOF orbital from the orbito-

frontal cortex to the frontal pole (anterior component) and the IFOF dorsal (posterior 

component) involved in combinatorial semantics (Brauer et al., 2013). Figure 1.1 depicts the 

functional neuroanatomy of the dorsal and ventral pathways according to Friederici (2015). 
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Figure 1.1  

Language Tracts Connecting the Temporal and Frontal Cortex in the Left Hemisphere 

 

 

 

Note. Dorsal 1 (purple): superior longitudinal fascicle (SLF), connects the dorsal premotor 

cortex (PMC, BA6) through the inferior parietal lobe (IPL) to the posterior superior temporal 

gyrus (pSTG). Dorsal 2 (blue): arcuate fascicle, connects the IFG (BA44, Broca’s area pars 

opercularis) to superior temporal BA41/42 and middle temporal regions 21, 22 (Wernicke's 

area), and 37. Ventral 1 (pink): Longitudinal Inferior-frontal-occipital fascicule (IFOF/ 

extreme capsule fiber system, ECFS), connects the IFG (BA45, Broca’s area pars 

triangularis) and BA47 to the superior and middle temporal gyrus (STG/MTG). Ventral 2 

(dark grey) uncinate fascicle (UF), connects the frontal operculum (FOP) and the anterior 

superior temporal gyrus (aSTG) (extracted from Friederici, 2015).  
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Oscillatory mechanisms in speech perception 

Besides understanding the functional neuroanatomy of language, research has also 

focused on explaining how the linguistic information in the speech signal is converted into a 

neural code (Hickock & Poeppel, 2016). In adults, a mechanism that could explain 

information processing in the brain is neural oscillatory synchrony. Neural oscillations refer 

to the rhythmic fluctuations in neural excitability related to different neurobiological 

processes (Cohen, 2014) and emerge from the synchronised firing of large groups of neurons 

(Buzsaki, 2006). These oscillations can be measured at different scales in the brain (for 

example, macroscopically using EEG) as fluctuations in voltage that exhibit timing 

consistency (periodicity) and can be present over several cycles, resulting in rhythmic activity 

at different frequency bands (Hudson & Jones, 2022).  

Although not all electrical activity represented in the EEG in the frequency domain 

reflects neurophysiological processes, there is consensus that some of it reflects different 

rhythmic patterns of excitatory and inhibitory activity in brain networks (Cohen, 2014). 

These brain rhythms can be analysed in terms of frequency, amplitude, or phase that may 

reflect neural activity that occurs spontaneously (endogenous rhythms) or during perceptual 

or cognitive processing of exogenous stimuli (induced or evoked rhythms). In this Chapter, 

‘neural oscillations’ will refer to rhythmic activity that is mechanistically related to 

information processing in the brain, either spontaneously or related to a task (Cohen, 2014) 

The framework of neural oscillations has been a central topic in neuroscience for the 

last two decades, proposing that transient synchronisation of neural oscillations enables 

coordinated brain activity and is essential to cognition (e.g., Buszaki & Draguhn, 2004; 

Buszaki, 2006). The degree of neural synchronisation has been shown to correlate with 

different cognitive processes, including speech perception (Uhlhaas et al., 2010), with 

changes in the patterns of synchrony reflecting the functional coupling or decoupling of brain 
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networks during tasks or at rest (Buzsaki & Draguhn, 2004; Lakatos et al., 2008). The 

synchronised oscillatory timing and phase would optimise information processing, explaining 

communication within local and long-range cortical networks (Varela et al., 2001). 

The role of brain oscillations in speech perception has been addressed by different 

theories (for a review, see Meyer et al., 2020), one of the most relevant being cortical 

entrainment. Cortical entrainment refers to the phase alignment of brain oscillations driven by 

an external or internal rhythmic event (Lakatos et al., 2019). As the neural oscillatory phase 

reflects rhythmic changes in neural excitability (Lakatos et al., 2019), resetting to a phase of 

high neural excitability would optimise the brain's response to relevant inputs. In speech 

perception, neural entrainment has been proposed as a mechanism for the brain to encode 

different speech features for language comprehension (Poeppel & Assaneo, 2020). 

A related concept that refers to how speech is represented in the brain is 'neural 

tracking', which describes the cortical activity evoked by different speech features, including 

the acoustic amplitude envelope, but also other types of speech features, such as phonemic or 

lexical information (for example, see Song et al., 2020). Some studies use the terms' tracking' 

and 'entrainment' in language research interchangeably. However, others consider that neural 

tracking represents time-synchronised (evoked) activity, whereas entrainment refers to a 

phase-synchronised activity (for a review see Gillis et al., 2022). In this thesis, we will use 

this distinction between them. 

Neural entrainment to the speech amplitude envelope has been widely demonstrated 

in the auditory cortex, suggesting this is an essential mechanism for speech perception. 

Cortical entrainment to the envelope allows the brain to track the timing of individual 

phonemes, syllables, and words, supporting speech parsing into linguistic units (Ding & 

Simon, 2014; Poeppel, 2014; Meyer, 2018). In sentence perception experiments, Giraud and 
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Poeppel (2012) demonstrated that cortical oscillatory entrainment at different frequency 

bands reflects the processing of linguistic information in the speech input at multiple 

timescales. Slow oscillations in the delta range (1-2 Hz) correlate with the prosodic contour 

of the speech input and in the theta band (4-7 Hz) with the detected syllabic rate. Likewise, 

high-frequency gamma oscillations (30-50 Hz) correlate with phonemic and sub-phonemic 

elements (for a review, see Meyer, 2018). These findings have been consistently replicated 

over the last two decades (for a review see Poeppel & Assaneo, 2020), indicating the 

importance of neural oscillatory synchrony in speech perception. However, cortical 

entrainment occurs not only during speech processing but also for non-verbal sounds, 

reversed and non-intelligible speech (Ding & Simon, 2014), raising questions about its 

specificity as a speech perception mechanism. Notably, there is evidence that low-frequency 

auditory entrainment to the speech envelope correlates with speech intelligibility (Poeppel & 

Assaneo, 2020) and that interfering with theta entrainment disrupts speech perception 

performance (Zoefel et al., 2018). This evidence suggests that entrainment to speech might 

differ from other types of auditory entrainment and may be crucial for speech perception. 

In addition to auditory entrainment, there is evidence of neural tracking of linguistic 

elements of speech, such as phonemes, lexical or syntactic components. This indicates that 

cortical tracking is involved in higher-level network activity, such as semantic processing and 

integration of linguistic and contextual information with an individual's previous linguistic 

knowledge (Meyer et al., 2020). This implies that, during speech perception (Poeppel & 

Assaneo, 2020), the oscillations in the auditory cortex interact with those in other brain 

regions. For example, high-frequency gamma oscillations (around 30-50 Hz) have been 

linked to the binding of word meanings to their associated context, a process that occurs 

beyond the auditory cortex, enabling us to understand the meaning of a sentence as a whole 

(Bastiaansen & Hagoort, 2006). 
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1.1.2 Language modulations on speech perception 

Bottom-up and top-down interactions during speech perception 

The transformation of speech into meaning involves a complex processing sequence, 

from low-level physical acoustic content to higher-level abstract language forms (Heilbron et 

al., 2022). Low-level speech processing is driven by temporal and spectral cues in the speech 

signal, with bottom-up mechanisms for encoding segmental (phonetic) and supra-segmental 

(prosodic) information in the auditory cortex. Higher-level processing involves top-down 

modulations from temporal, frontal and parietal areas on how we perceive incoming speech, 

influencing low-level speech processing.  

In the brain, language knowledge means a rules-based internal structure (Martin & 

Doumas, 2017) acquired during native language development (Meyer, 2018). Elements such 

as phonemic categories, lexical status, word morphology, meaning, and grammatical structure 

are not present in the speech signal but in the listener's brain. Importantly, these internal rules 

can operate top-down to solve perceptual ambiguities during speech perception (Hagoort, 

2019). This hierarchical sequence is reflected in the latencies at which speech features are 

encoded, with information of higher linguistic complexity processed later than the speech 

acoustics. Thus, the low-level speech processing (e.g., pitch, amplitude, formants, and 

duration) occurs early (~50-200 ms), in contrast with higher-order linguistic processing of 

lexical, semantic, syntactic, and prosodic information which occurs later (>200 ms).  

Top-down modulations on speech perception may vary according to individual 

differences in cognitive skills and language knowledge (Ding & Simon, 2014; Goswami, 

2011). General cognitive modulations include attention, executive control and sensory/short-

term memory skills. These mechanisms are not specific to language processing and usually 

exploit the brain's ability to detect environmental regularities, helping to predict incoming 
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inputs; for example, frequent items will be perceived more easily than less frequent ones 

(predictability) as well as related than unrelated ones (things that co-occur, e.g. context-based 

prediction). An example of general top-down modulations is the effect of attention on cortical 

entrainment which helps to understand speech in noisy environments (Song & Iverson, 2018) 

or when the acoustic signal is hard to discern (see review by Obleser & Kaiser, 2019).  

On the other hand, language-specific top-down modulations operate only for stimuli 

with linguistic status (Ding & Simon, 2014; Goswami, 2011). Language knowledge 

(understood as an individual's language proficiency) shapes our sensitivity to speech sounds 

determining how they are organised into meaningful units in our brain and interpreted 

depending on the language context. Prior language knowledge includes skills such as 

phonemic categorical perception, semantic integration, and knowledge of word’s meaning. In 

addition, language knowledge influences the discrimination of language-specific cues 

contained in the speech stimuli, increasing speech redundancy via phonemic, lexical, 

syntactic or semantic priming (Meyer et al., 2018).  

Language-specific modulations on speech perception are consistent with the fact that, 

despite no exact correspondence between the acoustic patterns in the input and the linguistic 

representations activated in the brain, perceptual discrimination is preserved even for highly 

variable or discontinuous speech signals, but not for their nonspeech analogues (Skipper, 

2014), meaning that speech is perceived different than non-speech sounds even if they have 

the same acoustic information. However, there is no clarity about how language-specific and 

general cognitive top-down modulations can be dissociated when studying speech perception 

(see Zatorre & Gandour, 2008). 

Importantly, it is accepted that there is an interaction between bottom-up and top-

down processes during speech perception. A study byDi Liberto et al. (2015) demonstrated 
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that the best model to describe the relationship between perceived continuous speech and 

neural processing in adults (n=10) was the one that combined low-level information and 

phonemic features. Such effects were larger at longer latencies and dissapeared when 

perceiving reversed speech, corroborating that speech perceived as such involves a hierarchy 

in the auditory/language system. Notably, although the exact neural mechanisms of this 

bottom-up/top-down interaction are not fully understood (Poeppel & Assaneo, 2020), they 

are thought to involve brain oscillations. 

How does language knowledge modulate oscillatory responses to speech? 

During speech perception, modulations of neural oscillations would be determined 

exogenously (bottom-up) by the linguistic characteristics of the speech signal and 

endogenously (top-down) by an individual's prior language knowledge (Meyer et al., 2019). 

Language knowledge is proposed to exert top-down effects on speech perception by 

modulating the excitability of the auditory cortex during speech encoding, thus increasing the 

sensitivity to linguistic stimuli (Giraud & Poeppel, 2012). A candidate mechanism is that the 

phase coupling of endogenous oscillations between frontal and temporal areas would stabilise 

entrainment with the spoken input in low-level auditory regions (Giraud et al., 2007). Top-

down modulation on temporal auditory areas would occur through alpha and beta band 

oscillations generated in frontal cortices. In contrast, bottom-up modulations from temporal 

auditory to frontal areas would involve theta band oscillations (Poeppel & Assaneo, 2020).  

An important factor related to language-specific modulations on speech perception 

seems to be the speech intelligibility, although studies so far show contradictory findings. A 

study by Park et al. (2015) demonstrated that high-frequency oscillations in higher-order 

language areas (left inferior frontal gyrus and precentral gyrus) modulated low-frequency 

oscillations on the auditory cortex significantly more for intelligible than for non-intelligible 
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speech. In addition, there is evidence of lexical knowledge modulations on gamma power and 

delta cortical entrainment (Doelling et al., 2014; Kösem & van Wassenhove, 2017). On the 

contrary, Baltzel et al. (2017) demonstrated that the effects of language knowledge on the 

strength of auditory entrainment does not depend on the speech intelligibility, reporting 

similar priming effects on entrainment regardless the amount of vocoding (3 or 16-channel). 

To summarise, research in adults has shown that neural oscillations are an important 

mecanism involved in speech perception. This mecanism seems to operate primarily through 

cortical synchronisation with the speech signal, with effects of language knowledge from 

frontal areas modulating auditory responses in a top-down process. However, less is known 

about how the neural activity involved in speech perception changes from birth to adulthood, 

how it differs between typical language acquisition and neurodevelopmental disorders and if 

an atypical neural activity has a causal role in language disorders.  

 

1.2 Speech perception in early childhood 

The development of speech perception skills is a complex and ongoing process that 

begins in the womb and continues into childhood and adolescence (Dick et al., 2015), with 

well-described changes during early childhood. For example, between age 3 to 6 years, 

children become better at segmenting and interpreting speech sounds into their corresponding 

phonological and semantic representations (Skeide & Friederici, 2016). Behavioural changes 

in speech perception emerge from interactions between brain maturation and experience, for 

example, with our native language; however, the relationship between these factors is not 

clearly described (Skeide et al., 2016). Understanding the effects of language knowledge on 

speech perception is relevant as it may help explain the differences between children and 

adults and individuals with language disorders. Therefore, this section reviews the changes in 

speech perception skills and brain development during early childhood in TLD. 
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1.2.1 Do children perceive speech like adults? 

Speech perception skills between 3-6 years old. 

Children's language proficiency increases between 3 and 6 years of age (Dick et al., 

2015), but they do not yet perceive speech the same way as adults, who have more advanced 

speech perception skills. Adults show better phonological processing than children; for 

example, they are better at using acoustic cues to distinguish between speech sounds and 

detecting subtle acoustic differences. Essentially, adults are more likely to use top-down 

processing when listening to speech, exploiting the context and using their prior knowledge 

to solve speech perceptual ambiguities to facilitate speech comprehension (Aboitiz, 2017).  

Linguistically, young children have developed some aspects of adult-like speech 

processing, but their word recognition skills are not fine-grained until the age of 7 years. This 

is evident, for example, in that their lexicon mainly comprises phonetically dissimilar, easily 

distinguishable items (Walley, 2005). During early childhood, the perception of phonemes is 

not robust and depends heavily on contextual factors such as vowel transitions and duration, 

consonantal context, stimulus duration or spectral information (Walley, 2005). An important 

finding is that consonant perception is less categorical than in adults until after the age of 6 

years (Hazan & Barrett, 2000), with increases in the accuracy of phonemic identification into 

late childhood (Walley, 2005).   

During early childhood, ongoing auditory maturation is an essential factor that 

underlies speech perception, with different age-related trajectories for different central 

auditory processing skills (Sanes & Woolley, 2011). For example, bottom-up processes such 

as the discrimination of frequency, intensity and duration, or the detection of amplitude and 

frequency modulations are not mature by the age of 6 years (Sanes & Woolley, 2011). This 
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could explain to some extent why children are less proficient than adults when perceiving 

speech.  

However, differences in speech perception between adults and children, and between 

children at different ages, not only depend on auditory maturation but are also heavily 

influenced by general cognitive (working memory, attention) and language-specific 

(vocabulary, phonological processing) top-down modulations. After the age of 8 years, 

children show improvements when perceiving speech with impoverished acoustic-phonetic 

information and speech in noise (Neuman et al., 2010), both speech perception skills known 

to be modulated by top-down processing. However, it is still being determined whether such 

modulations in children are similar or different from those observed in adults, and if so, how. 

Top-down modulations and speech perception in children. 

Throughout early childhood, children's speech perception skills are not only shaped 

by age (neuromaturation) but also by top-down modulations (Davids et al., 2011) that reflect 

the influence of language exposure, early experience, and social interaction. General learning 

mechanisms support speech perception development, helping the brain to track patterns in 

our native language (Saffran et al., 1996). A longitudinal study by Thompson et al. (2017) in 

young children (3 and 4 years old, n=59) demonstrated that age-related improvements in 

speech-in-noise perception were related to advanced general processing skills (intelligence, 

short-term memory, and attention). At the same time, children's internal language system 

develops with age, influencing the way they perceive speech. For example, a study by 

Thompson et al. (2019) in children between 4-7 years (n=104) determined that not only 

cognitive but also language skills measured at the age of three years predicted children's 

performance in a speech in noise task by the age of 5 years.   
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A review by Skeide and Friederici (2016) proposed two speech and language 

developmental stages. An initial stage of rapid acquisition of bottom-up speech processing 

skills (age 0-3 years) that would enable perceptual narrowing for native phonemes, speech 

segmentation, mapping phonological word forms with semantic representations, syntactic 

categorisation and grouping of words into phrase structures. Friederici et al. (2017) indicated 

that, during this initial stage, language processing relies on detecting linguistic statistical 

regularities without necessarily building syntactic hierarchies. The second stage (from age 

three to adolescence) is characterised by the gradual and slow development of top-down 

processing skills that start to emerge in the fourth year of life. This would result in the 

capacity for analysing semantic and syntactic relations of increasing complexity and more 

sophisticated prosodic processing (Skeide & Friederici, 2016). However, it is important to 

determine how these behavioural changes in speech perception are related to the development 

of language networks and neural oscillatory synchrony. 

Maturation of brain language networks 

Although babies are born with the neural foundations for speech and language 

processing (Hagoort, 2019), from infancy to adulthood, there is an important development of 

language networks (Friederici et al., 2017) that could explain improvements in language and 

speech perception skills. During early childhood, language structures in the brain mature 

gradually, shaped by neural pruning, myelination, and growth of white-matter tracts (Skeide 

& Friederici, 2016), synaptic plasticity and changes in neurotransmission (Uhlhaas et al., 

2010). The evidence indicates that these brain maturation processes underlie and even predict 

behavioural changes in speech and language skills (Zuk et al., 2021). 

In cortical language networks, different tracts show different developmental 

trajectories from infancy to childhood, with later maturation of the dorsal compared to the 

ventral pathway (Friederici, 2012b; Friederici et al., 2017). Brauer et al. (2013) used diffusion 
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imaging to compare the maturation of functional connectivity between newborns (n=19, age 

2-3 days), 7-year-old children (n=10, age range 5–8 years), and adults (n=10). For the dorsal 

pathway, only the dorsal tract D1 was detectable in newborns; tract D2 is not yet myelinated, 

meaning there is no connection between the BA 44 and pSTC. In 7-year-old children, both 

dorsal tracts were present, but D2 is still not fully mature compared to adults. Notably, the 

maturation of D2 predicts complex sentence processing performance (Friederici et al., 2017), 

phonological awareness skills and vocabulary knowledge (Zuk et al., 2021), which indicates 

it could be related to short-term verbal memory and word learning. 

For the ventral pathway, Brauer and colleagues (2013) found that the superficial tract 

(V1) was present in newborns and children. However, it was more robust in adults and spread 

towards the parietal-occipital ending. This pathway likely supports auditory-to-motor 

mapping, which supports auditory feedback during infants' babbling and word/phonological 

learning. Finally, the deep tract V2 was present in all three groups but with much shorter 

middle and anterior connections and less mature in infants than in children and adults. This 

suggests that syntactic processing is based on the ventral system during early childhood, 

allowing only the processing of simple phrases and canonical sentences. Together, these 

structural changes support the ongoing maturation of the language network during early 

childhood, which could explain the development of language and speech perception skills 

during this stage. Figure 1.2 summarises the development of language networks.   

Regarding cortical function, language lateralisation is detectable at birth (see review 

by Friederici, 2006). However, it is not adult-like until early childhood, although the exact 

age at which children show mature left-lateralisation is unclear. A systematic review of 

language fMRI findings by Weiss-Croft and Baldeweg (2015) indicates that left-lateralisation 

during speech processing is already in place by the age of 5 years. However, findings by 

Thompson et al. (2016) indicate adult-like oscillatory lateralisation by the age of 3 years. 
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Furthermore, several neuroanatomical changes during early childhood have been 

linked to the development of language skills. Weiss-Croft and Baldeweg (2015) reported 

increased activation in the superior and middle temporal gyri (bilaterally), and deactivation in 

the cingulate cortex from childhood to adolescence, suggesting a shift in control from high to 

low-level cortical areas as language processing becomes more automated and effortless. 

 

Figure 1.2 

Development of Dorsal and Ventral Language Tracts in Newborns, Children and Adults 

 

Note. For the dorsal pathways, D1 (red solid line) is observable in newborns (a), children (b) 

and adults, whereas D2 (red dashed line) is absent in newborns but present from childhood 

onward. Both ventral tracts are observable at birth, but V1 (blue solid line) is stronger in 

adults than children and children than infants and V2 (blue dashed lines) is shorter and less 

mature in infants than in children and adults (adapted from Brauer et al., 2013).  
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A review by Skeide and Friederici (2016) indicates that BA44 and pSTC activate 

during speech perception from an early age, but their interaction is not efficient until late 

childhood. From the age of 3 years, they reported gradual development of top-down 

modulations of semantic and syntactic relations related to the maturation of the left inferior 

frontal cortex. At 3-4 years old, both the left temporal and left inferior frontal cortex are 

recruited when processing sentences, suggesting that the components for basic syntax 

processing are already present (Friederici et al., 2017). At 5-8 years old, increasing syntax 

skills correlate with the reduction of grey matter volume on the left pSTG (e.g., because of 

neural pruning); finally, the neuroanatomical specificity for syntax of BA 44 segregates 

between the ages of 7 and 10 years and gradually develops until young adulthood when it is 

fully efficient for processing complex syntax. Before age 10, syntactic and semantic 

information types recruit the same brain regions, consistent with behavioural data indicating 

semantic and syntactic interactions during early childhood (Friederici et al., 2017).  

Considering these structural changes in cortical language network it is reasonable to 

think that they would involve functional changes in neural dynamics. However, it is unclear 

how the development of language tracts relates to the development of neural oscillations. 

Development of neural oscillations. 

During early childhood, neuroanatomical changes are accompanied by changes in the 

frequency and synchronisation of neural oscillations, which have shown to be relevant for 

developing and segregating cortical networks (Greene et al., 2016). Neural synchrony 

maturation continues until early adulthood and involves critical processes in neural networks, 

such as stabilisation of synaptic connections, neural pruning, and experience-dependent long-

term plasticity (Uhlhaas, 2010). The mature, adult-like brain is characterised by complex, 
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coordinated activity in particular neural populations, with greater oscillatory synchronisation 

reflecting more efficient neural communication (Musacchia et al., 2013).  

In general, cortical activity becomes more synchronised and spatially focalised with 

age. Along with brain structural development, oscillatory coupling increases with age from 

uncorrelated to synchronous patterns in different frequency bands (Uhlhaas et al., 2010). This 

could be linked with some evidence reporting higher neural background noise in children 

than in adults (Vanvooren et al., 2015) and children than teenagers (Bishop et al., 2012; 

Hämmerer et al., 2013) because of less consistent neural activity.  

 Overall, spontaneous and task-related cortical activity shows significant age-

dependent decreases in the amplitude of delta and theta oscillations and increases for the 

alpha, beta and gamma ranges (Uhlhaas et al., 2010). Likewise, phase synchrony increases 

for the theta and beta range with gamma-oscillations maturing during early childhood 

(Uhlhaas et al., 2010). Importantly, developmental increases in neural synchrony relate to 

better performance in cognitive tasks. During early childhood and until adolescence, better 

performance in visual perception tasks was accompanied by bilateral frontal and frontal-

parietal increases in neural synchrony, which the authors interpret as top-down modulations 

of sensory regions (Uhlhaas et al., 2009).  

In auditory development, there is evidence of similar changes in brain oscillations, 

with increased synchronisation from early childhood to adulthood (Bishop et al., 2010a; 

Doesburg et al., 2015; Müller et al., 2009). Müller et al. (2009) demonstrated differences in 

the amplitude and synchronisation of neural oscillations between young (9-11 years) and 

older children (11-13) and adults during cortical auditory discrimination. The theta and delta 

bands demonstrated increased synchronisation within and between electrodes. However, 

spectral power decreased from childhood to adolescence and adulthood, indicating an age-
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related shift in low-frequency activity towards more precisely synchronised oscillations 

(Müller et al., 2009). These findings indicate that the developing brain may show different 

patterns of oscillations than the adult brain. However, the relationship between activity in 

different frequencies and the maturation of speech perception is not yet understood. 

Neural oscillations in language development 

Integrating the evidence on brain maturation and neural oscillatory development, it is 

possible that the maturation (e.g. myelination and increased fibre density) of brain language 

tracts could be related to greater neural synchrony, resulting in more efficient speech 

perception and language processing. However, there is little research linking these lines of 

evidence into a functional explanation of language development. 

Some studies in children suggest that age-related changes in the strength and 

synchrony of neural oscillations reflect speech and language skills development. A 

longitudinal study by Benasich et al. (2008) demonstrated that the magnitude of endogenous 

frontal gamma oscillations at ages 16, 24 and 36 months predicted language development at 

ages 4 and 5 years, with a strong correlation between phonological working memory and 

syntactic skills, which the authors considered related to local and long-range neural 

synchronisation. Doesburg et al. (2015) demonstrated age-related increases in theta 

synchronisation between brain language regions, which correlated with individual language 

skills at different ages (n=73, participants between 4-18 years). Cantiani et al., 2019, found 

that the amplitude and synchrony in the theta range at six months old (n=24) predicted 

expressive vocabulary scores at 20 months. 

The evidence also indicates age-related differences in the lateralisation patterns at rest 

for high and low-frequency oscillations during early childhood. Kikuchi et al. (2011) 

investigated the lateralisation of cortical parietal-temporal oscillations in preschool children 
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(n= 78, 3-4 years old), demonstrating that stronger left parietal-temporal theta 

synchronisation (6-8 Hz) correlated with better performance in language tasks. Thompson et 

al. (2016) showed that left-lateralisation for high-frequency oscillations (20-50 Hz) was 

already established at the age of 3 years and that children with better speech-in-noise skills 

exhibited more pronounced high-frequency leftward asymmetry (age 3-5 years, n=65). This 

suggests that theta and gamma oscillatory asymmetry is related to better speech perception 

skills in young children, which could be related to better syllabic and phonemic processing. 

In terms of entrainment, Goswami (2022) highlights the importance of speech 

rhythmic patterns for typical language acquisition, linking the perception of linguistic units 

(e.g., prosodic, and syllabic stress patterns) with the rate of modulations of the speech 

acoustic envelope (delta and theta bands) during language development. So far, findings 

indicate that entrainment to the speech envelope in the delta and theta range is present in full-

term infants and is observed at least until the age of seven months, although at these early 

stages, it is not specific for the native language (e.g., Kalashnikova et al., 2018; Ortiz-Barajas 

et al., 2021). On the contrary, a longitudinal study by Rios-Lopez et al. (2020) in young 

children (n=32) reported that at age 4-5 years, entrainment to the envelope was only present 

in the delta band (0 .5 Hz), with bilateral increases in synchrony in temporal areas at all 

testing times until the age of 7 years. Thus, there is contradicting evidence about the role of 

delta and theta synchrony in speech perception development. 

Top-down modulations on speech entrainment are present in children but with some 

differences from those observed in adults. Ortiz-Barajas et al. (2021) described age-

dependent changes in language experience modulations on speech entrainment during the 

first six months of life. They found that amplitude and phase entrainment to the speech 

envelope (sentences in Spanish, English or French) were already present in newborns (n=55) 
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and did not show any differences for native (familiar) and non-native (unfamiliar) languages. 

However, by the age of six months, infants (n=12 longitudinal plus n=13 cross-sectional 

participants) only tracked the phase of native language but not the amplitude. This would 

indicate that speech phase entrainment to the acoustic envelope represents a basic auditory 

skill, but that amplitude entrainment is modulated by language experience by the first 

semester, with less tracking of the language infants are familiar with (or have greater 

experience or knowledge). Interestingly, the timing of these changes regarding the infant's 

age coincides with extensive evidence reporting native-phoneme specialisation in infants 

(e.g., perceptual narrowing) starting around six months of age (for example, see Kuhl, 2010).  

In addition, there is evidence that in children, as in adults, auditory entrainment is 

modulated by speech intelligibility, although the patterns of modulation may differ. Vander 

Ghinst et al. (2019) compared cortical entrainment between adults (n=20) and typically 

developing children (n=20, 6- to 9-year-old) while they attended to speech embedded in 

multi-talker background noise. They reported two main findings: (i) children exhibited 

limited tracking of both the attended voice and the global acoustic stimuli at the 4–8 Hz 

syllable rhythm, and (ii) noise increments compromised the speech tracking significantly 

more in children than in adults. Likewise, Rios-Lopez et al. (2020) demonstrated that the 

strength of delta entrainment to speech in the right hemisphere is related to speech 

intelligibility measures. These initial results support the idea that top-down modulations of 

acoustic entrainment during the first years of life are related to prior language knowledge (or 

'experience') and the speech signal itself, resembling interactions observed in adults. 

In summary, changes in speech perception in young children are explained by 

multiple factors, such as physiological changes (e.g., auditory maturation), cognitive 

development (e.g., greater attention skills and memory), and increased linguistic abilities 
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(more language experience). However, behavioural and oscillatory findings are not easily 

brought together in the current literature because of the variety of methods for investigating 

language development, such as very different age ranges, stimuli, and brain measures across 

studies. Nevertheless, there has been growing interest in determining the developmental 

trajectories of cortical language processing and whether children's language and speech 

perception difficulties result from atypical oscillatory activity. 

 

1.2.2 Speech processing in children with DLD  

What is DLD? 

DLD (formerly referred to as Specific Language Impairment, SLI) refers to children's 

significant and persistent difficulties in developing native language skills that are not 

explained by any other cognitive, motor, or sensory deficits or known medical cause 

(Leonard, 2014). This neurodevelopmental condition is the most prevalent language disorder, 

affecting 7% of children and severely disrupting educational, social and emotional 

development (Leonard, 2014). DLD is highly heritable, more prevalent in boys than girls, and 

likely to co-occur with other neurodevelopmental disorders such as dyslexia or autism 

spectrum disorder (ASD), suggesting complex genetic influences (Newbury & Monaco, 

2010). The clinical profiles (or symptoms) are very heterogeneous but generally include 

deficits in syntactic, morphological, phonological and lexical processing (Schwartz, 2017).  

Although the causes of DLD are not auditory, there is evidence of some speech 

perception deficits in children with DLD, leading to a long-lasting controversy about the role 

of atypical perceptual processing in this condition. Early studies indicated that children with 

DLD had difficulties detecting rapid auditory changes (e.g., 'Temporal Processing' 

hypothesis), which were linked to phonological processing difficulties, for example, when 
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detecting the second phoneme in a consonant cluster (Tallal et al., 1997). Other studies as 

Ziegler et al. (2005), also focused on phonemic processing, demonstrating poorer 

discrimination of VCV sequences in noisy conditions in children with DLD (n=10) than in 

age-matched (n=10) and language-matched (n=10) controls suggesting difficulties in 

extracting speech features such as voicing in adverse listening environments. Cantiani et al., 

2019, found that infants (n=24, six months old) at familial risk of DLD presented poorer 

detection of changes in F0 and the duration of nonspeech sounds compared to healthy 

controls. Other studies have shown difficulties in perceiving and reproducing acoustic 

rhythmic patterns in children with DLD compared to controls, relating them to poor 

processing of linguistic rhythm (for reviews, see Goswami, 2022; Ladányi et al., 2020).  

However, there are several issues with the auditory accounts of DLD; firstly, speech 

perception and phonological deficits, although recurrent, are not universal symptoms in the 

DLD population (Bishop & McArthur, 2005). On the contrary, DLD-affected individuals 

exhibit very heterogeneous linguistic profiles, which makes their classification difficult, even 

into broad subgroups, such as receptive, expressive, or mixed. Secondly, it is unclear whether 

perceptual impairments observed in DLD overlap with those in other language disorders, e.g., 

speech disorders or dyslexia, meaning these speech perception deficits are not a signature (or 

‘marker’) of DLD (Bishop & Snowling, 2004; Ramus et al., 2013). Finally, there is 

significant controversy about to what extent DLD should be considered a unitary condition 

rather than a syndrome with multiple causal components (Bishop et al., 2016; 2017). 

Crucially, mounting evidence shows that individuals affected by DLD exhibit typical 

performance in low-level auditory tasks, with only a small proportion of them showing 

auditory processing deficits (see review by Rosen, 2003), which has discredited the idea of an 

auditory cause of DLD. In turn, some theories about the origin of DLD have argued that 

speech processing deficits could be a downstream consequence of this disorder, meaning that 
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the perception of speech sounds is affected (Bailey & Snowling, 2002). For example, a less 

developed language system could result in reduced top-down support during speech 

perception in children with DLD (Bishop et al., 2012; Bishop, 2013).  

Importantly, behavioural studies may be inconclusive and unreliable in young 

children, making it necessary to use objective brain measures for investigating speech and 

language processing in children with or at risk of DLD. 

Neural oscillations and speech perception in DLD. 

So far, there is no clear link between brain neuromaturation, oscillatory activity and 

speech perception deficits in DLD. Considering the developmental trajectories of language 

networks from birth to adulthood, it is reasonable to assume that the healthy maturation of the 

dorsal and ventral pathways is necessary for typical language acquisition or that atypical 

maturation could be related to language deficits. Researchers have tried to identify brain 

markers for DLD in the last decades, but findings have been inconsistent. Although some 

studies report abnormalities in grey and white matter volumes in children with DLD, there is 

no consistent evidence of significant differences in DLD brain anatomy from TLD children 

(Evans & Brown, 2016).  

The evidence of brain functional differences in DLD is also inconclusive. Many 

studies have investigated whether atypical brain activity in language areas can explain 

language difficulties in DLD. However, findings are based on studies with very different 

designs, low ecological validity, and small sample sizes. An example is the widespread belief 

that atypical left-lateralisation could underlie poor language skills in DLD (Bishop, 2013). 

However, Wilson and Bishop (2018) could not replicate these findings in a larger sample of 

twins (n=107 with DLD and 156 with TLD, aged 6-11 years), concluding that previous 

findings could be spurious and explained by methodological fails. 
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The importance of neural synchrony for normal brain development suggests that it is 

relevant to investigate when explaining speech perception and language deficits at the cortical 

level. For example, in DLD, if reduced temporal precision of neuronal oscillations is present, 

it could affect activity-dependent network development (Uhlhaas et al., 2010). Notably, there 

is evidence of a critical role of atypical oscillatory activity in populations with other 

neurodevelopmental disorders; for example, there is evidence of impaired speech-related 

oscillations in autism spectrum disorder. Jochaut et al. (2015) reported that the severity of 

verbal impairment and autism symptoms in adults and adolescents (n=31) was predicted by 

reduced theta in the left auditory cortex and top-down gamma modulation on speech 

entrainment.  

In dyslexia, a recent systematic review by Nallet & Gervain (2022) indicates atypical 

auditory entrainment to speech at the phonemic, syllabic (~5 Hz) and prosodic rates (~2 Hz) 

in infants and children at risk or with a diagnosis of dyslexia. Previously, Goswami (2011; 

2022) proposed the ‘Temporal Sampling’ framework for dyslexia, explaining that atypical 

cortical entrainment with the rhythmic speech envelope at low frequencies would impair 

adequate sampling of speech elements that are critical for linguistic and phonological 

development. Together, these findings support the idea that atypical entrainment affects 

speech perception by interfering sampling of linguistic units and could be related to language 

deficits in these disorders (Molinaro et al., 2016). 

Although something similar could happen in DLD, there is still little research on 

neural oscillations in children affected by language disorders (Maguire & Abel, 2013). 

Evidence from adult studies shows that atypical patterns in cortical measures as acoustic 

entrainment reflect speech perception differences in adults with hearing impairment, 

blindness, dyslexia, autism, and severe brain injury, as well as in older participants (Palan et 
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al., 2022). Consequently, atypical oscillatory activity could be present in DLD and related to 

some of the symptoms observed in this disorder. 

 A recent perspective paper by Goswami (2022) extends the Temporal Sampling 

hypothesis to DLD, proposing that rhythmic processing disruptions detected in children with 

DLD reflect impaired neural alignment with the speech envelope, with poor encoding of key 

syllabic elements (onset, rhyme, stress) undermining their phonological and syntactic 

development. Similarly, Ladanyi et al. (2020) had previously proposed the ‘Atypical Rhythm 

Risk’ hypothesis, posing that atypical rhythmic processing skills are a risk factor for 

developmental speech and language disorders. However, both hypotheses are based on 

behavioural evidence from children with DLD (e.g., Richards & Goswami, 2019), as there 

are no studies on cortical entrainment in this population yet. 

To our knowledge, only three studies have investigated the role of cortical oscillatory 

synchrony in DLD. Bishop et al. (2010b) compared auditory discrimination in children aged 

7-16 with DLD diagnosis versus typically developing controls. The control group exhibited a 

drop in low-frequency power and a significant desynchronisation after cortical change 

detection responses (after 300 ms), which was absent in language-impaired children. The 

authors interpreted the lack of desynchronisation in DLD children as a poorer capacity to 

disengage from the cortical discrimination signals.  

Heim et al. (2011; 2013) studied children aged 6-9 years with and without DLD and 

reported atypical oscillatory activity during rapid auditory discrimination tasks. The DLD 

group found significantly reduced synchronisation of early (45–75 ms) oscillations in the 

gamma-band range (29–52 Hz) when presenting the second stimulus of tone doublets. 

Cantiani et al., 2019, found that infants (n=24, six months old) at familial risk of DLD 
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showed reduced left lateralisation in the theta and gamma bands during nonspeech auditory 

discrimination tasks compared to healthy, age-matched controls.  

If taken together, the findings from these three studies suggest that some atypical 

oscillatory patterns may be present in individuals with DLD, which could have implications 

in terms of language processing. From Bishop et al. (2010b) findings, we could assume that 

less desynchronisation (or ‘less disengagement’) in later processing stages could impede 

higher-order language processing or disrupt speech encoding because of less available 

neuronal resources for processing upcoming speech. Heim et al.'s (2011; 2013) findings 

about reducing the gamma range could explain poorer phonemic processing and potential 

phonological difficulties, whereas less pronounced lateralisation could affect syllabic and 

phonemic processing (Cantiani et al., 2019). However, these studies used very different 

methods, which makes them hard to integrate and have used simple linguistic stimuli, if any. 

In summary, the role of atypical entrainment in speech and language processing 

during language acquisition needs to be better understood. So far, there is no systematic 

research on the associations of DLD and neural oscillations and the role of neural synchrony 

in speech perception during early childhood. 

 

1.3 EEG in speech perception developmental research 

Cortical speech processing can be studied using the electroencephalogram (EEG), a 

direct measure of the brain's electrical activity. The EEG captures the synchronised 

postsynaptic activity of large populations of cortical neurons, recording it with scalp 

electrodes (Jackson & Bolger, 2017). The EEG reflects brain dynamics during different 

cognitive processes but studying them requires extracting their neural signature from the raw 

signal, separating it from background noise. Different EEG methods include resting-state ('or 
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baseline')' measures, Event-Related Potentials (ERPs), and cortical entrainment analysis, all 

of which quantify different aspects of neural oscillatory synchrony (Bastiaansen & Hagoort, 

2006). Notably, the excellent temporal resolution of EEG makes it a great tool for studying 

rapid neural dynamics in auditory, speech, and language processing. 

 

1.3.1 EEG measures of speech perception  

Frequency domain measures: resting-state EEG 

The resting state or baseline EEG measures the amplitude of the spontaneous brain 

activity that occurs without any external task or stimulation (endogenous or intrinsic neural 

oscillations). The raw EEG signal is represented in the frequency domain via spectral 

decomposition methods such as the Fourier transform. These methods represent the EEG 

signal as a linear combination of sine waves at different frequency bands (Gross, 2014). 

Different features of the resting-state EEG can measure the degree of synchronisation 

of neural oscillations. Spectral power (in microvolts), either total or at a given frequency 

band, is an estimate of the signal amplitude (Varela et al., 2001), with increases in power 

reflecting a larger number of neurons that are active in a given location (Cohen, 2014). 

Resting-state frontal asymmetry uses indices to quantify power differences between frontal 

electrodes in the left and right hemispheres. In contrast, coherence is a measure of linear 

cross-correlation between two signals (e.g., pairs of electrodes) in which oscillatory phase 

and amplitude are intertwined (Norton et al., 2021). Baseline EEG measures may reflect brain 

maturation and cognitive and language processing differences. 

The resting-state EEG is a valuable method to study children and other non-compliant 

populations (e.g., clinical groups) because it is task-free and does not require the participant 
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to follow instructions. It is recorded during a short period while the child is quietly watching 

silent images on a screen, either with their eyes open or closed. 

Time domain measures: ERP (MMN and LDN). 

 A common method to study changes in cortical activity (voltage) over time is Event-

Related Potentials (ERPs). ERPs measure voltage changes over time that are time-locked 

(evoked) to an external stimulus and averaged for analysis (Cohen, 2014). The Mismatch 

Negativity (MMN) has been prevalent among ERPs in auditory and language research.  

The MMN is an automatic, pre-attentional index of auditory change detection, with a 

temporal component generated bilaterally in the primary auditory cortex and a frontal 

component that reflects involuntary attentional changes (Näätänen et al., 2007). In typical 

adults, the auditory MMN consists of a negative deflection of 0.5-5 μV, peaking around 150-

250 ms after a change (deviant stimuli) is detected within a sequence of invariant sounds 

(standard stimuli), known as an oddball paradigm. However, MMN amplitude and latency 

vary depending on factors such as the participant's age or the stimulus type (Näätänen et al., 

2007). In adults, larger MMN amplitudes tend to correlate with better behavioural detection 

of acoustic changes, including frequency, duration, intensity, and speech contrasts (Näätänen 

& Alho, 1997; Näätänen et al., 2007).  

A late discriminative negativity (LDN) has also been described between 350-550 ms. 

The LDN is more pronounced in children than adults and larger for speech than nonspeech 

sounds (Bishop, 2010a). An immature MMN has been identified in infants and young 

children, known as the Mismatch Response (MMR). The MMR can present positive polarity, 

longer latency, larger amplitude, and different scalp distribution than the adult MMN (Morr 

et al., 2002). 
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Time-frequency domain measures: ERSP and ITC/ITPC 

Time-frequency analysis quantifies spectral changes in neural oscillations over time, 

for example, in response to speech stimuli. Time-frequency analysis includes indices such as 

power (amplitude²) and synchrony (timing) that reflect variations for a single (local) or pairs 

(long-range) of electrodes (Cohen, 2014). Time-frequency measures can reflect induced 

neural oscillations; these are non-time locked to stimulus onset and extracted trial-by-trial to 

avoid cancelling out during averaging. Alternatively, evoked oscillations are power and 

phase-locked to an external stimulus and extracted from the final averaged ERPs (Uhlhaas, 

2010). Importantly, the analysis of the phase relationship across trials is independent of the 

amplitude of the oscillations, except in cases when power is very low (Cohen, 2014).  

Time-frequency indices include event-related spectral perturbation (ERSP), that 

measures event-locked changes in spectral power from a baseline, and Inter-trial coherence 

(ITC), which indicates the degree of phase angle clustering to a time-locking event across 

single trials (Makeig et al., 2004). ITC is an index that ranges from 0 (random phase angles) 

to 1 (identical phase angles) and is equivalent to 'Inter-trial Phase Clustering' (ITPC), 'Phase 

Locking Value (PLV), or 'Phase Coherence' (PC) (Cohen, 2014). 

ERP components can also be analysed in the time-frequency domain to study induced 

activity. For example, single-trial analysis of the MMN has shown local increases in theta 

ITC/PLV during auditory discrimination of deviant stimuli (Bishop et al., 2010a; Bishop & 

Hardiman, 2010). Moreover, increased phase synchronisation for the MMN reflects more 

robust long-range cortico-cortical communication between temporal and frontal regions 

(Hsiao et al., 2010; Hsiao et al., 2009). These findings demonstrate an association between 

the MMN generation and oscillatory synchrony, supporting the idea that time-frequency 

analysis and ERPs reflect a common mechanism and are complementary for understanding 

neural dynamics in speech perception (Makeig et al., 2004; Müller et al., 2009). 
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Speech tracking measures 

Different EEG measures quantify neural synchronisation to continuous speech. Neural 

tracking measures describe mutual speech-brain relations and how they are affected by 

acoustic or cognitive manipulations, for example, language modulations on speech 

entrainment (Obleser & Kayser, 2019). Early studies measured cortical entrainment to 

continuous speech as cross-correlation (coherence) between the speech envelope and the 

recorded brain activity (Di Liberto & Lalor, 2017). Recently, linear modelling methods can 

predict the EEG responses from the speech input (encoding or forward models) or reconstruct 

the speech stimulus from the EEG (decoding or backward models), linking cortical responses 

to speech features (e.g. the amplitude envelope), and higher-order information, such as 

phonemic (Di Liberto et al., 2015) and lexical content (Sassenhagen, 2019). 

In sum, there are various EEG measures and paradigms for studying speech 

perception, but it is necessary to evaluate which are more suitable for developmental 

research. In children, speech perception has mainly been studied using ERPs. However, there 

is increasing interest in using alternative approaches that help overcome significant 

challenges of EEG research in children and infants. 

 

1.3.2 Methodological considerations for EEG in speech developmental research. 

EEG is a non-invasive, portable, and relatively inexpensive method with enormous 

potential in neurodevelopmental science. EEG allows using the same measures from birth to 

adulthood, is sensitive to age-related changes in brain activity, and may predict language and 

cognitive skills (Norton et al., 2021). However, measuring speech perception in children is a 

complex task, and the EEG methodologies used in adults are only sometimes suitable for 

paediatric research. Despite the advantages of EEG, there are several challenges for its use in 

children that may lead to spurious findings and high variability between studies.  
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  Neurobiological factors: a noisier brain? 

A key aspect to consider in EEG paediatric research are the brain differences between 

children and adults resulting from neurodevelopment. Brain maturational processes in early 

childhood include changes in synaptic density, myelination of white matter tracts (Friederici 

et al., 2017) and increased skull thickness that influence the electrical volume conduction to 

the scalp and, ultimately, the EEG signal (DeBoer et al., 2006). In addition, neural activity in 

the developing brain is less synchronised (Muller et al., 2009), with more neural background 

noise in children than adults (Vanvooren et al., 2015).  

Development of brain structures and cognitive functions during early childhood is 

reflected in ERPs components as the MMN/LDN, with significant differences in scalp 

distribution, amplitude, peaks, and latency from the adult's responses. For neural oscillations, 

there are age-related increases in the magnitude of alpha and beta bands and decreases for the 

low-frequency range that results from brain maturation (Uhlhaas et al., 2010).  

Participant-related factors: poor quality data.  

Several reviews describe good practices in infant and children EEG (see Bell & 

Cuevas, 2012; Brooker et al., 2020). Three common challenges in paediatric EEG 

experiments include how to: (i) get the child's cooperation during testing, (ii) record clean 

EEG data, and (iii) prevent the participants from dropping out from the studies (attrition).  

Young children may get scared and refuse to wear the EEG cap or get fussy during 

data collection (Norton et al., 2021). Importantly, cap refusal is higher in younger children 

and children with special needs. This may bias the results, for example, excluding more 

irritable and less compliant children, such as children with neurodevelopmental disorders 

(Brooker et al., 2020). For paediatric EEG studies, participant attrition rates are high: up to 
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75% for infants, 30-45% for 2-3 years old children and 20% for children at the age of four 

years (Bell & Cuevas, 2012). This often results in small samples, reducing statistical power 

and making the findings hard to generalise. In addition, it may discourage researchers from 

studying children at more difficult ages, leading to gaps in knowledge in speech science. 

Once a child accepts the cap, the next challenge is to obtain good-quality data. Some 

measures as ERPs, require large amounts of data to isolate the brain signal from noise (Luck, 

2014). This results in long testing times, which are hard to tolerate for young children. They 

may become restless, bored, or sleepy, resulting in movement-related artifacts, alpha band 

contamination or blinks (Debnath et al., 2020). Importantly, drastic differences in data quality 

between participants or stimulus conditions may alter the results, for example, resulting in 

ERP amplitude and latency differences (DeBoer et al., 2005).  

Finally, defining strict participant inclusion/exclusion criteria may improve EEG data 

quality by reducing sample heterogeneity but results in a lack of diversity that compromises 

the generalisability of EEG findings. According to Norton et al. (2021), there is a need to 

increase the participation of underrepresented groups in EEG studies, such as participants 

from deprived backgrounds or racially, culturally and ethnically diverse (e.g., those with 

thick hair or non-English speakers). 

Experimental factors: stimuli and paradigms. 

So far, much of the ERP work in speech perception has used highly controlled and 

isolated stimuli, such as tones or phonemic contrasts in consonant/vowel in syllables (e.g., 

/ba/-/da/). Thus, they inform about acoustic and phonological discrimination but not about 

higher-level linguistic modulations (e.g. words) for which they may lack ecological validity 

to explain the complexity of speech perception (Alexandrou. Saarinen, Kujala & Salmelin, 
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2018). Nevertheless, there is growing interest in studying speech perception in daily-life 

contexts, using naturalistic stimuli as continuous speech (Walley, 2005). 

Regarding EEG paradigms, ERP speech perception studies often use an oddball 

paradigm, which is repetitive and hard to tolerate for children. Alternatively, the multi-feature 

(or optimal) paradigm (Näätänen et al., 2004) represents an efficient tool to include multiple 

acoustic contrasts and reduce ERP testing time without losing statistical power (Niemitalo-

Haapola et al., 2013). Considering potential clinical applications, EEG/ERP experiments have 

been introducing paradigms and analysis techniques that reflect not only group-level but also 

individual differences in speech perception, for example, machine learning methods. 

Data analysis issues: EEG pre-processing and measures. 

There are different toolboxes available for analysing adult EEG data. However, 

because of the differences between children and adults, adult analysis cannot be extended to 

paediatric EEG. So far, there is no gold standard on what pre-processing steps to use, how to 

define a priori the electrodes or time windows of interest or the more suitable EEG measures 

for comparing children and adults' neural responses to speech.  

Regarding pre-processing steps for paediatric EEG, high inter-lab variability hinders 

reproducibility and large-scale studies. Despite some recent standardisation attempts as the 

MADE Pipeline (Debnath et al., 2020) and new pre-processing tools that minimise artefact-

related data loss, it is necessary to investigate how different methods work with children's 

data. For example, EEG adult absolute thresholds for artefact rejection cannot be applied to 

children's data because infants and young children show inherently greater EEG baseline 

power in lower frequency ranges and higher amplitude ERPs than adults (Brooker, 2020), 

requiring higher thresholds for artefact rejection. 



54 
 

Moreover, a critical question is whether it is appropriate to compare adult and 

children's EEG data quantitatively and what measures to use. For example, in the resting-state 

EEG, adult and children frequency bands are not necessarily equivalent: band boundaries are 

lower for infants and children (Saby & Marshall, 2012), whereas peak frequency and power 

change with age (Bell & Cuevas, 2012). For ERP components, there are age-related 

differences in morphology, latency and scalp topography (DeBoer et al., 2006). During 

speech discrimination tasks, theta phase synchronisation increases, and power decreases from 

childhood to adolescence (Bishop et al., 2011) and adolescence to adulthood (Müller et al., 

2009). Paradoxically, larger amplitudes in EEG responses in children do not represent better 

speech discrimination than adults but result from brain maturation (DeBoer et al., 2006). 

Finally, children show high within and between-participant variability in EEG 

amplitude and latency measures, especially for clinical groups. This variability results from 

developmental differences in brain synchrony and may significantly affect EEG measures 

based on signal averaging, such as ERPs. Signal averaging for isolating ERP components 

removes important neural activity that contributes to cognitive processing, but that in children 

may not be robustly time-locked to an event (Makeig et al., 2004). Alternatively, EEG 

measures of oscillatory synchrony (PC, PLV, and ITC) could be more suitable to reflect 

differences in cortical responses to speech than amplitude-based measures.  

In summary, this literature review shows essential differences in speech processing 

skills between children and adults, and between children with TLD and DLD. These 

differences are associated with the maturation of auditory and language networks and 

language knowledge acquisition during early childhood, among other factors. Importantly, 

these multiple research areas (for example, evidence from EEG studies) need to be integrated 

into language development models that are consistent with those proposed for adults. 
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1.4 Thesis outline  

Previous findings highlight the role of neural synchrony in normal brain development 

and its potential importance for understanding neurodevelopmental disorders such as DLD 

(Uhlhaas et al., 2010). Using EEG as an objective measure of brain oscillations, it would be 

possible to characterise cortical responses to speech in young children with different language 

skills. However, this requires determining what EEG measures and paradigms are sensitive to 

language and speech-processing behavioural differences. 

This thesis aims to investigate cortical activity associated with speech perception in 

young children with different language developmental statuses (TLD and DLD) using a range 

of EEG paradigms, also comparing children's responses to those observed in adults (expert 

language status).  

Specifically, this thesis addresses the following research questions:  

(i) Do cortical responses associated with speech perception vary according to young 

children's language status (typical versus impaired)? 

(ii) What EEG indices reflect group-level differences in language skills: expert (e.g., 

adult-like), typical development (TLD children) or atypical development (DLD children)?  

(iii) Do EEG measures relate to children's behavioural measures of speech perception 

and phonological processing? 

 

We conducted four EEG experiments to address these questions: a resting state, multi-

feature MMN/LDN, and continuous speech perception paradigm. Children's speech 

perception and phonological skills were also tested to determine relationships between their 

neural responses and language performance. 
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The general hypothesis is that during early childhood, brain oscillations involved in 

speech processing will reflect neuro-maturation (age-related changes) but also, the effects of 

acquired language knowledge. As speech perception relies on cortical oscillatory mechanisms 

modulated by language knowledge, neural synchronisation in processing speech stimuli 

should differ under different linguistic abilities. For example, language modulations may vary 

during language acquisition because of the accumulation of language experience (knowledge) 

and in language-impaired children because of limited top-down language influences.   

Thus, as children acquire language, better language skills may enhance speech 

representation at the cortical level until they reach adult-like speech perception. However, 

this effect would be absent or less pronounced in children with DLD.  

Specifically, my predictions (P) were: 

P1: EEG indices would reflect more efficient speech processing in adults than    in 

children. 

P2: EEG indices would reflect more efficient speech processing in children with TLD 

than children with DLD at the same age. 

P3: Better language skills will facilitate the perception of speech at the cortical level, 

especially with higher-order linguistic content (e.g. lexical than functional words) 

P4: Cortical responses (EEG) and behavioural measures of speech processing will 

show a positive, direct association. 

 

The first study of this thesis (Chapter 2) validated an ERP multifeature experiment 

(Näätänen et al., 2004) in a group of healthy Spanish-speaking adults, comparing cortical 

discrimination responses (MMN/LDN) for speech stimuli versus their nonspeech analogues 
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using very controlled stimuli (CVC monosyllables). In the second study (Chapter 3), we used 

the stimuli from the adult experiment, but only in the speech condition to investigate 

discrimination of phonemic contrasts in children with TLD and DLD (ages 4.7 to 5.7 years). 

We compared ERP and time-frequency measures and their associations with phonological 

awareness processing performance.  

The third study (Chapter 4) used a less-controlled task-free paradigm to examine the 

relationship between resting-state power, oscillatory lateralisation, and speech perception 

tests between TLD and DLD children. The fourth experiment (Chapter 5) compared, for the 

first time, speech tracking in children with DLD versus TLD, using multivariate temporal 

response functions (mTRFs) to map EEG responses and continuous speech features (Di 

Liberto et al., 2015). Finally, Chapter 6 discusses the potential neurophysiological 

mechanisms underlying our EEG findings and their interpretation regarding current 

knowledge in language neuroscience and speech perception development.  

This thesis contributes to understanding the neural basis of speech perception in 

children by exploring different measures of cortical activity related to speech perception. It 

further informs research in speech perception development by using a range of paradigms 

with different ecological validity, relating EEG to behavioural measures of phonological and 

speech processing. In the future, these findings could help clinical practice by aiding the 

diagnosis of speech and language disorders and monitoring interventions' efficacy. 
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Chapter 2.  Validating a multifeature experiment in adults 

 

 

2.1 Introduction 

For humans, spoken language is a relevant input for which our brain has an innate 

preference (Zatorre & Gandour, 2007). At the same time, some linguistic content in the 

speech input is perceived more easily than others. In the brain, this is supported by complex 

mechanisms and involves integrating multiple bottom-up and top-down processes. However, 

it is still being determined to what degree speech perception is guided by auditory and 

linguistic features of the speech signal and how these features interact with prior language 

knowledge (or language skills). 

An objective, accurate measure to investigate how the brain perceives speech is the 

Mismatch Negativity (MMN). The MMN can be elicited without conscious attention to the 

stimuli, helping to separate attentional and linguistic processing. The MMN patterns are also 

sensitive to different levels of linguistic representation in the speech signal, for example, 

phonemic or lexical content. However, MMN experiments usually use a few contrasts, 

providing little information on higher-order language influences. In addition, there is a need 

to test previous MMN findings in new populations, for example, Spanish speakers. 

This chapter investigated cortical discrimination of speech stimuli of varying 

linguistic complexity. We aimed to validate an MMN experiment in adult Spanish speakers, 

providing reference values for future studies with children (Chapter 3). Instead of a typical 

oddball design, we used a multifeature (optimal) paradigm (Näätänen et al., 2004), partially 

replicating a study by Gansonre et al. (2018). This allowed us to contrast multiple linguistics 

content while considerably reducing the EEG testing time for future studies in children. 
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2.1.1 Language influences on speech perception 

Speech perception is hierarchically organised, involving successive stages of 

increasing complexity during which linguistic features are integrated (Cutler, 2008; Peelle et 

al., 2010). During word recognition, a hierarchical sequence for speech processing involves 

early, low-level acoustic features (e.g., pitch, amplitude, formants) and later, higher-level 

sub-lexical phonological (individual sounds and syllables), lexical (words) and semantic 

(word meanings) content (Kujala et al., 2007). However, to what extent each stage is 

influenced by the linguistic properties of the input, language representations in our brain or 

their interplay still needs to be fully understood. Although the amount of sensory detail in the 

speech signal (speech intelligibility) is undoubtedly a crucial factor determining how well we 

perceive spoken language, there is consistent evidence for top-down effects on different 

speech perception stages. Perceiving speech (but not other sounds) would activate language 

representations in the listener's brain, reducing the impact of acoustic variations in the input 

and enhancing the perception of features relevant to speech comprehension (Cutler, 2008; 

van Linden et a., 2007). 

One type of top-down language modulation that shapes how the brain responds to 

speech relates to an individual's experience with a given language (Leonard & Chang, 2014). 

More experienced language users (e.g., adult-like, native speakers) will perceive a given 

speech input more easily than less experienced or less language-proficient ones. A typical 

example is the innate brain preference for our native language; multiple studies have 

demonstrated that after the age of two years, cortical responses are more significant for native 

than non-native phonemes, indicating better phonological discrimination for the language we 

are familiar with (Näätänen et al., 1997; Kuhl, 2010). This indicates that speech perception is 

driven by implicit language knowledge acquired through cumulative experience, for example, 

with our native language's phonological rules or vocabulary.  
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A second type of language top-down modulation on speech perception is the listener’s 

language knowledge. Although the literature here is vast, a clear example of language 

knowledge manipulation is the study by Sohoglu et al. (2012). They tested fourteen adults by 

showing them a text before presenting spoken sentences with different levels of acoustic 

degradation. They found that when participants knew sentence content beforehand (matching 

text condition), their ratings of perceptual clarity were significantly better than when the text 

did not correspond to the upcoming sentence (mismatching text condition), with prior 

language knowledge predicting how the speech was perceived. The authors concluded that 

increasing the amount of prior knowledge improved speech perception, similar to when the 

speech signal was physically enhanced (greater intelligibility). However, other studies using 

objective measures have found no such effects. Millman et al. (2015) used MEG to measure 

cortical tracking of the speech envelope before and after training participants (n=16) to 

understand unintelligible speech. They found no enhancement in the responses for the same 

sentence after they became intelligible, concluding that speech perception was driven by 

acoustic processing with no effects of prior language knowledge. This discrepancy between 

subjective and objective measures could be explained to a great extent by the great variety of 

paradigms used to investigate top-down language effects.  

A third factor that interacts with language representations in the brain is the type of 

linguistic content in the speech input, such as phonemic categories, lexical status, word 

morphology and meaning. Previous studies indicate that some elements of speech are 

perceived more easily than others, generally those that activate higher-order language 

representations. Shtyrov et al. (2011) reported enhanced cortical responses for words than 

non-words in adults (n=18), indicating easier phonological processing when phonemes 

(native) are presented in a meaningful configuration (lexical status effect). Similarly, a study 

by Mai, Minnet and Wang (2016) in adult Mandarin speakers (n=21) confirmed the effects of 
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lexical status on different EEG measures when presenting sentences containing real words 

and non-words with similar acoustical structures. The authors detected different EEG patterns 

for real words and non-words, concluding that phonological and semantic tasks engage 

different cortical networks during speech processing. This indicates that findings about 

linguistic content effects on cortical speech processing may need further replication, ideally 

in different languages. 

Regarding neural mechanisms, it is believed that top-down language modulations 

interact with incoming speech through top-down feedback loops from frontal to temporal 

auditory areas. Notably, interactions between language knowledge and linguistic content 

occur during the late and early stages of speech processing (less than 200 ms). Sohoglu et al. 

(2012) reported that the effect of prior language knowledge involves activation in the STG 

shortly after speech onset, even before sensory cortices are recruited. Similarly, there is 

evidence of significant lexical effects peaking within 200 ms with enhanced cortical 

responses for stimuli with lexical status (Shtyrov et al., 2011). Moreover, a provocative claim 

by Leonard and Chang (2014) posits that neural activity in the STG reflects context-

dependent spectro-temporal representations of speech, meaning that this low-level speech 

processing area would also encode linguistically and behaviourally relevant information.  

Together, these findings indicate that prior language knowledge and the type of 

linguistic representations in the speech input modulate speech perception in the brain, even at 

low-level processing stages. However, a common issue with previous research investigating 

these effects with neural measures is that they frequently use very small samples, very 

different paradigms and have yet to replicate their findings. In this context, the MMN has 

emerged as a reliable index suitable for studying the effects of language knowledge and 

linguistic content on speech perception with millisecond precision. 
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2.1.2 Speech perception and the MMN 

The MMN is the negative frontal deflection elicited by the detection of any 

unexpected auditory feature, e.g., frequency, duration, intensity, or speech contrast. It is 

commonly elicited during passive listening using an oddball paradigm, consisting of an 

infrequent (deviant) stimulus within a sequence of repeated (standard) sounds. The MMN is 

measured on different waveforms computed by subtracting the ERP responses for the 

standard from that of the deviant stimuli (Luck & Kappenmann, 2011). The amplitude of the 

MMN is thought to reflect the magnitude of physical difference detected between a deviant 

and the preceding standards, but also the stimulus probability, as deviant stimuli are less 

likely to occur than standards. The latency varies according to the stimulus complexity, but 

roughly, the MMN typically spans from 100-250 ms (Kappenman et al., 2021) with an 

additional late discriminatory negativity (LDN) in the 350 (or earlier)–500 ms range. The 

LDN is more reliable in young children, larger for speech than non-speech sounds and 

decreases in amplitude with age (Cheour et al., 2001). Larger amplitudes and shorter latencies 

are typically interpreted as more efficient cortical processing.  

Since the 1990s, many studies have used the MMN to study speech perception in 

passive listening conditions, measuring the detection of sub-lexical contrasts as phonological 

differences in syllables and between larger units as words and sentences (Näätänen, 2003). 

For example, Kuuluvainen et al. (2014) used EEG–MEG in healthy adults (n=15) to measure 

cortical change detection of syllables with consonant, vowel, sound duration, frequency, and 

intensity contrasts. After controlling for acoustic and linguistic differences, they reported 

larger MMN for speech than for non-speech analogues. Thus, the MMN is useful to study 

top-down modulations on speech perception and the effects of different linguistic content.  

At early processing stages, larger MMNs reflect an enhanced perception of speech 

with higher-order linguistic content. For example, a study by van Linden et al, (2007) in 
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adults (n=16) reported greater MMN amplitude when the stimulus lexical information helped 

to disambiguate the phonemic content, demonstrating that lexical influences operate at pre-

lexical processing stages. Shtyrov et al. (2011) detected an early effect of word frequency at 

100-120 ms originating bilaterally in the left inferior frontal areas, with significantly greater 

MMN amplitude for high-frequency words. This indicates frontal top-down modulations 

interplay with linguistic content at early processing stages. Similarly, a study in German 

speakers (n=23) by Jacobsen et al. (2021) demonstrated early effects of word type in the 

MMN amplitude, with more significant frontal responses for nouns than function words in 

the 80-200 ms interval. 

At later processing stages (>200 ms), modulations on the MMN include lexical status 

and word type effects. Shtyrov et al. (2011) reported that a later lexicality effect originated 

bilaterally in perisylvian areas, with significantly larger responses for word than for non-word 

deviants in the 200–350-time window. Similarly, Gansonre et al. (2018) reported later 

phonological, lexical, and lexical-semantic enhancement effects. They found significantly 

larger negative responses for native vowels than for non-native analogues with a centrally 

distributed peak at 248 ms. Real words elicited significantly larger negativity than non-words 

at 320 ms, whereas action verbs exhibited a more robust frontal negative response than 

concrete nouns, peaking at 310 ms. Together, these results indicate later MMN-like responses 

consistent with the LDN time course. However, focusing on the LDN as a cortical measure 

for adult speech perception studies could be less appropriate than the MMN because the LDN 

decreases with age, and could be hard to differentiate from the N400 component. 

An important methodological aspect is that most MMN studies use a simple oddball 

paradigm with one standard stimulus interspersed with one or two deviants that differ in one 

critical acoustic feature. Such strict acoustic control is hard to achieve in speech perception 

research as speech naturally involves multiple phonological contrasts. Many studies try to 
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control acoustic differences by restricting the number of speech contrasts, ending up with 

very restricted distinctions such as /ba/-/da/. Although these conditions provide reasonable 

experimental control, they limit the number of contrasts that can be studied in each 

experiment, resulting in long EEG recording times if wanting to introduce more variables. 

More importantly, such controlled conditions are not very informative about speech 

perception, such as how low-level speech features are modulated by language knowledge and 

linguistic content.  

In response to this, a variant of the oddball paradigm, the multifeature paradigm, 

attempted to sort out this limitation by including several deviants versus one standard, 

allowing different contrasts in a much shorter time without losing statistical power (Näätänen 

et al., 2004). Gansonre et al. (2018) used a multifeature paradigm to study the perception of 

different speech contrasts in monosyllabic word forms in a group of adult Danish speakers 

(n=21).   Although they used parent waveforms1 instead of the MMN difference waveforms, 

their experiment demonstrated that it is possible to successfully elicit ERP responses for 

multiple linguistic conditions in a single testing session. 

From a theoretical perspective, there are different interpretations of the MMN. A 

classical hypothesis is that the MMN reflects the formation of sensory memory traces and is 

elicited as an error signal when an incoming deviant mismatches previous representations of 

a standard stimulus (Näätänen et al., 2005). Memory traces would involve language-specific 

representations in the posterior left auditory cortex for speech perception, working as 

templates for automatic speech sound recognition (Näätänen, 2003; Näätänen, et al., 1997; 

Pulvermüller et al., 2001). Alternatively, the neural adaptation account suggests that the 

MMN is not a response itself but a part of the auditory N1 component, which is suppressed 

                                                           
1 In recent MMN research, ‘parent waveforms’ (e.g., Kappenmann et al., 2021) refer to the original standard and 

deviant grand averages before calculating the difference waveform deviant minus standard. 
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and delayed, reflecting passive neural attenuation in the auditory cortex for repetitive sounds, 

including speech (Jaaskelainen et al., 2004). This bottom-up, pre-attentive gating of novel 

stimuli into conscious perception would leave out irrelevant, less-informative stimuli 

(Heilbron & Chait, 2018). Finally, the predictive coding framework proposes that the MMN 

is an index of “prediction error” between the brain’s prediction about future sensory events 

and upcoming sensory information (Garrido et al., 2009). This error signal updates higher-

order processing levels and facilitates low-level processing of new inputs (Heilborn & Chait, 

2018). Although predictive mechanisms are not exclusive to language, evidence supports 

predictive coding during phonological, lexical, semantic, and grammatical processing 

(Heilbron et al., 2022).  

Although the MMN theories may overlap in some respects, as they are all somehow 

based on memory, Heilbron and Chait (2018) pointed out an important distinction between 

them: Predictions operate prospectively, representing future stimuli, whereas memory 

comparisons act retrospectively by comparing the incoming input with previous traces. There 

is a need for more MMN studies contrasting different language processing levels. To 

determine which of these approaches better explains linguistic modulations on speech 

perception, for example, using the multifeature paradigm. 

 

2.1.3 The current study 

This study investigated the effects of different types of linguistic content on the cortical 

detection of speech contrasts in adults, as indexed by the MMN. Given the few studies 

assessing cortical speech processing in Spanish speakers and the need for EEG paradigms 

suitable for young children, we partially replicated an experiment by Gansonre et al.  (2018) 

in a group of Chilean adults (n=20). Using a multifeature paradigm, we investigated the 
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MMN responses to phonological changes in a set of speech (S) deviants that differed 

hierarchically in their linguistic content: native versus non-native phonemes in non-words, 

non-words versus words, and function versus content words. We also compared the MMN for 

each deviant type with the responses to their non-speech (NS) analogues (control condition).  

The aims of this study were twofold; firstly, to determine if our experiment elicited a 

consistent MMN (and LDN, for exploratory purposes), and secondly, if the MMN was 

influenced by the linguistic differences between stimuli.  

Thus, we addressed three questions:  

(i)  Are there significant MMN/LDN responses?  

(ii)  If an MMN is present, are there any differences in amplitude or latency when 

stimuli are presented in a speech versus a non-speech configuration? 

(iii)  Is there any effect of the linguistic content on the MMN patterns?  

  

We hypothesized that our experiment would elicit robust MMN responses for all deviants 

and that early effects of linguistic content would be observed as differences in the MMN 

amplitude and latency. Specifically, we predicted an effect of linguistic content, with MNN 

differences between pairs of speech and non-speech stimuli.  

For contrasts in the speech condition, we predicted an effect of the linguistic processing 

level, with different MMN responses for (i) native than non-native phonemes in non-words, 

(ii) words than non-words (lexical/ non-lexical status), and (iii) content words versus function 

words (word class). However, for the direction of these effects, our hypotheses were 

exploratory and considered possible outcomes according to the MMN frameworks described 

earlier, summarised in Table 2.1. 
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Table 2.1 

Possible Linguistic Effects on the MMN According to Different Theories 

Hypothesis MMN prediction Rationale 

Predictive 

coding 

either 

(a) no effect of condition or linguistic 

content on the MMN, 

or 

(b) reduced MMN amplitude for more 

predictable stimulus (speech), 

because of less prediction error. 

because 

(a) the probability of occurrence is 

equal for all deviant types, 

or 

(b) language status could make the 

speech stimuli easier to predict than 

meaningless non-speech 

analogues. 

Memory 

traces 

Larger MMN amplitude for more 

familiar, higher-order stimulus 

(speech than non-speech, but only for 

words; for words than non-words, and 

for content than function words). 

If a language-specific memory effect 

is present, we should observe larger 

responses because of stronger 

long-term memory traces. 

Neural 

adaptation 

either 

(a) no difference in MMN between 

conditions, 

or 

(b) smaller responses for speech than 

non-speech items, but with no 

differences within the speech 

condition. 

either 

(a) all type of changes should 

trigger equal neural refreshment. 

or 

(b) repeated speech stimuli could 

generate neural habituation faster. 
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2.2 Methods 

2.2.1 Participants 

Twenty adults (age range 24.9-44.11 years, M=34.2, SD= 4.8, 12 female) were 

recruited for the study through advertising on social media groups. All participants were 

native Chilean Spanish-speaking adults who lived in London (UK), used Spanish as their first 

language at home and, despite having English as a second language, did not speak a language 

other than Spanish (Chilean variant) before the age of 5 years. None of the participants 

reported a history of hearing loss, neurological or psychiatric conditions, or learning or 

language difficulties, as determined by an online screening survey. 

This study was approved by the Research Ethics Committee of the Division of 

Psychology and Language Sciences, University College London (UCL). Before participating 

in the study, all participants read an information sheet and provided written informed consent. 

All participants received compensation of £15 for their time.        

 

2.2.2 Stimuli 

Two sets of acoustic stimuli were created: a ‘speech’ (S) and a ‘non-speech’ (NS) 

condition. Each set consisted of five stimulus types: one standard stimulus (288 in total) and 

four deviants (72 stimulus for each type, 288 deviants in total) with a total of 576 stimulus 

per condition (S and NS). 

Speech condition 

Five CVC monosyllables were created according to the Spanish language phonotactic 

rules. Stimuli were recorded by a female native Chilean Spanish speaker in an acoustically 

shielded booth with a condenser microphone RODE NT-1A, an RME Fireface UC interface 

and the Audacity software with 44.100 Hz sampling rate, stereo channels and a 16-bit format 
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as settings. The recorded string was converted to mono, and each stimulus was cut from the 

whole set to the nearest zero crossing, defining the stimulus beginning/end.  

The five stimuli consisted of one standard (St) and four deviants (D1 to D4) that were 

produced by changing the initial phoneme of the standard stimulus while keeping constant 

the vowel nucleus and the final consonant. These phonemic changes resulted in acoustic and 

phonological contrasts between the standard and deviant stimulus aiming to elicit the MMN 

but also involved different levels of linguistic processing: (i) phonological: native versus non-

native phonemes in non-words (phonotactically allowed word forms without meaning), (ii) 

lexical: non-words versus real words, and (iii) semantic: function versus content words.  

Stimuli were controlled as much as possible for acoustic and linguistic differences 

known to influence cortical speech processing measures, such as the MMN. According to 

Guardia (2010), the initial phonemes were selected to maximize their similarity in terms of 

linguistic (e.g., syllable structure, word length/stress) and lexical factors (age of acquisition 

and oral frequency). Thus, the stimuli should meet the all the following criteria: (i) St and D2 

are non-words with a Spanish native initial phoneme, (ii) D1 is a non-word with an initial 

phoneme that is non-native in Spanish, (iii) D3 is a Chilean Spanish function word, (iv) D4 is 

a Chilean Spanish content word, (v) D3 and D4 are similar in their age of acquisition and oral 

frequency and are acquired before the age of 4.6 years (to be used in future experiments with 

young children), according to databases by Corral et al., (2009) and Alonso et al., (2015). 

As illustrated in Table 2.2, “fus”, a non-word in Spanish, was selected as the standard 

(St) stimulus. To create deviant 1 (D1), the initial phoneme was changed into /ʃ/, but the 

vowel and final consonant were preserved (/u/ and /s/, respectively), resulting in the non-

word /ʃus/ (“shus”) which is non-native in Spanish. For deviant 2 (D2), the initial phoneme 

was changed into /x/, a native Spanish phoneme that produced the non-word /xus/ (“hus”). 
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For deviant 3 (D3), the initial phoneme was /t/, resulting in the function word /tus/ (“tus”, 

meaning “yours”), and for deviant 4 (D4), the initial phoneme was /l/, producing the content 

(lexical) word /lus/2 (“luz”, meaning “light”).  Although a fricative onset consonant (in St, D1 

and D2) and the /u/ vowel nucleus could make the stimulus less salient (because of greater 

noise and lower amplitude, respectively), only these CVC combinations met all our criteria. 

Table 2.2  

Linguistic Parameters for Stimuli in the Speech Condition 

Type Class Initial  

Consonant 

Vowel Final 

Consonant 

Age of 

Acquisition 

Oral 

Frequency 

St Non-word /f/ 

Native, 

labiodental, 

unvoiced 

fricative 

/u/ /s/ -- -- 

D1 Non-word /ʃ/ 

Non-Native, 

postalveolar

, unvoiced 

fricative 

/u/ /s/ -- -- 

D2 Non-word /x/ 

Native, 

velar, 

unvoiced 

fricative 

/u/ /s/ -- -- 

D3 Function 

word 

(determiner) 

/t/ 

Native, 

dental, 

unvoiced, 

alveolar 

/u/ /s/ 4.24 ª   2.63 ᵇ 

D4 Content word 

(noun) 

/l/ 

Native, 

alveolar, 

voiced, 

lateral 

/u/ /s/ 3.18 ª  

 

2.53 ᵇ 

 

Note. St: Standard, D1: Deviant 1, D2: Deviant 2; D3: Deviant 3; D4: Deviant 4. 

 ª Subjective AoA in years (Alonso et al., 2015) 

ᵇ Among the 100 most frequent words and monosyllables in Spanish (Corral et al., 2009)         

                                                           
2 Note that /lus/ is valid for the Chilean and other Hispano-American Spanish pronunciation but not totally for 
peninsular Spanish, in which the phoneme /s/ is pronounced interdentally, as in many areas in Spain. 
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Non-Speech condition. 

A set of standard-deviant stimuli were spectrally matched to each one of the original 

stimuli but could not be perceived as speech. These non-speech analogues acted as a control 

condition, differentiating the MMN effects resulting from acoustic changes from any 

potential linguistic effects. 

The NS analogues were created from the original stimuli using TANDEM-

STRAIGHT (Kawahara et al., 2008), a speech modification system that decomposes the 

speech into a carrier and a spectral filter. Before resynthesis, the spectral filter was averaged 

across the entire frequency range, preserving the temporal fluctuations in amplitude and 

voiced/unvoiced/mixed distinctions but no other variations in spectral content. The result was 

similar to what would be obtained in a traditional single-channel vocoder (Dudley, 1939). 

Finally, the ensemble of five non-speech sounds was spectrally matched to the average 

spectrum of the five originals. The spectrograms for the stimulus in both conditions are 

presented in Figure 2.1. 

To control for acoustic factors, all stimuli were matched as much as possible in pitch, 

intensity and duration using PRAAT (Boersma & Weenink, 2018). For stimulus with a 

voiceless initial consonant (all except D4-S), the initial consonant was defined from time=0 

to the last time point in which the signal was aperiodic. Vowel duration was defined as the 

time from the start to the end of periodicity. The final consonant duration was defined from 

the first aperiodic sample after the vowel end to the stimulus end time. The initial consonant 

for D4-S (voiced) was identified from the vowel by visual inspection of the spectrogram, and 

the vowel onset was considered as the time when there was a sudden and sustained rise in f 0, 

confirmed by auditory inspection of the consonant-vowel transition. After pre-processing, 

stereo format was restored. Table 2.3 presents the acoustic parameters for all stimuli. 
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Figure 2.1  

Spectrograms of Each Stimuli   

 

 

Note. Column (a) Speech (S) condition; (b) Non-speech (NS) condition. 
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Table 2.3 

Acoustic Parameters for Stimulus in the Speech and Nonspeech Conditions 

 
 
 
Condition/ 
Stimulus 
type 

Mean values                  Vowel
ͨ
 Consonant  

 

Duration 
(ms) 

Pitch 
(Hz) 

Intensityᵇ 
(dB) 

Duration 
(ms) 

Mean  
pitch 
(Hz) 

Mean 
intensity 
(dB) 

Initial  
(ms) 

Final  
(ms) 

Speech          

St 610 264 66.7 240 264 70.8 140 210 

D1 660 264 66.7 220 264 71.3 190 230 

D2 630 267 66.7 210 268 71.5 170 240 

D3 680 267 66.7 250 266 71.0 140 270 

D4 660 264 66.7 230 269 70.7 130 280 

Non-

speech 

        

St 610 264 66.7 280 264 70.2 110 200 

D1 660 264 66.7 240 265 71.1 170 230 

D2 630 267 66.7 250 268 70.8 140 230 

D3 680 267 66.7 290 267 70.5 110 260 

D4 650 262 66.7 230 268 70.2 140 270 

 

Note. St: Standard, D1: Deviant 1, D2: Deviant 2, D3: Deviant 3, D4: Deviant 4. 

Stimulus duration ranged from 610 to 680 ms with a 15 ms ramp on/off segment.  

ᵇIntensity of all stimuli was normalised to the root-mean-square (RMS) at 66.7 dB 

ͨ Vowel intensity differences within 1 dB and in vowel pitch within 1 Hz for each S-NS pair.  

 

Importantly, some inevitable differences in the acoustic complexity between stimulus 

pairs in the S and NS condition persisted, even after maximum efforts to match them as can 

be confirmed by visual inspection of the spectrograms in Figure 2.1. For example, D1-S has a 

lower intensity in the initial fricative than its NS analogue.  
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    2.2.3 Procedure 

Stimuli of the S and NS condition were divided into four blocks of 3 min 20 seconds 

duration (8 blocks in total, with a total duration of 28 minutes). Each experimental block 

consisted of an initial habituation sequence of 10 standards, and a multi-feature sequence of 

144 stimuli (Figure 2.2). In the multi-feature sequence, the four deviants (12% of the trials 

each) stimuli interspersed in a randomised order with the standard stimulus (50% of the 

trials). The inter-stimulus interval (ISI) was randomly jittered between 1100-1200 ms, and the 

presentation order of the speech and non-speech blocks was randomised across participants.  

 

 

Figure 2.2  

Structure of each Experimental Block for the Speech and Non-Speech Conditions 

 

 

 

Note. Each experimental block consisted of an initial sequence of 10 standards (white 

squares), and a multifeature sequence, in which D1 (light blue), D2 (green), D3 (blue), and 

D4 (pink) were randomly alternated with the standard. Total number of stimuli per block= 

154. ISI: Inter-stimulus interval. 
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Participants were tested in a single 2-hour session at the UCL Infant and Child 

Language Lab.  After providing informed consent, they completed a language background 

questionnaire and received an air conduction pure tone audiometry according to the British 

Society of Audiology procedures (BSA, 2011). They also completed the Block Design test of 

the Weschler Abbreviated Scale of Intelligence, WASI (Weschler, 2011), a standardised 

measure of nonverbal IQ.  

The participant’s hearing and nonverbal skills were assessed to confirm that they (i) 

presented mean pure tone average (PTA) air-conduction thresholds ≤20 dB for both ears at 

octave frequencies from 500-4000 Hz, or a threshold of ≤25 dB at any given frequency from 

250-8000 Hz, and (ii) performed no more than 1 SD below the normative mean (M=50, 

SD=5) on the Block Design test. Table 2.4 summarises participant’s auditory and non-verbal 

test results.  

 

 

Table 2.4 

Participant’s Hearing Thresholds and Non-Verbal Scores 

Measure M SD CI (Lower-upper) Range 

PTA right ear (dB HL) 6.2 3.7 4.4 - 7.8 0 - 13 

PTA left ear (dB HL) 6.9 3.6 5.1 - 8.5 0 - 13 

Block Design (T -score) ª 60.7 7.8 56.9 - 64.4 44 - 79 

 

Note. n=20. Group Means, Standard Deviations (SD), Confidence Intervals (CI) for the 

Mean (95%), and Ranges for pure tone average (PTA) and the Block Design test. 

ª One missing value (n=19) 
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2.2.4 EEG acquisition and pre-processing 

EEG was recorded in a sound attenuated booth. Participants were instructed to sit in a 

chair comfortably and still, ignoring the acoustic stimuli while watching a silent video, with 

no response required. All auditory stimuli were presented free field at 70 dB SPL via one 

loudspeaker placed in front of the participant. 

 Continuous EEG was recorded with a 32- channel Biosemi ActiveTwo System 

(https://www.biosemi.com), at a 2048-Hz sampling rate. The electrodes were positioned 

according to the 10-20 system in the following sites: Fp1/2 - AF3/4 - F7/8 - F3/4 - FC1/2 - 

FC5 /6- T7/8 - C3/4 - CP1/2 - CP5/6 - P7 /8- P3/4 - Pz - PO3/4 - O1/2 - Oz - Fz – Cz. A1 and 

A2 were placed on the left and right mastoids, respectively and CMS-DRL were used as 

online reference.  The vertical and horizontal electro-oculogram were recorded by electrodes 

in the left supra and infraorbital sites and right and left eye canthus, respectively. For all 

electrodes, DC offsets were kept under 25 µV. 

The EEG was pre-processed using EEGLAB v.14 (Delorme & Makeig, 2004), 

MATLAB v.2018a (The Mathworks Inc) and ERPLAB v.5.1.1.0 (Lopez-Calderon & Luck, 

2014).  Data were resampled to 500 Hz and re-referenced off-line to the average of both 

mastoids. The continuous EEG was high-pass-filtered with an IIR Butterworth filter (2nd 

order, 12 dB/octave attenuation, half-frequency cut-offs 0.1Hz, zero-phase shift) to remove 

slow drifts and DC offsets (Luck, 2014). Bad channels were removed after visual inspection 

and Independent Component Analysis (ICA) was applied to reduce blinks and eye 

movements. After ICA, the removed channels were interpolated, and data were re-referenced 

to the head average.  

A total of 619 epochs of 1000 ms duration were extracted for each participant, defined 

from -200 to 800 ms, with baseline correction between -200 to 0 ms.  Epochs with artifacts 

exceeding an absolute threshold of 100 µV were excluded. The EEG noise level was 
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quantified as the individual percentage of epochs rejected for each stimulus type and 

condition, considering 30% of the trials per stimulus type as individual maximum artifact 

rejection. No participant exceeded this criterion. Table 2.5 presents the group averages per 

condition and stimulus type (see Appendix 2.1 for individual rejection values).  

 

Table 2.5 

Percentage of Rejected Epochs per Condition and Stimulus Type 

Stimulus Type          Speech       Non-Speech 

M SD M SD 

St 11.8 12.4 10.7 9.3 

D1 7.6 8.8 8.7 7.2 

D2 9.2 7.9 9.0 7.8 

D3 8.4 7.2 9.4 7.8 

D4 8.8 6.6 11.9 15.3 

 

Note.  n=20. Group Means, Standard Deviations (SD) for the total percentage of rejected 

epochs. 

 

 

2.2.5 ERP data analysis 

Individual ERP datasets were created for each participant and the grand average was 

calculated across all subjects for each stimulus type in both conditions. Then, four difference 

waves (DWs) were computed for all the stimulus type per condition, by subtracting the 

average responses for the standards from the average responses for each deviant type. 

Difference waveforms were then analysed to determine if the MMN response was present 

and quantify its amplitude and latency. 

To reduce the number of statistical comparisons (Luck & Gaspelin, 2017), electrode 

Fz was selected a priori for all data analyses as previous literature has reported it as a site of 
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maximum MMN amplitude (Näätänen et al, 2004). Pre-processed DWs at 500 Hz were 

decimated for statistical analysis by a factor of 4 to 125 Hz, by low pass filtering with a 

boxcar moving average and baseline correction from -194 to 0 ms.  

For the first analysis, significant responses and their polarity were detected by point-

by-point, 2-tailed t-tests applied in the 50-450 ms time window. Using a broad time window 

would allow us not only to detect the MMN but to explore other responses as the LDN for 

informing future studies. A response was considered present if the amplitude of a DW was 

significantly smaller than 0 µV for a continuous period of at least 16 ms (Gurthrie & 

Buchwald, 1991). The MMN time window was defined between 100-250 ms whereas 

exploratory LDN analysis comprised the 250-450 ms interval. All between and within-

condition analysis were performed in the MMN time window: peak latency was calculated as 

the largest negative deflection in the 100-250 ms interval, and mean amplitude as the average 

over a 50 ms interval centred in the peak latency. Qualitatively, we reported the temporal 

patterns and scalp distribution for the MMN. 

 

2.2.6 Statistical analysis 

Statistical analyses were performed using SPSS v.27, Matlab 2018a and the Mass 

Univariate ERP Toolbox, MUA (Groppe et al., 2011) and considered a critical alpha level of 

0.05 for all analysis, except when correction for multiple comparisons was required.  

MUA was used to identify determine reliable responses by performs point-by-point t-

tests throughout a given time window(s) and electrode(s) of interest, testing the null 

hypothesis that the difference between a given ERP waveform is not significantly different 

from 0 µV. The results of each test are expressed as a t-score for each time point, with greater 

t-scores indicating more reliably differences (Groppe et al., 2011). As this is a validation 
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study, the MUA approach was preferred over other MMN/LDN identification or 

quantification methods (e.g., average measures over a time window), because it provides a 

fine-grained analysis of the time course (start/ending points) and the direction (polarity) of 

any significant responses for each DW type and between/within-condition effects. 

 To control for the substantial number of comparisons, the significance of each t-test 

was assessed by applying a False Discovery Rate (FDR) control procedure at a 5% nominal 

level (Benjamini & Hochberg, 1995). FDR controls for the average proportion of significant 

test that are, in fact, false discoveries (type I error) within a family of comparisons, as occurs 

across electrodes or between consecutive time points for the same electrode (Fields & 

Kuperberg, 2020). The FDR correction assumes that a family of test are positively correlated 

and ensures that the likelihood of false discoveries will be limited to the nominal level, 

regardless their dependency (Benjamini & Hochberg, 1995). FDR-corrected p-values 

referring the critical threshold for statistical significance are known as q-values. For example, 

for a family-wise error rate of q=0.05 (α=0.05), any t-test result with q ≤ 5% will be 

considered statistically significant (Groppe et al., 2011). 

 

 

2.3 Results 

       2.3.1 Identification of significant ERP responses 

Figure 2.3 displays the ERP grand average waveforms for all stimulus in the S and NS 

condition, indicates typical auditory responses for all the stimulus types. For the S condition 

(Figure 2.3a), peaks on D1 and D2 are clearer for the standard stimulus, but the opposite 

pattern is observed for D3 and D4. In the NS condition (Figure 2.3b) the amplitude of deviant 

and standard stimuli looks very similar. 
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Figure 2.3  

Grand Average Parent Waveforms at Fz, for all Stimuli  

 

 

Note. ERP waveforms for stimuli in the in the Speech (column A, solid lines) and Non-

Speech (column B, dashed lines) condition. First row: standard (black) - deviant 1 (light 

blue). Second row: standard (black waveforms) versus deviant 2 (green waveforms). Third 

row: standard (black) versus deviant 3 (blue). Fourth row: standard (black) versus deviant 4 

(pink). 
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MMN/LDN identification in Difference Waveforms 

The first validation step for our experiment focused on determining whether it elicited 

statistically significant MMN and LDN responses in each of the difference waves and if so, in 

describing their temporal patterns. We computed four difference waveforms (DW) from 

individual ERP sets and averaged them across subjects for each condition resulting in two 

pools of deviants; one for the speech (DW1-S, DW2-S, DW3-S and DW4-S) and another for 

the non-speech condition (DW1-NS, DW2-NS, DW3-NS and DW4-NS).  

MUA was applied at electrode Fz for each DW, to determine (a) if statistically 

significant responses were present, (b) their latency and duration (start-end time points), and 

(c) the polarity of other responses (positive or negative), using a broader time window around 

50-450 ms (exact boundaries for a 125 Hz rate: 46-446 ms).   

 Significant responses of the same polarity (either positive or negative) were detected 

for all DW types at similar latency ranges for both conditions (see Table 2.6). In general, the 

duration of these responses was longer in the non-speech than in the speech condition, except 

for DW type 2. Amongst these significant ERP responses, the MMN was identified as 

negative deflections occurring in the 100–250-time window for an interval of at least 16 ms 

(Guthrie & Buchwald, 1991).  

The results of the MUA confirm the presence of significant MMN responses at Fz the 

100-250 ms time window for all DW types in both conditions (Table 2.6, values in bold). In 

addition, significant negative responses are observed for the 250-450 interval in both 

conditions (Table 2.6, underlined values) for all DW types, except for DW2_S, suggesting 

LDN responses are also present. Table 2.7 presents the parameters of the MUA in the 50-550 

ms time window, with a family-wise alpha level of 5% (q=0.05) for each DW type, in both 

conditions. 
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Table 2.6 

Significant ERP Responses Detected in the 50-450 ms Time Window  

 

DW 

type 

Speech Non-speech 

Start/end 

time (ms) 

Response 

duration (ms) 

Response 

Polarity 

Start/end 

time (ms) 

Response 

duration 

(ms) 

Response 

Polarity 

DW1 -- -- -- 78-102 24 Neg. 

 -- -- -- 102-126 24 Neg. 

 182-198 24 Neg. -- -- -- 

 238 8 Pos. 214-246 32 Pos. 

 278-294 16 Neg. 262-318 56 Neg. 

 350-390 40 Pos. 342-398 56 Pos. 

DW2 102-118 16 Pos. -- -- -- 

 158-182 24 Neg. 166-182 16 Neg. 

 222-246 24 Pos. 214-246 32 Pos. 

 -- -- -- 270-310 40 Neg. 

 358-366 8* Neg 358-404 60 Pos. 

DW3 -- -- -- 62-110 48 Neg. 

 190-230 40 Neg. 166-222 56 Neg. 

 278-334 56 Pos. 262-270 8 Pos. 

    366-374 8 Neg. 

 414-430 16 Neg.    

DW4 86-110 24 Pos. 54-62 8 Pos. 

 126-174 48 Neg. 102-158 56 Neg. 

 214-278 64 Pos. 206-254 48 Pos. 

 326-374 48 Neg. 286-374 88 Neg. 

 -- -- -- 398-422 24 Pos. 

 

Note. Time points and/or intervals for which the DW amplitude differed significantly from 0 

µV, presented in chronological order after stimulus onset.  Significant intervals 

corresponding to MMN responses are marked in bold, in the shaded cells. Significant 

intervals corresponding to the LDN response are underlined. (*) This response is too short to 

be considered significant. 
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Table 2.7 

Results of the Mass Univariate Analysis for the 50-450 ms Time Window 

 

Stimulus 

type 

                       Speech              Non-speech 

Critical  

t-scores 

Test-

wise 

alpha 

Estimated 

upper 

bound FDR 

Critical t-

scores 

Test-

wise 

alpha 

Estimated 

upper 

bound FDR 

DW1 -2.85 /2.85 0.01 0.6 -2.40 / 2.40 0.03 1.4 

DW2 -2.80 /2.80 0.01 0.7 -2.73 / 2.73 0.01 1.0 

DW3 -2.69 /2.69 0.02 0.9 -2.70 / 2.70 0.02 1.0 

DW4 -2.41 /2.41 0.03 1.4 -2.37 / 2.37 0.03 1.7 

 

Note. Critical t-scores (2-tailed) indicate the values at which the point-by-point t-scores 

computed for each DW start to significantly deviate from 0 µV.  The test-wise alpha 

corresponds to the corrected q values whereas the estimated upper bound corresponds to the 

expected proportion of false rejections of the null hypothesis, this is, the FDR. 

 

 

To help understand the MMN/LDN patterns, MUA raster diagrams in both figures 

were projected on the grand average difference waveforms. Figure 2.4 and 2.5 illustrates the 

intervals of significant responses for each DW type in both conditions. Each rectangular bin 

in the raster plot equals to 8 ms (at a 125 Hz sampling rate) and represents the value (q) of a 

t-test at electrode Fz. Colour towards green-yellow and blue indicate significantly positive 

and negative difference from zero, respectively. Grey squares, non-significant differences 

from 0 µV. Significant MMN and LDN were detected for all stimulus in both condition, 

except for LDN in DW2-S. 
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Figure 2.4  

Significant MMN/LDN Responses at Fz for all DW in the Speech Condition 

 

 

 

 

Note. Panel (a) DW1, (b) DW2, (c) DW3, and (d) DW4.    Coloured bins in the raster plots 

indicate the time periods when the response amplitude is significantly different from 0 µV, at 

q=0.05, after correcting for multiple comparisons. Colour bar: t-scores for the MUA. 

Significant MMN/LDN responses were detected for all deviants, except LDN in DW2. All 

waveforms were low-pass-filter at 35 Hz (Butterworth IIR) before plotting. 
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Figure 2.5  

Significant MMN/LDN Responses at Fz for all DW in the Non-Speech Condition 

 

 

 

 

Note. Panel (a) DW1, (b) DW2, (c) DW3, and (d) DW4.    Coloured bins in the raster plots 

indicate the time periods when the response amplitude is significantly different from 0 µV, at 

q=0.05 after correcting for multiple comparisons. Colourbar: t-scores for the MUA. MMN 

and LDN responses were detected for all NS deviants. All waveforms were low-pass-filter at 

35 Hz (Butterworth IIR) before plotting.  
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       2.3.2 Comparison of MMN responses between conditions. 

The second analysis investigated between-conditions differences in MMN patterns for 

each S-NS pair (Figure 2.6).  All DW pairs showed some MMN overlap except for DW1, 

which appeared much earlier and has longer duration in the NS than the S condition. In terms 

of latency pair DW2 had an earlier onset and longer response for the S condition, whereas 

DW3 and DW4 showed earlier MMN onsets and longer duration for NS stimuli. 

 

Figure 2.6  

Comparison of the Significant MMN Responses for Speech/Non-Speech Pairs at Fz 

 

Note. MMN: shaded area; S: continuous line, NS: dotted line.  
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Differences in MMN Topography 

 In terms of the scalp topography, the MMN responses presented a similar pattern 

between conditions for S and NS stimuli on each DW type (Figure 2.7). This pattern 

consisted in amplitude shifts towards negative values with a frontal-central distribution that 

was more pronounced for DW3 and DW4 than for DW1 and DW2, in both conditions. 

 

 

 

Figure 2.7 

Scalp Distribution of the MMN Effects for each DW Type 

 

 

 

Note. First row: Speech condition, second row: Non-speech condition. Numbers indicate the 

significant MMN interval for each DW type. Columns 1-4: DW type. Colourbar indicates 

mean amplitude (µV) across the time range (green/blue: negative values, yellow/red: positive 

values). 

 



88 
 

Differences in the MMN latency 

The MMN overlapped for each S-NS pair (except for DW1, with earlier onset for 

NS), with longer responses in the NS condition except in DW2 (see Table 2.7). Peak negative 

latency was measured in the 100-250 time window and averaged across participants (see 

Table 2.8 for descriptive statistics).  

 

 

Table 2.8 

MMN Peak Negative Latency (ms) for all S-NS Pairs in the 100-250 Interval 

                Speech                   Non-speech 

 M  SD Md M SD Md 

DW1 178.5 29.8 186 137.1 36.17 120 

DW2 167.4 22.5 174 172 26.35 172 

DW3 202.5 23.2 209 186.4 23.36 193 

DW4 157 21.3 151 135.9 17.53 133 

Note. n=20. 

 

 

After confirming non-normal distributions for peak latency in all DW (except for 

DW1-S, DW2-S and DW4-NS) by Shapiro-Wilk tests (results in Appendix 2.2), we 

conducted planned comparison with pairwise Wilcoxon signed rank test (Bonferroni-

corrected alpha= .013). Results indicate significantly shorter peak latency in the NS than the 

S condition for DW1 (Z= -2.857, p= .004, r =-0.452) and DW4 (Z=-2.999, p= .003, r =-

0.474) with large effect size, but no differences for DW2, (Z= -.841, p= .041. r = -0.133) and 

DW3 (Z=-2.013, p=. 044, r =-0.318) with small and medium effect size, respectively.  Figure 

2.8 presents mean values for peak latency per condition and DW type. 
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Figure 2.8 

Box Plots for MMN Peak Latency Values in the Speech/Non-Speech Condition at Fz 

 

Note. n=20. (*) indicates significantly shorter latency in NS condition at the 0.13 level.  

 

Differences in the MMN Amplitude 

To get an initial insight of the MMN magnitude and reference values for future 

studies, we calculated MMN mean amplitude over a 50 ms time window centred in the peak 

latency (Calcus et al., 2020). Table 2.9 presents descriptive statistics for mean amplitude. 

 
 

Table 2.9 

MMN Mean Amplitude (µV) for all Speech/Non-Speech Pairs 

  Speech Non-speech 

 M SD M SD 

DW1  - .76                     1.13 -.91                      .82 

DW2 -1.59                        1.51 -.82                      1.23 

DW3 -2.08                        1.77 -2.58                       1.25 

DW4 -1.58                        1.11 -1.78                      1.36 

Note. n=20. Peak-centred mean amplitude M and SD in the MMN interval.  
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In general, mean amplitude tended to be larger in the NS than the S condition, except 

for DW2, that showed the opposite pattern (Figure 2.9). Non-significant Shapiro-Wilk 

(append 2.4) tests indicated normal distribution for mean amplitude for all stimuli. 

 

 

Figure 2.9 

Box Plots for MMN Mean Amplitude in the Speech/Non-speech Condition at Fz 

 
 
 

Note. n=20. Peak-centred mean amplitude, all S-NS stimuli. 

 

To avoid double-dipping3, we did not statistically compare peak-centred mean 

amplitude between conditions. Instead, S versus NS analysis of MMN amplitude was based 

on planned MUA comparisons of each S-NS pair over the whole 100-250 ms time window 

and not on peak-centred mean amplitudesignificant MMN period. For future studies this 

would be more informative about the time course of any effects than comparing mean latency 

                                                           
3 Or ‘circular inference’ refers to biasing results by using a data selection method that it is not 
independent of the intended statistical contrast (Cohen, 2016; 2017). 
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values. MUA demonstrated that the amplitude difference between conditions (S minus NS) 

was significantly different from 0 µV, for all DW pairs. Table 2.10 presents the time points 

with significant between-condition differences and the MUA results (q=0.05). 

 

Table 2.10 

MUA results for Between-Condition Amplitude Differences for the 100-250 ms Time Window 

 Time 

 points (ms) 

Duration 

(ms) 

Critical 

t-scores 

Test-wise 

alpha 

FDR Estimated 

Upper bound 

DW1/S-NS 102-118 ª 

182-238 

16 

 56 

-2.55 / 2.55 0.020 

 

0.6 

DW2/S-NS 102-110b 8 -4.02 / 4.02 0.001 0.1 

DW3/S-NS 102-110ª 

174- 190ª 

8 

36 

-2.88/  2.88 0.010 

 

0.2 

DW4/S-NS 102 -126ª 24 -3.27 / 3.27 0.004 0.2 

Note. MUA for MMN amplitude for all speech minus non-speech pairs. 

 ª NS> S at q=0.05.  

 ᵇ Positive polarity interval, not an MMN. 

 

 

For DW1, significant larger negativity was detected for NS than S between 102-118 

ms, whereas the opposite was observed in the 182-238 ms interval, consistent with the non-

overlapping MMN on each condition for this pair (see Figure 2.10). For DW2/S, significantly 

larger amplitude were observed in the 102-110 interval for the S than in the NS condition, but 

for a positive polarity interval and only for 8 ms, so this should not be considered a MMN 

difference. For DW3/S-NS, MMN amplitude was significantly larger for the NS condition in 
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the 102-110 ms, but only for 8 ms, and the 174-190 interval, for 36 ms. For DW4/S-NS, 

MMN amplitude was significantly larger for the NS condition in the 102-126 interval.  

Finally, an exploratory MUA in a later LDN interval (250-450ms) detected 

significantly larger responses in the non-speech condition for DW1 (278-318 ms) and 

between 270-358 ms for DW4. No significant differences in amplitude were observed for 

DW3. Although a significant amplitude difference was observed for DW2 (286-302 ms), 

previous analysis detected no LDN for this DW type. 

In summary, we observed significantly larger MMN amplitude in the NS condition 

for early DW1, DW3, and DW4, but the smaller for late DW1 and no differences for DW2. 

MMN peak latency was significantly shorter in the NS condition only for DW1 and DW4. 

 

2.3.3 Comparison of the MMN for different speech contrasts  

Considering that there were inevitable acoustic differences between the initial 

phonemes between speech stimuli, the final MUA was mostly focused on characterising the 

MMN patterns for future comparisons with groups of children.  

To compare deviants with lexical vs non-lexical status we merged the responses for 

function and content words, into a new waveform “Words” (Wrds). For Words, MUA 

indicated a significant MMN response between 118-150 ms (duration of 32 ms), with mean 

peak latency at 154.4 ms (SD= 35.73) and mean amplitude of -1.55 µV (SD=1.08) along with 

an LDN response between 366-446 ms, with mean peak latency at 400.1 ms (SD=24.14) and 

mean amplitude of -1.72 µV (SD=1.68). 

 Figure 2.10 compares the significant MMNs (and LDNs, for reference purposes) for 

speech stimulus, contrasting three linguistic levels: (a) phonological (non-native versus native 

phonemes in non-words), (b) lexical (non-words versus words), and (c) semantic (function 

versus content words).  
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Figure 2.10 

MMN Amplitude Differences in the Speech Condition  

 

 

 

 

Note. Significant MMN responses for a) native (light blue) versus non-native (green) 

phonemes in non-words, b) non-words (green) versus words (red), and c) content (blue) 

versus function (pink) words.  LDN shown only for illustrative purposes. (*) indicates 

significant differences in MMN amplitude (q=0.05).  
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Planned comparisons of peak latency using pairwise Wilcoxon signed rank test with 

Bonferroni-corrected alpha=0.0167 indicated significant differences only for word type, with 

shorter latencies for content than for function words (Z= -3.74 , p<.001, r= -0.6, large effect 

size), but no differences between native and non-native phonemes in non-words (Z= -1.91, p= 

.06, r= -.03) or between non-words and words (Z= -1.55 ,  p= .121,  r=-.025), both with small 

effect. For the MMN amplitude, planned comparisons with MUA indicate significantly larger 

responses for non-words than words, and for function words than content words, but no 

differences between native and non-native phonemes in non-words (Table 2.11). 

 

 

Table 2.11 

MUA results for Amplitude differences between Stimuli in the Speech Condition 

 Significant time 

points (ms) 

Critical       

t-scores 

Test-wise 

alpha 

Estimated upper 

bound FDR 

Non-native vs 

native phonemes 

(in non-words) 

     -- -- >= 0.017 -- 

Non-words vs 

words 

166-198 

 

-3.41/ 3.41 

 

0.003 

 

0.2 

 

Function vs 

content words 

102-126 -3.10/3.10 0.006 0.3 

Note. Results of the MUA with a family-wise alpha level of 5% (q=0.05), 
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2.4 Discussion 

       2.4.1 Summary of findings 

This study investigated the effects of the linguistic content of speech stimuli in the 

MMN patterns, aiming to validate a multifeature experiment in Spanish-speaking adults for 

future use in speech perception studies in young children. Our main results confirm our 

hypotheses, indicating that (i) significant MMN/LDN were detected for all stimuli (except in 

DW2-S for LDN), demonstrating that our experiment successfully elicited the responses of 

interest, (ii) between-condition differences were present, characterised by significantly larger 

amplitude in for all pairs in the NS condition (except DW2), and significantly shorter peak 

latency for DW1 and DW4 for the NS condition, suggesting different processing of linguistic 

versus non-linguistic sounds, and (iii), in the S condition, the MMN amplitude was 

significantly larger for non-words than words, and for function than content words, also with 

significantly earlier peaks for content than function words, indicating an effect of linguistic 

content. However, it is worth noting that despite their analogue acoustic structure, S-NS pairs 

were not an exact acoustic match.  

Nevertheless, our first finding confirms the suitability of the multi-feature paradigm to 

contrast several linguistic and non-linguistic stimuli. Our MMN results are in line with 

previous research using MUA that reported similar temporal and amplitude patterns, for 

example, the CORE (Compendium of Open Resources and Experiments) initiative for ERP 

standardisation, developed by leading scientists at the University of California (see 

Kappenman’s et al., 2021). They reported MMN responses for contrasting tones distributed 

over the medial frontocentral electrodes, detected in the 113- 231 ms time window, with a 

peak latency of 187 ms and a mean amplitude of -1.86 µV, consistent with the patterns we 

observed in our data.  
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On the contrary, our exploratory analysis for the LDN indicated larger or equal 

amplitude in the NS than in the S condition, contradicting previous findings about larger 

LDN for S and its interpretations as an index of complex phonological processing (David et 

al., 2020). The fact that LDN for DW2-S was too short to be considered significant could be 

explained because we combined the MUA with Guthrie and Buchwald’s (1991) 

recommendations, which could be too conservative and increase type II errors. It is possible 

that a less conservative approach would be able to identify an LDN response in DW2-S as 

well, especially considering that an 8ms significant response is already present. For example, 

instead of a priori defining time windows for analysis, it is possible to use peak-centred 

intervals for MMN detection and measurement, as in Calcus et al. (2020). Although the 

approach is less informative for a validation study like ours, future studies could use our 

results to select empirically justified time windows of interest.  

A second main finding of this study was that MMN differed significantly between S-

NS pairs. Larger responses in the NS condition for DW3 (function words), DW4 (content 

words) and early DW1 (non-native non-words), but the opposite happened for late DW1. 

This contradiction between early and late DW1 amplitude results could be explained because 

there was no MMN overlap between this pair of stimuli as in the other pairs. Future studies 

could elucidate it using measures other than point-by-point MUA (e.g., mean latency). 

Notably, smaller MMN amplitude for DW3-S and DW4-S indicate smaller responses for 

speech containing meaning than for their NS pair. Thus, our findings contradict previous 

evidence of no amplitude differences between S and NS analogues (Sussman et al., 2004), 

but also, those studies reporting significantly larger MMN amplitude for S than NS because 

of a language enhancement effect (Kuuluvainen et al., 2014; Näätänen, 2011).   

The patterns we observed for S-NS pairs could be explained because our participants 

were all adult language users who processed their native speech automatically, especially if 
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presented as isolated word forms. For them, the detection of NS may have been driven purely 

by acoustic processing. In contrast, detecting S would activate feature-specific language top-

down effects (Heilbron et al., 2022) with smaller MMNs indexing more automatic processing 

of easy-to-detect speech. A simple way to investigate this further could be to average the 

MMN amplitude over the significant interval to analyse the main effects of the condition and 

stimulus type and their interactions. However, for this study, this would constitute double-

dipping (Cohen, 2014). Regarding latency, some NS stimuli peaked earlier than the S ones 

but with no apparent pattern regarding the linguistic content (DW1 and DW4). Importantly, 

the MMN differences could be also explained by acoustic differences between S-NS pairs. 

  Although between-condition MMN differences in our study may reflect different 

cortical processing for linguistic and non-linguistic stimuli, interpreting the direction of these 

effects under the MMN hypotheses is not straightforward. Our findings do not support the 

memory-based account because there was no speech enhancement effect for S over NS, 

especially for meaningful words, whose long-term memory traces should be more robust than 

for non-words. From the neural adaptation view, smaller responses for S than NS for words 

could represent faster neural adaptation in the auditory cortex for less novel stimuli. Stimulus 

repetition in our experiment could have suppressed the MMN amplitude, but this should be 

equal for both conditions. Nevertheless, attenuation could be greater for S stimuli because 

having only five stimuli per condition would have made the S stimuli easier to remember 

(e.g. because of a more stable memory trace) and thus more likely to be suppressed than NS. 

According to Baart and Samuel (2015), saturation by repetition of a small pool of stimulus 

could confuse the lexical status of words and the non-lexical status of non-words. From the 

predictive coding perspective, the contextual prediction would be easier for S than NS 

stimuli, resulting in less prediction error and smaller MMN amplitudes for the S condition, 

especially for stimuli that are “less surprising” because of easier-to-retain linguistic content. 
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This is supported by evidence that predictive mechanisms do not only include anticipation 

but top-down language predictions (Heilbron et al., 2022; Wacongne et al., 2021). 

A third central finding of this study is the significant differences in the MMN 

amplitude and latency between speech stimuli. Although their interpretation should be 

cautious because of inevitable acoustic differences in the initial phonemes, previous research 

indicates that our results could reflect genuine top-down language influences on low-level 

auditory processing. Our final analysis showed that the MMN amplitude and latency 

differences depended on the linguistic content only when meaning was involved, with lexical 

and semantic but no purely phonological effects. Interestingly, larger MMNs were detected 

for less informative linguistic representations (non-words than words and function than 

content words), which would be consistent with the predictive coding interpretation. Similar 

findings were reported by Scharinger et al. (2016), who observed larger MMNs for less 

predictable than more predictable vowels, indicating a top-down effect of the stimulus 

linguistic category on the MMN amplitude. In terms of MMN timing, the opposite pattern 

was observed, with significantly shorter latency for content than function words. 

Qualitatively, earlier onset was observed for more informative linguistic content as words 

than non-words and content than function words, suggesting faster cortical responses for 

higher-order linguistic content than for more phonological-based processing, as in non-words.  

Notably, the direction of the linguistic content effects again contradicts previous 

studies that reported enhanced amplitude for words versus non-words using similar designs 

(Näätänen et al., 2007). Methodological differences between studies could explain this 

finding. For example, Gansonre et al. (2018) used a later time window (~300 ms after 

stimulus onset) and ERP parent (non-subtracted) waves instead of difference waveforms, 

reporting semantics effects for different classes of words but only in terms of scalp 

topography. In addition, our study used MUA for between-condition analysis which was not 
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optimal for comparing MMN amplitude for DW1S-NS as the significant intervals did not 

overlap and may not necessarily correspond to the significant MMN. This reinforces the idea 

that discrepancies in results between MMN studies may arise from methodological 

differences, making it hard to compare findings across studies without a data analysis gold 

standard and large-scale replication.  

  Overall, our results indicate that the magnitude of the MMN reflects top-down 

language influences in line with predictive processing but contradicts previous findings by 

demonstrating that easier, more automatic detection for more informative linguistic content is 

reflected in the MMN as smaller amplitude for speech stimuli. On the contrary, the timing of 

the MMN (latency) agrees with previous findings, at least at the single-word processing level.  

 2.4.2 Strengths, limitations, and future research 

An important contribution of this study is that our experiment elicited consistent 

MMN responses for all the DW types, characterising different aspects such as timing, 

amplitude and scalp patterns, which can inform future studies in Spanish speakers. Moreover, 

these responses were obtained in an EEG testing time as short as 30 minutes making these 

materials and findings a valuable resource for future studies in groups of participants that are 

less able to tolerate long testing sessions, for example, young children or clinical populations. 

Another contribution of this study is that we provided empirical evidence of the effects of 

linguistic content on the MMN amplitude and latency at the single-word level. However, 

further research is needed to investigate to what extent the top-down effects operate beyond 

isolated words (Hagoort, 2019). 

An essential point for speech perception experiments is selecting good non-speech 

analogues as control conditions to avoid potential acoustic confounds (Rosen & Iverson, 

2007). The main limitation of this study is that, despite selecting adequate non-speech 

analogues as a control condition, changing the initial phonemes entails inevitable acoustic 
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differences that generate an MMN response but may also act as a confound when comparing 

language effects between speech stimuli. Because this experiment is intended for children, 

the selection of function and content words prioritised phonological processing factors, such 

as the age of acquisition and oral frequency (Guarda, 2010), even if this implied larger 

acoustic variations in the initial phonemes. For this reason, the initial consonants for non-

word stimuli involved only fricatives between standards and deviants, but the word stimuli 

involved other differences: stopped and lateral distinctive features for function words and 

voicing for content words, resulting in more pronounced acoustic/phonetic differences for 

meaningful stimuli (D3 and D4). These differences are especially relevant when using 

Spanish consonants, in which voiced/unvoiced contrasts are easier to detect (Guarda, 2010).  

Thus, it is essential to acknowledge these differences in acoustic complexity between S-NS 

pairs when interpreting our MMN results and conducting similar studies in the future. 

  Our statistical analysis attempted to reduce the influence of other acoustic differences 

by contrasting only speech/non-speech stimuli that were analogue pairs. However, as 

between-condition MUA requires subtracting the MMN non-speech for each corresponding 

speech stimulus to test against 0 µV, the statistical power to detect true effects could have 

been reduced when avoiding type II error. Moreover, as MUA does not inform about effect 

size and power, our results could have been affected by a small effect size and low power to 

detect any potential effects of linguistic content. In the future, these results could be used as 

reference values to a priori define more precise time windows of interest and use peak-

centred mean amplitude instead of MUA as it seems a more appropriate measure for 

comparing different speech stimuli, especially those that do not overlap in time. This could 

increase power without the risk of double-dipping. 

A second limitation is that our decision to include multiple contrasts and two 

experimental conditions, although beneficial from the perspective of time optimisation and 
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confound control, resulted in a smaller number of deviant trials per stimulus type so we could 

keep the testing session to a reasonable duration. Even when the minimum number of trials 

that were obtained for each stimulus type (50 per deviant type and 200 for standards) is 

considered adequate (Luck, 2014), in the future, the signal-to-noise ratio might have been 

increased by reducing the number of deviants or by extending the number of deviants per 

condition. Interestingly, this limitation could be solved by using new analysis methods that 

are more powerful even with fewer trials, for example, linear modelling and multivariate 

methods (see Chapter 5). 

Finally, future research could further investigate the effect of language content on the 

response temporal patterns using this paradigm, including a more detailed analysis of the 

MMN latency and duration. In addition, time-frequency analysis could complement these 

results, as the study of neural oscillations may be especially suitable for studying language 

development and comparing different age groups. Thus, our next step is to analyse these data 

using power and inter-trial phase coherence measures, comparing the results to those 

obtained by children in the speech condition of this experiment.  

 

       2.4.3 Conclusions 

In sum, this study showed the validity of our experiment in eliciting consistent MMN 

responses that not only detected acoustic contrasts but support an effect of the stimulus 

speech status and linguistic content. As predicted, linguistic modulations on the MMN 

amplitude were observed as an effect of the stimulus speech versus non-speech configuration, 

lexical status and word type, suggesting differences in the cortical processing of speech 

depending on the linguistic content. However, these results also could be explained by 

acoustic differences between our S-NS pairs. Importantly, this experiment can be replicated 

in other Spanish-speaking populations or applied to different age/clinical groups. 
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Chapter 3.  Language modulations on speech perception in children with 

typical language development and DLD   

 

 

3.1 Introduction 

Between the ages of 3 and 6 years old, children can understand spoken language 

effortlessly, but they are still less proficient than adults. This suggests that there are 

differences in how the brain of adults and children process speech, but many aspects in this 

field are yet to be investigated. For example, it is unclear whether children exhibit the same 

top-down modulations on speech perception observed in adults (see Chapter 2). In addition, 

despite language acquisition follows well-defined trajectories, not all children present the 

same skills at the same age, for example, those affected by Developmental Language 

Disorder (DLD). Thus, children with typical language development (TLD) may process 

speech differently than those with DLD, because of less effective or disrupted language top-

down modulations, as proposed by Bishop et al. (2012), although there is little evidence on 

this regard. 

So far, the mismatch negativity (MMN) and the late discriminative negativity LDN, 

as well as their less-mature version, the mismatch response (MMR), have been widely used to 

study language and speech perception development. However, there are methodological 

issues when comparing adults and children ERPs (see Chapter 1), especially because of the 

intrinsically smaller-scale responses in adults. This study addressed this issue by 

complementing ERP measures with time-frequency (TF) analysis, using an amplitude-free 

measure as inter-trial phase coherence, (ITPC) to inform about non-time-locked cortical 
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activity. We aimed to determine whether the MMRs (MMN/LDN) for different speech 

content reflected group-level differences in top-down modulations because of different 

language status, by comparing children with TLD and DLD, and children versus adults 

(Chapter 2). For children, we also examined the associations between the MMRs and their 

phonological skills. 

 

3.1.1 MMR in speech perception development research 

In infants and young children, the MMN and LDN may present a negative or positive 

polarity, so mismatch response (MMR) is a generic term to refer them. Although negative, 

MMN-like responses can be detected in the first six months of life (Cheour et al., 1998), there 

is great variation within and between children, with some studies reporting positive MMRs 

until the age of 6-7 years (Maurer et al., 2003). Like the adult MMN/LDN, the MMR reflects 

the brain's sensitivity to physical and abstract changes in a sequence of regular inputs 

(MacLean & Ward, 2014), as occurs in speech contrasts. Moreover, the MMR can be elicited 

with speech stimuli using a multifeature paradigm to optimise data collection (Lovio, et al., 

2009; Niemitalo-Haapola et al., 2013), and during unattended listening, making it a valuable 

measure in speech developmental research.  

As for other ERPs, the MMR patterns change from birth to adulthood (De Haan, 

2007; Sussman et al., 2008) reflecting typical auditory maturation (Morr et al, 2002). In 

children, MMRs may show a more distributed scalp localization than in adults (Cheour, 

2007), or reversed polarity (Paquette et al., 2013). However, there is great variability in the 

literature about the MMR latency, amplitude, scalp distribution and polarity for each age, 

especially in clinical groups (Bishop, 2007). Overall, the MMR seems to become more stable 

with age, showing greater amplitude, shorter latency, and the typical negative polarity. 
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MMRs in TLD children 

In typically developing children, multiple studies have described age-related changes 

for the MMR/MMN/LDN measures (see Näätänen et al, 2019). Näätänen (2003) states that 

language-specific phonetic memory traces for the native language develop during the first 

few months of life and are reflected in the MMN. For frequency deviants MMN peaks 

between 120-400 ms post-deviant detection at age 3 years-old, whereas for 5–8-year-olds 

MMN peak latencies for occur between 190 and 270 ms, a more adult-like range (Maurer et 

al., 2003). When using smaller age bands (4–5- and 6–7-year-olds) the MMRs appears to be 

delayed and longer in children (Shafer et al., 2010) whereas for older children (6-13 years), 

latency becomes more like that observed in adults (Csepe, 1995). In general, the MMR 

latency correlates negatively with age during early childhood because of neuromaturational 

changes leading to faster information transmission in the brain (Bishop, et, al, 2010a; Shafer, 

et al., 2000). 

The MMR/MMN amplitude, however, seems not to follow a linear trajectory but a U-

shaped curve during development (De Haan, 2007) with adult-like amplitudes in infants but 

significantly smaller responses in early childhood, until late childhood, when their amplitude 

increases again until adolescence (Bishop, et, al, 2011). Paquette et al., (2013) reported 

smaller MMRs in children than adults (n=14), with greater negativity in older (n=14, age 8-

13 years) than younger children (n=12, age 3-7 years) both for speech and non-speech 

contrasts. Bishop, et al., (2010a) measured the MMRs for tones and syllables in children 

(n=30, 7-12 years), teenagers (n=23, 13-16 years), and adults (n=32, 35-56 years), reporting 

significant age-related increment in mean amplitude for the MMN and a decrease in the 

LDN. Other studies report that over the age of 6 years, the MMN amplitude is as large as, or 

even larger in children than in adults (Cheour et al., 2001; Csepe, 1995). Although the 

literature reports inconsistent findings, there seems to be changes in the MMR latency and 



105 
 

amplitude that suggest ongoing maturation of cortical speech processing during early 

childhood. 

  As occurs in adults, the type of acoustic contrast determines the patterns of the MMR 

in children, with different latency and amplitude values for non-speech versus speech stimuli 

(Dehaene-Lambertz & Baillet, 1998; Paquette et al., 2013), and for speech with different 

linguistic content (e.g., syllables versus words). For example, Kuuluvainen et al (2016) used a 

multifeature paradigm to investigate cortical discrimination in 6-year-old typically 

developing children (n=63), reporting larger MMN for contrasts in syllables than for their 

acoustically matched non-speech equivalents. In young children, MMR is sensitive to 

changes in various acoustic features of speech sounds, such as frequency, duration, intensity, 

and phoneme identity (Kraus et al., 1993). However, the MMRs do not only depend on 

processing of the acoustic features of speech but are influenced by psycho-linguistic factors 

as phonological structure, word grammatical function and word distributional frequency. 

Previous literature has described the effects of different linguistic content on the 

MMR at different ages, for example, more consistent responses for native than non-native 

phonemic contrasts between the ages of 6-12 months (Rivera-Gaxiola, et al., 2005). In 

syllables, for vowel contrasts, a study in 3-year-old Finnish children showed MMN-like 

responses peaking in the 300-400 ms range (Čeponienė, et al., 2003), whereas in French-

speakers aged 3 and 7 years-old, changes in initial consonants elicited MMN peaking at 270 

ms (Paquette et al., 2013). Strotseva-Feinschmidt et al., (2015) studied discriminative 

responses for two German function words differing in the final phoneme (articles der/den) 

and frequency of occurrence in 34 children at age 3 years-old. They found that for der (high 

frequency) both an MMN and a LDN response were observed, whereas the less-frequent 

word den elicited only a LDN, suggesting easier processing of higher-frequency words. All 

these differences in the MMR, MMN and LDN were attributed to linguistic content, but it is 



106 
 

noteworthy that they could results from acoustic differences between the stimuli, for 

example, different duration or spectral content. 

In addition of the speech information itself, the MMRs are modulated by the linguistic 

context in which the speech sounds are presented (Čeponienė et al., 2003). For example, there 

is MMR enhancement when a deviant syllable occurs in a word compared to when it occurs 

in isolation. David et al., (2020) investigated MMRs to non-words with different 

phonological complexity in school-age children (n=22, age: 6-10 years) and adults. They 

observed that for more complex syllables, the MMN was smaller, but the LDN was larger in 

children than adults, in agreement with interpretations of the LDN as an index of speech 

processing complexity (Kujala & Leminem, 2017). These findings indicate that the 

MMN/LDN patterns not only age-dependant but influenced by the stimuli, contexts, and 

measures used to study them. 

In children with TLD there is evidence of associations of MMN patters with language 

skills. From the age of 7.5 to 24 months, multiple studies have reported a positive correlation 

between the MMN amplitude for native phonemic contrasts with behavioural phoneme 

discrimination measures (Kuhl & Rivera-Gaxiola, 2008; Rivera-Gaxiola et al, 2005), and 

suggest they may predict receptive language skills at later ages. For example Guttorm et al., 

(2010) found that the MMN measured at birth in infants with (n=12) and without (n=11) risk 

of dyslexia predicted their language skills at age 5 years. A study by Linnavalli et al., (2017) 

showed that children (n=70, age 5-6 years) with better phoneme processing performance 

showed larger MMN that those with poorer behavioural results. Similarly, a study in pre-

schoolers (n=166, mean age= 5 years 6 months) by Norton et al., (2021) found significantly 

larger MMNs in the late window (300-500 ms) for /ba/-/da/ contrasts in children with typical 

phonological awareness (PA) skills than in those with low PA skills. These results relate the 
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MMN to phonological processing abilities, however, other studies show no relationship 

between the MMN and behavioural measures (e.g., Bishop & Hardiman, 2010). 

MMR findings in DLD 

In children with DLD, cortical speech processing and its MMR signatures during 

early childhood are less understood, especially when compared with other 

neurodevelopmental disorders as dyslexia or autism (Nallet & Gervain, 2022). Nevertheless, 

some studies have suggested that atypical cortical processing of speech may explain some 

symptoms (Evans & Brown, 2016). Overall, studies have found that children with DLD 

exhibit reduced MMR amplitude and/or delayed MMR latency compared to typically 

developing children (Bishop & McArthur, 2005; Friederich et al., 2004; Kujala et al., 2007). 

Some MMN findings suggest that children with DLD have difficulties in processing the 

acoustic features of speech and in detecting phonemic contrasts. A review of MMN findings 

(Kujala & Leminem, 2017) concluded that children with DLD show poorer and slower neural 

discrimination of speech sound, resulting in smaller MMN amplitudes, delayed latencies, 

atypical scalp distributions and less left hemisphere lateralization than TLD children.  

However, other studies have reported no differences in MMR between children with 

DLD and typically developing children. For example, a MEG study by Pihko et al. (2008) in 

children between 5–7 years, compared cortical discrimination of syllables with changing 

vowels or  consonants and detected no MMN differences between children with DLD (n=11) 

and controls (n=11). Similarly, Bishop, Hardiman, & Barry (2010b) compared discrimination 

of tones and phonemes with small and large differences in children and teenagers with DLD 

and TLD aged 7-16 years. They reported no group differences for the MMN and LDN 

amplitude for large deviants, although LDN were reduced in the DLD group for the small 

deviants. Thus, results so far are inconsistent and have important methodological differences, 

hindering their interpretation and replication (Bishop, 2007).  
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As in TLD children, several studies suggest a connection between the MMN/LDN 

and language skills in DLD-affected children. Kujala et al. (2007) found that the MMR 

amplitude correlated positively with language abilities in children with DLD (as in TLD 

children), with stronger MMRs associated with better language outcomes. A review of MMN 

findings in DLD by Kujala & Leminem (2017) indicates an amplitude reduction particularly 

over the left scalp areas, and delayed latency in infants and children at familial risk for 

language deficits or with DLD diagnosis. Furthermore, they linked atypical neural responses 

with DLD, and indicate an association between the MMR and language skills in children be a 

useful tool for predicting language outcomes in children with DLD. However, none of the 

studies reviewed by Kujala & Leminem (2017) investigated processing of meaning, only of 

phonemic contrasts in syllables (e.g., /ba/ versus /da/) and no null findings were reported in 

this review. 

Different factors may explain reduced MMRs in children with DLD, for example, 

impaired neural mechanisms underlying the MMR generation, although there is little 

evidence in this regard. Some studies have shown that MMR is generated by the same 

sources as the MMN in the auditory cortex (Näätänen et al., 2007) which could involve some 

cortical differences in children with DLD at this level, despite DLD is not an auditory deficit. 

Another possibility is that the reduced MMR response in children with DLD could reflect 

specific difficulties in processing speech sounds. Children with DLD can have poorer 

phonological processing skills than typically developing children which may affect their 

ability to detect changes in speech sounds, but not in other sound contrasts (Bishop et al., 

1999). So far, findings only seem to confirm that language processing networks in the brain 

as well as the auditory pathways are still developing during early childhood. 

This discrepancy and lack of evidence in MMR developmental findings is mostly 

explained by the many different methodological approaches. For example, the lack of a gold 
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standard method to determine the presence of an MMR, studies grouping participants in 

broad age ranges instead of narrow bands, or the use of peak measures which are sensitive to 

age differences in waveform variance may introduce spurious effects in children speech 

perception studies (Bishop, et al., 2010a; 2010b; Bishop, 2007). In addition, most MMR 

findings come from studies using non-speech and non-meaningful speech stimuli, which may 

not be easily generalised to phonological or speech processing in natural settings. All these 

factors limit the utility of the MMR, for example, as a tool to help explain speech perception 

development. 

 

3.1.2 Time-frequency ERP analysis and speech perception development 

Although time-frequency analysis (TF has been less used than ERPs to study auditory 

development, it may be a useful method to help further our understanding of language and 

speech perception development. TF analysis preserves non-stimulus locked oscillatory 

activity that is abundant in children and which otherwise are averaged-out by the ERP 

technique (Maguire & Abel, 2013). Moreover, TF analysis tends to increase the SNR, 

especially for frequencies below 20 Hz (Cohen, 2014) which is an advantage when dealing 

with noisy data, as children’s, making it more reliable than time-domain measures for MMN 

identification (Bishop & Hardiman, 2010). In MMN experiments, the amplitude of this 

response has been considered to reflect phase realignment (increased synchrony) in the theta 

range, (Bishop, et al., 2010b; Bishop & Hardiman, 2010; MacLean & Ward, 2014), whereas 

the LDN would reflect event-related desynchronization in a broader range of low frequencies, 

including delta, theta and alpha (Bishop et al. , 2010b).  

In adults, studies using time frequency analysis of the MMN have found increased 

inter-trial phase coherence (ITPC) for detection of deviant than standard non-speech sounds. 

A study in adult’s (n=16) by Fuentemilla et al. (2008) found larger theta ITPC for duration 
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deviants than for standards at temporal and frontal sites, and larger event-related spectral 

perturbation (ERSP) for deviants at frontal sites only, interpreting them as evidence of 

different MMN generators. Similarly, two studies by Hsiao and colleagues (n=10 adults) 

showed larger theta phase locking values (PLV) and spectral power for duration deviants than 

for standard stimuli (Hsiao et al., 2009; 2010). Bishop & Hardiman (2010) also examined 

adult’s (n=17) responses to duration contrasts, reporting no changes in ERSP power but 

significant increase in theta ITPC, which they considered an index of event-related phase-

resetting. Another study by Bishop, Hardiman & Barry (2010a) using tones and syllables 

contrast concluded that MMN resulted from greater theta (4-7 Hz) phase synchronization for 

deviants than for standards, correlating theta ITPC with behavioural discrimination thresholds 

For frequency deviants, Ko et al., (2012) found that theta power and ITPC were larger at 

frontal-central electrodes. Although these findings consistently indicate a role of increase 

theta ITPC in auditory deviance detection, most of them were elicited by non-speech stimuli, 

so it is unclear whether they can be generalised to speech perception. 

MMN and theta oscillations in TLD children 

In paediatric MMR research, few studies have used time-frequency analysis, but those 

that have, report enhanced cortical synchronization at different frequency bands during 

detection of deviants in comparison to standards, as has been also described in adults. 

Previous studies suggest a relationship between increased stimulus-induced phase 

synchronisation, and ERP changes between childhood and adolescence (Müller et al., 2009; 

Poulsen et al., 2009). Studies in infants using speech stimuli suggest that age-related 

increases in power and ITPC in the delta, theta and gamma bands between 6 and 12 months 

of age may reflect selective enhancement and perceptual narrowing for native phonemes 

(Kuhl, 2010; Ortiz-Mantilla, et al 2013).  
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From childhood to early adolescence, time-frequency analysis of the MMN shows 

increases in theta phase synchrony for detection of deviant in comparison to standards, 

indicating more efficient sound processing with age. Bishop, Hardiman & Barry (2010a) 

studied cortical discrimination of deviant tones and syllables in children (n=30, 7 -12 years), 

adolescents (n=23, 13-16 years) and adults (n=32, 35-56 years), reporting theta phase locking 

increases with age, with largest phase locking values for adults and larger for adolescents 

than children. A longitudinal study by Bishop et al., (2011) in 7 and 9 years-old children 

(n=150), showed that two years after a first EEG, there was an increase in theta inter-trial 

phase coherence for tone contrasts in frontal but not in temporal regions. 

 Together, these findings support the idea that the maturation of the MMN neural 

substrates is accompanied by age-related increases in oscillatory synchronization. During 

early childhood synchrony increases seem to occur in the theta range and mostly in with 

frontal than temporal scalp distribution, suggesting more involvement of top-down 

processing. In adults, theta synchronization is thought to play a key role in syllabic 

segmentation (Giraud & Poeppel, 2012). However, there is very little research about the role 

of theta synchronisation in children with TLD and DLD, and how theta synchronisation is 

related to manipulation of the speech linguistic content, with a lack of clarity about the 

developmental trajectories. 

Atypical oscillations in DLD 

Although the role of oscillatory dynamics in DLD has been far less investigated than 

in other neurodevelopmental disorders such as dyslexia or autism spectrum disorder (for a 

review see Nallet & Gervain, 2022), some evidence indicates that atypical activity may as 

well underlie language disorders. Bishop et al. (2010b) compared cortical discrimination of 

tones and speech sounds in children with DLD (7 to 16 years old) and TLD measuring low-

frequency-band synchronization in the MMN/LDN intervals. Although no between-group 
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differences were detected in the MMN responses, they observed that the TLD but not the 

DLD group, had a significant drop in power in the LDN interval in relation to the MMN 

range for the low frequency bands (delta, theta, and alpha). The authors suggested that this 

lack of event-related desynchronization for LDN but with an intact MMN indicates an 

inability of disengage neural activity in the DLD group, after initially ‘normal’ auditory 

change detection (Bishop et al., 2010).  Although this is an interesting theory, no further 

evidence has emerged regarding this interpretation. 

Heim et al. (2011; 2013) studied oscillatory dynamics during rapid auditory 

processing of tone doublets in children between 6-9 years with and without language 

disorders. They found atypical gamma activity (29-52 Hz range) in the language-impaired 

group, with significantly reduced amplitude and phase-locking values of early (45–75 ms) 

oscillations for the second tone in the doublet. The authors interpreted these findings as 

evidence of altered oscillatory timing in language-impaired children when processing rapid 

sequences of tones. Again, they used non-speech or simple speech stimuli, making it hard to 

differentiate higher order language modulations and effects of the stimulus linguistic content. 

In conclusion, the MMR is a valuable tool for investigating the neural mechanisms 

underlying speech processing in children. In typically developing children MMR has been 

shown to be sensitive to speech contrasts, showing a positive correlation with language 

development and somewhat identifiable developmental trajectory. In children with DLD, 

MMR has been found to be reduced in amplitude and/or delayed in latency, suggesting 

difficulties in processing the acoustic features of speech sounds. However, further research is 

needed to determine important aspects as if MMRs are modulated by top-down language 

effects in children if they are reduced or atypical in children with DLD, and how account for 

important methodological issues, some of which will be addressed in the present study.  
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3.1.3 The current study 

The aim of this study was to verify the presence of adult-like MMN/LDN responses in 

children with TLD and DLD for stimulus with different linguistic content and compare their 

parameters with those observed in adults in our previous experiment (Chapter 2).  

To account for the need of more cross-linguistic research in this field, we recruited a 

group of Spanish-speaking children with DLD and age-matched controls from the same 

preschool in Santiago, Chile. This would allow us to determine if a top-down effect of 

language skills was present during early childhood and if it was reduced in DLD children.  

Specifically, we addressed the following research questions: 

(i)  Is cortical speech processing modulated by top-down language skills in early 

childhood?  

(ii) Do cortical responses to speech vary with children’s language proficiency 

(e.g., phonological skills)? 

 

Based on previous findings, we hypothesized that an MMR would be present in 

children in response to phonological contrasts, but the patterns of these responses would vary 

between the TLD and DLD groups, and between children and adults, because of the 

differences in language skills between the groups and the interaction of these skills with the 

linguistic content of the stimuli.  

Specifically, we expected that responses at electrode Fz would be (1) more immature 

(e.g., positive instead of negative polarity of MMRs), (2) less robust (e.g., smaller mean 

amplitude), 3) less synchronized (e.g., reduced ERSP and ITPC) in DLD than TLD children, 

and in children than adults, and 4) correlated with measures of phonological awareness. 
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3.2 Methods 

       3.2.1 Participants 

Twenty-nine Spanish-speaking children between 4.9 and 5.7-year-old were invited to 

this study but twenty-seven completed this experiment, as two children refused to wear the 

EEG gear. Participants were divided in two groups according to their language 

developmental status: a group with a previous diagnosis of expressive-receptive 

Developmental Language Disorder (DLD, n=16, 6 female, Mage 5.2 years, range 4.9-5.7 

years) and a group of controls with typical language development (TLD, n=11, 7 female, 

Mage 5.2 years, range 4.10-5.6 years). In addition, data from 20 adults from our previous 

study (Chapter 2) was included for age-related comparisons.  

Children in the DLD group were diagnosed at least one year before this study by a 

Speech and Language Therapist (SLT), as part of the initial assessment for preschool 

admission of children at risk or with parental concern of language difficulties. The diagnosis 

was based on the Chilean legislation for Language Special Preschools4, and is requested by 

paediatricians, child neurologists or psiquiatrists whenever a language disorder is suspected. 

The SLT diagnostic procedures include full parent or carer interview and medical history, 

functional assessment of orofacial structures and hearing, speech sound production screening, 

and three standardised language tests that assess comprehension and production skills. These 

tests have been adapted and normed for Chilean children between the ages of 3.0 and 6.11 

years and comprise the Exploratory Test of Spanish Grammar by A. Toronto (STSG; Pavez, 

2003), the Test for Auditive Comprehension of Language by E. Carrow, Chilean Application 

(TECAL; Pavez, 2004), and the Test to Evaluate Processes of Phonological Simplification, 

                                                           
4 Decreet 170 and 1300, available at https://especial.mineduc.cl/wp-content/uploads/sites/31/2018/06/DTO-
170_21-ABR-2010.pdf, and https://especial.mineduc.cl/wp-
content/uploads/sites/31/2016/08/201304231710590.DecretoN1300.pdf  

https://especial.mineduc.cl/wp-content/uploads/sites/31/2018/06/DTO-170_21-ABR-2010.pdf
https://especial.mineduc.cl/wp-content/uploads/sites/31/2018/06/DTO-170_21-ABR-2010.pdf
https://especial.mineduc.cl/wp-content/uploads/sites/31/2016/08/201304231710590.DecretoN1300.pdf
https://especial.mineduc.cl/wp-content/uploads/sites/31/2016/08/201304231710590.DecretoN1300.pdf
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revised version (TEPROSIF-R; Pavez, Maggiolo & Coloma, 2008). The STSG assesses the 

comprehension and production of morfosyntactic structures, the TECAL measures 

comprehension of vocabulary, morphology and syntax, whereas the TEPROSIF-R assesses 

expressive language, measuring the amount and type of phonological simplification 

processes.  

Although for this study we were not able to access the school assessment records 

because of privacy restrictions, all children in the DLD group had previously received a 

diagnosis of expressive-receptive DLD variant. This provided some homogeneity for this 

group, as all children met the following criteria according to the Chilean legislation: (i) being 

affected by language difficulties that significantly impair their day to day communication, (ii) 

exhibit significant poor performance in the three aforementioned language tests, indicated by 

scores 2 SD below the age-expected norm, and (ii) not being affected by other concomitant 

neurodevelopmental disorder, health condition or environmental factor that explains the 

language deficit. Importantly, the tests used for diagnosis were not used again as variables in 

this study to avoid introducing circularity, but their outcome provide a way to  

To control for socioeconomic factors, all children were recruited from the same 

preschool in Santiago, Chile, from the special education and mainstream division, 

respectively. For the control group, children were invited to participate after checking they 

were native monolingual Chilean Spanish-speakers, used Spanish as their first language at 

home and had no history of any neurodevelopmental disorders, learning, language, or hearing 

difficulties. For the DLD group, children were pre-selected by the preschool SLT, to make 

sure they had no concomitant difficulties. Children who passed a hearing screening and were 

able to complete a non-verbal reasoning task were invited to participate in the study. Table 

3.1 presents the screening information for both groups of children.    
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  This study was conducted according to the Declaration of Helsinki and was approved 

by the University College London (UCL) and the University of Chile, Research Ethics 

Committees. In all cases, participant’s parents/guardians received an information sheet plus a 

verbal explanation of the study, completed a developmental questionnaire and signed a 

consent form before the screening phase. Children provided verbal assent before start testing. 

Parents received £10 for travel expenses and children received a small age-appropriated gift. 

 

Table 3.1  

Participant’s Age, Hearing Levels and Non-Verbal Test Scores  

 

Measure 

TLD (n=11)      DLD (n=16) 

M       SD      min-max M   SD min-max 

Age (months)        62.4 2.94 58-66 61.9        3.92 57-67 

PTA left ear (dB HL) 20.9 1.69 20-25 20.6           .91 20-22.5 

PTA right ear (dB HL) 21.3 1.58 20-25 20.6          1.12 20-23.8 

Block design (Z score) 18.1 1.58 15-19 15.7          2.98 10-19 

Note. Group mean values, SD, and minimum/maximum values for age, play audiometry and 

the Block Design test. 

 

3.2.2 Stimuli 

Participant’s phonological processing skills were assessed using the syllabic 

subsection of the Phonological Awareness Assessment Test, PECFO (Varela & de Barbieri, 

2015). This test has been normed and standardised for Chilean children between 4 and 7.11 

years. The syllabic subsection of this test measures six different phonological awareness (PA) 
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skills: syllable segmentation, initial syllable recognition, rhyme recognition, initial syllable 

deletion, rhyme deletion and syllable inversion. Each task consisted of five items, with one 

point assigned for each correct item and a maximum score of 30 for the subsection (Appendix 

3.1). 

For the EEG experiment, we used the multifeature experiment, stimuli and recording 

settings as in the adult's experiment. However, this time we only used the stimuli for the 

Speech condition, resulting in four blocks of 3 min 20 seconds duration (Chapter 2). 

        

3.2.3 Procedure 

Children were tested in three sessions, all conducted in separate days in Santiago, 

Chile. The first session took place at the children’s preschool after their parent/guardian 

signed the informed consent and answered a developmental questionnaire. Children who 

provided verbal assent underwent a hearing screening consistent in otoscopy and a play 

audiometry (pass/fail at 500-1000-2000-4000 Hz, 40 and 20 dB), and performed the Block 

Design task.  

The second session was conducted three months later in research facilities at 

Neurosystems Lab, University of Chile. Here, the EEG was recorded in a sound attenuated 

booth, with stereo stimuli presented sfree field at 70 dB through right and left loudspeakers at 

90 cm in a 75 degree angle. During the experiment no response was required and children sat 

comfortably in an armchair with their parent next to them while watching a silent cartoon in a 

tablet (screen ), placed at eye level in front of them at a distance of 100 cm. Each EEG 

session lasted around 15 minutes (with breaks when needed) plus a set up time of 20 minutes.  
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The final session was held three weeks later, again at Neurosystems Lab, University 

of Chile, and consisted of the phonological awareness task and speech perception tests for 

experiment 3 (see Chapter 4). 

 

       3.2.4 Design 

This study considered a between-subject design, for comparing speech processing 

under different language status; typically developing, atypically developing and adult-like. 

The between-subjects factor (IV) was different language status (operationalised as ‘Group’), 

with three levels; TLD children, DLD children, and adults (Ad). Our EEG dependent variable 

(DV) was cortical responses to speech, operationalised as ERP (peak latency, in ms and mean 

amplitude, in µV) and time-frequency measures (ERSP, in dB power and ITC, in a 0-1 

range). At the behavioural level, the DV consisted of the phonological awareness scores for 

the syllabic awareness test subsection.  

 

      3.2.5 EEG acquisition and processing 

Continuous EEG was recorded with a 32-channels Biosemi system, at a 2048 Hz 

sampling rate. Electrodes were positioned according to the 10-20 electrode system as in 

Chapter 2, with offsets kept under 30 µV. Vertical and horizontal electrooculogram were 

recorded in the right supraorbital area and right eye canthus, respectively. The EEG was 

preprocessed with EEGLab and ERPLab.  

EEG data were downsampled to 500 Hz and re-referenced off-line to the full head 

average. A high-pass IIR Butterworth filter (non-causal, zero-phase shift, 2nd order) with cut-
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offs of 0.1Hz (roll-off 12 dB/octave attenuation, half amplitude -6dB, half-power -3dB), was 

applied to the continuous EEG remove slow drifts (Luck, 2014). 

An initial threshold of 350 µV was applied to remove data portions with excessively 

large artifacts. To retain as much data as possible, we visually inspected each dataset and 

removed noise-contaminated data portions and channels. Then, we performed ICA to remove 

blinks, eye movements and other artifacts. After data cleaning, we interpolated the removed 

channels and re-referenced the data to the full head average. Then, separate pipelines were 

applied for the ERP and time-frequency analysis.  

For ERP analysis, epochs were defined from -200 to 800 ms, with baseline correction 

between -200 to 0 ms. In total, 619 epochs of 1000 ms duration were extracted per 

participant. Epochs with artifacts exceeding an absolute threshold of 200 µV were excluded.  

We quantified EEG noise level as the percentage of epochs rejected per participant for each 

stimulus type and condition, with an individual maximum artifact rejection criterion of 35% 

of the trials per stimulus type (see Table 3.2 for group measures and Appendix 3.2 for 

individual rejection values) and a minimum of 44 trials per deviant condition.  

All ERP statistical analysis were performed in the subtracted difference waveforms 

(DW, deviant minus standard), using MUA, peak-centred mean amplitude and peak latency 

as measures, calculated in two time windows: TW1 (100-250 ms) and TW2 (250-400 ms). 

Importantly, no participants were excluded on any of the groups as all datasets were below 

the rejection threshold after data cleaning and artifact correction. 

Time-frequency analysis was performed with Fieldtrip (Oostenveld et al., 2011) in the 

parent waves for each standard and deviant type, following previous literature (e.g., Gansonre 

et al., 2018). We used Morlet wavelets for spectral decomposition of each trial into 19 log-

spaced frequencies, from 2 to 45 Hz. Morlet wavelets parameters were defined according to 
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previous literature (e.g., Cohen, 2014), using 3 cycles at the lowest, and 14 at the highest 

frequency (0.8 cycles increase), and a window length of 1670 ms.  

 

Table 3.2  

Percentage of Rejected Epochs per Condition and Stimulus Type 

Stimulus Type TLD DLD 

M (%) SD M (%) SD 

Non-native Non-words 8.72 11.65  11.05 8.82 

Native Non-words 7.07 8.12 10.64 6.91 

Function Words 5.82 5.69 9.31 6.63 

Content Words 6.33 8.70 8.77 7.25 

Standard(NN-Nwords) 6.91 8.45 10.59 6.91 

Total 10.03 9.56    10.33 6.93 

Note. TLD, n=11, DLD, n=16. Group means (M) and standard Deviations (SD) for the 

percentage of rejected epochs, in total and for each stimulus type. 

 

To avoid edge artifacts, non-overlapping epochs of 3000 ms duration were defined 

between -1000 to 2000 ms for each trial, and then averaged across deviant types for each 

participant. Baseline correction was applied from -500 to -200 ms to avoid spectral leakeage 

from the following epoch in the low frequencies. Running the decomposition trial by trial 

allowed us to obtain induced activity and avoid cancelling out responses that were not time-

locked. As time-frequency analysis is sensitive to differences in the number of trials per 

condition (Cohen, 2014), we found the participant with the minimum number of trials for a 
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given condition (60 trials) and matched this number in all other participants and conditions by 

randomly selecting 60 trials from each participant’s pool.  

The brain’s oscillatory synchrony in a given frequency band was examined through two 

time-frequency measures: ERSP and ITPC. ERSP quantified how much energy did the signal 

had for each frequency at each time point and was measured as power change relative to the -

500 to -200 baseline (in dB), averaged across conditions for each group  (Cohen, 2014). ITPC 

was calculated as an index between 0 and 1, and reflected how consistently the oscillations 

reach the same point in the cycle across stimulus types.   

 

3.2.6 Statistical Analysis 

Statistical analyses were conducted with Matlab, the MUA toolbox, and SPSS v26-29. 

For the ERP analysis, we identified significant MMRs in the TLD and DLD groups using MUA 

(successive point-by-point t-tests with FDR control) in a broad time window between 100 and 

500 ms. Then, we ran between-groups comparisons of peak centred mean amplitude in an early 

(TW1, 100-250) and late (TW2, 250-400) windows, for the children and adult groups.  

For TF analysis, we wanted to avoid bias when selecting the time windows for ERSP 

and ITPC. Thus, we determined regions of interest (ROI) for the theta and alpha bands in a 

way that was blind to the stimulus type, by averaging together the responses for all stimulus 

type for each group (Figure 3.1). We compared ERSP and ITPC between participant groups 

and using separate mixed repeated measures ANOVA for each ROI, with Bonferroni correction 

for multiple comparisons. Effects sizes were measured with eta squared (η2) and partial eta 

squared (ηp
2), considering large effect≥ 0.14; medium effects ≥ 0.06; small effects ≥ 0.01, and 

Cohen’s d (large effect = 0.8; medium effect= 0.5; small effect= 0.2), when corresponding. 
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3.3 Results 

       3.3.1 Phonological awareness test  

After confirming data normality (Appendix 3.3), independent-samples t-tests revealed 

that the DLD group (M=14.57, SD=4.67) showed significantly lower scores than the TLD 

group (M=20.87, SD=5.86) for the phonological awareness test [t(19)=2.778, p= .012,] with a 

small effect size, d=1.23. Figure 3.1 present mean values for the phonological awareness test. 

 

Figure 3.1  

Box Plots for Mean Scores on the Phonological Awareness Test for the Children Groups 

 

Note. (*) indicates significant difference at the 0.05 level. 

 

       3.3.2 ERP analysis 

Grand averages 

Grand average waveforms were computed at Fz for all stimulus types, indicating similar 

patterns in the TLD and DLD group (Figure 3.2). Visual inspection of the waveforms in Figure 

3.2 indicates obligatory auditory responses in both groups, with positive peaks around 200 and 

300 ms, and negative responses before 200 and after 400 ms. Importantly, children responses 

are considerably larger and more variable than Adult’s responses in Chapter 2 (Figure 3.2). 
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Figure 3.2 

Parent Waveforms at Fz, Grand Average for all Groups and Stimuli  

 

Note. Parent waveforms for the TLD (left column), DLD (middle column) and Adult group 

(right column). D1: non-native non-words (light blue box); D2: native non-words (green 

box); D3: function words (blue box); D4: content words (pink box) and St: native non-words 

(standars, black box). Central lines: Mean; shaded areas: Standard error (SE). Time 0= onset. 
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Scalp topography 

Scalp distributions were computed for TW1 and TW2 (Figure 3.3). For TW1, 

activation was predominantly frontal-central, with similar patterns in TLD and DLD children 

for native non-words and function words. The TLD group showed greater positivity for non-

native non-words, but the opposite pattern for content words. For TW2, all responses tended 

to central-posterior negativities, more broadly distributed in the DLD than the TLD group.  

 

Figure 3.3 

ERP Scalp Distribution for each Stimulus Type between Groups of Children 

 

Note. Panel (a) 100-250 ms; Panel (b) 250-400 ms. Left to right, column 1: non-native non-

words; 2; native non-words, 3: Function words; 4: Content words; 5: standard stimuli. 

Colourbar: µV 
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Identification of MMRs on Difference Waveforms 

The first analysis focused on determining the presence of statistically significant 

MMRs, and if so, on characterising their latency and polarity. Five difference waveforms (DW) 

were computed at electrode Fz from individual ERP sets, and averaged across subjects on each 

group: DW1: non-native, DW2, native, etc. Statistical significance was determined in the 100-

500 ms time window on data down sampled to 125 Hz. We used MUA by point-by-point t-

tests with Benjamini & Hochberg FDR control procedure to test the null hypothesis that a given 

DW has a mean of 0 µV deflections against the alternative hypothesis is that the DW differs 

from 0 µV (i.e., two-tailed test). Table 3.3 presents the results of the MUA.  

 

Table 3.3 

MUA Results for MMR Identification at Fz for TLD and DLD in the 100-500 ms Interval 

 TLD DLD 

Critical 

t-

scores 

Test-

wise 

alpha   

Upper 

bound 

FDR 

Differences Critical t-

scores 

Test-wise 

alpha 

Upper 

bound 

FDR 

Differences 

NN-NW -3.24 / 

3.24 

0.009 0.6 12 -3.25 / 

3.25 

0.005 0.4 7 

N-NW -3.07 / 

3.07 

0.012 0.7 14 -2.78 / 

2.78 

0.014 2.0 39 

Function -3.19 / 

3.19 

0.010 0.6 11 -2.81 / 

2.81 

0.013 1.1 21 

Content -- 0.002 -- 0 -3.34 / 

3.34 

0.005 0.4 7 

Words -3.74 / 

3.74 

0.004 0.3 6 -2.98 / 

2.98 

0.010 0.6 12 

Note. NN-NW: non-native non-words; N-NW: native non-words; Function, Content and 

Words (combined). Comparisons (all tests)= 57. TLD group, df =10; DLD group, df =15. 
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Table 3.4 presents the cluster of significant responses detected in both groups in the 

100-500 interval, indicating differences in their timing and polarity patterns.  Negative 

MMRs were detected only within 200 ms and positive ones only after 182 ms. Early, MMN-

like responses were not detected for non-native non-words (DW1), but were present for 

Words in both groups, and only in TLD for native non-words (DW2). Later, positive MMRs 

were present for non-words (DW1 & DW2) in both groups, and for function words (DW3) 

only in the DLD group, but were absent for content words and words.  No LDN-like 

responses were detected on either group between 250-450 ms. Figures 3.4-3.8 illustrate the 

significant MMR for each DW. 

 

Table 3.4 

Significant ERP Responses for all DW Types in the 100-500 ms Time Window    

Group 

DW Type 

TLD DLD 

Significant 

responses 

(ms) 

Duration 

(ms) 

Polarity Significant 

responses 

(ms) 

Duration 

(ms)  

Polarity 

NN-Nwrd 

 

294-382 

 

88  

 

Positive 

 

278-334 

 

56  

 

Positive 

N-NWrd 

102-134 

(190-198) 

286-342 

32  

8  

56 

Negative 

 

Positive 

 

Positive 

-- 

 

182-346 

 

     -- 

      164 

 

-- 

     

     

Positive 

 

Function 

102-182 

-- 

-- 

80  

-- 

-- 

Negative 

 

-- 

 

-- 

102-182 

(230-238) 

294-374 

80  

8  

 

80  

Negative 

 

Positive 

 

Positive 

Content (102-110) 8 Negative 102-150 48 Negative 

Words 102-142 40 Negative 102-174 74  Negative 

Note. NN-NW: non-native non-words; N-NW: native non-words.  MMN-like responses are 

marked with in bold type. Responses in brackets may be considered too short to be significant. 
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Figure 3.4 

Difference Waveforms per Group at Fz for DW1 

  (a)                                                                       

 

      (b) 

 

Note. MUA results for non-native phonemes in non-words. (a) TLD group (continuous line); 

(b) DLD group (dotted line) stimuli. Time 0 = stimulus onset. Colourbar: t-scores for the MUA 



128 
 

Figure 3.5 

Difference Waveforms per Group at Fz for DW2 

  (a)                                                                       

 
(b) 

 

 

Note. MUA results for native phonemes in non-words. (a) TLD group (continuous line); (b) 

DLD group (dotted line) stimuli. Time 0 = stimulus onset. Colourbar: t-scores for the MUA 
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Figure 3.6 

Difference Waveforms per Group at Fz for DW3 

(a)                                                                

                
 

(b) 

            

 Note. MUA results for function words. (a) TLD group (continuous line); (b) DLD group 

(dotted line) stimuli. Time 0 = stimulus onset. Colourbar: t-scores for the MUA 
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Figure 3.7 

Difference Waveforms per Group at Fz for DW4 

(a) 

 

 

(b) 

 

Note. MUA results for content words. (a) TLD group (continuous line); (b) DLD group (dotted 

line) stimuli. Time 0 = stimulus onset. Colourbar: t-scores for the MUA 
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Figure 3.8 

Difference Waveforms per Group at Fz for Words  

(a) 

 

 

(b) 

 

 

Note. MUA for the average of content and function words. (a) TLD group (continuous line); 

(b) DLD group (dotted line) stimuli. Time 0 = stimulus onset. Colourbar: t-scores for the MUA 
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 MMR differences between TLD and DLD children 

The second analysis determined if there were any differences in the MMN/MMR 

amplitude between groups of children. Figure 3.9 contrasts the significant positive and 

negative responses in both groups for each DW type. Visual inspection of the temporal 

patterns suggests that onset latency for negative responses was similar between groups for 

words and non-words, but differed for positive responses in function words. In terms of 

duration, the negative responses were similar for DW3, but apparently shorter for DW4 

earlier whereas the positive responses were longer for non-native nonwords (DW1) in the 

TLD group, and for native nonwords (DW2) in the DLD group. 

Next, we compared the amplitude of the responses between both groups of children 

by performing MUA with FDR control procedure (Benjamini & Hochberg, 1995) on each 

DLD-TLD DW pair. Point-by-point t-tests (2-tailed, q level of critical t-scores= 0.05) 

indicated no between-group amplitude differences at electrode Fz, during the 100-250 ms or 

the 250-400 ms interval (Table 3.5).  

Table 3.5 

MUA Results for MMR Amplitude Comparisons between TLD and DLD Children 

 100-250 ms 250-400 ms 

All FDR adjusted p-values ≥ All FDR adjusted p-values ≥ 

Non-native non-words 0.869 0.853 

Native non-words 0.275 0.492 

Function words 0.558 0.404 

Content words 
0.725 0.618 

Words  
0.978 0.478 

 

Note. t-score degrees of freedom=25, total comparisons = 19 (number of time points, exact 

boundaries=102-246 and 246-398 ms) 
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Figure 3.9 

Comparison of MMRs in both Groups of Children for each DW Type 

 

Note.  Difference waveforms at Fz electrode for all stimuli. Continuous line: TLD group; dotted 

line: DLD groups. Data low-passed filtered at 35 Hz for plotting. 
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Comparison between children and adult MMRs 

The third ERP analysis compared the latency and amplitude of the MMRs between 

the groups of children, and with the adult’s responses from the MMN validation study 

(Figure 3.10). Peak latency and mean amplitude (peak centred) were calculated as in Chapter 

2 for TW1=100-250 and TW2=250-400 ms. Table 3.6 and 3.7 present the descriptive 

statistics for peak latency and mean amplitude for all groups, respectively.  

 

Table 3.6  

Descriptive Statistics for MMR Peak Latency, for all Groups in TW1 and TW2 

  TW1  

 TLD DLD Adults 

 M SD M SD M SD 

Non-native non-words 184.6 50.71 197.1 37.9 178.5 29.8 

Native non-words 136.6 38.5 127.9 22.2 167.4 22.5 

Function words 145.1 23.2 160.1 28.5 202.5 23.2 

Content words 137.1 38.9 161.3 51.0 157.0 21.3 

Words  131.8 21.7 160.0 38.0 154.4 35.7 

  TW2  

 TLD DLD Adults 

 M SD M SD M SD 

Non-native non-words 340.9 35.6 316.9 28.6 323.3 62.4 

Native non-words 310.0 21.7 314.0 28.5 335.4 64.2 

Function words 337.3 32.7 329.4 32.0 364.9 65.1 

Content words 321.6 42.3 338.6 42.0 371.2 41.4 

Words  326.6 32.9 330.4 34.2 400.1 24.1 

Note. TLD, n=11; DLD, n=16; Adults, n=20. 

 

In general, peak latency was longer in adults than children for TW1 and TW2. 

However, adult’s peak latency was measured in significant MMN/LDN clusters, which was 
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not possible in children. For children, peak latency values were extracted from negative 

deflections in TW1 and from positive deflections in TW2, regardless they were significant 

responses or not. Thus, no further analysis was performed on peak latency measures. 

For mean amplitude, in TW1 children exhibited larger negative values than adults, 

and TLD children than DLD children. In TW2, adults showed larger negativities than 

children for all stimuli except content words, and TLD children showed more negative values 

than the DLD group for all stimulus types. 

 

 

 Table 3.7  

Descriptive Statistics for MMR Peak-Centered Mean Amplitude, all Groups in TW1 and TW2 

  TW1  

 TLD DLD Adults 

 M SD M SD M SD 

Non-native non-words -2.35 2.73 -1.57 2.16 -0.76 1.13 

Native non-words -2.45 2.55 -1.19 2.02 -1.59 1.51 

Function words -3.97 3.22 -3.16 2.55 -2.08 0.92 

Content words -2.72 2.62 -2.60 1.68 -1.58 1.11 

Words  -3.06 2.26 -2.63 1.78 -0.95 0.92 

  TW2  

 TLD DLD Adults 

 M SD M SD M SD 

Non-native non-words -0.81  2.80 -0.29 2.77 -1.45 1.48 

Native non-words 0.85 3.56 1.78  3.08 - 0.81  1.01 

Function words -1.66  3.55 -0.03  2.17 -1.85  1.88 

Content words -2.27  3.07 -1.67  2.30 -1.56  1.55 

Words  -1.58  2.50 -0.43  1.67 -1.72 1.68 

Note. TLD, n=11; DLD, n=16; Adults, n=20. 
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Figure 3.10 

Comparison of Difference Waveforms between Children and Adults for each Type 

 

Note. Difference waveforms at Fz electrode for all stimuli. Continuous line: TLD group; 

dotted line: DLD group, dashed line: adults. Data low-passed filtered at 35 Hz for plotting. 
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For TW1 and TW2 Shapiro-Wilk test confirmed normal distribution (see Append 3.3) 

for all measures, except for DW2-TDL in TW1. Thus, we examined mean amplitude 

between-group differences for each TW using planned comparisons for each stimulus type 

using one-way ANOVA, adjusting the significance level for the number of stimulus types 

(0.05/ 5 comparisons, one per stimulus type=0.01). To account for unequal sample sizes and 

unequal variances (Appendix 3.2), we used Tamhane’s post-hoc tests, with alpha= 0.01. 

Table 3.8 presents the ANOVA results for peak-centred mean amplitude. Results 

indicates a significant amplitude difference only for Words (combined difference wave) in 

TW1 [F(2,44)= 7.855, p= .001], and only for non-native non-words in TW2 [F(2,44)= 4.701, 

p= .014], with a large effect size in both cases (η2 = 0. 263 and η2 =.176, respectively). For 

TW1, post-hoc tests showed significantly larger negativities for Word stimuli in both groups 

of children (TLD children M= -3.06, SD= 2.26; DLD children M= -2.63 SD=1.78), than in 

adults (M= -0.95, SD=0.92). In TW2, native non-words showed less negative values in DLD 

children (M= 1.78, SD= 3.08) than in adults (M= - 0.81, SD= 1.01).  

Table 3.8  

Results of One-Way ANOVAs for Mean Amplitude Comparisons between Groups 

TW1 F p η2 

Non-native non-words 2.441 .099 .100 

Native non-words 1.368 .265 .059 

Function words 2.277 .115 .094 

Content words 2.139 .130 .089 

Words  7.855 .001 (*) .263 

TW2               F            p           η2 

Non-native non-words 1.141 .329 .049 

Native non-words 4.701 .014 (*) .176 

Function words 2.727 .076 .110 

Content words .382 .685 .017 

Words  2.275 .115 .094 

Note. For all tests, df = (2, 44). (*), significant at the 0.01 level. 
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3.3.3 Time frequency analysis of MMRs 

Spectral Power 

As a data quality check, we first computed the spectrum of each stimulus type for 

each group, measured as normalized power (µV²).  As can be observed in Figure 3.11, we 

could confirm that the 1/f pattern and typical peaks in the alpha band were present, indicating 

that our measures reflected cortical dynamics. All groups exhibited an increase in power 

around 10 Hz, consistent with alpha band activity. However, only the adults and TLD groups 

showed additional peaks around 5 Hz and 20 Hz, which was wider in adults (to 30 Hz). 

 

Figure 3.11 

Spectral Decomposition for Children and Adults Waveforms (all Stimuli) 

 

 

Note. Normalised power spectra for all stimulus types. Gray arrows: Peaks at or below 5 Hz; 

Purple arrows: Peaks around 10 Hz; Black arrows: Increases around or after 20 Hz.  
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Event-related spectral perturbation (ERSP) 

The second TF analysis focused on determining if there were any between-group 

differences in spectral power over time for each stimulus type, as indexed by the ERSP.  Figure 

3.12 presents ERSP for each stimulus type for TLD and DLD children and the adult’s group.  

 

Figure 3.12 

ERSP (Power Change over Time) for all Stimulus Types and Group 

 

Note.  ERSP plots indicate changes in dB power over time. Yellow and blue indicate power 

change toward positive and negative values, respectively. Baseline = -500 to -200 ms. 
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To avoid biased selection of the time windows and frequency ranges of interest for 

statistical analysis, we determined ROI by visual inspection of the plots containing the 

responses for all stimulus types on each group pooled together (Figure 3.13). This analysis 

identified one time range of increased activation (colour change towards yellow) in the theta 

band for each group; for the TLD group, between 350-600 ms (3-6 Hz); for the DLD group 

between 180-400 ms (3-6 Hz) and for the Adult group, between 200-420 ms (3-7 Hz). There 

is an earlier onset in adults (~200 ms) and DLD children (~180 ms) than in the TLD group 

(~350 ms). In the adults group though, there is a power decrease in the alpha range that 

spreads from the start of the baseline period to the post-stimulus interval, despite the baseline 

correction, suggesting this could be an artifact affecting this frequency range. For this reason, 

ERSP analysis focused on the theta ROI. 

 

Figure 3.13 

ROIs Selection on Total Average ERSP for each Group 

 

Note. Total ERSP changes in (a) TLD children, (b) DLD children and, (c) Adult group. ROI 1: 

3 to 6 Hz in children, 3-7 Hz in the adult group. Baseline correction from -500 to -200 ms. 

 

 

To compare ERSP between groups, dB power was averaged across ROI time points, 

and collapsed across frequencies to get the average band power (theta band in this case). 
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Table 3.9 presents the descriptive statistics for ERSP, whereas mean ERSP values on each 

group for each stimulus type are compared in Figure 3.14. 

 

Table 3.9 

Descriptive Statistics for Average Theta Band ERSP (dB Power) for all Groups  

  
TLD (n=11) DLD (n=16)    Adults (n=20) 

       Mean         SD       Mean SD   Mean   SD 

Non-native non-words -.109 1.65 .001 1.25 -.125 1.88 

Native non-words .039 2.15 .008 1.27 -.072 2.16 

Function words .032 2.43 .257 1.63 .267 2.01 

Content words -.326 2.03 -.021 1.39 -.063 2.07 

St (native non-word) -.428 1.81 -.041 1.34 -.471 1.97 

Note. dB power averaged across ROI time points and theta range. 
 

To examine differences in ERSP power for each stimulus type between the groups of 

children and adults we conducted a mixed repeated measures ANOVA with ‘Group’ as 

between-subject factor and ‘Stimulus Type’ as within-subject factor. After checking for data 

normality, and equality of variances, and of covariance matrices (Appendix 3.3), we used 

Greenhouse-Geisser correction for unmet sphericity (Mauchly’s W=.355, p<.001, df =9). The 

ANOVA revealed a significant effect of Stimulus Type [F(2.57,113)=3.358, p=.027], with a 

medium effect size (ηp
2  = .071) and adequate power= 0.70. Post-hoc pairwise tests on 

Stimulus Type effects indicated significantly larger power change for standards (M= -.313, 

SD= 1.71) than for non-native non-words (M= -.078, SD=1.60), native non-words (M= -.008, 

SD= 1.86), and function words (M= .185, SD= 1.95), but not for content words (M=-.136, 

SD=1.82). There was a non-significant effect of Group [F(1,44)= .048, p=.953], and a non-

significant Group*Stimulus Type interaction, [F(5.14.,113)= .505, p=.774], with a small 

effect size (ηp
2  =.002 and ηp

2  =.022, respectively) and low statistical power (0.6% and 19%). 
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Figure 3.14 

Box Plots for Theta ERSP (dB) Mean Values across ROI per Stimulus Type, all Groups 

 

Note. ERSP baseline= -500 to -200 ms. Between-groups differences are non-significant for 

all stimulus types at the 0.05 level. 

 

Inter-trial Phase Coherence (ITPC) 

The final TF analysis focused on determining if there were any between-group 

differences in phase coherence over time for each stimulus type, as indexed by ITPC.  Figure 

3.15 presents ITPC values for each stimulus type for TLD, DLD, and adult group.  

ROIs for ITPC statistical analysis were determined by visual inspection of the plots 

containing all stimulus types for each group (Figure 3.16). We identified ROI 1 in theta (3 to 

7-8 Hz), with a similar onset and duration in TLD children and adults (150-400 ms) but 

slightly shorter in the DLD group (160-350 ms). We also identified ROI 2 in alpha (8 to 10-
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12 Hz), with earlier onset and longer duration in adults (120-360) ms than in TLD (250-400) 

and DLD children (275-330), the latter showing the shortest alpha ITPC increase.  

 

Figure 3.15 

ITPC Strength over Time for each Stimulus Type, all Groups 

 

Note. Colour changes towards yellow indicates ITPC increases over time, and blue indicate 

phase synchrony decrease. 
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Figure 3.16 

ROIs Selection on Total Average ITPC for each Group 

 

Note. (a) TLD children, (b) DLD children and, (c) Adults. In all groups, ROI 1: 3 to 8 Hz 

(theta band), ROI 2: 8-12 Hz (alpha band). 

 

Table 3.10 presents the descriptive statistics for theta band (ROI 1). Adults showed 

higher ITPC for meaningful stimuli (words than non-words), but in general, with no 

difference for deviants and standard stimuli. In the TLD group, all deviants show higher 

ITPC than the Standards. No such standard-deviant distinction is present in the DLD group. 

 

Table 3.10 

Descriptive Statistics for Average Theta ITPC for all Groups (ROI 1) 

  TLD DLD Adults 

       Mean         SD       Mean SD   Mean   SD 

Non-native non-words .174 .027 .154 .047 .196 .049 

Native non-words .175 .052 .180 .046 .200 .050 

Function words .186 .062 .167 .046 .308 .082 

Content words .181 .040 .170 .051 .241 .076 

St (native non-word)       .147 .043 .172 .067 .196 .046 

Note. ITPC averaged across ROI time points and theta range 
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To compare theta ITPC (ROI 1), we conducted a mixed repeated measures ANOVA 

with Stimulus Type as within-subjects factor and Group as between-subjects factor, after 

confirming all the test assumptions were met (see Appendix 3.3). Results indicate a 

significant main effect of Stimulus Type [F(4,176)= 6.75, p<.001], with a large effect size 

(ηp
2 = 0.133) and adequate power (99%). Post-hoc comparisons showed higher theta ITPC for 

function (M= .22, SD= .094) and content words (M=.19, SD= .069), than for native non-

words (M=.18, SD= .049).  

There was also a significant main effect of Group [F(2,44)=18.85, p< .001], with a 

large effect size (ηp
2 = 0.461) and adequate power (100%), with larger theta ITPC for the 

Adult (M=.23, SD=.061) than for the TLD (M=.173, SD=.093) and DLD (M=.17, SD=.051) 

groups. Finally, there was a significant Stimulus Type*Group interaction [F(8,176)=5.06, 

p<.001],  with a large effect size (ηp
2 = 0.187), and adequate statistical power (99%). 

The interaction was followed-up with one-way ANOVAs (Bonferroni-corrected 

p=.01), comparing theta ITPC between groups for each Stimulus Type triad. For meaningless 

stimuli (non-words), theta ITPC showed no significant between-group differences for non-

native non-words [F(2,44)=4.003, p= .025] or native non-words [F(2,44)=1.194, p= .313], as 

well as for standard stimuli [F(2,44)=3.117, p= .054].  

On the contrary, theta ITPC for meaningful stimuli showed significant between-group 

differences. For function words, theta ITPC varied significantly between groups 

[F(2,44)=23.129, p<.001], with Tukey HSD post-hoc comparisons indicating higher phase 

coherence values in adults (M= .310, SD= .082) than in the TLD (M=.186, SD=.062) and 

DLD (M=.167, SD= .047) groups, but with no differences between both groups of children. 

Similarly, for content words, [F(2,44)=6.901, p=.002], Tukey HSD post-hoc test showed 

significantly higher values in adults (M=. 241, SD= .076) than in TLD (M=.181, SD= .040) 
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and DLD (M=.170, SD= .051) children, but no differences between children’s groups. Figure 

3.17 illustrates theta ITPC mean values in all groups for each stimulus type. 

 

Figure 3.17 

Box Plots for Theta Band ITPC (ROI 1) for Stimulus Type, all Groups 

 

Note. ITPC range: 0-1. (***) significant at the 0.001 level. (**) significant at the 0.01 level. 

 

The second statistical analysis of ITPC focused on the alpha band (ROI 2). Table 

3.11, presents alpha ITPC descriptive statistics, indicating higher values for adults than for 

children, but no clear pattern for differences between children’s groups. 
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Table 3.11 

Descriptive Statistics for Average ITPC for all Groups for ROI 2 (Alpha Band, 8-12 Hz) 

  TLD (n=11) DLD (n=16) Adults (n=20) 

  M SD M SD M SD 

Non-native non-words .146 .043 .166 .065 .175 .047 

Native non-words .146 .053 .176 .061 .223 .075 

Function words .156 .054 .127 .040 .246 .082 

Content words .134 .034 .159 .065 .197 .052 

St (native non-word) .143 .065 .154 .074 .205 .065 

Note: ITPC averaged across ROI 2 time points and collapsed over alpha range frequencies. 

 

To compare alpha band ITPC (ROI 2) statistically, we conducted a mixed factorial 

ANOVA with the same factors as for theta, after confirming all the test assumptions were met 

(Append 3.3). Results indicate that the main effect of Stimulus Type was non-significant 

[F(4,176)= 1.073, p=.371], with a small effect size (ηp
2 = 0.024) and low statistical power 

(34%). There was a significant effect of Group, [F(2,44)=14.84, p<0.001],with a large effect 

size (ηp
2 = .401) and adequate power (99%), with Tamhane’s post-hoc comparisons indicating 

significantly higher alpha ITPC in adults (M=.209, SD=.008) than the TLD (M=.144, 

SD=.011), and the DLD (M=.156, SD=.009) groups at the p<.001 level. A significant Group* 

Stimulus Type interaction was detected [F(8,176)=2.606, p=0.01],  with a large effect size 

(ηp
2 = .106) and adequate power (92%).  

The interaction was followed-up with one-way ANOVAs (Tamhane post-hoc, 

corrected p=0.01) to compare each Stimulus Type triads between groups. For function words, 

results indicate significant between-group differences in alpha ITPC [F(2,44)=16.902, 

p<.001] with a large effect size (ηp
2 = .434), with post-hoc pairwise comparisons indicating 

higher alpha ITPC in adults (M=.246, SD=.082) than in TLD  (M=.156, SD=.056)  and DLD  
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(M=.127, SD=.039) children. Alpha ITPC was significantly higher in adults for native non-

words (M=.223, SD=.075, [F(2,44)=5.363, p=.008]), and content words (M=.197, SD=.051, 

[F(2,44)=5.431, p=.008]), than in the TLD group (M=.145, SD= .054 for native non-words, 

and M=.133, SD= .034, for content words), with a large effect size in both cases (η2 = .196, 

and η2 = .198, respectively), but there were no differences with the DLD group. Figure 3.18 

presents mean alpha ITPC for all groups. 

 

Figure 3.18 

Box Plots for Alpha Band ITPC (ROI 2) for Stimulus Type, all Groups 

 

Note. (*) indicates significant differences at .01 level. 

 

Taken together, results from the TF analysis indicate an effect of the linguistic content 

involving meaning (words) on cortical synchrony with higher ITPC in the theta band, and to a 

less extent, in the alpha band. However, this effect was not detected for power change measures 

(ERSP) and was only present in adults, not in children. 
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3.3.4 Correlation between phonological awareness and EEG measures. 

Finally, we determined whether there was an association between scores in the 

phonological awareness test (PECFO) and EEG measures. As we had compared the TLD and 

DLD groups in section 3.3.1, the current analysis pooled all children together, regardless their 

language status. Pearson correlation was calculated separately for mean amplitude (TW1 and 

TW2), ERPS and ITPC (ROI 1 and ROI 2) and phonological awareness scores (Table 3.12). 

No significant correlations between mean amplitude, ERSP and ITPC ROI 2 and 

phonological awareness scores were observed on TW1 or TW2 for any stimulus type. For 

ITPC ROI 1 we only observed a significant negative correlation between theta ITPC for 

standards and PECFO scores [r=-.467, p=.028], but this was no longer significant after 

Bonferroni correction for multiple comparisons was applied to each measure (alpha=0.01). 

Table 3.12 

Correlation Analysis between Phonological Awareness Scores and EEG Measures 

  ERP measures 

 Non-native 
non-words 

Native 
non-words 

Function 
words 

Content 
words 

Words 
(combined)  

Mean amplitude TW1    

PECFO r - .299 - .185 - .229 - .034 - .167 
 

p   .176    .409 .305   .879   .458  
Mean amplitude TW2 

   

 
r -.194 - .043 - .305 - .169 - .353 

 
p  .388   .851   .167   .451    .107 

 Time-frequency measures 

 

 

 
Non-native 
non-words 

Native 
non-words 

Function 
words 

Content 
words 

Standard 
(Nat-NW) 

PECFO ERSP theta    
 

r .082  - .321 - .271 - .283 - .319 

 p .716    .145   .223   .201   .147  
ITCP theta (ROI 1) 

   

 
r .206  - .183 - .112  .32 - .467 

 
p .358   .415   .619    .146      .028 

 
ITCP alpha (ROI 2) 

   

 
r .039  - .368   .206 - .052 - .31 

 
p .863   .092    .357   .818   .16 

Note. r= Pearson’s correlation coefficient; p= significance value. Corrected alpha=0.01. 
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3.4 Discussion 

       3.4.1 Summary of findings 

This study aimed to compare cortical responses to speech with varying linguistic 

content under different language status; children with TLD and DLD, and adults using a 

range of ERP and time-frequency measures. As hypothesised, we detected significant MMRs 

for all speech stimuli in both groups of children, with different patterns than adults in terms 

of polarity, mean amplitude and ITPC. However, contrary to our expectations, we found no 

differences between TLD and DLD children on any EEG measure, nor correlation with 

behavioural tests, although their phonological awareness scores were significantly lower in 

the DLD group. The interactions between language status (‘Group’) and linguistic content 

(‘Stimulus type’) confirmed our hypothesis about greater top-down language effects for 

higher order linguistic content only in the adult group. These results suggest that language 

top-down modulations on speech perception are present in adulthood but either may not have 

developed yet in early childhood or may not be detectable with this EEG paradigm, for 

example because of excessive noise or variability in our data. Importantly, we found no 

evidence of impaired acoustic or speech processing in DLD, which suggests that speech 

perception in children with DLD and TLD could be similar, although such null results should 

be interpreted cautiously. 

Specifically, our results confirm the presence of at least one significant negative or 

positive MMR for all stimulus types in both groups of children. However, a key difference 

with the adult group was the lack of significant early MMNs in children for most non-words, 

and of later LDNs for all stimulus types. These findings contradict previous literature 

reporting an early presence of the MMN (Cheour et al., 1998) and greater LDNs in children 

than adults (Bishop et al., 2011). For example, Kuuluvainen et al. (2016) reported that 

different speech and nonspeech contrasts elicited significant MMNs between 200-350 ms and 
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LDNs for the 350-500 interval. However, children in their study were 6–7-year-old, older 

than our participant and their speech stimuli did not include meaning. An alternative 

explanation for the lack of MMN/LDNs relates to a possible attenuation effect of an extended 

ISI duration. In young children, the MMR reflects sensory memory capacity which has been 

reported to increase between the ages of 2 and 6 years resulting in progressively better 

discrimination of memory traces at longer delays, this is ISIs over 500 ms  (Glass, Sachse & 

von Suchodoletz, 2008). In our experiment, we used an ISI of 1000 ms to avoid neural 

refractoriness (Morr et al., 2002), however, this could have had a detrimental effect in 

eliciting the MMN/LDN. 

As predicted, we observed that both groups of children exhibited immature responses 

when compared to adults as indicated by positive MMRs during the MMN and LDN 

intervals. Previous literature have described a positive polarity for the MMR for infants 

(Cheour, 2007) and, for children, until the age of 7 years in response to complex stimuli 

(Maurer et al., 2003). On the contrary, other studies in pre-schoolers (Kuuluvainen et al., 

2016; Strotseva-Feinschmidt et al., 2015) indicate one could expect a typical, adult-

resembling MMN/LDN patterns, even if occurring at longer latencies. However, we observed 

positive polarity only for non-words, indicating that meaningless word forms elicited more 

immature responses than words, maybe because the lack of meaning makes them more 

complex to perceive. This interpretation contradicts the possible lack of top-down language 

effects discussed earlier, but could be explained by the fact that point-by-point analysis 

reveals differences that are no longer detectable when averaging values across a time-window 

(e.g. because they cancel out) giving a clear example of the methodological issues in this 

field. In addition, scalp patterns in children showed broad distributions, especially for TW2, 

instead of the more focalised responses often seen in adults (Shafer et al., 2010) also 

indicating less mature MMRs.  
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Another indicator of immaturity is that MMRs in children exhibited greater latency 

and longer duration (for example, a 164-ms-long MMR for native non-words in the DLD 

group), making it hard to differentiate early and late MMRs for some stimuli and to compare 

latencies between groups, particularly, for non-words. In the literature, responses in 3-year-

olds for monosyllabic function words differing in their final consonant peaked at 262 ms after 

deviance (Maurer et al., 2003). Strotseva-Feinschmidt et al., (2015), reported that children 

between 5–8 years, showed latencies between 180 and 350 ms, whereas Paquette et al, (2013) 

showed that MMRs for phonemic contrasts in 3-7 year-old children peaked at 272 ms. These 

findings are consistent with the latencies and MMR duration we observed for non-words but 

occur much later than the responses we detected for function and content words. Again, this 

could indicate easier and faster cortical processing of meaningful stimuli. For phoneme or 

word deviants, Strotseva-Feinschmidt et al. (2015), who used similar stimuli as in our study 

(contrasts between monosyllabic function words) in the same age group, reported overall 

latencies of 400 ms for the MMN and 700 ms for the LDN, which are much longer. However, 

the use of peak measures for ERPs may be sub-optimal (Bishop et al., 2011) as they are 

sensitive to noise level (Luck, 2014), which can be high in paediatric EEG (Trainor, 2012).  

Regarding the MMR mean amplitude, our findings are partially consistent with 

previous literature. For example, Paquette et al, (2013) reported an amplitude of - .067 µV at 

Fz for phonemic contrasts in 3–7-year-old children, which agrees with our results for non-

words in TW2 but not in TW1, in which children showed much larger negative values. The 

lack of amplitude differences between children’s groups is consistent with multiple studies 

failing to differentiate TLD and DLD groups based on speech-elicited MMRs (for a review 

see Kujala & Leminem, 2017). When comparing children versus adults, our findings support 

our prediction of significantly smaller amplitude in adults than children, but this occurred 

only for Words in TW1. Contrary to our hypothesis, mean amplitude was smaller in children 
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than adults, but only for the DLD group in TW2 for native non-words. This resembles 

previous findings of smaller MMN amplitudes for 6-year-old children (Lovio, et al., 2009). 

In terms of TF analysis, we confirmed less synchronized activity in children than 

adults but only for words and when measured by ITPC but not by ERSP. Theta ERSP was 

affected by the linguistic content (stimulus type), with reduced power change for standards 

than for most deviants (except function words), which is consistent with the idea of increased 

theta synchronysation for novel stimuli. Larger ERSP for deviants is consistent with findings 

reported by Fuentemilla et al., (2008) and Hsiao et al., (2009; 2010). The lack of power 

differences we observed between standards and function words could be explained by a 

larger ERP negativity, thus, the lack of significant effect may result from acoustic 

differences. However, if this is the case, we would expect to see a consistent pattern for 

function words along all measures that was not present, for example, increased amplitude 

with higher ERSP and ITPC. Importantly, there were no ERSP differences between groups of 

children, or between children and adults contradicting our predictions, but in line with 

findings reported by Bishop and Hardiman (2010). Also, it is worth considering some 

methodological issues in our ERSP analysis: (i) Using visual inspection of the condition 

average plots to determine ROIs was suboptimal, as despite performing baseline correction in 

the adult plot, we observed unexplained negative alpha power before stimulus onset 

suggesting a possible artifact and (ii) The effect size was small, except for ITPC, meaning 

that some between-group differences may have gone undetected. 

On the contrary, ITPC in the theta band (and to a less extent in alpha) showed a main 

effect of linguistic content and language status, with a significant interaction between them, 

all with large effect size. This is a key finding as it  indicates higher synchrony in adults than 

children but only for meaningful stimuli (function and content words), consistent with our 

hypothesis of greater top-down language modulations for higher order linguistic 
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representations in participants with more advanced language skills. Previous research has 

linked increased theta ITPC to syllable encoding and discrimination (Ortiz-Mantilla et al., 

2022) whereas alpha ITPC is thought to reflect automatic allocation of attentional resources 

for speech sounds and inhibition of task-irrelevant stimuli (Strauß et al., 2014). 

The presence of robust ITPC differences indicates more efficient responses to speech 

in adults than children, which is in line with previous studies.  This aligns with Skeide & 

Friederici’s (2016) proposal of greater bottom-up and slow emergence of top-down 

modulations after the age of six years. However, as there is no difference between TLD and 

DLD children, it could be argued that our results come from brain maturational changes 

(effect of age) rather than language top-down influences. If this were the case, we would not 

have observed the interaction of language status and linguistic content in the Adult group. 

Finally, phonological awareness test scores did not correlate with any EEG measure, 

even though significantly lower scores were observed in the DLD than in the TLD group. 

This contradicts previous evidence of better phonological skills associated with larger MMNs 

for phonemic changes in 5-6 year-old children (Linnavalli, et,al., 2017), but is consistent with 

many studies that report no clear links between ERPs and behavioural measures. 

 

3.4.2 Strengths, limitations, and future research  

To our knowledge, this is the first study to use a multifeature paradigm in Spanish-

speaking preschoolers with DLD diagnosis and to compare their responses to age-matched 

TLD controls and adults. Moreover, few MMR studies in children have used not only 

syllables or non-words but also words and validated the experiment in a previous study to 

obtain reference adult response patterns. 

One contribution of this study is that we confirmed that our multifeature experiment 

was able to elicit robust MMR in young children presenting multiple speech deviants while 

reducing the EEG testing time. In less than 20 minutes (plus set-up times), it was possible to 
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collect enough clean data for all the children that underwent the EEG session, as 

demonstrated by noise levels under 35% for all participants and stimulus type. Combining 

artifact rejection and correction procedures, we were able to include the data of all the 

participants, with a minimum of 42 trials per stimulus type which is well above the standard 

threshold for paediatric studies (10 trials, according to Bell & Cuevas, 2012). This highlights 

the importance of combining manual and automatic data cleaning procedures to improve data 

quality (Cohen, 2017), helping to reduce data loss and sampling bias due to participant’s 

exclusion (Bell & Cuevas, 2012). 

Retaining all the participants was especially important for this study, as one of the 

main limitations was the small sample size for each group, which was a consequence of the 

COVID-19 pandemic restrictions for data collection. Although small samples are not 

uncommon in children EEG studies because of difficult recruitment and high drop-out rates 

(Bell & Cuevas, 2012), especially for including clinical groups, is worth noting that the 

reduced number of children participants may have affected the statistical power of our results. 

This is a relevant aspect to consider in paediatric EEG studies, as even children with typical 

development show high inter-individual variability, which makes it harder to detect 

differences between TLD and DLD children.  

Importantly, differences in the language and cognitive skills within the DLD group 

could have influenced the MMR results. Although all language-impaired children in this 

study had an expressive-receptive disorder diagnosis, it was impossible to determine the 

exact level of homogeneity in their language development and cognitive profiles. This could 

have introduced higher variability in their MMR difficulting a distinction between the DLD 

and TLD groups based on their cortical dynamics. Moreover, a large body of evidence 

indicates that the language symptoms in DLD are dynamic over time (Bishop et al., 2016; 



156 
 

2017), suggesting that identifying neural markers of language outcomes at the group level 

could be more challenging than expected. 

A second limitation is that, as mentioned in Chapter 2, our stimuli differed in their 

acoustic structure. Acoustical matching of the initial phonemes for non-words was 

considerably easier than for word stimuli, as they should also be matched in their age of 

acquisition and oral frequency. Thus, larger acoustic differences rather than effects of 

language knowledge or linguistic content may have driven some of our results, as in Lee et al. 

(2012), who reported negative, adult-like MMRs for larger syllabic deviants and positive 

MMRs for small deviants. However, if this were the case, we would expect a consistency 

between the different EEG measures; for example, greater MMR amplitude should coincide 

with greater ERSP and ITPC for the same type of stimulus, which we did not found. 

An important remaining question is what EEG analysis and statistical methods are 

more suitable when comparing cortical speech perception responses between groups of 

children, and children versus adults, given the high diversity of latencies and amplitude 

values, electrodes and time windows reported in the previous literature. This complicates the 

a priori selection of time windows and electrodes for analysis, as findings vary substantially 

across studies. A possible approach to reduce bias in our ERP analysis to follow the same 

steps used in the TF analysis for determining ROIs for amplitude and latency, for example, 

using global field power from the total group average as in (François et al., 2020).  

Nevertheless, an important contribution of this study is that it confirms that ITPC is a 

robust measure, probably a more suitable one for comparing children and adults, chiefly, 

because ITPC results showed large effect sizes, which was not the case for the ERSP and 

ERP measures. Moreover, the detected theta ITPC increases were independent of changes in 

amplitude or power, as the MMN amplitude was not larger for adults than children, and the 

ERSP showed no between-group differences. Thus, our findings corroborate the value of TF 
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analysis, as a relevant complement to ERP measures, encouraging its use in further speech 

perception development studies. However, it is important to note that ITPC distortions may 

also occur, due to effects of noise or ERP amplitude (van Diepen & Mazaheri, 2018) 

Future research in TLD/DLD groups could explore other EEG measures related with 

speech perception, as resting-state analysis or linear modelling of continuous speech tracking, 

helping to increase the ecological validity of the experiments. Another possibility is to 

replicate this study in older children, ideally by a longitudinal, follow-up study to re-test these 

same children at later age or a new group of older participants. Likewise, other statistical 

methods could be more informative than MUA or ANOVA as these assume independence of 

observations, which contradicts the multivariate nature of the EEG (Volpert-Esmond et al., 

2021). For example, multivariate pattern analysis (MVPA) could determine if children can be 

correctly classified into groups based on individual EEG measures (Petit et al., 2020). 

 

   3.4.3 Conclusions 

Taken together, these findings confirm that the adult group showed more consistent 

speech processing responses than children, but in children this was not determined by their 

typical or atypical language developmental status. Importantly, the fact that adults showed 

greater ITPC in theta (and alpha) bands for function and content words, indicates that they 

may detect phonemic changes better than children, but they do so when these contrasts are 

contained in meaningful word forms and not in non-words. The lack of that top-down 

language effects on the TLD/DLD groups suggest these emerge at some point in childhood 

although later than the age range we studied, although it could also be explained by the 

carachteristics of our sample and stimuli. Thus, future studies could explore language 

modulations on speech processing in TLD/DLD children at older ages, for example, late 

childhood or adolescence. 
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Chapter 4. Resting-state oscillations and speech perception in children with 

typical language development and DLD.   

 

 

4.1 Introduction 

Speech perception involves task-dependent changes in neural oscillations and also, in 

resting-state (RS) rhythms; these corresponds to the spontaneous activation of cortical 

networks when the brain is awake but not engaged in a task. The patterns of endogenous RS 

activity in the EEG have been associated with different cognitive functions, including speech 

and language processing, and show developmental changes that may predict language skills 

at later stages. Thus, characterizing RS activity during early childhood could improve our 

understanding of typical and atypical language development. 

RS measures have enormous potential as clinical indices of cognitive development 

because they require no response or stimuli, making data collection easier than for speech 

perception experiments and much shorter (usually 3 -5 min of data). However, there is still 

little research on the implications of RS EEG changes for speech perception and language 

development during early childhood. 

The primary aim of this chapter was to examine the relationship between RS 

oscillations and language status in young children. We compared EEG resting-state power 

and lateralization measures between Spanish-speaking children with TLD and DLD and 

adults. A second aim was to relate children’s EEG RS measures to their performance in 

speech perception tests. This study contributes to understanding oscillatory dynamics during 

early childhood in TLD and DLD, comparing RS EEG patterns between children and adults. 
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4.1.1 Speech perception development and resting state oscillations 

In the brain, synchronised neural activity underlies a wide range of cognitive 

processes, such as language and speech processing, even without a task. The changes in RS 

neural dynamics can be quantified as variations in the spectral energy at different frequency 

bands (for example, as spectral power) and reflect baseline excitability in neural networks 

involved in different cognitive processes, such as speech perception (Houweling et al., 2020). 

Thus, characterising the brain's intrinsic patterns in the EEG signal and their change along 

development is valuable for understanding how the brain processes external stimuli and 

determining how RS brain activity relates to speech perception skills and interacts with 

language knowledge across the lifespan.  

Previous research in adults has shown that (RS) brain activity predicts both neural 

dynamics and behavioural performance during speech perception. For example, gamma 

oscillations are involved in local and global scale synchrony (Buzsaki & Draguhn, 2004), 

playing a key role in phonological processing (Meyer, 2018).  

Breshears et al. (2018) recorded RS cortical local field potentials in the STG of eight 

brain-surgery patients. They found that RS high gamma power (70-150 Hz) in the STG (both 

hemispheres) correlated with the perception of speech (sentences) but not of acoustically 

matched non-speech (rotated stimuli), indicating that 'tuning' of RS activity and phonemic 

processing were task-dependent (Morillon et al., 2010). A MEG study by Houweling et al. 

(2020) investigated the relationship between inter-individual differences (n=88 adults) in RS 

power and speech perception under varying background noise levels. They found positive 

associations between words-in-noise test performance and RS power (mainly in the superior 

temporal gyrus) for high beta (21–29 Hz) in the LH and for low gamma oscillations (30-40 

Hz) in the RH. These findings suggest that baseline neural activity in different bands provides 
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an optimal neural context for speech perception, facilitating processing under adverse 

listening conditions. However, these findings have not been systematically replicated in 

children; although RS patterns change shows evident changes during development, it is 

unknown what they involve for speech perception or how they might be influenced by age or 

language abilities.  

Developmental changes in power measures 

On the EEG, it is possible to observe typical age-related changes in the RS rhythmic 

(periodic) activity and background neural noise. The neural activity becomes more consistent 

(coherent) with age and more spatially focalized because of cortical maturation and cognitive 

changes (Eggermont & Ponton, 2003). This is observed in the EEG as a reduction in 

broadband (absolute) power, a power redistribution, and changes in the topography and 

boundaries of different frequency bands (Uhlhaas et al., 2009; 2010; Miskovic et al., 2015; 

Rodriguez-Martinez et al., 2017). Thus, canonical adult bands are not necessarily equivalent 

to children's ones (Ostlund, 2022), which seem to be lower (Saby & Marshall, 2012) but still 

present the characteristic EEG structure (1/f, power decrease as a function of frequency). In 

addition, neural background noise decreases from childhood to adolescence (Bishop et al., 

2012; Hämmerer et al., 2013) and adulthood (Vanvooren et al., 2015), also reflected in the 

RS EEG patterns. 

In general, developmental changes in the RS EEG involve an age-related decrease in 

spectral power for low frequencies and an increase for high frequencies (Lum et al., 2022; 

Meng et al., 2021; Rodriguez-Martinez et al., 2015; Saby & Marshall, 2012). For example, 

Yordanova & Kolev (2008) and Perone et al. (2018) described a decrease in theta (4-7 Hz) 

and an increase in alpha (~7-13 Hz) power with age (n=50 children, 6-11 years old) with a 

continuous decrease in power below 8 Hz during adolescence. According to Uhlhaas et al. 

(2010), gamma-band oscillations emerge during early childhood and show developmental 
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changes until adulthood, but the direction of these changes is unclear. A large-scale study 

(n=707, age 3-12 years) by Takano and Ogawa (1998) reported a steep increase in RS gamma 

power (35–45 Hz) in younger children between the ages of 3 (n=71) and 4 (n=65) years, 

which was more pronounced for frontal and central channels, and become stable in older 

children (4-12 years). On the contrary, another large study (n=156) by Tierney et al. (2013) 

demonstrated less gamma power (31 to 50 Hz) in older participants than in young children 

(n=35, 3-5 years), with strong negative correlations between gamma power and age from 

early childhood to adulthood.  

Notably, some evidence indicates that the patterns of RS power at different ages relate 

to different brain maturational and cognitive changes. For example, power decrease is 

associated with the grey matter reduction due to synaptic pruning (Tierney et al., 2013), 

cortico-cortical myelination and changes in neurotransmission (Uhlhaas et al., 2009; 2010), 

whereas high levels of theta power in infants and young children could reflect a 

developmental state of optimal synaptic plasticity (Stroganova & Orekhova, 2007). 

Speech perception development and RS power 

Despite the apparent links between spectral power age-related changes and cognitive 

development, very few studies have investigated the relationship between endogenous neural 

activity and language and speech perception development in young children. However, 

behavioural evidence consistently shows that their speech perception skills improve with age 

(see Chapter 1). For example, Bradlow and Bent (2002) reported that children as young as 

three years demonstrated speech perception difficulties in the presence of multi-talker noise, 

although their performance improved with age. Thompson et al. (2016) reported an 

association between age and speech in noise tests in children 3.0- to 4.9-year-olds. Similarly, 

a study in school-aged children by Nittrouer et al. (2013) reported that their speech-in-babble 

test scores improved with age and language experience. These findings indicate that older 
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children perform better in speech in noise tests than younger ones during early childhood, 

although it is difficult to separate the effects of age, attention and language skills.   

However, there is less evidence about how speech perception in children is related to 

RS EEG changes. Some studies indicate that resting-state EEG measures predict speech 

perception development at later stages. Other studies have found a positive correlation 

between greater high-frequency (HF) and low-frequency (LF) spectral power and better 

speech perception and language abilities. Gou et al. (2011) found that frontal resting gamma 

power (31-50 Hz) at 16, 24 and 36 months old significantly correlated with later performance 

in language tests at the ages of 4 and 5 years (non-word repetition, PLS-3 and CELF-P 

sentence structure scores). The authors proposed that higher RS frontal gamma power 

predicts later language development because it entails better attentional and working memory 

processing (Gou et al., 2011). Likewise, a longitudinal study by Cantiani et al. (2019) 

reported that increased left gamma power measured at the age of 6 months (n=84) correlated 

with better language outcomes at the age of 24 months For the alpha band (7-10 Hz), Kwok 

et al., (2019) found that alpha power inversely correlated with children’s (TLD, 4-6 years, 

n=41) performance in a battery of language tests (CELF-5), interpreting these findings as 

greater neural inhibition and less excitability related to attentional control.  

In older TLD children (n=52 children, ~10-year-old), a study by Lum et al. (2022) 

reported that RS theta power negatively correlated with sentence repetition. Similarly, a 

longitudinal study by Meng et al. (2021) reported that theta power decreased predicted 

expressive vocabulary at ages 9 and 11 years (n=53). In contrast, beta power increase from 7 

to 9 years predicted receptive vocabulary at age 11. These changes suggest that RS 

oscillatory patterns reflect typical brain development, although none of these studies have 

distinguished what specific networks generate each type of RS pattern (e.g. attentional or 

language). 
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Although it seems clear that spontaneous brain activity plays an essential role in 

speech perception and language development, there is strikingly little research about RS EEG 

patterns in children with DLD. In other neurodevelopmental disorders, research suggests that 

atypical RS oscillatory patterns may underlie cognitive and behavioural deficits (e.g., see 

Bosl et al., 2011 and S for a study in children with ASD, and dyslexia, respectively), for 

example, because of differences in cortical maturation or imbalances between neural 

excitatory and inhibitory control (Donoghue et al., 2020). Thus, it is reasonable to think that 

atypical RS patterns could occur in DLD. Nevertheless, some studies have already proposed 

that, as RS gamma oscillations may predict later language development, they could be used 

as a clinical index for screening infants at risk of language deficits (Cantiani et al., 2019). 

However, to our knowledge, Benasich et al. (2008) is the only study examining the 

relationship between the maturation of brain oscillations (gamma band) and the development 

of language abilities in infants at higher risk of DLD.  

Benasich et al. (2008) studied infants with a family history of DLD in a first-degree 

relative (FH+, n= 22) and age-matched controls (FH−, n= 41), testing them longitudinally at 

the ages of 16 (n=22), 24 (n=23), and 36 (n=18) months. They found that the FH+ group 

showed consistently lower gamma power over frontal regions than the FH- controls and that 

gamma power strongly correlated with language and cognitive skills at all ages. Specifically, 

children with higher gamma power showed better inhibitory control and more mature 

attention-shifting skills. Benasich et al. (2008) thus concluded that the emergence of high-

frequency neural synchrony might be critical for cognitive and linguistic development. 

However, it is unclear what happens at later ages in children, for example, during early 

childhood in children affected by DLD. 

Overall, previous research suggests that RS EEG power measures can provide 

valuable insights into the development of speech perception abilities and that children at risk 
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for language impairments may present alterations in this process (Benasich et al., 2008). 

However, there is a need for considerably more research and replication to corroborate or 

disprove these findings. 

 

4.1.2 Oscillatory hemispheric asymmetries and speech perception 

Plenty of evidence indicates that lateralisation in neural oscillations is involved in 

speech perception. The asymmetry (or significant lateralisation) of neural oscillations refers 

to the differences in the activity patterns of neural oscillations at different frequencies 

between the two cerebral hemispheres. This is a crucial feature of the brain's functional 

organisation, and it is especially relevant for speech perception. In adults, a large body of 

evidence indicates that both speech-evoked and resting state (endogenous) oscillations are 

asymmetrical (see Meyer, 2018 for a review). 

A predominant explanation of the role of oscillatory lateralisation in speech 

processing is the Asymmetric Sampling in Time (AST) Hypothesis (Poeppel, 2001; 2003). 

According to the AST theory, speech processing in non-primary auditory areas shows 

functional asymmetries between hemispheres. These biases are related to differences in the 

distribution of the centre frequency at which neuronal ensembles synchronise spontaneously 

(at rest). In the right hemisphere (RH), neural ensembles are more skewed towards 

synchronising at a theta rate (3–7 Hz), and in the left hemisphere (LH), they are skewed 

towards low-gamma (20–50 Hz) frequencies (Giraud et al., 2007). During speech perception, 

this RS asymmetry would "prime" the brain for sampling different features on each 

hemisphere. The LH would be primed for extracting information over shorter intervals (20–

50 ms), processing fast acoustic changes, such as the transitions between consonant and 

vowel sounds, whereas the RH would be primed for sampling speech over longer time 

windows (~150–300 ms), required for prosodic processing (Giraud et al., 2007; Giraud & 
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Poeppel, 2012). However, there is less clarity about the exact developmental trajectories of 

these RS oscillatory asymmetries.  

During language acquisition, an important landmark is the establishment of left-

lateralised neural activity to support speech processing. Studies have shown that infants as 

young as newborns exhibit left-lateralised neural responses to speech sounds (Peña et al., 

2003), suggesting that the basic neural mechanisms for speech perception are present early in 

life. A consistent leftward asymmetry for low gamma oscillations (20-55 Hz) seems to be in 

place at the age of 3 years along, but contrary to adults, young children show no rightward 

asymmetrical activity for the theta band (3-7 Hz), suggesting that the right auditory cortex 

oscillatory specialisation develops later than in the LH (Thompson et al., 2016). However, 

although it is established that RS oscillations and their lateralisation continue to develop 

throughout childhood and adolescence, clear age-related patterns have not been described for 

young children and children affected by DLD.  

In TLD children, leftward lateralisation of RS oscillations in the gamma range (20-50 

Hz) is present in early childhood and appears to be related to speech perception skills. One of 

the few studies in this field was conducted by Thompson et al., 2016 on 65 children between 

3 and 4.9 years old. The authors reported that RS gamma left lateralisation was more 

pronounced in children with better speech in noise test performance. This suggests that a 

greater asymmetry in RS HF activity facilitates speech sampling under challenging 

conditions, which is consistent with the AST theory.  

Previously, a popular theory of DLD indicated a crucial role of atypical brain 

lateralisation and lack of language leftward asymmetry as neural correlates of this disorder 

(see Mayes et al., 2015, for a review). However, most of the findings about language 

lateralisation in DLD come from haemodynamic studies (e.g., fMRI, as in de Guibert et al., 

2011), and have not been linked to neural oscillations. For example, it has not been 
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determined whether there is a lack of oscillatory priming on each hemisphere in DLD, as 

could be expected from the AST hypothesis. Moreover, many studies have used handedness 

as a behavioural proxy of language lateralisation, which may lack reliability, providing 

contradictory and inconsistent evidence about the role of atypical hemispheric dominance in 

DLD. An important a large-scale replication study (n=263 twins) by Wilson and Bishop 

(2018) using fMRI-fTCD found no evidence of greater prevalence of atypical laterality in 

DLD-affected participants; even more, an important percentage of their TLD participants 

showed no clear lateralisation, concluding that the lack of a functional asymmetry in the brain 

may not necessarily involve poor language development.  

To summarise, RS neural activity and lateralisation of oscillations are key aspects of 

the brain's functional organisation, and their maturation is likely to play an essential role in 

speech perception and language abilities in children. Understanding the factors that influence 

this process can provide insights into the mechanisms underlying language acquisition and 

lead to potential clinical uses of RS EEG, such as biomarkers or predictors of typical and 

atypical speech and language development. 

 

4.1.3 The current study 

 Despite the advantages of EEG in neurodevelopmental research, few studies have 

investigated RS oscillations in speech perception and language development. To this day, 

there is no evidence about how the RS patterns change with age or how they are related to the 

maturation of brain language networks. There is no clarity about the link between RS patterns 

and the maturation the ventral and dorsal language tracts, about role of oscillatory 

lateralisation in language development and whether RS measures are related to behavioural 

indices of speech perception, such as speech-in-noise or filtered speech tests. For example, 
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most of the evidence supporting the AST hypothesis comes from adult studies, but it has not 

been tested yet in young children with typical and atypical language skills. 

In contrast with research in other neurodevelopmental disorders such as dyslexia or 

autism, only one study links DLD and RS oscillations. However, it was conducted more than 

a decade ago and in infants, not in children, and who did not have a diagnosis of DLD but 

were at family risk of presenting it (Benasich et al., 2008). After a thorough literature search, 

we confirmed that, to this date, no study had explored the role of atypical RS oscillatory 

power or lateralisation in young children with DLD. So far, we do not know whether DLD-

affected children exhibit delayed, altered, or typical RS activity patterns and their role in 

DLD behavioural symptoms. Understanding these aspects is extremely important given the 

current need for objective clinical markers that could help to improve the identification of 

children at risk of DLD at early ages. 

Considering this knowledge gap, we conducted an RS EEG study to determine if 

some previous findings could be replicated in DLD children. Namely, we looked at an 

association between frontal gamma power and language skills (Gou et al., 2011) and between 

HF leftward asymmetry and speech in noise performance (Thompson et al., 2016) or 

language status (Benasich et al., 2008). However, as the amplitude of gamma oscillations is 

small because of the 1/f spectral power distribution and has low SNR, we were aware it was 

probably hard to study in young children. For this reason, we examined gamma oscillations 

and activity for the theta, alpha and beta bands.  

The first goal of this study was to characterise RS band power at lateralisation of 

oscillations at different frequencies in young children with TLD and DLD and to compare 

their responses to those observed in adults. A second goal was to compare the performance of 

both groups of children in speech perception tests and determine whether there was a 

relationship between behavioural and RS EEG measures. 
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Thus, this study addressed the following research questions: 

(i)  What are the patterns of RS power and lateralisation of oscillations at different 

bands for each group of participants?   

(ii) Are there any differences between the TLD, DLD and adult groups in RS average 

band power and lateralisation indices at different frequency bands?       

(iii)  In TLD/DLD children, is any of the EEG variables associated with performance 

in speech perception tests? 

  

Considering that the literature on RS oscillations in TLD at this age is scarce and almost 

inexistent for children with DLD, our hypotheses were exploratory and aimed to replicate 

previous findings even though they represented different populations or age groups.   

The primary hypothesis was that RS measures and developmental language status at the 

group level would be positively associated. Thus, we predicted that TLD children would 

exhibit (i) greater frontal resting gamma power and (ii) stronger HF asymmetry than children 

with DLD. Between adults and children, we expected (i) reduced gamma power because of 

brain maturational changes (e.g., Uhlhaas et al. 2009; 2010), and (ii) no differences in the 

strength of the asymmetry, as this should be already established by the age of our sample 

(Weiss-Croft & Baldeweg, 2015; Thompson et al., 2016).  

The secondary hypothesis was that speech perception skills would show differences 

based on children's language status (TLD/DLD) but also an association with EEG 

lateralisation measures, as reported by Thompson et al. (2016). Thus, we expected TLD 

children to perform significantly better than the DLD group in behavioural speech perception 

tests. These test scores would be associated with all children's RS gamma band power HF 

lateralisation indices. Finally, although we had no a priori hypothesis for the theta, alpha and 

beta bands, we expected the typical 1/f structure in all groups but with a smaller amplitude in 

adults, because of the age-related power decrease (Saby & Marshall, 2012). 
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4.2 Methods 

4.2.1 Participants 

All demographics and recruitment procedures were the same as those used in Chapter 

3, except by fewer adult participants in the current study (n=18, Mage= 33.7 years, SD=4.9, 

age range=24.8-44.9, 11 female). 

 

4.2.2 Speech perception measures 

Speech perception tests inform about the ability to extract meaningful speech cues 

from complex acoustic environments. For this study, we considered two low-redundancy 

monoaural subtests (ASHA, 1996); a speech in babble and a filtered speech test obtained 

from the "Santiago Auditory Processing Battery" (Fuente, 2006). Each subtest consists of 

fifty Spanish monosyllabic words divided into two lists of 20 stimuli (one list for each ear) 

plus two practice items delivered via headphones. All stimulus in this battery were balanced 

in their linguistic frequency and age of acquisition for Chilean Spanish (Appendices 4.1- 4.2) 

 The speech-in-babble subtest consists in recognising words embedded in multi-talker 

babble, both presented in the same ear at 40 dB SL with a non-adaptive, fixed SNR equal to 

0. This test simulates real-world listening scenarios and assesses an individual's ability to 

segregate target speech in the presence of competing talk. The filtered speech subtest consists 

of recognising low-pass-filtered monosyllables, in this case at 1500 Hz presented at 50 dB 

SL. These tests manipulate the acoustic characteristics of speech to assess the ability to 

process spoken stimuli with degraded spectral or temporal cues. 

For each speech perception subtest, children were asked to repeat what they heard 

(target word) vocally. Each correct answer scored 5%, with an age-expected values over 60% 
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in TLD children, according to Chilean preliminar studies (e.g. Balmaceda et al., 2008). The 

order of the subtests and starting ear were randomly determined to avoid the potential effects 

of the presentation order. Before the tests, children received a Chilean articulatory screening 

test (TAR, Barrios et al., 1987, see Appendix 4.3), to check their phonemic repertoire and 

avoid confounds when scoring the speech perception tests. 

 

4.2.3 Procedures 

Children sat still in a quiet room next to their parents or carers. RS EEG was recorded 

continuously for three minutes with eyes open (EO) according to previous studies, while 

children fixed their gaze in a black tablet (8.7 inch screen) placed in front of them 

(distance=100 cm) at eye level. All the other procedures were the same as those in Chapter 3.  

 

4.2.4 EEG preprocessing 

EEG analysis was performed with Matlab 2016-2022a, EEG Lab (Delorme & 

Makeig, 2004) and Fieldtrip (Oostenvald et al., 2011). The continuous EEG was 

downsampled to 500 Hz and referenced to electrode Cz; to improve the data quality, allowing 

us to retain more epochs than the average reference. A high-pass Butterworth IIR filter with a 

cut-off of 1 Hz was applied to reduce slow drifts and improve the ICA decomposition. The 

continuous EEG was visually inspected to remove bad channels and data portions 

contaminated with large artifacts. ICA was performed to eliminate activity from eye blinks, 

eye movements, and muscular artifacts, according to the criteria described in Chapter 2. The 

removed channels were interpolated, and data was re-referenced to the average. 
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The preprocessed EEG was segmented into fifty-seven 2-second epochs (1000 

samples) with 50% overlap, windowed with a Hanning taper to attenuate the edges and to 

avoid ridge artifacts. This epoch length was chosen to ensure that low-frequency activity 

would not be affected, as discussed by Thompson et al. (2017). For each epoch, the frequency 

spectrum was computed between 2-60 Hz in steps of 0.5 Hz, using a Fast Fourier Transform, 

resulting in 116 linearly spaced frequencies with a 0.5 Hz frequency resolution. 

To get a general impression of the data, we computed global power at each channel 

for all participants and averaged the spectral energy between 2-60 Hz for each group. To 

avoid distortions resulting from the filter cut-off and line noise artefacts, a global power 

analysis was restricted to the 2-45 Hz range (92 frequencies) and calculated across the 

following frontal and central channels: Fp1-2, AF3-4, F7-8, F3-4, FC1-2, FC5-6, and Fz. 

Then, power was binned into the theta (3-7 Hz), alpha (8-12 Hz), beta (13-25 Hz) and gamma 

(25-45 Hz) bands and averaged within each band (e.g., as in Giraud et al., 2007). 

The lateralisation of oscillations was calculated as in previous studies (e.g., Thompson 

et al., 2016), dividing the EEG channels into two sets: left (FP1, AF3, F3, F7, FC1, FC5, T7, 

C3, CP1, CP5, P3, P7, PO3, O1), and right (FP2, AF4, F4, F8, FC2, FC6, C4, T8, CP2, CP6, 

P4, P8, PO4, O2), excluding the midline electrodes. Spectral power was averaged within each 

electrode set between 2-45 Hz, and a “laterality index” (LI) was calculated at each frequency 

with the following formula: LI= Absolute Power (Right − Left)/Absolute Power (Right + 

Left). A number less than zero indicated a bias of oscillations towards the left hemisphere, 

and higher than zero towards the right hemisphere. For each participant, the laterality indices 

were averaged into a low-frequency bin (LF, 3–7 Hz) for the theta range and a high-

frequency bin (HF, 20–45 Hz), corresponding to high beta and low gamma oscillations. 
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4.2.5 Study design 

This study was observational and involved within and between-group analysis. The 

independent variable was language status, operationalized as the “Group” category, with 

three levels: TLD, DLD and Adults. The dependent variables were all continuous and 

included EEG measures of: (i) average band power (in µV²) at the theta, alpha, beta and 

gamma bands, (ii) oscillatory lateralization (positive, negative, or neutral indices), and (iii) 

the percentage of correct responses for the speech in noise and filtered speech tests. 

 

4.2.6 Statistical Analysis 

 Statistical analyses were performed with Matlab 2016-2022a and SPSS 22-29. We 

first checked the data distributions for all the dependent variables to determine whether each 

variable showed normality and linearity, so the appropriate statistical methods were applied 

to test our hypotheses. When the assumptions for linear methods were not met, non-

parametric tests were preferred over Bootstrapping or permutations methods, as the former 

perform better with small sample sizes.  

We conducted planned comparisons between the three groups for the different RS 

measures to test our primary hypothesis. We expected inherent differences between 

frequencies for the average band power because of the 1/f spectral structure. However, our 

focus of interest was determining between-group differences at each frequency range. Thus, 

between-group comparisons were conducted separately for each band or laterality measure 

using one-way analysis of variance ANOVA or Kruskar-Wallis tests if the normality or 

linearity assumptions were unmet (see Appendix 4.4). To avoid inflating the family-wise 

error because of running multiple tests, we used Bonferroni-corrected alpha even though it 

was not strictly necessary, as this study is exploratory. 
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To test the secondary hypothesis, we compared the performance for each speech 

perception test only between the groups of children, as these tests were not conducted in the 

adult group due to practical reasons (permission to use the adult APD test battery was not 

granted at the time of testing). Firstly, we examined the between-group differences in the test 

scores using independent samples t-tests or Mann-Whitney’s U if parametric assumptions 

were unmet. Secondly, we explored the association between speech perception and EEG 

measures (gamma power and HF asymmetry) using Pearson’s correlation or Spearman’s rank 

if parametric and linear assumptions were unmet. When corresponding, all alpha levels were 

Bonferroni-corrected for multiple comparisons. 

Importantly, it was not possible to control for age and non-verbal test scores because 

these screening variables (reported in Chapter 3) did not meet the required assumptions to be 

used as covariates. Their distribution was not normal in the children’s groups, and there was 

no linearity between the covariates and any of the DVs (see Appendix 4.4). Thus, age and 

non-verbal scores were not adequate covariates and would have invalidated the results of any 

analysis, including them as such (e.g., Analysis of Covariance, ANCOVA).  

Finally, effect sizes were measured with eta squared (η²) considering large effect ≥ 

0.14, medium effects ≥ 0.06, small effects ≥ 0.01 and Cohen’s d (large effect = 0.8; medium 

effect= 0.5; small effect= 0.2). The strength of associations was measured with Pearson’s (r) 

or Spearman’s rank (ρ) correlation coefficients, considering 0.01-.019=negligible, 0.20-

0.29=weak, 0.30-0.39=moderate, 0.40-0.69=strong and 0.70 ≥ very strong relationship 

between the variables (Field, 2013). 
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4.3 Results 

4.3.1 Behavioural Measures 

To determine behavioural differences in speech perception between the groups of 

children, we assessed their speech in babble and filtered speech perception skills. Table 4.1 

presents the descriptive statistics for speech perception tests in the TLD and DLD groups. 

 

Table 4.1 

Descriptive Statistics for Speech Perception Tests, in the TLD and DLD Groups  

 TLD DLD 

Test M SD M SD 

Speech in Babble 62.50 13.43 55.54 14.18 

Filtered speech 61.56 11.33 46.79 11.16 

Note. Missing values excluded. TLD n=8, DLD, n=11. 

 

Data was normally distributed in both groups for the speech in babble test (Appendix 

4.4).Thus we compared the groups using independent samples t-tests. The TLD group 

showed a higher percentage of correct responses (M=62.5, SD=13.43) than the DLD group 

(M=55.54, SD=14.18), but this difference was non-significant, t(20)=1.13, p=0.272, with a 

medium effect size (Cohen’s d=0.5). Figure 4.1 displays the mean values of each group. 

For the filtered speech test, Mann-Whitney’s U indicated that the median percent 

correct score was significantly higher in the TLD (Mdn=16.13) than in the DLD group 

(Mdn=8.86), U =19, z =-2.56, p = .01, using an exact sampling distribution for U (Dineen & 

Blakesley, 1973). Figure 4.2 displays the mean ranks for the groups of children.  



175 
 

Figure 4.1  

Box Plot for Mean Percent Correct Responses for the Speech in Babble Test in Children 

 

Note. Blue box: TLD (n=8), green box: DLD (n=11). Ns= non-significant at the 0.05 level. 

 

 

Figure 4.2  

Pyramid Plot for Mean Ranks, Filtered Speech Percent Correct Responses in Children 

 

Note. Blue bars: TLD (n=8), green bars: DLD (n=11). Differences are significant at α= 0.05. 
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4.3.2 Resting-state EEG Measures 

4.3.2.1 Spectral power analysis 

Global power  

As a data check, our first step was to compute the power spectra for each channel, 

averaged across participants for each group (Figure 4.3). In all groups, the spectrum for all 

electrodes shows the typical 1/f gradual decrease in power and the expected alpha peaks at 

approximately 10 Hz, as expected in a typical resting state EEG. In addition, one of the 

electrodes in the TLD group presents a peak at approximately 48 Hz, which is consistent with 

remaining electric line noise. 

 

Figure 4.3  

Global Power for all Channels on each Group, 2-60 Hz 

 

 Note. Left: TLD group (n=11); middle: DLD group (n=16); right: Adult group (n=18). 

 

To avoid the effects of the line noise peak at 50 Hz and the filter cut-off at 1 Hz, we 

reduced the range of frequencies for analysis to 2-45 Hz. Figure 4.4 presents the power scalp 

distribution for all groups, indicating a posterior positivity in children, and frontal-central 
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negativities in adults. The isolated centroparietal activation in the DLD group is likely to 

represent a remaining artifact.  

 

Figure 4.4 

Scalp Distribution of Spectral Power between 2-45 Hz, all Groups 

 

Note. Resting global power is displayed topographically for the TLD group (left, n=11) DLD 

group (middle, n=16) and adult group (right, n=18). 

 

 

Next, spectral power was averaged across all electrodes for each group (Figure 4.5). 

The magnitude seems smaller in the adult than the children’s groups, ranging from 0.3 to 1.3 

µV², whereas in the TLD (0-10 µV²), and the DLD group (0-10 µV²) the responses were 

similar, except in the alpha band. All groups show a peak in the alpha band (larger for the 

TLD group), followed by an energy decrease. In the TLD/DLD groups, the alpha peak 

appears slightly below 10 Hz, whereas in adults looks at 10 Hz.  
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Figure 4.5  

Global Power Spectrum Collapsed across all Electrodes 

 

Note. Global power spectrum (0-45 Hz) averaged across all electrodes for each group.  

 

Average band power 

The first analysis examined between–group differences in average power at each 

frequency band, calculated across electrodes Fp1-2, AF3-4, F7-8, F3-4, FC1-2, FC5-6, and 

Fz. Table 4.2 displays the descriptive statistics at all frequency bands for each group. 

 

Table 4.2 

Descriptive Statistics for Average Band Power (µV²) per Frequency Band 

            TLD DLD Adults 

 Hz M SD M SD M SD 

Theta  3-7 2.85 1.02 3.36 .88 .37 .17 

Alpha 8-12 1.73 .86 1.32 .57 .41 .44 

Beta 13-25 .32 .11 .32 .10 .11 .04 

Gamma 25-45 .11 .06 .09 .05 .04 .12 

Note. Adults=18, TLD n=11, DLD n=16. 
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Figure 4.6 illustrates the average band power for each group, evidencing two relevant 

features; (i) adults show smaller power than children at all frequencies, and (ii) the ratio 

between theta and alpha seems smaller in adults than in children. Next, we performed 

planned between-group comparisons for average power at each frequency band (see 

Appendix 4.4 for data normality and variance homogeneity tests). 

 

Figure 4.6 

Box Plots for Average Band Power at each Frequency for all Groups 

 

 Note. Adults (left, n=18), TLD (centre, n=11), and DLD (right, n=16) group. 
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Average theta band power and scalp distributions are displayed in Figure 4.7, showing 

a posterior scalp distribution and stronger activation in children than adults. One-way 

ANOVA indicated a significant effect of Group [F(2,44)=80.434, p<.001] with a large effect 

size η2 = .793. Multiple comparisons with Tamhane’s correction for unequal variances (see 

Appendix 4.4) indicated significantly lower theta power in adults (M= .37, SD= .17) than in 

the TLD (M= 2.85, SD= 1.02) and the DLD (M=3.36, SD= .88) groups, at the p<.001 level, 

but no significant differences between the TLD and DLD groups.  

 

Figure 4.7 

Boxplots and Scalp Maps for Average Theta Band Power (3-7 Hz), all Groups 

 

Note. Boxplots (top) and scalp distribution (bottom) for average theta power for the Adult 

(left, n=18), TLD (center, n=11), and DLD (right, n=16) groups. Colourbar scale for adults is 

smaller for visualization. (***) = significant at the p <.001 level. 
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Figure 4.8 illustrates mean values and scalp topography for average alpha power, showing 

broader central and occipital activation in children than in adults. Independent-samples 

Kruskal-Wallis test (Bonferroni-corrected alpha=. 017) indicated significant between-groups 

differences, H (2,45) = 23.59, p <.001. Pairwise comparisons indicated significantly smaller 

alpha power in adults (mean rank=11.50) than in the TLD (mean rank=33.00) and DLD 

(mean rank=29.0) group at p<.001, but no differences between the children groups. 

 

Figure 4.8 

Box Plots and Scalp Maps for Average Alpha Band Power (8-12 Hz), all Groups 

 

Note. Boxplots (top and scalp distribution (bottom) for average alpha power for the Adult 

(left, n=18), TLD (centre, n=11), and DLD (right, n=16) group. Colourbar scale for adults is 

smaller for visualization. (***) =significant at the p <.001 level. 
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Beta band average power and scalp distribution are presented in Figure 4.9, showing 

comparatively greater posterior activation in adults than children, although in a smaller power 

scale. One-way ANOVA indicates between-group differences F(2,44)=32.65, p<.001, with a 

large effect size η2 =.61. Multiple comparisons with Tamhane’s correction for unequal 

variances indicated significantly smaller beta power in adults (M= .11, SD= .044) than in the 

TLD (M=.32, SD=.11) and the DLD group (M= .32, SD=10) at the p<.001 level, but with no 

differences between the children’s groups. 

 

Figure 4.9 

Box Plots and Scalp Maps for Average Beta Band Power (13-25 Hz), all Groups 

 

Note. Boxplots (top) and scalp distribution (bottom) for average beta power for the Adult 

(left, n=18), TLD (centre, n=11), and DLD (right, n=16) group. Colourbar scale for adults is 

smaller for visualization. (***) is significant at the p <.001 level. 
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Figure 4.10 displays the mean values and topography of gamma-band power, suggesting 

frontal and posterior activation in adults and broadly distributed effects in children, with a 

right parietal focus of activation in the TLD group. Independent samples Kruskal-Wallis test 

indicates significant differences between the mean ranks for the adults (10.84), TLD (32.41) 

and DLD (30.09) group, H (2, 45) =25.57, p <.001. Pairwise comparisons indicated 

significantly smaller gamma power in adults than in the TLD and DLD group at the p<.001 

level, but again, with no differences between children groups. 

 

Figure 4.10 

Box Plots and Scalp Maps for Average Gamma Band Power (30-45 Hz), all Groups 

 

Note. Boxplots (top) and scalp distribution (bottom) for average gamma power for the Adult 

(left, n=18), TLD (centre, n=11), and DLD (right, n=16) group. Colourbar scale for adults is 

smaller for visualization. (***) is significant at the p <.001 level. 
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Band ratio analysis 

To account for the apparent differences between the frequency band’s power ratios 

between the groups, we compared theta/alpha and theta/beta power ratios using independent-

samples Kruskal-Wallis tests (see Appendix 4.4). As this is an exploratory analysis, no alpha 

correction was used. Figures 4.11 and 4.12 display the average rank of each group for 

theta/alpha and theta/beta power ratios, respectively. 

For the theta/alpha ratio, we detected significant differences between the mean ranks for 

the Adult (17.5), TLD (19.5) and DLD (31.63) groups, H (2, 45) =10.86, p =.004. Pairwise 

comparisons indicated a significantly smaller theta/alpha power ratio in adults (M=1.63, 

SD=.97) than in the DLD group (M=2.82, SD=.96), and in TLD (M=1.81, SD=.55) than in 

DLD children, with no differences between the adult and TLD group. These results indicate 

that those groups with better language skills presented significant smaller theta/alpha ratio. 

 

Figure 4.11 

Box Plots for Theta/Alpha Ratio Mean Ranks, all Groups 

 

Note. Boxplots for theta/alpha mean ranks for the Adult (left, n=18), TLD (centre, n=11), and 

DLD (right, n=16) group. (**) is significant at the p <.01 level. 
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For the theta/beta power ratio, there were significant between-groups differences in the 

mean ranks for adults (9.67), TLD (28.73) and DLD (34.06) children, H (2, 45) = 31.99, p < 

001. Pairwise comparisons indicated a significantly smaller theta/alpha power ratio in adults 

(M=1.63, SD=.97) than in both groups of children at the p<.001 level, but no differences 

between the TLD (M=2.82, SD=.96) and the DLD group (M=1.81, SD=.55). These results 

indicate that smaller theta/beta ratio was related to the participant’s age, but not to their 

language skills. 

 

Figure 4.12 

Box Plots for Theta/Beta Ratio Mean Ranks, all Groups 

 

 

Note. Boxplots for theta/beta mean ranks for the Adult (left, n=18), TLD (centre, n=11), and 

DLD (right, n=16) group. (***) is significant at the p <.001 level. 
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4.3.2.2 Hemispheric lateralization  

Average laterality indices per group  

         To determine any differences in the lateralisation of oscillations, we first computed the 

laterality indices at each frequency for all participants. Figure 4.13 illustrates the 

lateralisation indices at each frequency in each group. In the TLD group (plot a), oscillations 

are left-lateralised from approximately 10 to 28 Hz and over 32 Hz, with no lateralisation 

between 2 and 8 Hz. In the DLD group (plot b), oscillations are right-lateralised from 

approximately 12 Hz and higher, with no lateralisation between 2-12 Hz. In the Adult group 

(plot c), oscillations below 25 Hz are right-lateralised and left-lateralised over 25 Hz, but the 

magnitude of this lateralisation seems smaller than in the TLD group. This indicates that 

lateralisation patterns are similar between adults and TLD children but not DLD children. 

 

Asymmetry of oscillations 

Each participant's laterality indices were averaged into a low-frequency bin (LF, 3–7 

Hz) corresponding to the theta range and a high-frequency bin (HF, 20–45 Hz) corresponding 

to high beta and low gamma oscillations. Table 4.3 presents the descriptive statistics for 

laterality indices for each group. Mean values for LF and HF oscillations appear close to zero 

in all groups, meaning there is no lateralization. 

 

Table 4.3 

Descriptive Statistics for Laterality Indices  

            TLD DLD Adults 

 Hz M SD M SD M SD 

LF 3-7 .01 .07 -.02 .06 .03 .06 

HF 20-45 .001 .06 .013 .11 -.002 .09 

 

Note: TLD, n=11; DLD, n=16; Adults, n=18. 
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Figure 4.13 

HF and LF Lateralisation Indices for all Groups 

 

Note. (a) Adult group, (b) TLD group, (c) DLD group. 
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After confirming a normal distribution for LF and HF oscillations in both groups 

(Appendix 4.4), within-group analyses were conducted using one-sample t-tests (one-sided) 

to determine if LF and HF laterality indices differed significantly from zero A significant 

difference from zero would indicate a hemispheric asymmetry for a given frequency range. 

We also compared LF and HF lateralization indices within each group using paired sample t-

tests to determine any differences in the degree of lateralization between both ranges. For 

each analysis, alpha was adjusted to 0.17 to correct for multiple comparisons (0.05/3).  

Table 4.4 displays the results of the within-group analysis for each group. Results 

showed that neither the LF (3-7 Hz) nor the HF (20-45 Hz) laterality indices differed 

significantly from zero. Likewise, the differences in lateralization between LF and HF 

oscillations were non-significant for all groups. These findings indicate no asymmetry was 

detected in any group, with a small effect size in all the tests (below 0.5). 

 

Table 4.4 

Within-Subjects Analysis for Laterality/Asymmetry Measures 

Group Asymmetry  

measure 

t-test type 

(one sided) 

df t p Cohen’s d 

TLD LF vs zero One sample 10 .501 .314 .151 

HF vs zero One sample 10 .048 .481 .015 

LF vs HF Paired sample 10 .491 .317 .148 

DLD LF vs zero One sample 15 -1.17 .130 -.292 

HF vs zero One sample 15 .459 .326 .115 

LF vs HF Paired sample 15 -1.233 .118 -.308 

Adults LF vs zero One sample 17 1.84 .04 .43 

HF vs zero One sample 17 -.09 .46 .09 

LF vs HF Paired sample 17 1.15 .133 .11 

 

Note. LF: Low-frequency oscillations; HF: High-frequency oscillations. TLD, n=11; DLD, 

n=16; Adults n=18. Bonferroni- corrected alpha= 0.017. All tests non-significant (ns). 



189 
 

Next, we compared the lateralisation indices for LF (Figure 4.14) and HF oscillations 

(Figure 4.15) between the TLD, DLD and Adult groups. Separate one-way ANOVA with 

Bonferroni-corrected alpha (0.17) indicated no between-group differences for LF 

[F(2,44)=2.01, p=.147, η²=.087] or  HF [F(2,44)=.122, p=.885, η²=.006] with small effect 

sizes in both cases. 

 

Figure 4.14 

Box Plots s for LF Lateralisation Indices, all Groups  

 

Note. LF lateralisation mean values for the Adult (orange, n=18), TLD (blue, n=11), and 

DLD (green, n=16) group. Results are non-significant at alpha= 0.17. 
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Figure 4.15 

Box Plots for HF Lateralisation Indices, all Groups  

 

Note. HF lateralisation mean values for the Adult (orange, n=18), TLD (blue, n=11), and 

DLD (green, n=16) group. Results are non-significant at alpha= 0.17. 

 

 

 

4.3.3 EEG versus Behavioural Measures 

To test the secondary hypothesis, we examined if there was an association between 

children’s performance in speech perception tests and RS measures (gamma-band power and 

HF lateralization indices). As we had previously compared behavioural results between 

groups, this time we pooled all children together (n=22), addressing the possibility of 

equivalent cognitive mechanisms regardless of the children’s language status. Planned 

correlation analysis comprised gamma-band power and HF oscillatory lateralisation versus 

speech perception tests and was Bonferroni-corrected for multiple comparisons (corrected 

alpha= 0.05/4= .013). In addition, a complementary correlation analysis was conducted 
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between theta-band power ratio and speech perception measures, although without correcting 

for multiple comparisons, as this was an exploratory analysis. 

 

4.3.3.1 Gamma power versus speech tests 

For the speech in noise test, Spearman’s analysis indicated no significant correlation 

(r(20)= .145 p =.519) between the percentage of correct answers and average gamma-band 

power (Figure 4.16). Similarly, there was no significant correlation between the percentage of 

correct answers for the filtered speech test and the average gamma power at frontal-central 

electrodes (r = -.086, p = .703), as can be observed in the scatter plot in Figure 4.17. 

 

Figure 4.16 

A Scatter Plot Illustrating Speech in Babble Performance versus Gamma Band Power  

 

Note. Blue dots: TLD group (n=8), green dots: DLD group (n=16). Correlation is non-

significant at the .013 level. 
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Figure 4.17 

A Scatter Plot Illustrating Filtered Speech Performance versus Gamma Band Power  

 

Note. Blue dots: TLD group (n=8), green dots: DLD group (n=16). Correlation is non-

significant at the .013 level. 

 

4.3.3.2 Asymmetry vs Behavioural measures 

Finally, we assessed the relationship between the lateralisation of cortical oscillatory 

activity at high frequencies and speech perception performance via correlation analysis on the 

pool of all children (n=22). 

Pearson’s analysis showed no significant correlation (r= .039 p =.863) between the 

speech in babble test and the laterality indices for high frequency oscillations, illustrated in 

Figure 4.18. For the filtered speech test, Spearman’s test indicates no significant correlation (r 

(20) = -.119, p =.598) between the percentage of correct answers in the filtered speech test 
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and the laterality indices for high frequency oscillations. The relationship between both 

variables is displayed in Figure 4.19. 

 

Figure 4.18  

A Scatter Plot Illustrating Speech in Babble Performance versus HF Lateralisation Indices 

 

Note. Blue dots: TLD group (n=8), green dots: DLD group (n=16). Correlation is non-

significant at the .013 level. 
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Figure 4.19  

A Scatter Plot Illustrating Filtered Speech Performance versus HF Lateralisation Indices 

 

Note. Blue dots: TLD group (n=8), green dots: DLD group (n=16). Correlation is non-

significant at the .013 level. 

 

4.3.3.3 Theta/Alpha ratio versus Behavioural Measures 

To further explore the findings about theta/alpha ratio differences between all groups, 

we investigated the association between this EEG measure and the speech in babble (Figure 

4.20) and filtered speech (Figure 4.21) test results using Spearman’s correlation analysis. 

For the speech in babble test, results indicated no correlation with the theta/alpha 

power ratio values, (r(20)= -.00, p=.996, 95% CI [-.433 .432]). On the contrary, there was a 

significant, strong negative correlation between filtered speech test scores and theta/alpha 

ratio, (r (20) = -.49, p=.022, CI 95% [-.759 -.068]), indicating that detection of filtered speech 

is higher when the ratio between theta and alpha power is smaller. 
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Figure 4.20 

A Scatter Plot Illustrating Speech in Babble Performance versus Theta/Alpha Ratio 

 

Note. Blue: TLD group (n=8), green: DLD group (n=16). Non-significant at α= 0.05.                  

 

Figure 4.21  

A Scatter Plot Illustrating Filtered Speech Performance versus Theta/Alpha Ratio 

 

Note. Blue: TLD group (n=8), green: DLD group (n=16). (*) Significant at α= 0.05. 
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4.4 Discussion 

4.4.1 Summary of findings 

The aims of this study were twofold: (i) to examine differences in RS EEG measures 

in children with TLD, DLD, and adults, and (ii) to investigate children's performance in 

speech perception tests and their association with HF oscillations. As expected, we confirmed 

that adults showed significantly lower band average power than children for all the frequency 

ranges. However, the results do not support our primary hypothesis, as none of the average 

power or lateralisation measures differed between children with DLD and their TLD peers. 

Moreover, there was no evidence of significant LF or HF asymmetry, which does not support 

the idea of RS oscillation priming.  

Our secondary hypothesis was only partially supported, as children with TLD showed 

significantly better speech perception performance. However, this was only for one of the 

two tests, and, contrary to what we expected from the previous literature, there was no 

correlation between behavioural and high-frequency EEG measures (gamma power and HF 

lateralisation). As RS measures were similar in the TLD and DLD groups, the differences in 

band power between children and adults likely reflect brain maturation (age) and not an 

influence of language typical/atypical status.   

Finally, there were significant differences in the theta-alpha ratio between all our 

groups (adults<TLD<DLD) and an inverse correlation between the theta-alpha ratio and 

filtered speech scores in children, suggesting that these measures could be more sensitive to 

pick-up differences between the TLD and DLD group. However, such differences may not 

necessarily originate in between-group language differences but in other factors, for example, 

non-verbal skills. 
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Multiple previous studies have described the difference we detected between children 

and adults in spectral energy. We observed similar patterns in theta, alpha, beta and gamma 

bands as those described by Perone et al. (2018), Tierney et al. (2013), and Yordanova and 

Kolev (2008). However, we could not confirm the increase in gamma power reported by 

Takano and Ogawa (1998). In addition, a visual inspection of our data's global spectrum 

indicates that the alpha peak in children occurs at slightly lower frequencies (~8 Hz) than in 

adults (10 Hz), which aligns with previous studies such as Kwok et al. (2019). Thus, the 

patterns for RS global and average band power observed in our groups are consistent with the 

developmental trajectories described in the previous literature, showing an evident flattening 

of spectral power between early childhood and adulthood. 

However, our study could not replicate previous findings about positive associations 

between frontal resting gamma power and language development, as Benasich et al. (2008) 

and Gou et al. (2011) reported in infants aged 6 to 36 months. We expected higher frontal 

gamma power in the TLD group associated with their better language skills; however, this 

was refuted by the absence of power differences between our children groups and lack of 

correlation between EEG and speech perception measures. This result could be explained by 

the fact that participants in previous studies were younger than in ours and their age range 

was considerably broader. Thus, such differences may have disappeared by the age of our 

samples (early childhood). A feasible way to further examine this point would be to re-test 

our children's groups in the future and see whether the gamma power recorded in this study 

predicts their later language skills. Another possible explanation is that our study could not 

detect the effects of language skills on oscillatory lateralisation, for example, because of the 

high variability of linguistic profiles between children and small effect size. In the future, we 

could replicate this experiment in a more homogeneous sample of children with DLD. 
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A key aspect is that we found no evidence of significant hemispheric RS lateralisation 

(asymmetry) for the frequency ranges related to phonemic (HF) or syllabic processing (LF) in 

any group, meaning that our findings do not support the AST hypothesis. For the LF range, 

we replicated Thompson et al.'s (2016) findings of centrally distributed LF oscillations with 

similar mean group indices -0.002) and effect sizes. However, we did not observe the HF 

leftward bias reported in their study, which we would have expected, at least in the adult 

group, according to the AST hypothesis. A possible alternative explanation is that in our 

study, the effect sizes for lateralisation (less than d=0.5) are smaller than in Thompson's (d= 

1.14), which could have prevented us from detecting potential asymmetry in our groups. 

Indeed, visual inspection of the lateralisation plots in Figure 4.13 suggests language-related 

differences in the laterality indices between groups, although they were non-significant.  

Importantly, EEG methodological aspects must be considered when interpreting the 

laterality results. For example, to determine asymmetry, performing point-by-point t-tests or 

permutation tests instead of conventional t-tests could improve the sensitivity to detect 

clusters of significantly lateralised oscillations. Secondly, to avoid an electric line noise peak 

in the TLD group, we defined the HF range between 25-45 Hz, whereas Benasich et al. 

(2008), Gou et al. (2011) and Thompson et al. (2017) used 30-51 Hz. This shift in HF 

boundaries could have affected our results by introducing more high-beta and less high-

gamma band activity in our HF range. In addition, it is worth noting that lateralisation indices 

are a power-based measure; thus, if spectral power shows age-related reduction, it may not be 

appropriate to directly compare adult indices to children's ones without some scaling or 

normalisation procedure. 

An unexpected finding of this study was the significant difference in the theta/alpha 

and theta/beta power band ratios between groups. Theta/alpha band ratios were smaller in 

adults than children and in TLD than in DLD children. We also observed that theta/alpha 
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ratios were inversely correlated with filtered speech test scores in children. This supports 

previous findings by Kwok et al. (2019) of an inverse correlation between alpha power and 

language skills in children at similar ages. However, although the differences in theta/alpha 

ratio that were consistent with our group's language status, we should not consider them a 

confirmation of the RS-language skills relationship without controlling for the effect of non-

verbal abilities. This also applies to the differences we observed in theta/beta ratio, which was 

significantly smaller in adults than children but with no difference between the TLD and 

DLD groups. Although our results suggest that the theta/beta ratio is sensitive to age 

differences but not language status, it is essential to interpret these findings cautiously.  

That being said, band ratio results in this study indicate not only a developmental 

decrease in global power but also a relative decrease in theta band power and an increase in 

alpha and beta power. However, the functional significance of EEG band power ratios has not 

been fully established yet. On the one hand, there are studies considering them a reliable 

measure of cognitive performance or even as clinical biomarkers of cognitive dysfunction in 

different types of neuropsychiatric disorders such as dementia, Attention Deficit 

Hyperactivity Disorder (ADHD) and Parkinson's Disease  (e.g. Azami et al., 2023; Donoghue 

et al., 2020; Picken et al., 2019; Schmidt et al., 2013). On the other hand, some studies 

indicate that band ratio measures reflect periodic and aperiodic spectral activity, potentially 

conflating power measures and leading to incorrect interpretations (Donoghue et al., 2020).  

In RS EEG, greater alpha and beta power has been associated with increased arousal 

and top-down attentional control (Klimesch, 2012), which in our study could indicate greater 

alertness and wakefulness in adults than children. Although the functional interpretation of 

RS theta power is less clear, recent studies suggest that it reflects cognitive control processes 

and may increase during excessive monitoring, shifting or updating operations (Clements et 
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al., 2021). Another possible speculation is that age-related reduction in theta power could 

reflect brain maturational changes and also increases in network synchronization, resulting in 

more efficient local and long-range theta connectivity through more consistent phases rather 

than amplitude signalling.  

More recently, the beta/theta ratio has been proposed as a marker of cognitive 

processing capacity, which could be altered in individuals with cognitive disorders. For 

example, a study by Picken et al. (2019) in 41 adults with ADHD found an elevated 

theta/beta ratio in this clinical group. Similarly, a study by Tramell et al. (2017) showed that 

theta/alpha ratio was related to cognitive abilities modulated by age in both young (below 30 

years) and older (over 70 years) neurotypical adults (n=16 and n=20, respectively). However, 

the question about the origin of band ratio differences remains open and needs to be 

addressed in future studies to determine the functional significance and define their 

developmental trajectories. 

For our secondary hypothesis, we partially confirmed previous findings, as children 

with better language skills (TLD) outperformed those with DLD only for the Filtered Speech 

and not for the Speech-in-Babble test. In addition, we did not find any evidence of an 

association between speech perception performance and RS EEG measures, except for a 

negative correlation between theta/alpha ratio and filtered speech scores. This contradicts 

findings by Benasich et al. (2008), Gou et al. (2011) and Thompson et al. (2017), indicating 

that the vast majority of our RS measures of cortical activity do not reflect our participant's 

language status (adult-like, TLD or DLD), or the children's speech perception skills. 

Regarding the behavioural results, better performance in speech perception tests in 

children with TLD than DLD group is consistent with previous studies (e.g. Goswami et al., 

2015). However, we did not observe this difference for the speech in the noise test, although 

it has been previously reported (e.g. Ziegler et al., 2011). These results could not be explained 
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by differences between the group's hearing levels as they were equal. However, they may 

have to do with the difference in phonological processing skills between the TLD and DLD 

groups (see screening and PECFO results in Chapter 3) or more general cognitive skills, as 

arousal or attention levels. Importantly, these tests evaluate different aspects of speech 

processing; speech in babble assesses the ability to separate a target from the background, 

and filtered speech requires the brain to complete a degraded signal. Speech-processing skills 

could develop differently in children with TLD and DLD, explaining the difference in 

performance and the negative correlation with theta/alpha band power ratio. Future research 

could explore the association between speech perception skills and RS measures in young 

children with and without DLD. 

 

4.4.2 Strengths, limitations, and future research 

This study's main contribution is that it quantifies RS EEG activity during early 

childhood, characterizing the RS oscillatory patterns in young children with typical and 

atypical language development. So far, we are unaware of any research examining spectral 

power and lateralization measures in these groups and investigating their relationship with 

speech perception measures. Pursuing this line of research is especially important in language 

neurodevelopmental research, as by understanding and monitoring children's RS EEG 

activity, researchers and clinicians may be able to identify those who are at risk for 

neurodevelopmental disorders (e.g. DLD) and provide early intervention to support them. 

However, there are several limitations to the present study. As discussed in Chapter 3, 

the first limitation is the small sample size, which was further reduced as some children did 

not attend the third study session (behavioural tests). The final sample size of 8 subjects in 

the TLD group and 14 in the DLD groups limits the strengths of our findings, in particular 

those about behavioural tests. In the future, more studies must confirm these results in a 

larger, more representative sample of children. 
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A second limitation is that due to the particular characteristics of our data, we could 

not perform some statistical analysis that could have been more informative than the current 

ones. We were not able to use the participant's age and non-verbal scores as covariates 

because these variables did not meet the required assumptions (e.g. normality and linearity 

between the covariate and DV, for an ANCOVA) even after attempting to transform them 

(e.g. RMS, log or exponentially). Although linear mixed-effects models would have been a 

good option to deal with missing data in the speech perception tests, our data did not meet the 

required assumptions for these models, which could have invalidated their results (Heise et 

al., 2022). Importantly, this indicates that linear methods may not always be optimal for 

detecting developmental patterns in RS EEG data, as pointed out by Bosl et al. (2011). They 

investigated the non-linear complexity of the RS EEG signal using modified entropy at 

multiple scales (MMSE), a measure that has shown age-related increases. Using machine-

learning algorithms, they were able to classify infants at risk of ASD (n=46) and controls 

(n=33) at different ages with high accuracy based on this measure. Thus, future research 

could surpass this limitation by implementing non-parametric, non-linear analysis methods.  

 In terms of the EEG methods, a third limitation is that the band power and laterality 

measures used in this study are both based on the amplitude of the spectral energy, which, as 

discussed in Chapter 1, is affected by individual variation in EEG, neural noise, small 

samples, and small effect sizes, especially when using group averages. Thus, future research 

could investigate other RS EEG measures less reliant on spectral power. For example, 

functional connectivity analysis could inform about the degree of synchronization of neural 

populations at rest. Notably, there is growing research interest in the role of aperiodic 

(arrhythmic) electrophysiological activity, which is abundant in children's EEG measures and 

reflects excitatory and inhibitory balance in cortical networks (see Ostlund et al., 2020 

toolbox and tutorial). Including aperiodic measures in the parameterization of the neural 
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power spectra (e.g. aperiodic offsets and exponents) and functional connectivity measures 

could contribute to more accurate descriptions of cognitive and language development 

(Donoghue et al., 2020). 

Finally, another limitation is that the behavioural tests in this study may not have 

reflected children's speech perception performance in their daily life. As with many clinical 

measures, the APD battery tests consist only of isolated words, so it could be argued that they 

primarily reflect auditory than speech perception skills, as at the single word level, speech 

processing cannot be modulated by linguistic processing or language skills (e.g. as predictive 

processing or use of linguistic context). In addition, we cannot rule out that fatigue, boredom 

or inattention may have hindered children's performance in the speech perception tests, as 

usually happens when testing preschoolers. Future studies could use more ecological 

behavioural measures, such as the perception of sentences or continuous speech. 

 

4.4.3 Conclusions 

Together these findings confirm that EEG resting state activity is stronger in children 

than adults, but do not support the idea of differences in spectral power between the TLD and 

DLD group. This is consistent with our findings from Chapter 3, that top-down language 

effects emerge at some point in childhood although later than the age range we studied. 

Importantly, the lack of significant oscillatory asymmetry in all our groups, and correlation 

between speech perception measures and gamma oscillatory activity does not replicate 

previous findings and does not provide any evidence to support previous theories of atypical 

brain lateralisation in DLD, such as the AST hypothesis. An unexpected result, though was 

that the ratio between theta and alpha band power was significantly different between all 

groups and inversely correlated to filtered speech performance, suggesting that future studies 

could further explore the functional significance of this ratio. 
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Chapter 5. Neural tracking of continuous speech in young children with 

typical and atypical language development 

 

 

5.1 Introduction 

In daily life, speech perception is a complex task that frequently occurs in challenging 

listening conditions. Although young children can understand continuous speech fairly well, 

the mechanisms and neural circuits that support adult-like speech perception are still to be 

refined over time through neuromaturation, experience and language development. In adults, 

multiple studies have shown that cortical tracking of acoustic and linguistic speech features is 

a crucial brain mechanism for natural speech processing. However, the developmental 

trajectories of cortical speech tracking and its relationship with language acquisition remain 

unknown.  

Although plenty of studies have investigated speech perception development at the 

brain level, a persistent criticism is that highly controlled paradigms (e.g., ERPs) lack 

ecological validity, as they do not reflect the full complexity of speech perception in natural 

settings (Hamilton & Huth, 2020). Thus, there has been growing interest in investigating 

neural speech tracking in children, its relationship with language skills and its potential role 

in neurodevelopmental disorders, although no study has yet focused on DLD. 

This chapter investigates the perception of continuous speech in young children with 

TLD and DLD, focusing on characterising their patterns of neural tracking of acoustic and 

lexical speech features. This study aims to shed light on the neural processes involved in 

continuous speech perception and their relationship with language skills during early 

childhood. 
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5.1.1 Neural tracking of speech  

Cortical encoding of speech features 

One crucial aspect of speech processing is extracting relevant information from the 

continuous speech stream to be encoded as neural activity. Cortical tracking5 of speech refers 

to the brain's ability to align its neural activity with different features in the speech signal 

(Brodbeck & Simon, 2020), allowing the brain to compute the speech information at multiple 

timescales and levels of representation. In the last two decades, cortical speech tracking has 

emerged as an essential mechanism to explain how the brain encodes and processes 

continuous speech and has been actively investigated in adults. 

At the acoustic level, an important source of information for the brain is the temporal 

envelope of speech, which represents slow amplitude modulations of the speech signal over 

time. During speech perception, the temporal modulations convey important information 

about speech cues like phonemes (manner of articulation, voicing or vowel identity), 

syllables, and prosodic contours (Rosen, 1992). In adults, extensive research has shown that 

neural responses in the auditory cortex align with the amplitude envelope of continuous 

speech (Ding & Simon, 2014). When represented in the frequency domain, multiple studies 

report phase synchronisation between cortical responses (EEG) and the speech envelope at 

low frequencies (<10 Hz) but also in the gamma band (for a review, see Alexandrou et al., 

2018). This synchronisation is usually referred to in the literature as 'coherence', a measure of 

cross-correlation between spectral densities. However, neural tracking is not restricted to 

low-level acoustics (Gillis et al., 2021) but extends to higher-order linguistic representations 

(Kösem & Van Wassenhove, 2017). 

                                                           
5 This study will consider speech 'tracking' as time-synchronised and ‘'entrainment' as phase-synchronised 
activity (for a review, see Gillis et al., 2022).  
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Cortical tracking of abstract, linguistic features present in the continuous speech 

signal has been demonstrated in several experiments, for example, for phonemic categories, 

lexical information, syntax and meaning (see Gillis et al., 2022, for a review), reflecting an 

internal, hierarchical organisation in the brain. It also implies that neural coupling with 

speech features occurs beyond primary cortical areas (e.g., A1), suggesting that linguistic 

neural tracking could be used as an objective measure of higher-order speech comprehension. 

For example, a MEG study by Ding et al. (2016) in 47 adults demonstrated that cortical 

tracking of abstract linguistic structures (words, phrases, and sentences) could be dissociated 

from acoustic processing, reflecting internal language knowledge (Ding et al., 2016). 

Similarly, an EEG study in 29 adults by Gillis et al. (2021) demonstrated that information 

about word frequency and the amount of phoneme/word surprise in the speech input were 

tracked beyond the speech acoustic properties.   

Other studies focused on semantic processing have investigated how the brain tracks 

the amount of novelty in the speech input, for example, measuring a word's level of 

predictability according to their context. Several studies have reported that words with greater 

surprisal or dissimilarity elicit negative deflections like an ERP N400 response (Broderick et 

al., 2018). In addition, there is also evidence of neural tracking of the speech syntactic 

structure (Niesen et al., 2023). Overall, previous findings support the idea that speech 

tracking reflects a processing hierarchy (Heilbron et al., 2022).  

Importantly, multiple studies demonstrate that speech tracking is driven by input 

properties and strongly modulated by top-down mechanisms such as attention and prior 

language knowledge (Di Liberto et al., 2015; Reetzke et al., 2021). For example, there is 

robust evidence of an enhancement of neural tracking for attended than non-attended speech 

(Alexandrou et al., 2018), for speech in a native than in non-native languages (Pena & 

Melloni, 2012), and when the language content is known to the listener, for example by 
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semantic priming of previously unintelligible sentences (e,g, Baltzell et al., 2017),  

suggesting that bottom-up/top-down interactions consistently modulate speech tracking.   

Measures of speech cortical tracking  

Previous studies have used different measures of speech cortical tracking, making it 

possible to extract EEG components related to different speech features (Crosse & Lalor, 

2016). A straightforward method is to quantify direct cross-correlations between the speech 

envelope and the EEG responses at different time lags, like on ERP analysis (see Abrahams 

et al., 2009; Rios-Lopez et al., 2020). This type of analysis can be performed in the frequency 

domain, for example, converting both signals into spectral representations and determining 

the degree of coherence (phase synchrony) at a given oscillatory band. Despite this approach 

is computationally simple, it is suboptimal because it results in significant noise being 

introduced by the high correlation between speech and acoustic features (Crosse et al., 2016). 

More recently, linear modelling methods have sorted out this issue using regularised 

regression to predict the relationship between cortical responses and speech stimuli while 

controlling for correlated features. These methods estimate Temporal Response Functions 

(TRFs) that describe how the response variable (e.g., the neural component in the EEG) 

depends linearly on the explanatory variables over time at a given time lag (Crosse et al., 

2015). Univariate TRFs are used in encoding (or 'forward') models to independently predict a 

neural response from a presented speech stimulus at each EEG channel. In contrast, 

multivariate TRFs are used in decoding (or 'backward') models to reconstruct the speech 

stimuli using information from all the EEG channels. In both cases, the predictive accuracy 

between the actual and predicted data is assessed by the degree of correlation between 

signals, for example, using Pearson's r coefficient, with greater correlation values 

representing more robust neural tracking (Crosse et al., 2015; 2021). 
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Importantly, encoding and decoding models have different advantages and 

disadvantages and can complement each other to address different research questions. As 

Jessen et al. (2021) pointed out, encoding models are easy to interpret regarding neural 

activity because the TRF weights represent brain activation patterns calculated independently 

for each channel. However, they require a priori selection of the channels for analysis. On the 

contrary, decoding models combine the cortical responses at different EEG channels for 

reconstructing the speech stimulus, weighting them according to how much information they 

provide, which has two advantages: (i) it improves the signal-to-noise ratio by cancelling 

noise out, and (ii) it makes unnecessary to select the EEG channels beforehand. This makes 

backward models more sensitive than forward ones, thus more suitable for use in populations 

with noisy data, such as children or clinical groups. However, decoding models cannot be 

directly interpreted or related to scalp patterns because their weights represent the filters used 

to extract the information from the EEG and not necessarily each channel's activation (Gillis 

et al. (2022). To sort this issue, Haufe et al. (2014) proposed a method to forward-transform 

backward models, allowing their neurophysiological interpretation.  

Notably, forward and backward linear modelling are well-validated methods to 

investigate neural tracking of the speech envelope and different linguistic features, either as 

continuous or categorical inputs (Broderick & Simon, 2020). For example, Sassenhagen 

(2019) describes how to model EEG responses to linguistic features in continuous speech 

(e.g., phonemes, word type, or lexical frequency) by coding them into a multivariate design 

matrix and using them as regressors for the EEG. Other authors recommend backward 

models for continuous speech features (e.g., amplitude envelope or spectrogram) and forward 

models for discrete ones (e.g., phonemic or lexical information) because decoding these 

features may require non-linear data transformations (Crosse et al., 2021; Gillis et al., 2022). 

Then, it is possible to compare the reconstruction accuracy values for different speech 
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features to determine how well each type of linguistic information uniquely reflects in the 

EEG (Di Liberto et al., 2015). 

Moreover, speech acoustic and linguistic features can be combined in mTRFs models 

to represent the EEG content more accurately, considering that EEG signal results from 

overlapping neural responses to different speech features that occur at different latencies. For 

example, Di Liberto et al. (2015) demonstrated that mTRF models perform better when 

including the speech acoustic envelope and linguistic information (phonetic features) are 

combined in the same encoding model. 

 

5.1.2 Functional Implications of Speech Tracking 

So far, there is agreement about the key role of speech cortical tracking for spoken 

language comprehension. However, previous studies have yielded mixed results about the 

functional role of neural tracking. Nevertheless, although there is no evidence of a 1:1 

correspondence between cortical tracking and speech comprehension, some brain-speech 

associations have been established, mainly for envelope entrainment. 

Firstly, from the perspective of the speaker's physical features, cortical tracking of the 

envelope is critical for speech intelligibility. Previous studies indicate that manipulations of 

the speech envelope severely affect phoneme and sentence recognition, and, on the contrary, 

some findings suggest that when the envelope is preserved, frequency degradations do not 

deteriorate too much the speech intelligibility (Kubanek et al., 2013). This could be explained 

because the speech envelope contains energy changes important for speech intelligibility, for 

example, informing about phonemic and syllabic transitions. However, it does not imply that 

envelope tracking is sufficient for successful speech comprehension. Indeed, there is 

evidence that the spectro-temporal fine structure is also necessary for speech comprehension 

(Ding & S, 2014). 
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Secondly, a substantial amount of research indicates a relationship between speech 

perception performance and envelope neural tracking, although the interpretation of this link 

is not straightforward. Some evidence indicates that individuals who show stronger envelope 

tracking (e.g., a greater correlation between the EEG and speech signals) perform better in 

speech perception tasks, especially under challenging listening conditions (Ding & Simon, 

2014). On the other hand, older and hearing-impaired people exhibit enhanced envelope 

tracking, despite speech perception deficits common in these populations, meaning that an 

over-represented envelope may accompany poor speech comprehension (Brodbeck & Simon, 

2020; Palana et al., 2022). These mixed results make it hard to determine if more robust 

entrainment facilitates speech comprehension or whether it indexes greater listening effort or 

attention (Song & Iverson, 2018). 

 Finally, the degree of cortical entrainment is determined by the task demands and 

experimental contrasts being studied. As summarised by Alexandrou's review (2018), 

research in this field has used a variety of paradigms to study speech neural tracking, with 

evidence of greater envelope tracking for intelligible than for unintelligible sentences, 

normal-rate than time-compressed speech, for attended than unattended speech or when 

perceiving clear speech versus speech in noise. Other studies indicate that envelope tracking 

is robust to background noise, at least until the noise doubles the signal (Ding & Simon, 

2013). This indicates that the degree of neural tracking depends on the listening conditions, 

for example, if they involve active or passively listening or simultaneous tasks. Nevertheless, 

it is possible that semantic processing still happens under unattended listening to speech 

(Brodbeck et al., 2018). 

In sum, although there is agreement about the importance of speech neural tracking 

for speech comprehension, there is less clarity about its functional significance; so far, it 

seems to be related to the stimulus intelligibility but also to attention and listening effort, 
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individual and task characteristics, most likely involving a mixture of acoustic, cognitive, and 

linguistic factors.    

 

5.1.3 Age-related differences in cortical speech tracking  

Across developmental stages, there are age-related changes in how auditory and 

language information is weighted in the brain for speech processing, resulting from the 

neuromaturation of cognitive and language networks and the accumulation of language 

knowledge. From infancy to adolescence, perceptual reliance on acoustic cues decreases, 

whereas linguistic knowledge increases as children become more proficient language users 

(Skeide & Frederici, 2016). This means that sensitivity to acoustic and linguistic information 

is different between infants, children, and adults. Consequently, it will likely involve 

developmental changes in cortical tracking of speech features at different language 

acquisition stages.  

Importantly, it has been established that acoustically driven entrainment is already 

present at early stages, although its strength seems to change across age groups and frequency 

bands. For example, early findings showed that theta synchronisation between the EEG and 

slow/fast amplitude modulations in non-speech stimuli was present in newborns (Telkemeyer 

et al., 2009). For speech, studies using encoding models indicate robust low-frequency (1-8 

Hz) envelope tracking is present in 7-months infants (Jessen et al., 2019; Kalashnikova et al., 

2018). A longitudinal study in young children by Rios-Lopez et al. (2020) demonstrated that 

envelope tracking was present at four years old but only for the delta range. Notably, they 

reported age-related increases in delta entrainment between the ages of 4-5 (n= 32), 5-6 (n= 

34), and 6-7 years (n= 33). These initial results suggest developmental changes in how the 

information in the speech envelope is represented in the EEG at different frequency bands. 

However, some studies used direct cross-correlation and not regularised regression measures.  
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As in adults, envelope tracking in children is modulated by top-down factors, 

especially in adverse listening conditions. A MEG study by Vander Ghinst et al. (2019) 

compared cortical responses in children (6- to 9-year-old) and adults when perceiving 

attended speech in different levels of multi-talker noise (noiseless, and SNRs= 5, 0, and 5 

dB). They found significant cross-coherence between the EEG and attended speech stimuli in 

the delta (<1–4 Hz) and theta range (4–8 Hz) in all SNR conditions in adults, but for children, 

values were adult-like only below 4 Hz. Importantly, disruption of neural tracking in the theta 

band for increasing noise was more significant in children than adults, suggesting that cortical 

tracking at the syllabic rate is not mature during late childhood and may be related to 

children's poorer speech in noise performance. 

One aspect in which neural envelope tracking seems functionally relevant is acoustic-

phonological mapping. According to Leong & Goswami (2014, 2015), there is a relationship 

between phonological development and sensitivity to changes in speech spectro-temporal 

patterns. Envelope tracking would allow the representation in the brain of phonological units 

as phonemes, syllables, and stress patterns, supporting the acquisition of phonology in young 

children. This is confirmed by a recent MEG study by Bertels et al. (2023) that demonstrated 

maturational changes in cortical tracking of phrases and syllables presented with different 

background noise levels (n=144, ages 5 to 27 years). Their results indicate that whereas 

tracking of slower linguistic elements (e.g., prosodic cues) is in place since infancy, access to 

fine-grained information at the syllable level matures later, with marked improvements 

around the age of 9 years old that are associated with better speech comprehension 

performance, especially in noisy conditions. 

 In addition, age-related improvements in higher-order linguistic tracking may support 

the development of other speech comprehension skills, such as word recognition or syntactic 

processing. Niesen et al., 2023, studied cortical tracking of syntactic structures using 



213 
 

sentences with removed prosodic cues and found similar left-dominant patterns in adults 

(n=20) and children (n=20, 7–9 years), although children showed less tracking accuracy. 

When multi-talker background noise was added to the sentences, children and adults showed 

reduced tracking of the syntactic structure. However, only adults showed increased neural 

tracking for monosyllabic words, suggesting that syntactic tracking was absent in children.  

Together, these findings suggest that cortical tracking shows differences for acoustic 

and linguistic speech components and age-related changes, although the patterns have not 

been described yet. So far, it seems that acoustic tracking is present at birth and develops 

during childhood, especially for the syllabic rate (theta band). However, there is little 

research about lexical tracking in children, indicating a need of more studies to determine the 

role of speech tracking in language acquisition.   

Language disorders and atypical speech tracking 

Considering the evidence of a critical role of cortical entrainment in speech, clinical 

populations affected by speech processing deficits could exhibit atypical neural speech 

tracking. This makes it especially important to characterise cortical responses during 

continuous speech processing to determine whether different patterns can be identified 

between typical and atypical populations. As many studies have pointed out (e.g., Gillis et al., 

2022; Molinaro et al., 2016) neural tracking analysis have enormous potential as clinical tools 

for diagnosis and treatment. 

For example, a recent systematic review by Palana et al. (2022) examined cortical 

entrainment in speech processing deficits, confirming that older people and individuals with 

hearing impairments exhibit a cortical overrepresentation of the speech envelope. However, 

recent evidence shows that both acoustic and linguistic speech tracking declines in older 

adults (Gillis et al., 2023). In adults and adolescents with autism spectrum disorder (ASD), 
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there is evidence of reduced left-lateralised tracking of envelope modulations and atypical 

theta-gamma interactions, which predicted the severity of language deficits. Moreover, 

although this confirms that speech perception deficits are associated with cortical tracking 

abnormalities, there is little evidence in children with and without neurodevelopmental 

disorders. This is exemplified in Palana's (2022) review, which shows that very few studies 

have investigated speech tracking in children; by July 2020, only 5 of the 25 papers they 

reviewed included underage participants, and only one of them (Di Liberto et al., 2018) 

included children younger than seven years.  

Nevertheless, some evidence indicates reduced or atypical envelope tracking in older 

children and adolescents with speech processing disorders. Di Liberto et al. (2018) showed 

significantly smaller envelope tracking in the delta-theta range in children with dyslexia 

(n=10, age 9-13 years) than TLD controls (n=10, age 9-13 years) and adults (n=10, 25-40 

years). The strength of neural tracking also correlated with phonological and reading skills in 

all the groups. Despite the small sample size study, their results are consistent with previous 

findings showing atypical patterns of entrainment between hemispheres in older poor readers 

(Abrams et al., 2009) and reduced speech envelope tracking in low frequencies in dyslexic 

children (Leong & Goswami, 2014, 2015; Power et al., 2016). Recently, Goswami (2022) has 

proposed that impaired neural alignment with the speech envelope in DLD could be linked to 

phonological processing deficits in this disorder (Temporal Sampling hypothesis, see chapter 

1), although this has not been experimentally tested.  

To summarise, previous evidence shows that cortical speech tracking is necessary to 

efficiently map sensory information into higher-level linguistic representations at multiple 

levels (Jochaut et al., 2015). However, there is a great need for replication and further 

research to determine the developmental trajectories and role of speech tracking in DLD and 

other neurodevelopmental disorders. Importantly, many previous studies do not provide 
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average and dispersion values for their measures, making it difficult to establish a trajectory 

for neural tracking development in typical and atypically developing children and compare 

findings between studies. 

 

5.1.4 The current study 

This study investigates the patterns of speech cortical tracking in natural listening 

conditions during early childhood to deepen our understanding of speech perception 

development and its relationship to typical and atypical language acquisition. We aimed to 

investigate cortical responses to continuous speech in two groups of Spanish-speaking 

children between 4.7 and 5.7 years old; a group with DLD diagnosis (n=17), and a TLD 

group (n=12), comparing their responses to those observed in neurotypical adults (n=17).  

EEG responses were recorded during unattended listening of 18 short stories (average 

data per participant= 12.5 minutes) to estimate individual Multivariate Temporal Response 

Functions (mTRFs) using backward linear modelling. This allowed us to predict the speech 

acoustic and lexical frequency envelopes from the EEG and compare these models at the 

group level (Crosse et al., 2016) to determine how acoustic and linguistic features in the 

speech signal are represented in children's cortical responses.  

Thus, in this experiment, we were interested in characterising the mTRFs decoding 

patterns for speech low-level acoustic features and higher-order lexical information as a 

neural component in the EEG signal reflecting speech cortical tracking.  

Specifically, in this study, we asked:  

(i)                 Are there any differences in neural tracking of speech between children and 

adults? And if so, for what speech components? 
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(ii)               Do children with DLD show differences from TLD children in the patterns of 

speech neural tracking? If so, in what speech features? 

 

Since, to our knowledge, this was the first study investigating neural tracking of 

speech in children with DLD, our hypotheses were exploratory and based on previous 

findings for other age groups and clinical populations (e.g., ASD or dyslexia). Firstly, 

considering that neural speech tracking is present at early ages and increases from childhood 

to adulthood, we hypothesised that both children's and adults' mTRFs would show a 

significant correlation with the speech stimuli but expected a greater cortical synchronisation 

(stronger responses) in adults, indicating more efficient speech representation.  

Secondly, as speech tracking is modulated by language abilities (i.e., word 

knowledge), we expected more efficient tracking in those participants with better language 

skills, this is, in adults than children and TLD than DLD children because of greater top-

down language modulations, even under unattended conditions because of more automatic 

acoustic and lexical speech processing. Finally, we hypothesised the effects of language 

differences to be larger for lexical than acoustic tracking measures, varying according to the 

linguistic properties of each word (lexical frequency) rather than due to acoustic processing.  

By utilising advanced EEG modelling methods in ecologically valid conditions, we 

sought to shed light on the neural mechanisms underlying speech processing in natural 

settings during early childhood and their relationship to language skills. They might have 

important clinical implications for developing new diagnostic tools and interventions for 

speech perception deficits or language disorders in young children. 
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5.2 Methods 

5.2.1 Participants 

All recruitment procedures were the same as those described in Chapter 3. The total 

number of participants for this experiment was 46, including 12 children with TLD (Mage= 

5.05, SD=0.48), 17 children with DLD (Mage=5.13, SD=0.35), and 17 adults (Mage=33.4, 

SD=4.3). As expected, the age of the adults was significantly higher than that of the children 

[F(2,45)=617.247, p<.001, ηp²=.966], but with no differences between the TLD/DLD groups. 

 

5.2.2 Stimuli  

The stimuli consisted of 18 short stories in Spanish, extracted from ‘Cuentos 

programa Chile Crece’, a website of the Chilean government with resources for 2-4 year-olds 

(http://www.crececontigo.gob.cl/actividades-para-compartir/cuentos/4/?filtroetapa=ninos-y-

ninas-de-2-a-4-anos) (Appendix 5.1). The stories were narrated by a native Chilean Spanish 

female speaker and recorded in an anechoic chamber at 44.1 kHz into separate audio files 

(.wav). A 50 ms ramp-on/off segment was added at the beginning and end of each track, 

respectively, using Praat software (Boersma & Weenink, 2018). The stimulus duration ranged 

from 46.99 to 56.22 sec (M = 50.94; SD = 2.66). Next, we extracted the acoustic and lexical 

information in the speech signals. 

Acoustic envelope 

The broadband amplitude envelope was extracted for each audio file by applying a 

Hilbert transform and then high and low-pass-filtered at 2 Hz and 38 Hz, respectively, with a 

zero-phase Butterworth filter to keep the frequencies of interest for the EEG. Then, the 

envelope was normalised, dividing it by the root-mean-squared of its amplitude and 

downsampled to 64 Hz to speed up computations.  

http://www.crececontigo.gob.cl/actividades-para-compartir/cuentos/4/?filtroetapa=ninos-y-ninas-de-2-a-4-anos
http://www.crececontigo.gob.cl/actividades-para-compartir/cuentos/4/?filtroetapa=ninos-y-ninas-de-2-a-4-anos
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Lexical features 

To study the neural processing of the lexical information in the speech stimuli, we 

extracted the parameters for each word in all the stories according to their lexical frequency, 

onset and offset times, duration, and word class (function or content word). Function words 

occur with high frequency in a given language but produce little lexical activity in the brain. 

In contrast, content words are less frequent but produce higher brain activation, which is 

dependent on their contextual predictability (the less predictable, the higher activity). 

For each story, the corresponding audio file and text transcript were aligned using 

WebMAUS, an online forced alignment tool (Kisler et al., 2017) that allows words to be 

segmented and annotated into separate layers (phonemes, syllables, words). Audio-text 

alignment was manually corrected using Praat, and the resulting vectors with the onset/offset 

times for each word were extracted to an Excel spreadsheet. The duration of each word was 

calculated as word Offset – word Onset, in seconds. Figure 5.1 exemplifies the audio/text 

alignment and different levels of representation of an 8-sec speech segment. 

The lexical database for this study comprised 801 unique words extracted from all 18 

stories. Each word was classified according to its grammatical class into function or content 

(lexical) words6, consistent with the ERP analysis in Chapter 3. The linguistic information for 

determining the word classes was extracted from the database by Sadowsky et al. (2012, 

https://sadowsky.cl/lifcach.html). In addition, word frequency values, normalised per million 

words (pmw), were assigned to each word according to the latest update of the  Reference 

Corpus of the Current Spanish (CREA) https://corpus.rae.es/lfrecuencias.html). 

 

                                                           
6 Function words are those with structural (grammatical) use, including conjunctions (C), determiners (D), 
interjections (I), pronouns (PN) and prepositions (PP). Content words are those that convey meaning, including 
adjectives (AJ), adverbs (AV), nouns (N) and verbs (V). 

https://corpus.rae.es/lfrecuencias.html
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Figure 5.1  

Extraction of Different Speech Features for an Example Waveform 

 

Note. First eight seconds of story 2.  First row: Audio waveform at 44.1 kHz; Second row: 

Spectrogram; Third row; Word segmentation; Fourth row; ortographic output from 

WebMaus; Fifth row: Phonemic segmentation. 

 

 

 

The final database consisted of a matrix of the following dimensions: 801 unique 

words x 7 speech features; amplitude envelope, word onset, word offset, content word, 

function word, word duration, and word frequency. All the words on each story were 

assigned their corresponding values from the database and converted into vectors at the same 

sampling rate as the EEG data (64 Hz) for later alignment, coded as follows for each sample: 

word onset (1=true 0=false), word offset (1=true 0=false), word type=function words (1=true 

0=false, categorical), word type=content words (1=true 0=false, categorical), word duration 
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(numeric, in ms), and oral word frequency, normalised per million words (numeric, 

continuous).  

It is worth noting that, although we built a database with several lexical features, for 

this thesis, we focused on modelling lexical mTRFs using a numerical proxy of word class, 

leaving the other features as a database for future analysis. This is because these lexical 

representations are mutually redundant and highly correlated (Crosse et al., 2021). Thus, we 

decided to choose the one that has been more robustly described in previous studies. Initially, 

we attempted to use word predictability, as has been done in previous studies (e.g., Brocked 

& Simon, 2020), calculating a predictability index for each word according to its previous 

context using ChatGPT-3. However, this proved unsuccessful because even though 

ChatGPT-3 performed adequately for stories written in English, it did poorly for Spanish.  

Thus, we decided to use the oral word frequency (lexical frequency) as a measure of 

lexical content because it is correlated to word class; function words (closed class) exhibit 

high lexical frequency, whereas content words (open class) are less frequent. For these 

purposes, we converted each word’s normalised value (pmw) to a log 10 scale and multiplied 

it by 1000 before mTRF modelling (Crosse et al., 2021). Figure 5.2 displays the distribution 

of lexical frequency values after logarithmic scaling.  

Considering that the acoustic onset does not necessarily coincide with the most 

prominent part of the word and previous work in our lab showed better correlations when 

using the whole word duration rather than just the response to the onsets, lexical frequency 

values were extended over each word’s duration to create the lexical envelope (Figure 5.3). 

This allowed us to reconstruct a continuous representation from the originally sparse lexical 

vectors that contained mostly zeros and few numerical values, overcoming an important 

challenge of backward models (Gillis et al., 2021). 
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Figure 5.2   

Histogram for Word Lexical Frequency Values  

 

Note. Distribution of lexical frequency values (log scale) for the whole set of unique words in 

the speech stimuli. 

 

Figure 5.3   

Example of the Log-Transformed Lexical Frequency Envelope  

 

Note. Example of the envelope created from the log-transformed lexical frequency values for 

the stories listened to by participant AdCH01. The vector of lexical frequency values after the 

log transformation is plotted in a 0-1000 sample segment. 
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5.2.3 Procedures 

All stimuli were presented free-field at 70 dB SPL while the participants watched a 

silent cartoon. No response was required. During the experiment, a trigger pulse was 

delivered to each EEG file indicating the start of each story to align the audio tracks with the 

EEG data. All other procedures were the same as those described in Chapter 3. 

 

5.2.4 EEG preprocessing 

EEG data were analysed in  MATLAB (versions  R2018a-2023;  MathWorks,  

Natick,  MA), using EEGLab (Delorme  &  Makeig,  2004), the mTRF toolbox (Crosse et al., 

2016), and custom made scripts, following the recommendations  of Crosse et al. (2021). 

EEG data were downsampled to 512 Hz and referenced to the average mastoids for 

the adult and to electrode Cz for the children groups. Continuous data were high-passed 

filtered at 1 Hz and then low-passed filtered at 40 Hz with a non-causal zero-phase 

Butterworth filter. Channel rejection and ICA were performed according to the criteria 

described in Chapter 2. Then, removed channels were spherically interpolated, and data were 

re-referenced to the average.  

An important aspect when fitting mTRF models is to avoid significant differences in 

the amount and quality of data between participants (Crosse et al., 2021; Jessen et al., 2021), 

ideally defining a priori a minimum of artifact-free data per participant. In our study, the 

minimum amount of clean data for a single participant was 5.12 minutes (312 seconds), and 

the maximum was 15.27 minutes for participants who listened to the complete set of 18 

stories (see Appendix 5.2), as seen in Table 5.1. Thus, our study's lowest amount of 

individual data is well above the minimum of 100 seconds used in previous studies for 

acoustic TRF modelling (e.g., Jessen et al., 2019; Kalashnikova et al., 2018). However, the 
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amount of data was significantly larger for the adult group [F (2, 45) =25.45, p<.001, np2=, 

542], although it did not differ between the groups of children, indicating data amount could 

be an essential factor to control in the statistical analysis, although it should not be used as a 

covariate if a non-linear relationship with the EEG measures is present.  

 

Table 5.1 

Average amount of Clean EEG Data per Group  

Recording time (min) TLD DLD Adults 

Mean 11.53 10.9 14.92 

SD 1.88 2.25 .81 

Range (min-max) 8.55-15.27 5.12-15.27 12.73-15.27 

Note. TLD, n=12; DLD, n=17; Adults, n=17. 

 

After data cleaning, each EEG dataset was cut around the trigger pulse to produce 

separate files for each story of the same as the audio files (duration from 46.99 to 56.22 

seconds). EEG data were visually inspected after the initial cleaning, and those that presented 

significant remaining noise were rejected from the analysis. Then, for each story, we aligned 

the starting points for EEG and the stimulus matrices according to their trigger pulses, 

creating a structure containing the EEG data (columns 1:32) matched with the speech features 

of interest (columns 33:39) coded as continuous or categorical variables.  

EEG data was further down-sampled to 64 Hz, and files for each participant were 

concatenated after removing the initial second of each story and EEG data to avoid modelling 

the auditory response to the stimulus onset (Crosse et al., 2021). EEG datasets were filtered 

as the acoustic envelope (2-32 Hz) and between 1-32 Hz for lexical analysis to avoid 
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preprocessing filtering artifacts around the 1 and 40 Hz edges. Before modelling, individual 

EEG was normalized using z-scores (Crosse et al., 2021). Finally, the matrices with the 

stimulus features and the EEG responses were organized with rows corresponding to 

observations and columns to variables and served as input for the decoder, aligning their 

starting points to the triggers. 

 

5.2.5 Multivariate TRF analysis  

Individual decoding (backward) models were estimated and averaged at the group 

level to describe the mapping between speech features and neural responses. Multivariate 

Temporal Response Functions (mTRFs) were used to reconstruct the speech signal from the 

EEG using the mTRF Toolbox (Crosse et al., 2015). The correlation between the original 

speech stimuli and the model prediction was used to measure cortical tracking for a given 

speech feature (greater correlation = greater neural response). Individual models were chosen 

as their performance is better than generic (subject-independent) ones, especially when the 

groups show high within and between participant variability, as if frequent in children or 

clinical populations (Jessen et al., 2021). Decoding models were preferred over encoding 

ones because they are more sensitive than encoding ones, as they include data from all the 

EEG channels in a multivariate manner, addressing at the same time their correlation (Crosse 

et al., 2016). The suitability of individual over generic and decoding over encoding was 

confirmed empirically by preliminary data analysis.   

To improve the model fit, we used ridge regression for modelling (Crosse et al., 

2016), a type of regularised regression that applies a penalty term (λ) to estimate reliable 

coefficients and avoid overfitting7 when using regressors that may be highly correlated, such 

                                                           
7 Overfitting occurs when the TRF model reflects the particularities of the training dataset (noise, outliers) and 
does not generalise well to new, unseen data, resulting in poor prediction accuracy (Crosse et al., 2016). 
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as neighbouring EEG channels and speech features. Optimal lambda values were estimated 

individually to account for the high inter-individual variability within our children’s groups 

(Jessen et al., 2021) and then averaged within groups, 

Before modelling, the datasets of each participant were separated into a training and a 

testing set, containing 80% and 20% of the data, respectively. As neural responses do not 

occur simultaneously with the speech input, we used time lags from -100 to 600 ms to 

estimate the mTRFs, as those were consistent with previous studies on speech acoustic and 

lexical processing and our ERP findings from Chapter 3. 

Model training (estimation) 

In the training stage, we estimated the mTRFs between each one of the EEG 

response-speech stimulus pairs at each time point. To minimize the difference between the 

predicted values from the model and the actual values in the data, we empirically determined 

the optimal strength of the ridge regularization parameter (λ, lambda), iterating testing and 

training of the model across different λ values (ranging from 10−7 to 107) in the training set. 

For this step, data should differ from that for training (Poldrack et al., 2020), so a 

recommended procedure to avoid collecting additional data is performing successive k-fold, 

leave-one-out cross-validations on the training set. This means iterating between different 

lambda values to find the one that provides the best fit for the model parameters (Jessen et al., 

2021). Thus, we divided the training sets into five equal parts (folds) and modelled 4/5 of the 

data to derive a prediction for the left-out 1/5 segment, iterating and rotating the sets until all 

were used for testing. The resulting correlation coefficients were averaged across folds to 

determine which lambda value provided better model performance, measured as the higher 

correlation coefficients (Pearson’s r) and lower mean squared error (MSE) in the lambda 

tuning curves (Crosse et al., 2016). Once the optimal lambda was determined, we used it to 

estimate the mTRFs. 
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Model testing (evaluation) 

In the testing phase, we evaluated how well the mTRF model generalized to new, 

independent data, testing the backward model in the remaining 20% of the data. The accuracy 

of the model to predict the speech stimulus was determined by comparing the reconstructed 

and the actual speech features (e.g., the amplitude envelope), again using Pearson’s 

coefficient (r) and mean squared error (MSE) as prediction accuracy measures. The strength 

of the correlation (r value) represents the degree of cortical tracking of a given speech feature, 

whereas the error is the amount of variance the model cannot predict (Jessen et al., 2021).  

These training and testing procedures were replicated separately for the stimuli 

acoustic envelope and lexical frequency data. 

 

5.2.6 Study Design and Variables. 

This observational, exploratory study measured cortical tracking of speech between 

groups of children with TLD, DLD and adults. Speech tracking was defined as the temporal 

synchronisation between cortical responses (neural oscillations) and two levels of speech 

representation: the acoustic amplitude envelope (in arbitrary units, a.u.) and word lexical 

frequency (log-scaled). As in Chapters 3 and 4, the independent variable was the language 

status of each group (TLD, DLD or adult-like). The dependent variable was the strength of 

the neural tracking (Jessen et al.., 2021), operationalised in two measures: (i) mTRFs 

amplitude values over time (in a.u.), and (ii) the model predictive accuracy, quantified by 

Pearson’s r coefficients. 

 

5.2.7 Statistical analysis 

Both for the acoustic and lexical backward models, the first analysis focused on 

determining the model predictive power for each group, measuring whether the correlation 
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values between the predicted envelopes and the actual speech stimuli significantly differed 

from the chance level. We used a permutation-based approach to create null distributions of r 

values for each participant, randomly sampling 100 pairs from the original EEG and speech 

stimuli, modelling them, and averaging the resulting coefficients into one vector of the same 

duration as the mTRF-predicted stimuli. Then, the actual mTRF correlation values were 

compared with the null distributions using paired-sample t-tests (or the non-parametric 

equivalent), which would indicate if our models performed above chance. 

In the second analysis, we determined if there were differences between the groups of 

participants in the strength of neural tracking for the speech acoustic and lexical features. 

After checking for the required assumptions, we used mixed repeated-measures ANOVA to 

compare the model outputs (mTRFs and correlation coefficient values) for the acoustic and 

lexical envelope tracking, with ‘Group’ as a between-subject factor (3 levels: 

Adults/TLD/DLD) and ‘Neural tracking’ as a within-subjects factor (2 levels: Acoustic 

envelope/Lexical Frequency).  

The third analysis examined the mTRF patterns over time, considering this neural 

response's amplitude, polarity, and scalp distribution at different latencies. Importantly, as the 

decoder mTRF weights cannot be interpreted at the neurophysiological level, we inverted 

them into a forward model, according to the previous literature, following Haufe et al. 

procedures (2014). Finally, we explored the relationship between neural tracking and 

behavioural measures in the groups of children, using linear mixed-effects models to 

determine if mTRF accuracy measures (r coefficients) predicted the performance in 

phonological awareness (Chapter 3) and filtered speech tests (Chapter 4). 
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5.3 Results 

 

5.3.1 Model Integrity 

Firstly, we evaluated the integrity of each mTRF backward model, determining if the 

performance metrics were above-chance level as Crosse et al. (2021) recommended. Using a 

permutation approach, we created a null distribution of 100 r values for each participant, 

randomly matching EEG and stimulus pairs, from which mTRF/correlation coefficients were 

estimated and pairwise compared at the group level with those obtained from modelling 

actual speech-EEG pairs. 

For the acoustic envelope tracking, Pearson’s correlation coefficients were 

significantly higher for ‘true’ values than from those in the null distribution (TLD, Z= -2.667, 

p=.008; DLD, Z= -3.636, p<.001; Adults, Z=-3.621, p<.001). At the individual level, 

statistically significant neural tracking was detected in 67.7% of the TLD children, 76.5% of 

the DLD children and 88.3% of the adults, as indicated by r values above the 95th percentile 

in comparison to the null distributions.  

Likewise, for the lexical frequency envelope, statistically significant tracking was 

detected in all our groups of participants, with higher correlation coefficients (r) for actual 

speech-EEG data models than for null distributions (TLD, t(11)= 8.85, p<.001; DLD, t(16)= 

10.559, p< .001; Adults, Z=-3.621, p<.001). Individually, significant neural tracking was 

detected in 100% of the children and 88.24% of the adults (r values >95th percentile of the 

null distributions).  

These results indicate that the mTRF models actually reflected the neural responses 

for the acoustic and lexical frequency information, in all the participant’s groups. In addition, 

there was no significant correlation between r values for the acoustic and lexical envelope 

(r=-.231, p=.469), suggesting that these measures reflect different cortical processing levels. 
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5.3.2 Model reconstruction accuracy (performance) 

Our second analysis examined between-groups differences in the model’s predictive 

accuracy measures (r coefficients) for the speech acoustic and lexical frequency envelopes. 

Descriptive statistics for the model performance measures are displayed in Table 5.2, 

indicating overall r values ranging from 0.115 and 0. 155.  

 

Table 5.2 

Descriptive Statistics for r Values, Acoustic and Lexical Frequency Envelopes. 

Acoustic TLD DLD Adults 

M .115 .123 .142 

SD .046 .053 .034 

Range (min-max) (.04 - .19) (.03 - .19) (.06 - .18) 

95% Conf. Inter. for Mean .086 - .144 .096 - .150 .125 - .159 

Lexical TLD DLD Adults 

M .154 .155 .115 

SD .040 .070 .059 

Range (min-max) .13 (.07 -.20) .27(.02 -.29)        .23(.00-.23) 

95% Conf. Inter. for Mean .129- .180 .119-.192 .085-.145 

Note. TLD, n=12; DLD, n=17; Adults, n=17. 

 

To determine if group-level differences were present, we performed a mixed repeated 

measures ANOVA using Greenhouse-Geisser correction for unmet sphericity (Mauchly’s 

W=1, p< .001), after confirming r values were normally distributed for the acoustic and 

lexical mTRFs (Appendix 5.3). The results showed a non-significant main effect of ‘Group’ 

[F(2,43)=0.283, p=.755] or ‘Neural tracking’ [F(1,43)=2.210, p=.144], both with small effect 

size (ηp²=.049 and ηp²=.013, respectively) and low statistical power (9% and 31%, 

respectively), indicating no difference in the prediction performance for the acoustic and 

lexical frequency envelopes, and no differences between groups for the models for either 

speech feature. However, there was a significant Group*Neural tracking interaction 

[F(2,43)=4.919, p=.012], with a large effect size (ηp²=.186) and adequate power (80%).  
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Interaction follow-up (paired-samples t-tests) indicated significantly lower neural 

tracking for the lexical than for the acoustic envelope in Adults (Macous=.142, Mlexfq=.114, 

[t(16)=1.752, p=.049, d=.065]), whereas children showed the opposite pattern, with 

significantly greater tracking of the lexical than the acoustic envelope in the TLD 

(Macous=.115, Mlexfq=.154, [t(11)= -2.015, p=.035., d=.067]) and DLD groups 

(Macous=.122, Mlexfq= .155, [t(16)= -2.036, p= .029, d= .065]), all with small effect sizes. 

These results indicate that, although all groups showed similar cortical tracking of the speech 

stimuli, the neural response to the acoustic and lexical information varied within each group, 

suggesting that although both speech features are represented in the EEG, their relative 

importance may vary across the lifespan. Figure 5.4 displays group means for the acoustic 

and lexical frequency r coefficients. 

 

Figure 5.4  

Box Plots Comparing Correlation Coefficients for Acoustic and Lexical Tracking  

 

Note. Group-averaged Pearson’s r for the acoustic (light grey boxes) and the lexical 

frequency (dark grey boxes) envelopes. (*) significant at the .05 level. 
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5.3.3 Analysis of mTRF Model Weights 

mTRF patterns 

The third analysis focused on the mTRF temporal and spatial patterns. To get a 

channel-independent idea of the strength of neural tracking over time, we computed global 

field power (GFP) for each group, calculated as the standard deviation of the mTRFs, and 

averaged across all EEG channels and participants. The response amplitude (GFP) was 

plotted at each time lag for the acoustic (Figure 5.5a) and lexical frequency (Figure 5.6a) 

envelopes and forward-converted for neurophysiological interpretation (Figure 5.5b and 

5.6b), as recommended in Haufe et al. (2014).   

In Adults, the forward-converted GFP plots for the acoustic envelope showed a long 

positivity between ~100-400 ms, with two peaks, at ~50-100ms and 180-250 ms (Figure 5.5b, 

first row). We observed a similar pattern in children but with longer duration (~100-550 ms) 

and positive peaks at ~100 ms and between ~180-420 ms (Figure 5.5b, second and third row). 

The latency and polarity of these responses are similar to that of the P1 and P3 auditory ERP 

components, and their magnitude was larger in adults than in children. 

For the lexical frequency envelope, forward-converted mTRFs for the Adult group 

(Figure 5.6b, first row) showed an early negative deflection before 200 ms, a positive peak 

between 200-300 ms and a long negative deflection between 300-600 ms, resembling an 

N400 ERP response. TLD and DLD children (Figure 5.6b) showed noisier waveforms with 

high initial values (time=0), in which it is hard to distinguish positive deflections. However, 

negative ones are present between ~ 50-200, ~420-600 ms for the TLD group and from ~200-

300 ms and ~400-600 ms in the DLD group. The scale of the lexical mTRFs was larger in 

adults than in children and TLD than in DLD children (Figure 5.6b). Compared to the 

acoustic envelope, all the groups showed much larger mTRFs for lexical frequency.  
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Figure 5.5 

mTRF Waveforms for the Acoustic Envelope GFP (Decoder and Forward-Converted) 

 

       

Note. GFP waveforms for the group-averaged mTRF, (a) from decoding weights, (b) from 

forward-converted weights. Top plot (orange): Adults (n=17), middle plot (blue): TLD, 

(n=12), bottom plot (green):  DLD (n=17). TLD and DLD curves were smoothed for plotting 

with a 5-point moving average window. All values in arbitrary units (a.u.) 
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Figure 5.6 

mTRF Waveforms for the Lexical Envelope GFP (Decoder and Forward-Converted) 

 

Note. GFP waveforms for the group-averaged mTRF, (a) from decoding weights, (b) from 

forward-converted weights. Top plot (orange): Adults (n=17), middle plot (blue): TLD, 

(n=12), bottom plot (green):  DLD (n=17). TLD and DLD curves were smoothed for plotting 

with a 5-point moving average window. All values in arbitrary units (a.u.) 
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In the forward-converted GFP waveforms, we identified the time lags at which the 

weights were maximal in each group, defining intervals for mTRF mean amplitude analysis 

without double-dipping. According to the GFP peaks, for the acoustic envelope, the time 

range of interest was defined between 100-300 ms, whereas for the lexical frequency 

envelope, it comprised the range between 400-600 ms, which coincide with the early acoustic 

and lexical processing time windows in ERP research, and the hierarchical timeline of 

language processing in the brain. To illustrate the sensors that contributed most to the speech 

reconstructions (Crosse et al., 2016), forward-converted weights for each group were 

averaged across these time windows and plotted as scalp maps for the acoustic (Figure 5.7a), 

and lexical frequency envelope (Figure 5.7b).  

For the acoustic mTRFs (100-300 ms), adults showed a broad bilateral frontal-central 

positivity and posterior negativity in a range of 1.5/-1.5 a.u, similar to a P300 ERP. In the 

TLD group, the acoustic mTRF had a central-posterior negative activation and a focal right 

temporal positive source. In contrast, the DLD group exhibited a left-lateralized frontal-

temporal positive source and two negative sources: a left posterior and a right parietal one. 

For both groups of children, the magnitude of the response was in the 0.6/ -0.6 (a.u.) range.   

The scalp topography for lexical mTRF (400-600 ms) showed a clear dipole in the 

adult group (Figure 5.7b, first row), with a marked left frontotemporal positivity and right-

predominant temporal-posterior negativity, in a range of 20/-20 a.u. Both groups of children 

show a right-central positive source which extends frontally in the TLD group, and a negative 

posterior polarity, more centrally focalised in the DLD than the TLD group, which has two 

focuses, one on each hemisphere. In the children’s groups, the magnitude of the activation is 

approximately half as in the adults (TLD in the 10/-10 a.u. range, and DLD in the 8/-8 a.u. 

range). The posterior negative scalp patterns resemble an N400 ERP response. 
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Figure 5.7 

Topography of the mTRF Forward-Converted Weights (Mean Amplitude) 

 

Note. Scalp maps showing the amplitude of the forward-converted mTRFs, averaged across 

the intervals of maximal GFP. Adult (top row, n=17), TLD (middle row, n=12) and DLD 

(bottom row, n=17) group. Responses for (a) Acoustic envelope, (b) Lexical frequency 

envelope.  
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mTRF statistical analysis 

 Next, we examined whether our groups' mTRFs amplitude for each speech feature 

significantly differed. To do so, we averaged the forward-converted mTRFs across two sets 

of electrodes to obtain an individual value for each speech feature; a frontocentral cluster for 

the auditory response (Fz, F3, F4, FC1, FC2, FC5, and FC6) in the 100-300 ms time window, 

and a centro-parietal cluster for the lexical response (C3, C4, CP1, CP2, Pz, P3 and P4), in 

the 400-600 ms window. Electrodes were chosen according to previous literature (e.g., Jessen 

et al., 2021; Song & Iverson, 2018) and avoided electrode Cz,, as this was used as a 

preprocessing reference for the children groups. Table 5.2 displays the descriptive statistics 

for the mTRF group-level measures, whereas Figures 5.8 and 5.9 present mean amplitude 

group-level values in the auditory (100-300 ms) and lexical (400-600 ms) intervals, showing 

a much larger mTRF for the lexical than the acoustical features in the adult group that was 

not observed in children. Although mTRFs have no clear interpretation yet, larger lexical 

responses in adults could indicate better neural tracking. 

 

Table 5.3 

Descriptive Statistics, Group mTRFs for Acoustic and Lexical Frequency Envelopes 

Acoustic   TLD DLD Adults 

M 0.092 0.138 1.39 

SD 0.28 0.83 1.95 

Range (min-max) 1.10 (-0.35-0.76) 3.26(-1.24-2.01) 8.22(-0.48-7.75) 

95% Conf. Interval  -0.085 - 0.270 -0.286-0.563 0.383- 2.389 

Lexical Frequency  TLD DLD Adults 

M - 0.05 -1.19 -9.68 

SD 8.95 7.10 30.05 

Range (min-max) 35.43(-17.58-17.85) 25.55(-20.21-5.34)   148.88(-71.40-77.49) 

95% Conf. Interval -5.735 -5.635 -4.838-2.461 -25.140 – 5.766 

Note. TLD, n=12; DLD, n=17; Adults, n=17. 
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Given that most of the mTRF distributions were non-normal for the acoustic (for 

Adults, W= .732, p<.001; TLD, W= .882, p= .094; DLD, W= .849, p= .010 ), and lexical 

frequency envelopes (Adults, W= .849, p= .010; TLD, W= .968, p= .886; DLD, W= .788, p= 

.001 ), Independent-Samples Kruskal-Wallis tests were conducted to investigate between-

group differences in the strength of the neural tracking. For the acoustic envelope mTRFs, 

results indicate a significant difference in amplitude between Groups (H(2)= 12.615, p= 

.002), with a mean rank of 32.65 for Adults, 17.25 for TLD children and 18.76 for DLD 

children. Post-hoc comparisons with Mann-Whitney U tests (Bonferroni-corrected alpha) 

indicated a significant difference in the mTRF amplitude between adults and children [TLD, 

U = 31, p <.001; DLD, U = 60, p=.001], but no difference between the groups of children [U 

= 98, p =.439], suggesting greater auditory tracking of the speech envelope in adults than 

children. Higher positive values suggest a more pronounced auditory response for the speech 

acoustic envelope in adults than children, but no evidence of language effects on the 

children‘s acoustic tracking. 

Similarly, there was a significant difference between Groups in the amplitude of the 

mTRF for the lexical frequency envelope (H (2) = 8.153, p= .017), with a mean rank of 16.18 

for Adults, 26.75 for TLD children and 28.53 for DLD children. Post-hoc comparisons with 

the Mann-Whitney U test indicate a significant difference between adults and DLD children 

[U = 60, p=.001] but no difference with TLD children [U = 57, p=.024] or between the 

groups of children [U = 96, p =.405], using corrected alpha at the 0.017 level. This indicates 

that lexical tracking is greater in adults than in DLD children but similar between children 

and between adults/TLD children. A greater negative amplitude indicates significantly 

greater processing of word lexical frequency (N400-like effect) in adults than DLD children, 

but similar between groups of children and between TLD children and adults. 
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Figure 5.8 

mTRF Amplitude Mean Values for the Acoustic Envelope on each Group 

 

Note. TLD, n=12, DLD, n=17, and Adults, n=17.  (**) indicates significance at α=0.01 level.  

 

 

Figure 5.9 

mTRF Amplitude Mean values for the Lexical Frequency Envelope on each Group 

 

Note. TLD, n=12, DLD, n=17, and Adults, n=17.  (*) indicates significance at α=0.05 level. 
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5.3.4 Neural tracking versus phonological measures 

Our last analysis examined whether the degree of speech neural tracking predicted the 

children’s scores in phonological awareness and filtered speech perception measures. As 

between-group differences in these tests were detected in chapters 3 and 4, respectively, we 

pooled all children together regardless of their groups for the current analysis. After 

confirming data assumptions (see Appendix 5.3), two separate linear mixed-effects models 

were estimated using maximum likelihood (ML); one model for phonological awareness and 

one for filtered speech test scores. In both models, group, acoustic and lexical r coefficients 

were treated as fixed effects, whereas ‘Subject’ (participant) was used as a random intercept, 

with the variance component as the covariance structure.  

The results for both LME models are presented in Table 5.4. Statistical analysis 

revealed that neither acoustic r coefficients nor lexical r coefficients were significant 

predictors of phonological awareness performance ([t(18)= -.010  , p=0.993], and [t(18)= 

.893, p=.384], respectively. This indicates that the strength of neural tracking of the acoustic 

or lexical frequency envelopes does not predict performance in phonological awareness tasks. 

Similarly, acoustic r coefficients and lexical r coefficients did not significantly predict the 

children’s scores in filtered speech perception tests, with [t(18)= -.902, p= 0.379, and 

[t(18)=1.56, p=0.137], respectively.  

Together, these results indicate that after controlling for random effects, r coefficient 

values obtained from decoding models for the acoustic and lexical frequency speech envelope 

did not predict test results. 
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Table 5.4 

Results of Linear Mixed-Effect Models for Behavioural Tests and mTRF Accuracy Measures 

   Phonological Awareness Filtered Speech  

Predictors  Estimates  CI        p  Estimates  CI  p  

(Intercept)  11.38  2.61-20.15 .014 42.21 21.93-62.52  <.001  

Acoustic r values -.215  -47.61-47.18 .993 -47.10  -156.82-62.63  .379  

Lexical r values 16.57 -22.41-55.55 .384 66.93  23.31 – 157.17  .137  

Random Effects (participant)                                             

σ2  10.81 57.93        

 χ2 1.658       3.315-35.25               .097 1.658           17.77-188.87       .097 

ICC  0.5 0.5  

Observations   29 29 

Marginal R2 / 

Conditional R2  

0.356 / 

 0.678  

0.307 /  

0.654 

 

Note: σ2= variance; χ2 =Wald’s Z; ICC =Intra-cluster coefficient. Phonological Awareness df 

= 22, Filtered Speech df =18. Bold font types indicate statistical significance at the 0.05 level. 
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5.4 Discussion 

5.4.1 Summary of findings 

This study investigated cortical tracking of continuous speech, comparing responses 

to the amplitude envelope and word lexical frequency in children with TLD, DLD and adults. 

We provided experimental evidence of robust cortical tracking of speech acoustic and lexical 

features in young children, with no between-group differences in the strength of the neural 

responses to the speech, regardless of children's language status. However, we observed 

different speech tracking patterns between children and adults; within-group analysis 

indicated that adults showed significantly lower r coefficients for lexical than acoustic 

information, whereas children presented the inverse pattern. In addition, we observed 

significantly larger mTRF amplitude in adults than in children at early (auditory) and later 

(lexical) processing stages. Finally, the acoustic and lexical tracking strength did not 

significantly predict phonological awareness and filtered speech perception tasks. 

These results demonstrate that cortical tracking of speech acoustic and lexical 

information is robust and already in place by age 4.5 years, showing similar magnitude in 

children and adults, even under unattended listening conditions. However, cortical tracking 

did not differ between children with typical and atypical language development, which may 

be explained by an absence of speech processing deficits in children with DLD, at least for 

acoustic and lexical information. However, it could also be explained by high EEG and 

behavioural variability in our groups of children. Nevertheless, that the lack of differences 

between children with DLD and TLD and the finding that neural tracking does not predict 

phonological skills or the ability to perceive degraded speech could be determined by age 

(e.g., neuromaturation), and might change during development.   

When interpreting mTRF results, an essential aspect is whether they reflect speech 

neural processing or arise from linear modelling problems. Thus, the first relevant finding of 
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this study is that, for all our groups, the accuracy of our decoding models was significantly 

above the chance level, both for the acoustic and lexical features. Correlations significantly 

above zero indicate that the r values reflected cortical speech tracking. In addition, the 

interaction detected between 'Group' and 'Neural tracking measure' (acoustic/lexical) 

demonstrates that the lexical mTRF is not merely picking up acoustic tracking but represents 

an independent, unique contribution of lexical processing. This is supported by the fact that 

children and adults showed opposite patterns for acoustic and lexical features patterns, which 

would not be seen if both responses resulted from the same underlying neural process. That 

being said, word duration could be an intermediary factor at play here, as usually content 

word are less frequent than function words but have longer duration. This means that the 

lexical frequency values for content words are represented in more datapoints than those for 

function words, which could have influenced the backward models. 

A second important consideration is that these results align with the range of r values 

and temporal-spatial patterns reported by previous studies. In adults, Crosse et al. (2015) 

reported mean correlations of 0.13 for backward mTRFs models in adults when listening to 

clear speech. Moreover, our correlation results are strikingly similar to those reported by 

Jessen et al. (2019), who detected average r values of 0.21 in 7-month-old infants and adults. 

We also corroborated their findings regarding latency (adults at 300-400 ms and infants at 

250-500 ms) and frontocentral topography of the acoustic TRF, although their responses 

showed later negative deflections (after 500 ms). In our study, the forward-transformed 

decoder weights showed frontal positivity in all three groups. However, this was bilateral 

only for adults and lateralised in children (rightward for the TLD and leftward for the DLD 

group). In addition, our results partially supported those reported by Vander Ghinst et al. 

(2019), who detected similar speech acoustic tracking in children than adults at frequencies 
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below 4 Hz, but significantly lower for children between 4-8 Hz. However, their study used 

attended listening and coherence measures and not mTRFs. 

It is worth noting that correlation values are usually low for speech neural tracking, 

especially for encoding models, as they arise for an intrinsically noisy neural signal like the 

EEG. For example, Di Liberto et al. (2015) reported auditory envelope tracking values 

between r= 0.04-0.05 when using forward models. Importantly, r values tend to decrease for 

larger amounts of data, as in smaller datasets, correlations are more likely to reflect the 

sample particularities than the population patterns. Thus, leading authors in the field 

recommend not to interpret r values 'per se' (Crosse et al., 2021; Jessen et al., 2021), as they 

would only be comparable if resulting from models with the same parameters. Instead, it is 

suggested to use other methods for linear model comparison to balance the number of 

parameters and observations (e.g., data amount). 

A third aspect to consider is why, contrary to our hypothesis, we found no differences 

in correlation values for acoustic and lexical tracking and no between-group differences for 

these speech features during unattended listening. This suggests that children and adults have 

the same degree of acoustic and linguistic tracking or that our study failed to detect any 

lexical tracking effect, meaning that the lexical correlation values we detected reflected the 

brain's acoustic response. However, the significant Group*Speech feature interaction 

demonstrates that r values in our study reflect linguistic processing, as different patterns of 

neural tracking were observed in children and adults for acoustic and lexical information. 

This interaction indicates that our results likely reflect age-related differences in speech 

cortical tracking (e.g., neuromaturation), although with no evidence of any modulations of 

children's language status, as we had expected.  

The analysis of forward-converted mTRF patterns is somewhat consistent with the 

correlation results, showing tracking responses of significantly larger amplitude in adults than 
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children for acoustic (100-300 interval) and lexical frequency (400-600 ms) features, 

indicating more pronounced P100-200 and N400 effects in adults. This supports previous 

literature indicating clearer, larger auditory peaks in adults than children (see Wunderlich & 

Cone-Wesson, 2006 for a review). However, our results for neural tracking of lexical features 

contradict previous studies such as Niesen et al. (2023), who reported immature, lower 

cortical tracking of lexical units in school-aged children than adults. However, their study had 

essential differences from the present one, making it hard to compare findings; they used 

SNR maps to measure and assess spectral correlation and used sentences composed only of 

monosyllabic words instead of natural speech. 

Crucially, our findings can be interpreted differently at the functional level. For 

acoustic tracking results, the more straightforward interpretation is that adults show more 

efficient tracking of low-level speech features as the acoustic envelope, even when they are 

not attending to the stimulus. On the contrary, children show weaker acoustic tracking, but 

this seems not to be explained by differences in their language abilities (TLD/DLD status, 

phonological test scores) or speech perception skills, and could be related to the fact that at 

this age, their auditory system is still developing. Notably, some previous studies using clear 

speech stimuli, indicate no differences in acoustic envelope tracking for attended and 

unattended conditions, meaning that involuntary attention (and not only task-directed 

attention) is a relevant factor for acoustic envelope tracking (Brodbeck & Simon, 2020). 

Thus, for intelligible, easy-to-perceive speech as in our study (e.g., high SNRs, no 

background noise), we could still observe a good amount of automatic auditory tracking, 

especially in adults, as keeping some 'housekeeping' register of environmental sounds is 

behaviourally relevant.  

Contrary to our hypothesis of neural tracking reflecting our group's language status, 

we found no evidence of atypical tracking in DLD children, despite their poorer phonological 



245 
 

skills, which contradicts the hypothesis of impaired acoustic envelope tracking explaining 

phonological deficits in this group (Goswami, 2011; 2022). It is more likely that greater 

lexical tracking in children indicates that they are less able to ignore the narrated stories 

rather than the unlikely alternative of young children showing greater top-down language 

effects and better lexical processing than adults. Although this study did not control for 

attentional factors as we were looking at automatic speech processing, the adult's brain may 

be more efficient than children's at inhibiting attention to lexical content they have been 

instructed to ignore, which would explain smaller r values for lexical tracking in adults. 

However, this interpretation contradicts our findings of larger N400-like responses in adults' 

mTRFs, which, according to the vast ERP literature, are likely indexing better lexical 

processing. Thus, combining both mTRF findings in a single functional interpretation seems 

not straightforward and leaves an open question about how well neural tracking measures 

reflect the interplay of acoustic and linguistic processing during speech perception. 

Moreover, our study did not detect any association between neural tracking and 

children's previous performance on phonological awareness and filtered speech perception 

tests. Acoustic and lexical mTRF accuracy values did not predict children's filtered speech 

test scores as we expected according to previous findings indicating high correlation of 

acoustic mTRFs r values with speech intelligibility (Crosse et al., 2015; Ding & Simons, 

2013). However, these results could be explained because our experiment tested children on 

different speech stimuli (single words) than those that elicited neural tracking (full stories), 

rendering these comparisons inadequate. Similarly, we found that speech tracking (r values) 

did not predict phonological test scores, even though the TLD group performed significantly 

better than the DLD group. This contradicts previous literature that reported an association 

between acoustic envelope tracking and phonological skills using decoding models 
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(Keshavarzi et al., 2022). However, we did not examine the correlations at the spectral level 

(phase coherence) as these authors did. 

Finally, at the neurophysiological level, our findings support the idea that language 

networks involved in processing syntactically simple speech (as our stories) are already 

established by the age of 4-5 years. These networks include, for example, the ventral tracts 

V1-V2, and dorsal tract D1, which are thought to be involved in speech acoustic and lexical 

processing, as well as in the processing of canonical grammatical structures (Friederici et al., 

2017, see Chapter 1.2.1). However, our finding of smaller mTRF magnitude and less mature 

scalp patterns in children than adults indicates that these networks may not be fully developed 

at the age of our TLD/DLD groups. On the other hand, the lack of differences in neural 

tracking measures between the TLD and DLD groups could be explained because our stimuli 

were age-appropriate materials without syntactic complexities, which may have needed to be 

more sensitive to detect functional differences between TLD and DLD children.  

 

5.4.2 Strengths, limitations, and future research 

One of the main strengths of this study is that it demonstrates that decoding models 

are a feasible method to study natural speech processing in young children, not only at the 

acoustic but at the lexical level. Our results demonstrate robust speech cortical tracking not 

only in adults but in both groups of children, despite their small sample sizes and high 

variability in EEG magnitudes. The findings of this study contribute to a deeper 

understanding of the neural basis of speech processing in young children, revealing an early 

development of cortical tracking for the speech acoustic and lexical content, even in children 

with atypical language development.  
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An essential contribution to the DLD research field is that we found no evidence of 

atypical neural tracking of the acoustic or lexical envelopes in the DLD group despite this 

group showing poorer phonological and filtered speech test performance than TLD children. 

This is relevant as it demonstrates that this key speech-processing mechanism is preserved in 

children with DLD, thus contradicting previous hypothesis of its causal role in this disorder. 

Notably, some relevant methodological aspects must be considered when interpreting 

backward models. In this study, three main methodological factors may have influenced our 

results: an unbalanced amount of data between children and adults, the type of lexical 

analysis we used, and the characteristics of our groups of children. However, one strength of 

this study is that we had a large amount of clean data for all participants. 

The amount and quality of data are relevant factors for modelling the amplitude 

envelope tracking (Crosse et al., 2021). For small and medium-sized datasets, correlation 

values increase with the amount of good data. However, for large datasets, r values decrease 

because they are no longer driven by the sample particularities (outliers). Some previous 

children's studies have set a minimum of 100 seconds per participant (e.g., Jessen et al., 

2021), which in our study was largely surpassed. Although having enough clean data for all 

participants is one of the strengths of our study, uncontrolled between-group differences in 

the amount of data may have influenced our results, for example, leading to artificially higher 

correlation values in the groups of children.  

In future studies, addressing the potential bias introduced by data imbalances between 

participants will be important. For example, we could have randomly discarded epochs in 

adults' data to match the number of epochs in the three groups. However, we decided to retain 

as much data as possible and set the minimum individual data requirement at 300 sec, three 

times the minimum amount reported in previous studies (Jessen et al., 2021).  
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In addition, the operationalisation of lexical features could have been suboptimal to 

detecting group-level differences between TLD and DLD children, even when previous 

studies have reported that lexical frequency is a sensitive measure of linguistic processing 

(see Gillis et al. 2022). A strength of using mTRF models is that many analyses can be 

performed in the same datasets. In the future, instead of using continuous values for lexical 

frequency, we could divide the words into high and low-frequency ones. In addition, future 

research could investigate the effects of semantic similarity with this data or replicate this 

experiment by introducing new variables such as attention or background noise. 

Finally, the previous literature has pointed out that encoding and decoding models 

may not perform very well in groups of participants that show significant variability because 

the model training usually captures the data's particular features (e.g., outliers) and 

generalises poorly, which may result in model overfitting and spurious group differences 

(Crosse et al., 2021). In our data, for example, we observed a great range for the optimal 

lambda values within groups, and poorer performance of generic than individual models 

during preliminary analysis, both indicators of great intra and inter-subject variability. 

Children could have been more affected by fatigue and boredom than adults, leading to 

differences in the strength of neural tracking between the initial and final stories. These 

potential effects were not controlled (e.g., by randomising the story presentation order), as we 

attempted to secure having as many EEG responses for the same stories across groups in case 

generic models showed better performance. Thus, future research should address these 

methodological issues.  

Regardless of these limitations, a final aspect to consider is that the word database and 

stories created for this experiment are a significant methodological contribution. These 

materials can be used in future studies with children, for example, to confirm these findings 

or obtain normative values in larger samples. The materials will be made freely available to 
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other researchers in the field, increasing their utility according to open science practices. In 

addition, this database can be easily expanded to include additional speech features such as 

phonemic, spectral, or syntactic features, allowing us to re-analyse our EEG data with new 

layers of information that could improve mTRF performance.   

 

5.4.3 Conclusions 

In conclusion, this study demonstrates that adult-like neural tracking of the speech 

acoustic and lexical frequency envelope is already in place between the ages of 4.7 to 5.7 years, 

with no evidence of being modulated by language abilities but by neuromaturation (age), at 

least, under unattended listening conditions. Importantly, it demonstrates intact processing of 

the speech acoustic envelope in the DLD group, supporting previous findings of a non-auditory 

origin for this disorder and indicating no relationship between phonological skills and speech 

neural tracking. 

 

 

 

 

 

 

 

 

 

 

 



250 
 

Chapter 6. General Discussion  

 

 

6.1 Overall Summary of Findings 

Over the last decades, much research has focused on understanding how language is 

processed in the brain, with major technological advances in neuroimaging and data analysis 

methods providing invaluable evidence to support language processing models in adults. 

However, we still lack a model of language acquisition that integrates neurobiological and 

behavioural data to explain age-related changes in typical and atypical development. The 

main goal of this thesis was to provide electrophysiological evidence on the role of neural 

oscillations in children's speech perception using different EEG paradigms and analysis 

methods. Specifically, I wanted to investigate how cortical oscillatory activity relates to 

speech perception in language development and if atypical neural patterns were present in 

children with DLD. 

My central hypothesis was that, as children grow up and language processing 

networks become more efficient, so would their neural responses to speech, resulting in more 

synchronised EEG signals (although not necessarily in larger ones) until reaching adult-like 

speech processing. This better signalling would be not only dependent on age-related brain 

changes but enhanced by language knowledge via top-down processing. As predicted in 

Chapter 1 (page 46), I expected greater language effects in adults than children (P1) and in 

TLD than in DLD children (P2), which would be detected at the cortical level through 

different EEG paradigms. This central hypothesis was partially supported by the experiments 

of this thesis, as we detected significant differences in most EEG measures between children 

and adults, but in most measures, no differences between TLD and DLD children (no support 
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for P2). This indicates that top-down language effects we observed in adults were not present 

yet in children, thus, did not modulate children EEG responses as age did (partially 

supporting P3). Finally, most EEG measures were not correlated or did not predict 

behavioural performance on phonological awareness or speech perception tests, providing 

little evidence to support P4. 

The first experiment (Chapter 2) aimed to validate an ERP multi-feature paradigm in 

a group of adults to be used later in children's studies. Although acoustic differences between 

S-NS stimuli should be taken into account when interpreting our findings, we confirmed that 

the experiment elicited significant MMN/LDN responses for speech monosyllables and their 

NS analogues, and also confirmed our hypothesis of a language effect in phonemic change 

detection. However, rather than enhanced responses for more informative speech stimuli, we 

found that the effects of language content were consistent with the predictive processing 

framework, with smaller amplitude for less novel stimuli. On the other hand, the MMN 

latency showed significantly earlier peaks for words than non-words and content than 

function words, corroborating that neural processing is faster for higher-order linguistic 

content. These results confirm my third prediction (P3), indicating an interaction between 

linguistic content on the MMN responses. 

In the second experiment (Chapter 3), we used the previously validated multi-feature 

experiment (speech condition) to test a group of children with TLD and DLD. Here, we 

extended the MMN/LDN analysis to time-frequency measures to include measures of neural 

synchrony and not only amplitude. As predicted, children showed significant but immature 

MMRs in the MMN/LDN intervals but no differences between the TLD and DLD groups on 

any EEG measures. Moreover, the EEG did not correlate with phonological awareness test 

scores, even though the TLD group performed significantly better than the DLD group. In 
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adults, however, we observed more synchronised activity than in children but only for words 

and confirmed our hypothesis of greater language effects for higher-order linguistic content. 

These results does not support my second prediction (P2) and suggest that adult-like language 

modulations on speech perception may not be in place in children this age, or that our 

experiment failed to detect them, for example, because of higher variability in children. 

The third experiment (Chapter 4) investigated whether there were any differences in 

the baseline cortical activity between children with TLD and DLD and with the group of 

adults, using EEG resting-state measures. We replicated previous findings in adults showing 

significantly lower average power than children for all the frequency bands. However, 

contrary to our hypothesis, there was no difference between TLD and DLD children in power 

or oscillatory hemispheric lateralisation. Despite children with TLD performing significantly 

better in the filtered speech perception test, there was no correlation between behavioural and 

EEG measures (gamma power and HF lateralisation) either. However, an unexpected finding 

was that the theta/alpha ratio was significantly smaller in groups with better language skills 

(adults<TLD<DLD) and inversely correlated with filtered speech scores in children. 

My fourth experiment (Chapter 5) investigated cortical speech tracking using 

backward modelling (mTRFs) of EEG responses to continuous speech. We found significant 

cortical tracking for speech acoustic and lexical features in all groups. However, there were 

no differences between the TLD and DLD children and no relationship between mTRF 

measures and children's behavioural scores. Although these results indicate no effects of 

language differences between TLD-DLD children, the patterns of neural tracking in adults 

could indicate an effect of neuromaturation and age-related changes in speech cortical 

tracking, as they showed stronger, more mature auditory and lexical responses. 
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In summary, the main findings of this thesis indicate that (i) there were significant 

differences between adults and children's EEG responses, but no evidence of language effects 

in children, despite these being robustly detected in adults, (ii) there is no evidence of 

atypical cortical asymmetry or speech processing EEG responses in children with DLD, other 

than a reduced resting-state theta/alpha ratio, and (iii) most EEG measures do not reflect 

children behavioural test performance, except for an inverse correlation between theta/alpha 

ratio and filtered speech processing. Thus, it is possible that the differences between children 

and adults arise from brain maturation and not an effect of typical/atypical language 

development, but also from methodological issues, for example, related to the characteristics 

of the TLD/DLD groups. The results of these four studies need to be considered in an 

integrated manner into the broader context of current language neuroscience and EEG 

knowledge.  

 

6.2 Results in the context of language neuroscience 

Despite all theoretical and methodological progress, today, it is still not possible to 

describe the entire sequence of changes in the brain that allow children to achieve adult-like 

language processing. Experimental findings like those reported in this thesis must be 

interpreted feasibly within the language neuroscience context to understand early childhood's 

intricate speech perception mechanisms. Thus, it is essential to integrate the results of this 

thesis under current adult language models and our knowledge about the development of 

cortical language networks (Saby & Marshall, 2012) in order to explain speech perception 

and language development. 

Firstly, at the level of brain level, a straightforward interpretation of our findings is 

that the differences between children and adults detected in most EEG measures are related to 
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brain maturation. Although there is little information about the developmental patterns of 

speech neural tracking, a significant body of ERP literature reports U-shaped trajectories for 

the amplitude of different auditory ERP measures, which are the reflection of age-related 

changes in the brain's white and grey matter densities, skull thickness and neural 

synchronisation (de Haan, 2007; Uhlhaas et al., 2009; 2010). Our ERP and resting-state 

results confirm that children exhibit EEG signals of greater amplitude than adults, even 

though this is unlikely to represent better cortical speech processing in children. This suggests 

that oscillatory magnitude should be interpreted differently in adults and developing brains. 

On the other hand, we confirmed that when perceiving speech contrasts, children show longer 

latencies and less phase synchronisation (ITPC) than adults, indicating that these measures 

may more accurately reflect age-related differences in speech processing. In contrast, we 

observed that at the age of our groups (4.7-5.7 years), children's rhythms are quite analogue 

to those observed in adults in terms of frequency bands, except for the alpha band peaking 

around 8 Hz instead of the adult-like peak at 10 Hz. 

In terms of brain structure, we know that by the age of our TLD-DLD groups, the 

ventral language tracts V1-V2 and dorsal D1 are already in place (Friederici et al., 2017), as 

well as functional language lateralisation (Thompson et al., 2016). The early development of 

these neural pathways allows children to process 'easy' stimuli as clear, continuous speech 

and isolated phonemic contrasts quite well at the acoustic and lexical levels. As our 

experiments did not involve complex syntax (processed in tract D2, not fully developed until 

after the age of seven years) and did not require important top-down modulations (as in 

attended or challenging listening conditions), it is possible that our stimuli did not require 

recruitment of pathway D2. This could have minimised the speech processing differences 

between TLD and DLD children, especially considering that grammatical processing deficits 

are a core symptom od DLD. Although this could explain the lack of EEG differences 
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between TLD and DLD in children, it does not explain why children's responses significantly 

differed from those in adults and why adults showed significant language effects (experiment 

2) and lexical processing effects (experiment 4).  

The functional differences we observed between children and adults in speech-related 

cortical responses may be explained by differences in top-down language and attentional 

modulations. Although for children, the developmental trajectories of these effects are less 

defined, some studies indicate that bottom-up (stimulus-driven) processing directs speech 

perception approximately until the age of 3 years old, and after that, there is a progressive 

increase of top-down (language-driven) modulations until adulthood (Meyer et al., 2018; 

Skeide & Friederici, 2016), although this theory has not been investigated systematically. Our 

finding of top-down language influences present in adults but not yet in young children 

supports this timeline, confirming developmental differences in top-down modulations on 

speech perception during early childhood, and represents an essential contribution from the 

current thesis.  

A remaining open question is to what extent it is possible to dissociate domain-

specific and language-specific top-down effects in young children. Although we confirmed 

our hypothesis of greater lexical processing in adults than children, under these experimental 

conditions it is not possible to isolate the contributions of language-specific modulations from 

domain-general cognitive mechanisms. For example, the differences we observed in 

oscillatory power or neural tracking measures could be influenced by involuntary attention 

switching or differences in inhibitory control. Future research could explore how to 

determine the contributions of language and general cognitive processing to different EEG 

measures when testing young children. 
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Thirdly, it is important to consider the implications of these results for the current 

theories of typical and atypical language acquisition. In searching for a neural marker of DLD 

and other language disorders, several studies have proposed that atypical cortical dynamics 

may explain language processing difficulties, such as atypical language lateralisation 

(Badcock et al., 2012) or ERP responses (Kujala & Leminem, 2017). However, none of our 

results supports these explanations, apart from the already discussed differences in 

theta/alpha ratio between TLD and DLD children, which might be explained by cognitive and 

not by language differences. Instead, our null findings could be explained by similar, rather 

than different cortical dynamics for speech processing in children with DLD and those with 

TLD. If this is the case, this would contradict several past and current accounts of DLD 

proposing that low-level processing deficits could explain some behavioural deficits (e.g.in 

phonological processing) in this clinical population (see Goswami, 2022). In addition, our 

results did not replicate previous findings in individuals with dyslexia that indicate atypical 

oscillatory activity and auditory tracking in this disorder, also relating them to phonological 

deficits (e.g., Di Liberto et al., 2018). 

           Finally, it is crucial to reconsider the meaning of EEG findings when explaining 

language acquisition in the brain. So far, an obstacle to building an integrative model of 

language development is that the adult measures of brain activity may or may not represent 

the same things in children. For example, larger ERP deflections are typically interpreted as 

better cortical processing in adults. However, in children, it is not possible to determine 

whether greater amplitude in children represents ERP developmental curves, ERP responses 

to speech contrasts or their overlap. There is a need to determine the most suitable measures 

for studying speech and language development. Our results show that ITPC and latency could 

be better indices of more efficient cortical processing than amplitude-based measures. 

Moreover, it is essential to consider other measures and paradigms, for example, examining 
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the potential role of neural noise and variability in language acquisition (Ostlund et al., 2022) 

or what larger EEG responses represent in developing cortical networks, for example, for 

neuronal energy balance during bottom-up processing (Vergara et al., 2019). 

 

6.3 Methodological considerations and future directions 

6.3.1 Methodological contributions 

Several studies have pointed out that the evidence relating EEG and behavioural 

measures is full of inconsistencies and lacks replication (Sabi & Marshall, 2012). One of the 

strengths of this thesis is that all the experiments aimed to replicate previous studies (e.g., 

using similar methods). Although several of our predictions were not met, reproducing 

previous experiments helps furthering the current understanding of language development, 

and increases the validity of the limited EEG literature in this field. At the same time, this 

thesis addressed the importance of innovation in developmental science by using state-of-the-

art methods, extending decoding models to study lexical processing, and including a clinical 

group that has not been studied before using a continuous speech paradigm (children with 

DLD). 

A second strength of this thesis is that it demonstrates that data collection in 

challenging populations can be optimised using age-appropriate protocols and environmental 

adjustments. We collected data for three experiments with preschool-aged children in a single 

EEG session of approximately 40 minutes. This was possible because the ERP optimal 

paradigm was time-efficient, leaving enough time for the resting state and the continuous 

speech experiments. In addition, children tolerated well the testing time as they were 

distracted watching cartoons and not asked to perform any task. 
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Moreover, this thesis demonstrated that with some environmental adjustments, it is 

possible to get clean data in young children, even in clinical groups such as DLD. In my 

opinion, some relevant environmental factors that enabled successful data collection were: (i) 

the experimenter's skills and training to interact with children and parents, (ii) having at least 

one assistant for data collection, as this helps to speed up the EEG set-up and to distract the 

child, (iii) having everyone in the room so that children can be seated next to their parents, 

and the researchers close to them, so we could easily monitor if the child was still or needed a 

break, and check any problem with the EEG very quickly (e.g. to adjust channel's 

impedance).  

Using these new paradigms and adjustments, we demonstrated the feasibility of 

conducting successful, reproducible EEG experiments in young children. This was a central 

goal of this thesis, as many researchers (as we were initially) may feel discouraged to test this 

age group because it poses extra challenges, contributing to a vicious cycle of lack of EEG 

evidence in early language development.  

Finally, this thesis contributes to the global open science initiative, as all our 

experimental materials, scripts and datasets will be made freely available to other researchers 

upon request after the results of this thesis are published. 

 

6.3.2 Methodological limitations 

When interpreting the results of this thesis, it is essential to consider their 

generalisability and how our findings might have been affected by potential sources of bias at 

different levels.  An important limitation to address concerns the possible presence of 

sampling bias. Firstly, all the experiments were conducted in the same three groups of 

participants, and all children were recruited from the same school in Chile. Although the 
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invitation for the study was sent to all the children in the school that fit the inclusion criteria, 

from the 37 children that were invited, 34 passed the screening, and only 29 came to the EEG 

experiment, with two participants dropping-out during this session. Although these are low 

participant exclusion/drop-out rates, the size of our groups was small, particularly the control 

group (TLD), which should be considered when interpreting these findings. 

Although we initially calculated that a larger sample size was needed (n=25 per 

group) for this thesis, the data collection process was severely disrupted by the COVID-19 

pandemic, which impeded a second overseas trip to test more children from this school. Thus, 

we postponed collecting new data and emphasised acquiring more advanced EEG analysis 

skills. In the future, it is necessary to determine whether the findings of this thesis can be 

generalised to the broader population, replicating these experiments in a larger sample of 

children with typical language development and DLD diagnosis, for example, at different 

ages. In the short term, we have planned to conduct a final study at UCL's ICL Lab using 

these experiments to test bilingual children in a broader age range.  

In addition, it is worth considering that there is usually high variability between 

children regarding their cognitive, language and social skills, even in typically developing 

groups. Even though children attended the same school allowed us to control for differences 

in socioeconomic status and medical history, and the screening process controlled for 

differences in children's age or hearing levels between the children with TLD and DLD, we 

did not control for the heterogeneity of language profiles in DLD children. Despite our DLD 

children being clinically diagnosed before the study according to valid SLT criteria, the 

variability in their language profiles (in the TLD group) may indicate that their cortical 

responses to speech are too different for being categorised only into typical/atypical groups. It 

would be interesting in the future, for example, to investigate the association of language and 



260 
 

EEG profiles at the individual level (e.g., how many children with DLD showed speech 

perception skills within the typical range). 

Notably, the utility of binary classifications of children into control and clinical 

groups when investigating neurodevelopmental disorders is a long-lasting debate among 

language development clinicians and researchers. Although growing evidence indicates that 

children's language profiles are heterogeneous and change dynamically during development 

(Bishop et al., 2016; 2017), there is no agreement on how we can operationalise this 

continuum between typical and atypical language skills in developmental research. 

In terms of background literature, an essential realisation from this PhD thesis is that 

there are still few EEG studies addressing the neural basis of language acquisition and any 

possible cortical signatures of DLD. This striking lack of EEG research in younger children 

was pointed out more than 15 years ago (de Haan, 2007) but remains an issue, explaining our 

limited understanding of cortical dynamics in early language development. On top of that, the 

heterogeneity of methodological approaches in the existing literature makes it very hard to 

compare and generalise findings across EEG studies on speech perception development. 

In this scenario, an important contribution of this PhD thesis is that it builds upon 

several previous studies, confirming that replication and innovation in research are not 

mutually exclusive. However, some key findings of this thesis indicated null results, for 

example, no language top-down modulations in children and no left-lateralisation of 

oscillations. Thus, although we aimed for maximum confound control, some experimental 

aspects in this thesis need to be reconsidered in future studies. For example, the speech 

stimuli could focus on materials testing tract D2, as discussed in Chapter 5. Because these 

networks develop later and grammatical deficits are an important symptom of DLD, stimulus 

requiring D2 processing could reveal more subtle differences between children's groups. 
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Another aspect is that, although there is plenty of options for signal processing in 

EEG research, in practice, it can be difficult to determine 'a priori' what are the most 

appropriate, especially for exploratory studies. For example, despite efforts such as the 

CORE or MADE initiatives, there is no gold standard for the EEG processing pipeline or 

selection of channels and time windows for analysis. During this thesis, one of the greatest 

challenges was to decide the best data analysis steps for each experiment when each choice 

may substantially change the outcome of a given study (Clayson et al., 2021) or introduce 

biases (Cohen, 2017). In the future, this thesis may help inform the decision-making process 

of new EEG studies, for example, by providing easy-to-replicate pre-processing pipelines and 

data analysis methods for the different EEG paradigms. 

Similarly, selecting statistical methods was a challenging aspect of all the 

experiments. Although the statistical analysis plan was carefully outlined beforehand when 

deciding on the experimental design, the collected data was full of non-normal distributions, 

non-linearities and high within and between-participant variability, which sometimes made it 

impossible to go ahead with the planned or most recommended methods. In this regard, I 

opted for maximum transparency in the reports, providing justifications when unplanned or 

suboptimal data analysis methods were used.  

Notably, although data analysis difficulties are related to the small size of our sample, 

some effects appeared to be robust enough to show group-level differences and the 

experiment had sufficient power to detect them. For example, latency and synchrony 

measures are more informative when studying groups of children at different ages or for 

comparing children and adults. However, these findings need to be replicated in future 

studies.  
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6.4 Concluding remarks. 

In sum, the current thesis provides new evidence about cortical speech processing 

during early childhood in typical and atypical language acquisition, indicating developmental 

changes in EEG responses between early childhood and adulthood, and no differences 

between children with and without DLD in cortical measures of speech processing.  

The results of this thesis contribute to the field of language acquisition and could 

inform future models of language development that satisfies multiple levels of explanations, 

from neurons to behaviour. Importantly, our findings reinforce the need of revisiting 

theoretical assumptions about how to interpret EEG measures in children and of conducting 

larger studies to disentangle the effects of neuromaturation, cogntive and language 

development on speech perception. 

In addition, the findings and EEG methods used in this thesis have great potential to 

inform future clinical measures of speech perception. Although we found no evidence of a 

neural marker for DLD, this thesis identified some EEG measures that are robust enough to 

compare and even differentiate adults and children. Hopefully, these results will lay the basis 

for future studies on the development of language top-down effects on speech perception and 

speech perception development in TLD and DLD.   
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Appendices  

 

Appendix 2.1   

Epoch Rejection Percentages per Participants for the Speech and Non-Speech Condition 

  

              TOTAL EPOCH REJECTION (%)     

   

Participant Speech   Nonspeech   

St   Dev1   Dev2   Dev3   Dev4   St   Dev1   Dev2   Dev3   Dev4   

ADCH_01   7.9   4.1   8.3   9.7   9.7   22.9   19.4   18.0   20.8   22.2   

ADCH_02   4.8   0.0   2.7   8.3   4.1   23.6   16.6   20.8   19.4   20.8   

ADCH_03   7.6   6.9   8.3   4.1   6.9   22.5   12.5   18.0   11.1   18.0   

ADCH_04   11.1   6.9   9.7   13.8   9.7   9.3   9.7   9.7   6.9   6.9   

ADCH_05   4.5   2.7   4.1   2.7   4.1   2.0   2.7   2.7   2.7   2.7   

ADCH_06   1.7   0.0   2.7   2.7   0.0   5.2   5.5   4.1   9.7   2.7   

ADCH_07   14.9   15.2   11.1   15.2   15.2   3.1   4.1   0.0   2.7   1.3   

ADCH_08   26.3   27.7   22.2   23.6   18.0   3.4   8.3   2.7   4.1   0.0   

ADCH_09   0.0   0.0   0.0   0.0   0.0   2.0   4.1   2.7   2.7   2.7   

ADCH_10   1.3   0.0   2.7   0.0   0.0   1.0   2.7   0.0   0.0   1.3   

ADCH_11   11.8   9.7   11.1   8.3   11.1   13.1   4.1   13.8   11.1   12.5   

ADCH_12   18.4   12.5   19.4   11.1   15.2   15.2   16.6   11.1   13.8   11.1   

ADCH_13   7.2   4.1   8.3   8.3   4.1   10.0   8.3   9.7   16.6   6.9   

ADCH_14   1.3   1.3   2.7   1.3   4.1   4.5   2.7   2.7   6.9   2.7   

ADCH_15   3.4   1.3   2.7   5.5   5.5   0.0   0.0   0.0   0.0   0.0   

ADCH_16   26.3   25.0   26.3   19.4   16.6   26.7   20.8   22.2   23.6   22.2   

ADCH_17   1.0   0.00   4.1   1.3   2.7   8.6   2.7   8.3   8.3   1.3   

ADCH_18   51.7   0.0   0.0   0.0   16.6   1.3   0.0   0.0   0.0   66.6   

ADCH_19   18.4   18.0   19.4   19.4   22.2   12.5   11.1   13.8   5.5   12.5   

ADCH_20   17.0   18.0   18.6   15.2   11.1   28.1   23.6   20.8   23.6   25.0   

   

  

 

 

 



289 
 

Appendix 2.2  

Normality Tests (Shapiro-Wilk) for the Speech and Non-Speech Condition (Experiment 1, Adults) 

 

  ERP 

Measure 

Time  

Window 

Stimulus 

Type 

Speech Non-Speech 

W p       W       p 

Peak 

Latency 

                            DW1 0.916 .084 .837 .003 

       TW1              DW2 0.971 .768 .856 .007 

                             DW3 0.811 .001 .813 .001 

                             DW4 0.805 .001 .970 .748 

                            Words 0.76 <.001 -- -- 

                             DW1 0.736 <.001 .681 <.001 

        TW2              DW2 0.82 .002 .868 .011 

                              DW3 0.835 .003 .902 .045 

                             DW4 0.944 .285 .902 .046 

                            Words 0.976 .865 -- -- 

                                   DW1 0.943 .277 .978 .899 

Mean 

Amplitude 

       TW1              DW2 0.97 .761 .909 .062 

                             DW3 0.922 .109 .957 .485 

                            DW4 0.981 .943 .937 .208 

                            Words 0.927 .133 -- -- 

                             DW1 0.929 .151 .962 .576 

        TW2               DW2 0.979 .92 .977 .896 

                              DW3 0.961 .574 .955 .447 

                             DW4 0.849 .005 .961 .555 

                            Words 0.857 .007 -- -- 

 Note. Significant tests are indicated in bold fonts. All df = 20 
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Appendix 3.1 

Phonological awareness Test Forms  
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Appendix 3.2  

Children Individual Artifact Rejection Values 

 

 

                   TOTAL EPOCH REJECTION (%)   

 

TLD (n=11) 
St Dev1 Dev2 Dev3 Dev4 Total 

P03 16.8 19.4 19.4 18.1 15.3 17.4 

P04 2.4 2.8 0 2.8 5.6 2.6 

P05 0.9 1.4 0 0 0 0.6 

P06 25.3 18.1 23.6 19.4 23.6 23.4 

P07 17.1 13.9 18.1 15.3 20.8 17 

P11 6.1 11.1 6.9 11.1 5.6 7.3 

P14 13.7 13.9 15.3 11.1 11.1 13.3 

P15 27.1 20.7 23.6 26.4 30.6 26.3 

P16 3.4 8.3 2.8 6.9 5.6 4.5 

P17 12.5 8.3 5.6 12.5 9.7 10.9 

P19 12.5 16.7 15.3 8.3 8.3 12.3 

DLD (n=16) 
St Dev1 Dev2 Dev3 Dev4 Total 

L01 11.9 14.1 9.7 16.7 11.1 12.4 

L03 13.1 19.4 16.7 16.7 18.1 15.3 

L04 11.9 12.5 12.5 6.9 6.9 10.9 

L05 10.4 13.9 12.5 6.9 12.5 10.9 

L06 12.8 12.5 11.1 9.7 9.7 11.9 

L07 7.3 5.6 8.3 5.6 6.9 7 

L08 15.5 19.4 23.6 20.8 13.9 17.4 

L09 1.2 0 1.4 0 1.4 1 

L11 18.6 19.4 19.4 23.6 16.7 19.2 

L12 16.8 12.5 18.1 11.1 5.6 14.4 

L14 23.2 18.1 18.1 22.2 16.7 21.1 

L15 7.9 5.6 5.6 2.8 6.9 6.7 

L16 20.7 33.3 16.7 20 24.1 22 

L17 6.4 9.7 8.3 8.3 11.1 7.8 

L19 13.8 8.3 12.5 11.3 5.6 11.7 

L21 25.1 19.4 22.2 20.8 16.7 22.6 
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Appendix 3.3 

ANOVA Assumptions Check for Experiment 2 (MMR) 

Mean Amplitude (100-250 ms, Peak Centred) 

                          Homogeneity of Varianceᵃ                                     Normalityᵇ 
 

DW type Levene 

Statistic 

df1 df2 p Group Shapiro-Wilk 

Statistic 

df p 

DW1 3.7 2 44 .033 Adults .943 20 .277  
TLD .975 11 .935    
DLD .92 16 .168 

DW2 0.429 2 44 .654 Adults .97 20 .761      
TLD .79 11 .007      
DLD .939 16 .336 

Words 4.659 2 44 .015 Adults .927 20 .133      
TLD .929 11 .398      
DLD .98 16 .966 

DW3 5.104 2 44 .01 Adults .922 20 .109      
TLD .865 11 .066      
DLD .946 16 .436 

DW4 5.046 2 44 .011 Adults .981 20 .943      
TLD .922 11 .334 

  
 

      DLD .933 16 .276 

                                                                       Phonological Awareness Test 

 TLD                     .873                     8            .162 

DLD                     .909                    14           .151 

Within Subjects Effect: Stimulus Type 

                  Equality of Covariance 

Matricesᶜ 

Sphericityᵈ 

Box's M F df1 df2 p Mauchly's W Approx. 

Chi^2 

df p 

93.16 2.538 30 3795 <.001 0.181 72.46 9 <.001 

 

Note.  Significant tests are indicated in bold fonts.  

ᵃ Tests the null hypothesis of equal variances across groups 

ᵇ Tests the null hypothesis of a normal data distribution 

ᶜ Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal 

across groups. 

ᵈ Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 
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Appendix 3.4 

ANOVA Assumptions Check for Experiment 2 (MMR), Variable: Mean Amplitude TW2 

 

Mean Amplitude (250-400 ms, Peak Centred) 

                          Homogeneity of Varianceᵃ                                     Normalityᵇ 
 

DW type Levene 

Statistic 

df1 df2 p Group Shapiro-Wilk 

Statistic 

df p 

DW1 4.087 2 44 .024 Adults .929 20 .151  
TLD .916 11 .288  

  DLD .983 16 .981 

DW2 4.533 2 44 .016 Adults .979 20 .920  
    TLD .910 11 .242  
    DLD .878 16 .036 

Words 1.048 2 44 .359 Adults .857 20 .007 
 

    TLD .767 11 .003  
    DLD .959 16 .645 

DW3 3.070 2 44 .056 Adults .961 20 .574 
 

    TLD .970 11 .884  
    DLD .939 16 .340 

DW4 4.675 2 44 .014 Adults .849 20 .005 
     

TLD .937 11 .489 

  
 

      DLD .946 16 .433 

Within Subjects Effect: Stimulus Type 

                  Equality of Covariance 

Matricesᶜ 

Sphericityᵈ 

Box's M F df1 df2 p Mauchly's 

W 

Approx. 

Chi^2 

df p 

109.75 2.99 30 3795 <.001 .240 60.53 9 <.001 

 

Note.  Significant tests are indicated in bold fonts.  

ᵃ Tests the null hypothesis of equal variances across groups 

ᵇ Tests the null hypothesis of a normal data distribution 

ᶜ Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal 

across groups. 

ᵈ Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 
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Appendix 3.5 

ANOVA Assumptions Check for Experiment 2 (MMR), Variable: ERSP 

ERSP  

                          Homogeneity of Varianceᵃ                                     Normalityᵇ 
 

Stimulus 

Type 

Levene 

Statistic 

df1 df2 p Group Shapiro-Wilk 

Statistic 

df p 

D1 2.043 2 44 .142 Adults .940 20 .235  
TLD .881 11 .108  

  DLD .919 16 .163 

D2  1.657 2 44 .202 Adults .965 20 .658 
 

    TLD .894 11 .157  
    DLD .922 16 .180 

D3 .274 2 44 .762 Adults .959 20 .519 
 

    TLD .859 11 .056  
    DLD .955 16 .573 

D4 1.033 2 44 .364 Adults .969 20 .726 
 

    TLD .788 11 .007  
    DLD .963 16 .711 

St 1.005 2 44 .374 Adults .955 20 .441 
     

TLD .903 11 .203 

  
 

      DLD .960 16 .661 

Within Subjects Effect: Stimulus Type 

                  Equality of Covariance 

Matricesᶜ 

Sphericityᵈ 

Box's M F df1 df2 p Mauchly's 

W 

Approx. Chi^2 df p 

69.32     1.89 30     3795 .002 .355 43.91 9 <.001 

Note.  Significant tests are indicated in bold fonts.  

ᵃ Tests the null hypothesis of equal variances across groups 

ᵇ Tests the null hypothesis of a normal data distribution 

ᶜ Tests the null hypothesis that the observed covariance matrices of the dependent variables 

are equal across groups. 

ᵈ Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 
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Appendix 3.6 

ANOVA Assumptions Check for Experiment 2 (MMR), Variable: ITPC 

ROI 1 

                      Homogeneity of Varianceᵃ                                     Normalityᵇ 
 

Stimulus 
Type 

Levene 
Statistic 

df1 df2 p Group Shapiro-Wilk 
Statistic 

df p 

D1 2.806 2 44 .071 Adults .953 20 .407  
TLD .967 11 .86  

  DLD .891 16 .059 

D2 .316 2 44 .731 Adults .928 20 .141  
    TLD .932 11 .428  
    DLD .879 16 .037 

D3 2.198 2 44 .123 Adults .965 20 .64  
    TLD .928 11 .39  
    DLD .931 16 .25 

D4 2.291 2 44 .113 Adults .944 20 .286  
    TLD .945 11 .583  
    DLD .968 16 .811 

St 2.746 2 44 .075 Adults .872 20 .013      
TLD .983 11 .982 

  
 

      DLD .926 16 .211 

                                                                          ROI2 

                          Homogeneity of Varianceᵃ                                     Normalityᵇ 

Stimulus 
Type 

Levene 
Statistic 

df1 df2 p Group Shapiro-Wilk 
Statistic 

df p 

D1 1.748 2 44 .186 Adults .97 20 .761 
 

TLD .849 11 .042 
 

  DLD .981 16 .97 

D2 .980 2 44 .383 Adults .941 20 .245 
 

    TLD .972 11 .903 
 

    DLD .945 16 .419 

D3 4.083 2 44 .024 Adults .961 20 .555 
 

    TLD .915 11 .278 
 

    DLD .956 16 .592 

D4 1.916 2 44 .159 Adults .912 20 .069 
 

    TLD .933 11 .439 
 

    DLD .877 16 .035 

St .453 2 44 .639 Adults .97 20 .761 
     

TLD .849 11 .042 

  
 

      DLD .981 16 .97 

                  Equality of Covariance Matricesᶜ Sphericityᵈ 

ROI Box's M F df1   df2        p Mauchly's 
W 

Approx. Chi^2 df p 

1 35.75 .974 30 3795      .506 .779 10.57 9 .306 

2 36.03 .982 30 3795      .495 .845 7.13 9 .624 

Note.  Significant tests are indicated in bold fonts. ᵃ, ᵇ,ᶜ, ᵈ, as in Appendix 3.5. 
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Appendix 4.1 

Speech in Babble (Noise) Test Form 
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Appendix 4.2 

Filtered Speech Test Form 
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Appendix 4.3 

Articulation screening (T.A.R) Test Form 
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Appendix 4.4 

Normality and Variance Homogeneity Tests for Experiment 3 (Resting State EEG) 

   
Test 

  
Normality Homogeneity of Variances 

Measure Group Shapiro-
Wilk 
Statistic 

df p Levene 
Statistic 

df1 df2 p 

Age Adults 0.959 18 .592 
    

 
TLD children 0.743 11 .002 

    

 
DLD children 0.855 16 .016 

    

Theta Band 
Power 

Adults 0.936 18 .246 9.285 2 42 <.001 

TLD children 0.973 11 .917 
    

 
DLD children 0.892 16 .059 

    

Alpha Band 
Power 

Adults 0.737 18 <.001 4.187 2 42 .022 

TLD children 0.934 11 .456 
    

 
DLD children 0.866 16 .023 

    

Beta Band 
Power 

Adults 0.932 18 .214 5.606 2 42 .007 

TLD children 0.967 11 .859 
    

 
DLD children 0.91 16 .118 

    

Gamma Band 
Power 

Adults 0.795 18 .001 5.133 2 42 .01 

TLD children 0.826 11 .02 
    

 
DLD children 0.797 16 .002 

    

Laterality Index 
LF  

Adults 0.933 18 .224 1.275 2 42 .29 

TLD children 0.945 11 .576 
    

 
DLD children 0.901 16 .083 

    

Laterality Index 
HF 

Adults 0.912 18 .093 1.941 2 42 .156 

TLD children 0.875 11 .091 
    

 
DLD children 0.945 16 .42 

    

Theta/Alpha 
Ratio 

Adults 0.927 18 .173 4.54 2 42 .016 

TLD children 0.946 11 .597 
    

DLD children 0.853 16 .015 
    

Theta/Beta 
Ratio 

Adults 0.971 18 .813 2.801 2 42 .072 

TLD children 0.95 11 .647 
    

DLD children 0.865 16 .023 
    

Speech in 
Babble 
 

TLD children 0.967 8 .872 
    

DLD children 0.96 14 .718 
    

Filtered Speech TLD children 0.816 8 .043 
    

DLD children 0.951 14 .572 
    

 

Note. Bold fonts indicate test is significant at the p=0.05 level (non-normal data distribution). 
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Appendix 5.1 

Continuous speech stimuli 
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Appendix 5.2  

Data Amount per Participant 
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Appendix 5.3  

Normality and Variance Homogeneity Tests for Experiment 4 (Neural Tracking) 

 

r values 

                          Homogeneity of Varianceᵃ                                     Normalityᵇ 
 

Neural 

Tracking 

Measure 

Levene 

Statistic 

df1 df2 p Group Shapiro-

Wilk 

Statistic 

df p 

Acoustic 

Envelope  

2.257 2 43 .117 Adults .873 17 .025 

TLD .972 12 .934  
  DLD .910 17 .101 

Lexical  

Frequency 

1.505 2 43 .234 Adults .981 17 .969 

    TLD .875 12 .077 

Envelope     DLD .964 17 .699 

Within Subjects Effect  

                  Equality of Covariance Matricesᶜ Sphericityᵈ  

Box's M df1 df2 p Mauchly's 

W 

Approx. 

Chi^2 

df p 

Factor: 

Tracking 

Measure 

9.42 6 23610 .188 1.0 .000 0 . 

 

 

Note.  Significant tests are indicated in bold fonts.  

ᵃ Tests the null hypothesis of equal variances across groups 

ᵇ Tests the null hypothesis of a normal data distribution 

ᶜ Tests the null hypothesis that the observed covariance matrices of the dependent variables 

are equal across groups. 

ᵈ Tests the null hypothesis that the error covariance matrix of the orthonormalized 

transformed dependent variables is proportional to an identity matrix. 

 

 


