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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We compared the effects of school en
ergy efficiency measures on indoor NO2 
exposure. 

• We modelled the impact on childhood 
asthma incidence and hospitalization 
costs. 

• Scenarios without operational measures 
increased NO2, asthma and hospital 
costs. 

• Asthma reduced with operational stra
tegies to improve indoor environmental 
quality. 

• Appropriate school building operational 
strategies are critical for child health.  
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A B S T R A C T   

Background: Climate change legislation will require dramatic increases in the energy efficiency of school 
buildings across the UK by 2050, which has the potential to affect air quality in schools. We assessed how 
different strategies for improving the energy efficiency of school buildings in England and Wales may affect 
asthma incidence and associated healthcare utilization costs in the future. 
Methods: Indoor concentrations of traffic-related NO2 were modelled inside school buildings representing 13 
climate regions in England and Wales using a building physics school stock model. We used a health impact 
assessment model to quantify the resulting burden of childhood asthma incidence by combining regional health 
and population data with exposure-response functions from a recent high-quality systematic review/meta- 
analysis. We compared the effects of four energy efficiency interventions consisting of combinations of retrofit 
and operational strategies aiming to improve indoor air quality and thermal comfort on asthma incidence and 
associated hospitalization costs. 
Results: The highest childhood asthma incidence was found in the Thames Valley region (including London), in 
particular in older school buildings, while the lowest concentrations and health burdens were in the newest 
schools in Wales. Interventions consisting of only operational improvements or combinations of retrofit and 
operational strategies resulted in reductions in childhood asthma incidence (547 and 676 per annum regional 
average, respectively) and hospital utilization costs (£52,050 and £64,310 per annum regional average, 
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respectively. Interventions that improved energy efficiency without operational measures resulted in higher 
childhood asthma incidence and hospital costs. 
Conclusion: The effect of school energy efficiency retrofit on NO2 exposure and asthma incidence in school
children depends critically on the use of appropriate building operation strategies. The findings from this study 
make several contributions to fill the knowledge gap about the impact of retrofitting schools on exposure to air 
pollutants and their effects on children's health.   

1. Introduction 

The UK's non-domestic building sector has a substantial role to play 
in the transition to a low carbon economy since it is responsible for 18 % 
of the UK's carbon emissions (Carbon Trust, 2009). The UK has set tar
gets through the 2008 Climate Change Act to reduce greenhouse gas 
emissions by 2050 (CCA, 2008), and this legislation will require dra
matic increases in the energy efficiency of buildings across the UK by 
2050. Schools are a part of the non-domestic sector and may be 
important locations of exposure to air pollution, since they are where 
children spend 30 % of their waking hours (Csobod et al., 2014). It is 
essential to ensure that future retrofits do not compromise indoor air 
quality and children's health and learning. 

Particulate matter (e.g. PM2.5), nitrogen dioxide (NO2), ozone (O3), 
and carbon monoxide (CO) are examples of traffic-related air pollutants 
that have been associated with higher rates of asthma occurrence. 
Children are more vulnerable to airborne pollutants than adults as their 
developing lungs breathe in more air relative to the size of their bodies 
and their ability to cope with pollutants is underdeveloped (Chatzidia
kou et al., 2014). The UK has among the highest prevalence, emergency 
admissions and death rates for childhood asthma in Europe, with chil
dren and young people in the most deprived areas experiencing worse 
outcomes (NHS, 2021a). Increasing the energy efficiency of buildings 
through retrofitting, e.g. improving building fabric thermal insulation, 
can potentially increase temperatures inside the building, if poorly 
designed, i.e. not combined with appropriate ventilation/cooling means 
(Fosas et al., 2018). Creating a more airtight building envelope, as part 
of energy retrofit, can provide protection to those indoors from pollut
ants in the outside air, which may have positive impacts on physical and 
mental health (Thomson et al., 2013); however, it can also affect levels 
of pollutants generated inside the building (Davies et al., 2004). Both 
thermal comfort levels and indoor air quality have a crucial role to play 
in producing an environment that supports optimal educational and 
health outcomes. 

Several studies (Hamilton et al., 2015; Khreis et al., 2018; Milner 
et al., 2014; Tieskens et al., 2021) have evaluated the impacts of energy 
efficiency retrofit strategies in residential buildings on human health, 
but there has been less focus on schools. Tieskens et al. (2021) developed 
a discrete event model for paediatric asthma exacerbation to assess the 
effects of different types of energy retrofits in homes. Hamilton et al. 
(2015) assessed the potential health impacts of changes to indoor air 
quality and temperature due to energy efficiency retrofits in English 
dwellings. They applied three scenarios including different levels of 
airtightness and ventilation systems. We are aware of no previous 
studies on the impacts of energy efficiency retrofit strategies on the 
health of children in school buildings. To address this gap, this work 
aimed to illustrate the potential impact of hypothetical but realistic 
energy efficiency retrofits, including with operational measures to 
improve indoor environmental quality (IEQ), on childhood asthma 
across schools in England and Wales. We quantified the number of 
childhood asthma cases and associated health service costs, attributable 
to exposure to NO2 from outdoor sources in schools, and compared the 
hypothetical impacts for four interventions consisting of combinations 
of building fabric retrofit and operational strategies. 

2. Methods 

2.1. Location 

In this study, we estimated the impact of energy efficiency retrofits 
on changes in NO2 exposures in schools on the burden of childhood 
asthma incidence for 13 climate regions of England and Wales based on 
CIBSE degree day regions (CIBSE, 2008): Thames Valley, South Eastern, 
Southern, South Western, Severn Valley, Midland, West Pennines, North 
Western, Borders, North Eastern, East Pennines, East Anglia, and Wales 
(Fig. S1, Supplementary Material). The results were quantified for En
gland and Wales as a whole and also separately for each of the 13 
regions. 

2.2. Framework 

Our conceptual framework for assessing the impacts of indoor air 
pollution and childhood asthma is shown in Fig. 1. We used a life table- 
based health impact assessment (HIA) model to estimate (i) current 
(baseline) asthma incident cases attributable to NO2 and (ii) averted 
asthma incident cases under three energy efficiency interventions to 
compare with baseline outcomes. The life table method was used to 
estimate the surviving population over time to provide a baseline pop
ulation for the asthma calculations. The overall modelling approach is 
given in Section 2.3 with the life table approach used to adjust the future 
population size detailed in Section 2.2.1. In the second part of this study, 
the model results were also evaluated for a cohort of children over a 
period of 11 years, to analyse and compare the change in asthma cases 
for children over the ages of 5–16 years, including periods of primary 
and secondary school education. 

The HIA model requires four inputs:  

(1) A dynamic population of school-aged children  
(2) NO2 exposures in schools at baseline and under energy efficiency 

interventions  
(3) Baseline asthma incidence rates  
(4) Relative risk for NO2-related asthma 

The details of each are given below: 

2.2.1. Population of school-aged children 
A dynamic population of children aged 5–16 years in England and 

Wales was produced using the life table model, IOMLIFET (Miller and 
Hurley, 2003). Life tables were set up using 2019 age-specific popula
tion and mortality data (i.e. death from all causes) for each county in 
England and Wales using data from the Office for National Statistics 
(ONS), with separate life tables set up for males and females to reflect 
different mortality rates and life expectancy (ONS, 2010). The ONS data 
are provided for government office regions (Table S1) which do not 
exactly match the 13 (CIBSE-based) climate regions used in our study. 
Therefore, the counties in both cases were matched in order to find and 
group the counties in the climate regions. For this purpose, firstly, the 
boundaries of government office and climate regions were compared. 
Then, the counties were allocated to the relevant climate region 
(Table S2). 

We generated mortality rates for each region using the average of 
five years' population and mortality data, after subtracting neonatal 
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data. We applied and compared Piecewise Cubic Hermite Interpolating 
Polynomials (Pchip) and cubic spline interpolation methods in MATLAB 
R2010 (MathWorks Inc., Natick, MA, US) to calculate the age specific 
population size to be used in the life table (Miller and Hurley, 2003). We 
obtained better fit with the Pchip method, and therefore used it to 
perform the calculations. Survival populations obtained by the life table 
method in 2020 provided a dynamic baseline population for the asthma 
calculations. 

2.2.2. Internal NO2 concentrations 
Indoor NO2 concentrations in UK schools were modelled using a 

school building stock indoor environment model, which uses the 
building physics model EnergyPlus version 9.5 (US Department of En
ergy, 2021) as its core calculation engine to predict energy demand and 
IEQ across the school building stock. We used the model to simulate 
indoor NO2 exposures for different scenarios consisting of combinations 
of pair-wise energy retrofit and operational strategies and accounting for 
the glazing ratio and prevailing climatic conditions of different building 
age and geographical region archetypes across the UK. Hourly external 
NO2 concentrations were acquired for 2019 from UK-wide monitoring 
sites (DEFRA, 2021) for each of the 13 geographical regions and annual 
profiles for each site were then plotted by region. For each region, the 
individual monitoring site which provided the most representative 
profile relative to the median values across the entire year was then 
selected and used to provide the profile of external NO2 concentration. 
In the model, the external hourly data was multiplied at each time step 
by the Indoor/Outdoor ratio to give internal concentrations. The model 
is described in detail in Grassie et al. (2023). 

To provide credence to the results of the modelling, it was critical to 
validate both the method and calculated results. The use of airflow 
network modelling within EnergyPlus has previously been validated 
against measured data of other contaminants (Dutton et al., 2008), 
measured data from air conditioning equipment (Gu, 2007) and other 
types of contaminant modelling (Dutton et al., 2008). While the class
room models represent a hypothetical case, it has been possible to verify 
the range of NO2 concentrations against measured data in real 

classrooms. A range of 4.3 to 29.7 ppb (Gaffin et al., 2018) with median 
of 10.4 ppb and mean of 11.1 ppb has been measured across 218 
classrooms in 37 US schools. From a wider study (Salonen et al., 2019) of 
47 publications, this range in classrooms across the world increases to 6 
to 68.5 ppb, with a median of 26.1 ppb and mean of 30.1 ppb. This 
compares well to the annual exposure range we have calculated across 
all settings of 1.6 ppb (Wales) to 29.6 ppb (London). While this provides 
a reasonable setting for the baseline of modelling, differences in NO2 
exposures across settings are the main focus of our study. 

In this work, we considered current NO2 concentrations related to 
10,201 naturally-ventilated primary and secondary schools across the 
13 geographical regions. We also calculated the weighted average ex
posures for five construction eras (Pre-1918, Inter-war, 1945–1967, 
1967–1976 and Post-1976), four orientations (north, south, east and 
west) to use in the HIA model. Average values of the raw data across all 
regions are given in Table S3 in the supplementary material. 

We quantified changes in indoor NO2 exposures under four scenarios 
to estimate the resulting asthma impacts:  

1. Baseline: current exposures in the existing school building stock of 
England and Wales;  

2. Retrofit scenario: incorporating retrofit strategies in compliance with 
the EnerPHIt (Institute, 2016) energy efficiency standard. The use of 
mechanical ventilation with heat recovery (MVHR), specified in the 
EnerPHIt standard, was not modelled;  

3. Operational scenario: consisting of only operational strategies to 
control heat flows. These included the use of albedo, external 
shading, thermal mass, internal blinds and passive night-time 
ventilation.  

4. Combined scenario: including a pair-wise combination of the above 
retrofit and operational strategies. 

For each scenario, EnergyPlus was also used to estimate the number 
of overheating hours per year, the annual average indoor concentration 
of carbon dioxide (CO2) generated by the schoolchildren and the annual 
greenhouse gas (GHG) emissions in kg/m2 from space heating. 

Fig. 1. Health impact assessment: conceptual framework.  
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Further details on all scenarios can be found in Table S4 in the 
supplementary material. 

2.2.3. Baseline asthma incidence 
Data on incident cases of asthma in children aged 1–4, 5–9, 10–14 

and 14–19 years old were obtained from the Global Burden of Disease 
(GBD) study database (GBD, 2023). The GBD incidence cases were 
extracted at the county level for 2019 (before the Covid-19 pandemic), 
the most recent data at the time of this analysis. As the counties of Bath 
and North East Somerset, City of Bristol, Gloucestershire, North Som
erset, Plymouth, Somerset and South Gloucestershire did not match the 
boundaries of the climate regions, we assumed the equivalent asthma 
incidence cases for these counties with their population ratios in Wales 
and Severn Valley. The incidence rate of a region was estimated by 
dividing the total number of incidence cases by the total population of 
the counties in that region. The asthma incidence rates are given in 
Table S3 in the supplementary material. 

2.2.4. NO2 exposure-response function 
The exposure-response function reported by Khreis et al. (2017) 

(1.26 increase in risk per 10 ppb increase in NO2) was used to estimate 
relative risks of NO2-related asthma incidence under each scenario. We 
assumed a counterfactual concentration of 0.8 ppb, as used previously in 
the literature (Fabian et al., 2012; Oftedal et al., 2009). This means that 
long-term exposure to NO2 <0.8 ppb does not pose a risk of asthma 
incidence in children. 

2.3. Quantification of asthma incidence 

The calculation steps to estimate the attributable number of child
hood asthma cases, based on the inputs described above, are given in 
Table 1. We calculated population attributable fractions (PAF) (Hanley, 
2001) for each scenario and applied these to the baseline incidence es
timates to calculate attributable incident cases under each scenario. We 
assumed that children spend 8 h per weekday at school, equivalent to 24 
% of their time ((8 h × 5 days) / (24 h × 7 days) = 0.24). Thus, we 
multiplied our final results by the factor of 0.24 to account for the 
proportion of time children spend at school. 

We then estimated the change in the burden of asthma incidence for 
each of the three interventions by subtracting their results from the 
baseline results. The outcomes were expressed in the unit of averted 
cases per 100,000 children per year and the unit of annum average over 
13 regions for attributable cases. The averted asthma cases were also 
compared for the cohort of children entering school education aged 5 
years in the year 2019. 

2.4. Healthcare utilization costs 

We estimated the resulting annual costs of asthma hospitalization in 
school age children across England and Wales for the three interventions 
(relative to the Baseline scenario). Firstly, the proportion of the burden 
averted under each intervention was calculated for each region by 
dividing each by the total asthma incident cases for that region. The 
proportion was then multiplied by the population of that region and the 
rate of hospital admissions to estimate the change in asthma hospitali
zation. Emergency hospital admissions for asthma per 100,000 children 
and young people aged 0 to 18 years were 174 in 2017/2018 and 148 in 
2018/2019 for England (RCPCH, 2020). In our study, the rate of hospital 
admissions was therefore assumed to be 160/100,000. 

The change in the annual cost of asthma hospitalization was then 
quantified by multiplying the proportions by the unit cost per admission. 
The unit cost per admission was estimated by the ratio of 2019/20 NHS 
reference costs for childhood asthma to baseline hospital admissions per 
year for childhood asthma (NHS, 2021b). The calculations and NHS 
reference values can be found in Table S5 in the supplementary 
document. 

2.5. Data output and statistical analyses 

The model outputs include estimation of (i) attributable asthma 
incident cases for each scenario (ii) averted asthma incident cases under 
the three intervention scenarios compared with the baseline scenario, 
and (iii) changes in asthma hospitalization costs under the three inter
vention scenarios. The averted asthma incident cases were also esti
mated for the cohort of children aged 5 years in 2019 until the age of 16 
years. All results are quantified for each region and for England and 
Wales as a whole. 

2.6. Probabilistic sensitivity analysis to determine the most influential 
model parameters 

A sensitivity analysis was performed to identify how key health 
model parameters influenced the output. We examined the sensitivity of 
our modelling to four parameters (internal NO2 concentration, asthma 
exposure-response coefficient, asthma rate and population) to under
stand which parameters affected the outcomes of the model the most. 
The ranges of parameters defined in Table S3 were used separately. 
Then, uncertainty analysis was conducted to define the confidence in
tervals on the output results, and to evaluate the potential effect of the 
sensitive parameters on the model outputs. The distributions of pa
rameters were assumed to be uniform, lognormal and/or normal dis
tributions (Table S7) based on the literature (Table S3). Accordingly, 
population follows a log-normal distribution (Parr and Suzuki, 1973) 
with a confidence interval of plus or minus 0.2 %, based on estimation of 
the population of the UK in mid-2020 (ONS, 2021). The regional NO2 
concentrations were assumed to follow log-normal distributions 
(Tieskens et al., 2021) with means ranging from 23.73 to 2.3 and vari
ation ranging from 4.73 to 0.06, calculated by averaging the results of 
twenty-four scenarios simulated by EnergyPlus (Grassie et al., 2023). 
Uniform distributions were assumed for the other parameters as default. 
Thus, the asthma exposure-response coefficient varied from 1.1 to 1.37 
(Khreis et al., 2017). Regional asthma rates for children aged 1–4, 5–9, 
10–14, and 14–19 years old ranged between 0.009 and 0.020, 0.004 and 
0.014, 0.005 and 0.019, and 0.005 and 0.012, respectively, for females. 
For males, the rates ranged between 0.013 and 0.026, 0.006 and 0.021, 
0.005 and 0.015, and 0.003 and 0.006, respectively. By incorporating 
the uncertainty and variability of the above input parameters, the model 
was run 1000 times using Monte Carlo (MC) simulations in MATLAB 
R2010. 

Table 1 
Steps of estimation of population attributable fraction and attributable number 
of cases.  

Steps Equations  

1 

RRexposuredifference = e

((Ln(RR)
ERRunit

)

× EexDoneposure difference

)

2 
PAF =

∑n
i=1P × RRexposuredifference − 1)

∑n
i=1P × RRexposuredifference − 1) + 1  

3 Total asthma cases (due to all risk factors) = population * baseline asthma 
incidence rate  

4 Attributable asthma cases = PAF*expected asthma cases 

where: RR: the relative risk obtained from the exposure-response function for 
NO2; PAF: Population attributable fractions; RRexposure_difference: the RR that 
corresponds to the difference in exposure level between the counterfactual (no 
exposure and reference (current exposure) scenario; ERRunit: the exposure unit 
that corresponds to the RR obtained from the exposure-response function; n: the 
number of exposure levels; P: the proportion of the exposed population. 
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3. Results 

3.1. Attributable asthma cases under energy efficiency scenarios 

Table 2 presents the results of the HIA model of asthma incidence, 
calculated by averaging the results of 13 regions in England and Wales. 
As well as asthma incidence and indoor NO2, the table also presents the 
average results for GHG emissions from heating systems, overheating, 
and indoor CO2. The lowest NO2 is seen in the Operational scenario, due 
to the additional capability of ventilating the building during the night- 
time for cooling, when there is less traffic. This leads to a lower 
requirement for ventilation and hence less ingress of NO2 from the 
outdoors when traffic peaks in the morning (resulting in the lowest 
attributable asthma cases and hospitalization costs). Aside from a 10- 
min purge period at the start of each occupied hour, ventilation is 
entirely driven by the need to cool classrooms to below 23 ◦C. In terms of 
operational strategies, external shading minimises the penetration of 
solar radiation through windows, high albedo limits the absorption of 
solar radiation by opaque building surfaces and thermal mass delays the 
re-release of heat indoors. These effects lower internal temperature and 
reduce the demand for cooled air. Passive ventilation facilitates the 
ingress of outdoor air during cooler night-time periods, which is bene
ficial since this is when NO2 levels are lowest. 

By contrast, the Retrofit scenario, while improving considerably the 
energy performance through reducing heat losses through building 
fabric, leads to higher internal temperatures during the day, requiring 
intermittent ventilation at busier times of the school day. This draws in 
NO2 from the outdoor air, leading to a greater number of asthma inci
dent cases and higher hospitalization costs. The Combined scenario 
represents a balance between the Retrofit and Operational scenarios, 
with a slight overall decrease in asthma cases and hospitalization costs. 
These patterns are observed for England and Wales as a whole and each 
of the 13 regions. The results of the HIA model for each region are 
provided, along with results for indoor NO2, GHG emissions from 
heating systems, overheating, and indoor CO2, in Table S9 in the sup
plementary materials. 

A typical illustrative example of the differences between ventilative 
practices for a week during spring across different scenarios is shown in 
Fig. 2. For the Baseline scenario, the building leaks a considerable 
amount of heat at night-time when it is unoccupied, so there are some 
days when ventilation is not required fully for cooling until the after
noon. After upgrading the fabric under the Retrofit scenario, ventilation 
is required for cooling for the entirety of every school-day, since the 
night-time leaking of heat has been reduced and the school day typically 
starts with temperatures already above the window-opening setpoint of 
23 ◦C. However, adding night-time ventilation operation for the Com
bined scenario allows the ventilation period to be extended in the eve
ning and morning flexibly. This leads to temperatures at the start of the 

day which are lowered and gives additional potential in the future for 
lowering this setpoint even lower to reduce reliance on ventilation in the 
day, which drives the ingress of NO2 when cars are present outside. 

Fig. 3 shows the hospital cost reductions and averted asthma cases 
under the scenarios for the 13 regions. Positive values represent benefits 
for asthma (i.e. reductions in cases) while negative results are additional 
health burdens. A similar trend is seen for each region in terms of asthma 
cases, NO2 levels and hospitalization cost (Fig. 3). The Operational and 
Combined scenarios result in positive effects on childhood asthma 
incidence and hospital utilization. The highest childhood asthma inci
dence is in the Thames Valley region (including London), in particular in 
older school buildings, while the lowest concentrations and health 
burdens are in the newest schools in Wales. This reflects differences in 
external NO2 concentrations in each geographical region, as well as the 
thermal properties of schools built in different era, and their subsequent 
ventilation requirements. 

Fig. S3 in the supplementary materials shows averted asthma cases 
per 100,000 population plotted against the change in GHG emissions 
(relative to the baseline) for the three scenarios. This demonstrates the 
relationship between GHG emissions abatement through improved en
ergy efficiency and asthma cases averted through reduced NO2 expo
sure. The graph illustrates that there is an inverse relationship between 
health (asthma) and GHG reduction. The change in GHG emissions is 
lowest (<1 kg/m2) in the Operational scenario where the lowest burden 
of asthma occurs. However, the reduction in GHG emissions is greater 
(between 1 kg/m2 and 3.5 kg/m2) under both the Retrofit and Combined 
scenarios. Regions where significant differences between the Opera
tional and Combined scenarios were found for both outcomes include 
North Western; the change in GHG emissions there is from 3.5 kg/m2 to 
1 kg/m2 while the change in asthma is from 0 to 40 cases per 100,000 
population (Fig. S4). Similarly, the reduction in internal CO2 is greater 
under both the Retrofit and Combined scenarios in this region (Fig. S5). 

3.2. Cohort results 

Fig. 4 illustrates the averted asthma cases (per 100,000 population) 
for England and Wales under each scenario for a cohort of children 
starting school at age 5, and changes in costs from hospital utilization. 
Both health outcomes and healthcare cost savings were estimated rela
tive to baseline for 3 scenarios by subtracting the scenario outcomes 
from the baseline outcomes. Thus, positive values represent reductions 
and negative values show additional health burdens and costs. 

As seen from the figure, there are large differences in the number of 
cases between the scenarios, reflecting the patterns described above, and 
the model demonstrates changes in asthma incidence with age. Asthma 
incidence decreases with age, with primary school children nearly twice 
as likely to develop asthma as secondary school children. The trend of 
asthma incidence decreasing with age is observed across each region 
(Fig. S6). In terms of differences between scenarios, the inclusion of 
operational IEQ measures leads to an improvement relative to the 
Retrofit scenario. Similarly, cost savings are obtained in operational and 
combined scenarios (approximately £16,000 and £2000 annual re
ductions in hospital utilization, respectively). 

3.3. Sensitivity analysis 

Table S6 gives the percentage changes in incident cases from the 
baseline after examining the sensitivity of our results to the internal NO2 
concentration, asthma exposure-response coefficient, asthma rate and 
population. The health outcomes in the 13 regions were most sensitive 
to changes in three parameters: NO2 concentration (max 33 %), asthma 
coefficient (max 68 %) and asthma rate (max 68 %). Uncertainty in the 
population data resulted in no significant changes in health outcomes. 
As such, NO2 concentration, asthma coefficient and asthma rate were 
considered in the uncertainty analysis. The distribution of outcomes 
related to each region and between 2020 and 2031 is presented in 

Table 2 
Model results for 13 climate regions in England and Wales.   

Baseline 
mean (sd) 

Retrofit 
scenario 
mean (sd) 

Operational 
scenario mean 
(sd) 

Combined 
scenario 
mean (sd) 

Attributable 
asthma cases 

697 (826) 775 (907) 547(664) 676 (796) 

Hospitalization 
cost (GBP/y) 

£66,326 
(£76,932) 

£73,767 
(£84,489) 

£52,050 
(£61,824) 

£64,310 
(£74,148) 

NO2 (ppb) 14.48 
(6.24) 

16.47 
(7.08) 

11.00 (4.71) 14.06 (6.05) 

Indoor CO2 

(ppm) 
1135.30 
(35.96) 

935.34 
(17.33) 

1767.72 (60.4) 1435.56 
(23.73) 

Overheating (h) 354.28 
(102.47) 

610.94 
(84.32) 

99.62 (66.77) 342.39 
(109.23) 

GHG emissions 
(kg/m2) 

2.36 
(0.62) 

0.28 (0.11) 1.52 (0.45) 0.00042 
(0.0004) 

Mean(standard deviation), the lowest mean indicated in bold. 
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Fig. S2 in the supplementary material. The uncertainty analysis indi
cated that the relative standard deviation (RSD) of output ranges from 
28 % to 32 %. The regions which have high external NO2 concentrations 
(London) are less sensitive than regions with low external concentration 

(Wales) to change in NO2, possibly due to starting from a lower point 
and the percentage changes therefore being relatively greater. 

Fig. 2. Illustrative example of difference in window opening across different scenarios.  

Fig. 3. Averted asthma cases in one year (per 100,000 population) with (a) indoor NO2 concentration and (b) reduction in hospital utilization.  
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4. Discussion 

4.1. Key findings 

Our study primarily focused on NO2-related asthma, which served as 
an example to illustrate the potential scale of impacts and to highlight 
important trade-offs. Specifically, we aimed to examine the potential 
effects of retrofits on reducing NO2 levels and the resulting health con
sequences, particularly focusing on asthma. Our results demonstrate 
that improving the energy efficiency of schools in England and Wales, 
when combined with measures to improve indoor environmental con
ditions such as ventilation and shading, would provide reductions in 
asthma incidence and associated healthcare costs from exposure to NO2 
in schoolchildren, relative to the present-day baseline. However, 
increasing the energy efficiency of school buildings without such IEQ 
measures would result in increases in both incidence and hospitalization 
costs. This happens because energy efficiency improvement acts to make 
buildings more airtight, which initially reduces the ingress of air 
pollution (NO2) from the outdoors. However, it also makes buildings 
warmer leading to increased overheating during warmer times of the 
years, and so increased ventilation (e.g. window opening) is needed to 
cool the building down when children are present during the day. 
Overall, this leads to increased exposure to NO2 for children within 
schools and therefore an increase in asthma and asthma-related 
hospitalization. 

Retrofitting school buildings will be important to help achieve tar
geted reductions in GHG emissions. However, our results suggest that 
improving the energy efficiency of school buildings in England and 
Wales has the potential to lead to adverse effects on asthma in school 
children unless these buildings are suitably ventilated during times 

when traffic levels are lower (primarily during the night). While some 
previous studies have shown positive effects of retrofitting buildings on 
health, other studies found worse or less clear positive effects for more 
energy efficient buildings (Tieskens et al., 2021). The different findings 
may be related to the specific details of these studies, such as the exact 
nature of the interventions, the local climate, and the behaviour of oc
cupants (Sharpe et al., 2019; Tieskens et al., 2021; Vardoulakis et al., 
2015). Therefore, it is difficult to compare the results of other studies 
with ours directly. In our case, the Retrofit scenario resulted in increased 
asthma incidence as internal NO2 (from outdoors) increases, although 
night-time opening of windows was not implemented and defined in the 
scenario (Table 2). However, as more ventilation is needed during the 
day due to air tightness, the occupants (students) may need to open the 
window more. Hamilton et al. (2015) showed previously that naturally 
ventilated buildings can result in high exposures to internally-generated 
pollutants due to airtightness of the dwelling and the practices of the 
occupants (although internally-produced pollutants were not included 
in our modelling). As explained above, one of the important factors for 
this result may be the impacts of individual behaviours which results in 
variation in the need to open windows (Tieskens et al., 2021). On the 
other hand, our Operational scenario with measures to improve IEQ 
provided a reduction in asthma incidence and associated healthcare 
costs (Fig. 3), decreasing overheating and indoor exposure NO2 from 
outside sources. This scenario increases internal CO2 within schools due 
to night ventilation, and with only modest decrease in GHG emissions 
from space heating. School buildings are a key part of the UK's carbon 
emissions reduction strategy. It is necessary to take into account retrofit 
strategies and changes in the operation of the building by mitigating 
against overheating in order to reduce carbon emissions and health 
burdens. 

Fig. 4. Cohort study for England and Wales (sum of each region).  
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The Combined scenario represents a balance between the Retrofit 
and Operational scenarios, demonstrating the need for appropriate 
management of IEQ to accompany energy efficiency improvements. In 
this scenario, as daytime ventilation is slightly reduced and it is not 
necessary to open windows as often, there is a slight decrease in over
heating and decreases in internal CO2 and NO2 exposure. This demon
strates the important point that retrofitting in itself does not lead to 
increases in asthma rates, showing that operational practices should be 
adopted to manage internal temperatures in order to prevent the ingress 
of contaminated air for cooling at times of the day when traffic is 
heaviest (and school buildings are occupied). 

The findings of the cohort study suggest that asthma incidence tends 
to decrease with age. This is in line with the findings of Hu et al. (2022), 
who also found that the highest number of new asthma cases can be 
attributed to exposure to NO2 among the youngest age group (<6 years 
old). They also found that areas with higher population density tend to 
have a greater burden of new asthma cases. This finding aligns with the 
results of our study, which found the highest incidence of childhood 
asthma in the Thames Valley region. Overall, these findings indicate that 
NO2 exposure is a significant factor contributing to the development of 
asthma, particularly in young children. 

4.2. Strengths and limitations 

To our knowledge, this is the first study assessing the impacts of 
energy efficiency retrofit strategies on the health of school children in 
the UK. We believe that such assessment is important for policy decision 
making as it can inform and develop effective policies, in particular 
helping to guide efforts to reduce GHG emissions from school buildings. 
Furthermore, the applied framework is generic and therefore has the 
ability to serve as a valuable point of reference for researchers world
wide. The main strength of this study has been the capability of exam
ining the health impacts of energy efficiency strategies coupled with IEQ 
measures by using an advanced validated building physics model. 
Another strength is the analysis of the uncertainties coming from health 
model input parameters (NO2 concentrations, population, and asthma 
incidence rates). Although it was not possible to assess uncertainties in 
the upstream (i.e. building physics) models, the uncertainty analysis 
indicated that changes in the values of parameters regarding the 
assumed distributions did not create high variations in HIA model out
puts (Table S8). The distributions of the parameters were guided using 
evidence from the literature, therefore increasing the reliability of our 
results. 

Among the limitations of this study are the application of only a 
limited number of energy efficiency/operational interventions. We 
simulated only four interventions, including one scenario for each 
strategy (retrofit and IEQ improvement). However, we applied an en
ergy retrofit scenario (Grassie et al., 2023) which is the most energy 
retrofitted option to Building Simulation Regulation. For the IEQ 
improvement scenario, we included the combination of four individual 
IEQ improvement measures (i.e. ventilation and thermal control, 
shading). Therefore, our results are likely to give minimum and 
maximum asthma incidence and hospitalization costs for the UK with 
these interventions. When individual IEQ improvement measures with 
the most and least energy retrofit options are performed, the health 
outcomes and costs can be improved progressively. By this way, the 
optimum options can be decided from the range of interventions. There 
is also relatively high uncertainty in the exposure-response function we 
applied to estimate the relative risk for asthma development. We relied 
on the coefficient extracted from the global systematic review and meta- 
analyses reported in Khreis et al. (2017). This coefficient may not be 
directly applicable to the setting modelling in this work. However, 
Khreis et al. (2017) did include studies from cities in the UK in their 
study. We focused specifically on the incidence of asthma in relation to 
chronic NO2 exposure, drawing upon existing evidence and modelling 
approaches utilized in previous studies of childhood asthma. However, 

we recognize that there is also strong evidence relating asthma exacer
bation in both children and adults to fluctuations in short-term exposure 
to NO2 and other air pollutants (e.g., Orellano et al. (2017)). Modelling 
these short-term effects would require a distinct approach that was 
beyond the scope of our current study. 

We assumed that children spend 8 h per weekday at school, which 
provides a representation of the maximum exposure levels and health 
risks for children. However, the duration of a school day can vary 
depending on the age group and educational system in different regions. 
In particular, 5–6 h per weekday might be more appropriate for primary 
school children. Therefore, as an additional sensitivity analysis, we 
estimated asthma cases for the 4 scenarios assuming a 6-h/weekday 
duration (Table S10). Compared to the 8-h/weekday duration, the 
attributable asthma estimates for a 6-h/weekday period in each region 
are 25 % ((0.18–0.24)*100/0.24 = − 25 %) lower. 

The relationship between asthma incidence and severity is complex 
and relies on many factors. In our study, we assumed that the change in 
asthma incidence would lead to a proportionally equivalent change in 
asthma-related hospitalization, assuming no change in the distribution 
of asthma severity. Our modelling also considered only changes in in
door exposure to ambient (external) NO2, primarily representing emis
sions from traffic. Most school buildings would not have many internal 
sources of NO2, but this could be a limitation in some settings. Finally, 
although we estimated changes in asthma-related hospital utilization 
costs, a full economic appraisal of the scenarios was not performed. 
Future work should consider the complete range of economic costs and 
benefits of improving school building energy efficiency, including the 
wider societal impacts. 

5. Conclusions and policy implications 

Our study indicates that the net effect of school energy efficiency 
retrofit on NO2 and asthma incidence in schoolchildren depends criti
cally on the effectiveness of ventilation systems and the building oper
ation strategy. Therefore, a balance should be found between these 
strategies. Overall, the findings suggest that, in general, NO2 levels can 
be lowered by improving the energy efficiency of schools in England and 
Wales and thus a proportion of incident childhood asthma cases could be 
prevented, as long as appropriate means for indoor environmental 
control are present. The findings from this study make several contri
butions to fill the knowledge gap about the impact of retrofitting schools 
on air pollutant exposure and their effects on children's health. Our 
findings contribute in several ways to our understanding of energy ef
ficiency and operational interventions for school buildings in terms of 
health assessment, as well as providing a basis for policymakers to 
identify solutions that reduce GHG emissions while improving children's 
health in school buildings. 
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