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Abstract: As disease-modifying therapies are now available for Alzheimer’s disease (AD), accessible,
accurate and affordable biomarkers to support diagnosis are urgently needed. We sought to develop
a mass spectrometry-based urine test as a high-throughput screening tool for diagnosing AD. We
collected urine from a discovery cohort (n = 11) of well-characterised individuals with AD (n = 6) and
their asymptomatic, CSF biomarker-negative study partners (n = 5) and used untargeted proteomics
for biomarker discovery. Protein biomarkers identified were taken forward to develop a high-
throughput, multiplexed and targeted proteomic assay which was tested on an independent cohort
(n = 21). The panel of proteins identified are known to be involved in AD pathogenesis. In comparing
AD and controls, a panel of proteins including MIEN1, TNFB, VCAM1, REG1B and ABCA7 had a
classification accuracy of 86%. These proteins have been previously implicated in AD pathogenesis.
This suggests that urine-targeted mass spectrometry has potential utility as a diagnostic screening
tool in AD.

Keywords: Alzheimer’s; urine; machine learning; biomarkers; proteomics; mass spectrometry; diagnosis

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most
common cause of dementia. A definite diagnosis of AD can only be made post-mortem
and by neuropathological confirmation of extracellular amyloid plaques. These plaques
are composed of fibrillar amyloid and intracellular tau tangles, containing hyperphos-
phorylated tau [1].

Since the brain is inaccessible during life, the AD field has relied on imaging and
cerebrospinal fluid (CSF) biomarkers to support clinical diagnosis, classify individuals for
research studies or to interrogate and track pathophysiology [2,3]. With the development
of new disease-modifying therapies, it has become critically urgent to develop biomarkers
that will identify individuals who are most likely to benefit from them. Thus, we need to
develop tests that are simple to obtain, less invasive, high throughput and cost effective so
we can test widely.
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Currently, several fluid biomarkers are now validated to support clinical diagnosis
in CSF [4]. These include the use of the ratio of the beta-amyloid peptides Aβ1-42/1-40,
P-tau a marker of tau pathology, and neurofilament light (NfL), a biomarker of neuroaxonal
damage [5,6]. There are also promising biomarkers of amyloid, tau and neurodegeneration
in plasma [7] and they are in the process of being validated in real life populations, with
plasma P-tau 217 looking particularly promising [8–11]. However, all these tests are
expensive to perform, require invasive procedures, have to be pre-handled and centrifuged
at source, and analyses performed in specialist laboratories.

CSF is obtained by lumbar puncture (LP), which is safe and generally well tolerated.
However, it is not possible to perform this procedure on everyone, for instance those on
blood-thinning agents, and is an invasive procedure that carries a 5–10% risk of post-LP
syndrome [12]. Although blood is more accessible, it still remains invasive, and requires
strict pre-handling practices with rapid centrifugation at source, to provide reliable re-
sults [13]. Therefore, there is considerable interest and a need for developing biomarkers in
novel and non-invasive biological fluids such as urine that are easier and cheaper to collect,
store, process and analyse. This could potentially be collected in the home environment
and shipped to a lab through the post with no sample preparation required. Sampling is
likely to be more acceptable to patients and could be widely used for earlier screening in
mid-life populations outside of specialist centres and in any geographical location.

Despite extensive progress in CSF and serum biomarkers, research into biomarkers
for brain diseases in urine is lagging behind. This is due to the significantly lower
protein concentrations making detection more difficult and that urine is more distant
from the brain compared with CSF and plasma. However, with technological advances
in mass spectrometry, the increasing use of triple quadrupole mass spectrometers in
chemical pathology and their unique ability to perform targeted proteomic analyses of
multiple biomarkers at once, it is now conceivable that urinary biomarkers of AD can
be measured. Urine has been explored previously for its potential for AD diagnosis
particularly for metabolite changes [14–18]; however, the urinary metabolome can be
highly variable so we have looked at the potential of urinary proteins. Conventionally
most urinary protein is thought to be kidney derived but it has been shown to contain
many membrane and extracellular proteins not just from the renal system but also from
other distant organs [19,20]. More recently its potential is being explored for neurological
conditions such as brain cancer [21], Parkinson’s disease [22] and AD [23–26]

Furthermore, the use of machine learning and AI approaches is revolutionising di-
agnostics as we move to use multiple biomarkers to refine prognosis and diagnosis [27].
Therefore, in this study we tested the hypothesis that individuals with AD would have a
different urinary proteomic profile to healthy controls and that these could reflect changes
in relevant pathobiological pathways. The aims of this exploratory study were to:

• Screen the urine proteome in participants with AD and compare with healthy controls
using untargeted proteomics to identity pathways and potential AD biomarkers;

• Create a translational and rapid test to validate any biomarkers using a multiplexed,
targeted proteomic approach in an independent cohort;

• Use machine learning techniques to develop a ‘panel’ of biomarkers that could be
used to help diagnose AD.

2. Results

As expected, a significantly greater proportion of AD individuals in the discovery
cohort were APO ε4-positive compared to controls in both cohorts. CSF amyloid concen-
tration was lower in those with AD, and T-tau and P-tau were higher. MMSE scores were
unsurprisingly lower in the AD group. These individuals were in the mild to moderate
stage of the disease. The discovery and validation cohorts are described in full in Table 1.
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Table 1. (a): Demographics, cognitive profiles and cerebrospinal fluid biomarker profiles of the
discovery cohort. Abbreviations: AD, Alzheimer’s disease; MMSE, mini mental score exam; CSF,
cerebrospinal fluid. All data are shown as the mean ± standard deviation unless otherwise stated.
(b): Demographics and cognitive profiles of the validation cohort. Abbreviations: AD, Alzheimer’s
disease. All data are shown as the mean ± standard deviation unless otherwise stated.

(a)

AD (n = 6) Control (n = 5)

Sex (% Male) 50 75
Age (years) 59.2 ± 4.1 59.3 ± 3.9

Positive APO ε4 status (%) 83 Not tested
MMSE score 24.2 ± 3.5 29.4 ± 0.9

CSF Aβ1-42 (pg/mL) 453 ± 93.4 1073.2 ± 196.5
CSF T-tau (pg/mL) 1407 ± 985.3 304 ± 80.1

CSF P-tau 181 (pg/mL) 121.4 ±89.5 42.4 ± 8.0
BMI 24.1 ± 2.3 25.98 ± 2.2

(b)

AD (N = 9) Control (N = 12)

Sex (% Male) 67 50
Age (years) 62.3 ± 3.0 59.1 ± 6.6

2.1. Biomarker Discovery and Pathway Analyses: Comparison of Urinary Proteomic Analyses from
AD Patients and Healthy Controls

The discovery cohort was composed of eleven individuals: six participants fulfilled
clinical criteria for typical AD, and five were healthy controls. Label free proteomics and
bioinformatic analyses identified a total of 1525 proteins. Comparison between the AD and
control patient group identified a total of 42 proteins demonstrating changes in expression
of protein between both groups (see Supplementary Table S1 for details). As described
in the methods section, all proteins ranked A, B and C and demonstrating changes in
expression, designated as showing a statistical significance of p < 0.05, were analysed using
the Ingenuity Pathway analyses bioinformatics package (Qiagen, Venlo, The Netherlands).

Ingenuity canonical pathways analyses identified proteins activated by oxysterol
ligands, cholesterol and bile acid metabolism (LXR/FXR/RXR activation) to be significantly
changed in the urine of AD patients. Other changes observed included those involved in
protein synthesis or folding and also changes in energy metabolism. Remarkably, disease
function analyses identified nine proteins previously described as being altered in AD and
amyloidosis diseases (APOA4, HSPA5, RNASET2, PLD3, FRMD4B, B2M, HPX, SERPINC1,
OLR1). The functional pathway amyloidosis and familial amyloidosis being the first and
third most significant pathways changed, with AD being the second and eighth most
significantly relevant disease identified for each pathway, respectively. Figure 1 shows a
summary of the results from the discovery phase.

2.2. Development of a Targeted and Multiplex Assay to Validate Potential Urinary Proteomic
Biomarkers of AD

Unlike the pathway analyses of potential disease-modifying proteins in AD where
all significant, differentially expressed proteins are taken into account, the development
of a validatory and high-throughput test requires only those biomarkers with high confi-
dence identification being taken forward. Figure 2 shows the 29 high-confidence proteins
identified in this Rank A group that were taken forward for evaluation from the discovery
analyses. These potential biomarkers were augmented into our in-house neuroinflamma-
tory targeted proteomic panel [28], which was constructed from a mixture of literature
reviews, known biomarkers of neurodegeneration and inflammatory factors. Therefore,
a total of 88 protein biomarkers were developed into a scheduled, 17 min, multiplexed
and targeted proteomic test. This panel of potential hypothesis-driven and hypothesis-
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generated biomarkers were then analysed in a total of 21 patients which constituted of
9 individuals with AD and 12 healthy, age-matched controls.
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Figure 1. Discovery urine proteomics of AD versus healthy age-matched controls. (A) Volcano plot
showing the nominally differentially expressed (p < 0.05) proteins in blue and non-significantly
different proteins in red. Ingenuity pathway analyses of those proteins observed to have differential
expression in the urine of AD patients versus normal, age-matched controls; (B) Canonical pathway
analysis demonstrating that significant differences are observed in lipid and cholesterol homeostasis
which is a hallmark of AD; (C) Disease and functional analyses clearly identifies that there is signifi-
cant changes in biomarkers involved in amyloidosis and AD, indicating that proteins present in the
urine identify underlying disease processes occurring in the brain.

2.3. Individual Biomarkers and Univariate Analyses for the Diagnosis of AD

Out of the total of 88 biomarkers analysed in the multiplexed validatory test, we could
detect reliably 61 proteins. We applied elastic net regression to pinpoint the most influential
proteins in the discrimination between AD and healthy controls. We identified a total of five
proteins which demonstrated potential for being put forward as possible biomarkers for
AD (Figure 3a). These included the four proteins, REG1B, VCAM1, TNF-beta and MIEN1,
which were observed to be present in lower concentrations in AD urine. The protein,
ABAC7, was the only potential biomarker to be elevated, with a 1.5-mean fold increase in
concentration in the AD group compared to the controls (Figure 3a,b). However, of all the
biomarkers only MIEN1 demonstrated a statistically significant change in concentration
compared to the control group (Figure 3b). The biomarkers ABAC7 and MIEN1 (FC = −1.8)
which demonstrated the greatest fold-change relative to one another, was further evaluated
by looking at their relationship to one another in each patient. By ratioing the biomarkers
MIEN1/ABAC7, we were able to further increase the statistical significance between the
AD and controls even further (Figure 3c, p = 0.01).
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Figure 3. (a) Identification of the five proteins that demonstrated significant elevation or were present
in lower amounts in the urine of patients with a confirmed AD diagnosis (MIEN1, TNF-beta, VCAM1,
REG1B and ABCA7). (b) Univariate analyses of the two proteins most up- and down regulated,
ABCA7 and MIEN1, respectively, with MIEN1 being statistically significantly elevated (p = 0.03).
(c) By looking at the ratio of the biomarkers ABAC7 and MIEN1 to one another, increases the statistical
significance between AD and controls even further (p = 0.01). The whiskers show the minimum and
maximum and the boxes show the 25th percentile, the median and the 75th percentile. Values outside
1.5 fold the interquartile are represented by dots. x represents the mean.



Int. J. Mol. Sci. 2023, 24, 13758 6 of 14

2.4. Multilinear Regression and Machine Learning Analyses of Multiple Biomarkers for Improving
the Specificity and Sensitivity for Diagnosing AD

To improve accuracy and sensitivity of the assay, we modelled the proteins using
linear regression (Figure 4). The AD and control samples were initially assessed using
the significantly different protein MIEN1 alone; prediction of the samples in the model
demonstrated an overall classification accuracy of 71% (56% sensitivity). To evaluate if
the classification strength could be improved by using more predictors, we included the
proteins which had been chosen in the elastic net feature selection performed to find the
most relevant proteins to discriminate between AD and controls. This rendered us with a
model including MIEN1, TNFB, VCAM1, REG1B and ABCA7. These five proteins were
applied as predictors in a multiple linear regression model and when the samples were
once more predicted, the overall classification accuracy was 86%, demonstrating a 15%
improvement as compared to using the protein MIEN1 alone. Given the small sample size,
we opted for performing k-fold cross validation on the model, where we utilised ten splits
of the data. This resulted in six out of nine samples being accurately predicted as AD, and
eight out of twelve samples accurately predicted as control.
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analyses to increase accuracy and sensitivity of the test by using four biomarkers in addition to the
best performing biomarker (MIEN1).

3. Discussion

In this exploratory study, we used untargeted proteomic profiling to identify proteins
that were differentially expressed in affected AD patients compared to unaffected control
urine. We were able to detect differences in a number of proteins known to be implicated
in AD pathology and related biological pathways. Furthermore, we developed a targeted
proteomics panel and validated our findings in an independent cohort. Our findings
suggest that this approach could have potential as a test in clinical practice for first tier
screening or potentially to monitor new treatments. Since many of the proteins we identified
are implicated in brain amyloidosis, a pathophysiological process which predates symptom
onset in AD by ~25 years [29], we postulate that this biomarker panel has potential as an
early pre-symptomatic screening tool for AD.

Finding biomarkers for early and accurate diagnosis of AD has become an urgent
priority in the dementia field, now that three immunotherapies against fibrillar amy-
loid have demonstrated utility in slowing cognitive progression in mild to moderate
AD [30,31]. Inclusion in these studies requires demonstration of amyloidosis and tauopa-
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thy in the brain, either by cerebrospinal fluid analysis or PET scanning, and this is likely
to remain the gold standard for providing accurate individual biomarkers support for a
diagnosis of AD. However, the infrastructure for carrying out LPs and PET scans in the
general population is very limited [32]. Tools for screening and risk stratification in the
general population will be extremely important, particularly in countries without access
to advanced diagnostics for dementia [33,34]. Blood biomarkers are currently reasonably
advanced in their development, with plasma P-tau 217 (particularly the P-T217/T217
ratio [35,36]) proving to be a strong predictive marker of amyloid burden and tau depo-
sition, in real life populations [37,38] and plasma Aβ42/40 ratio allowing for reasonable
separation of AD from non-AD individuals [39]. Yet, one limitation of blood biomarkers
is the need for strict pre-handling protocols so that samples are centrifuged rapidly to
avoid the effects of proteases degrading proteins of interest [40]. This is likely to limit
its use in regional memory clinics and geographically isolated healthcare environments.
It is also likely to be a barrier for home self-testing. In this study, we collected urine
from a mid-stream sample. No early aliquoting or centrifugation was required at the
point of collection, and very limited instructions were provided to participants, even
those with moderately severe cognitive impairment. This means that collection is likely
to be feasible across populations in developed and developing countries, making it an
attractive screening tool and urine should be considered a more ‘liquid gold’ biofluid
rather than just a waste product.

Using a univariate analysis only one protein, migration and invasion enhancer 1
(MIEN1), demonstrated a clear and statistically significant change in expression between
the AD and control groups. MIEN1 is an intracellular protein located to the cytosol and
centriole, that is expressed in many tissues but has a particularly high expression in the basal
ganglia and cerebellum of the brain. MIEN1 is known to be a negative regulator of apoptosis
and a positive regulator of cell migration and has gained significant interest in its role in
breast cancer. However, MIEN1 variants have also been associated with early onset AD [41].
The exact mechanism of action is unclear, but MIEN1 is postulated to both interact with
glutathione peroxidase and plays a significant role in the regulation of apoptosis through
control of caspase 3 (CASP3). Variants in both these proteins are known to be associated
strongly with AD, in particular CASP3 which cleaves beta amyloid 4a protein which is
strongly associated with neuronal cell death observed in AD patients. Although individual
statistical significance was not achieved with the other elevated proteins identified in this
study, we were able to demonstrate that the diagnostic classification accuracy increases
by 15% when utilising a panel of five proteins as compared to one protein alone. This
highlights the strength of a carefully selected biomarker panel to improve the diagnostic
and predictive ability of discriminant models. Our study is limited by the small sample
size, but we anticipate that with increased sample numbers and statistical power, we
could improve classification accuracy. Further, the five predictor proteins are involved in a
range of biological processes that are plausibly relevant to AD pathophysiology, generally
implicating lipid metabolism and inflammation pathways. Metabolomic-wide studies
(MWAS) have demonstrated utility in elucidating the molecular mechanisms by which
individual genes confer risk for AD. A recent study demonstrated that variations in ABCA7
are linked to increased risk of AD through altered sphingolipid metabolism [42]. Using
disease and functional analyses, we have identified changes in a number of biomarkers
involved in amyloidosis and AD including PLD3. Importantly, a previous urine proteomics
study found that PLD3 is associated with AD [43]. Future MWAS studies may compliment
the current study and other proteomics studies in the manipulation of therapeutic targets
for AD.

A strength of this study is the well-phenotyped clinical characterisation of the dis-
covery cohort, carried out at a national specialist centre, with diagnosis supported by
imaging and CSF biomarkers. Although the number of individuals was small, we were
able to provide an independent discovery and validation cohort. Unusually we had access
to ‘ideal’ healthy controls who were the relatives of patients with AD. This meant that
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they were age matched, did not have cognitive symptoms, and agreed to have a LP as
part of another observational study [44], which allowed us to confirm that they did not
have biochemical evidence of brain amyloid pathology. Conversely, the validation cohort
had limited clinical information, based on the restrictions of the ethics under which these
individuals were recruited and therefore the individuals included could be at a different
stage of the disease. However, the results obtained in this work are extremely promising
and should be replicated in much larger cohorts of samples from patients across a range of
neurodegenerative diseases and across AD disease course, especially during the pre-clinical
phase to understand the assay’s potential as a pre-symptomatic screening tool.

In summary, we have identified and validated differences in the urinary proteome
between patients diagnosed with AD and healthy age-matched controls. The use of
a machine learning approach in combination with a multiplexed panel of biomarkers,
allowed us to improve the power of the assay to correctly identify the majority of AD
patients analysed in this study. This provides proof of concept that a multiplex of AD-
related proteins can be detected in urine using mass spectrometry and demonstrates the
potential utility of high-throughput panels of urinary biomarkers to aid clinical diagnosis
of AD.

4. Materials and Methods
4.1. Discovery Cohort

Individuals who fulfilled clinical research criteria for AD were prospectively recruited
from a specialist cognitive disorders clinic as previously described [44]. All individuals
underwent mini-mental state examination (MMSE; [45]) brain MRI, detailed neuropsycho-
logical assessments and had a LP. Controls were prospectively recruited and were age and
sex matched (spouses or friends of those with AD), had no cognitive complaints, MMSE
scores ≥ 28 and non-AD CSF profiles. Apolipoprotein E (APOE) ε2/ε3/ε4 genotype status
was determined as previously described [44].

4.2. Validation Cohort

Individuals who fulfilled consensus criteria for AD were prospectively recruited from
a diagnostic LP clinic. We included individuals who fulfilled clinical research criteria for
AD [46], but CSF and other clinical data were not available for inclusion in this study.
Controls were accompanying family or friends and reported no cognitive problems. Only
basic demographic data were collected.

4.3. CSF Sample Collection, Pre-Analytical Handling, and Analysis

CSF samples were prospectively collected in the discovery cohort according to a
standard operating procedure. Aβ1–42, T-tau, and P-tau assays were performed in batches
according to local laboratory standard operating procedures to achieve inter-day coefficients
of variation (CV) < 10% as previously described [47].

4.4. Urine Sample Collection and Pre-Clinical Handling

Individuals were asked to provide a midstream sample of urine during their research
visit and to fill a 100 mL polypropylene screw-top container (Starstedt, product code:
75.1354.001). Samples were collected between 0800 and 1200. Samples were collected at
room temperature and transferred directly to a −80 freezer within 2 h.

4.5. Urinary Creatinine Measurements

Creatinine concentration was measured for each urine sample using mass spectrometry
as previously described [48].

Discovery proteomics: Samples were thawed at room temperature and vortexed for
five seconds prior to aliquoting of 2 mL urine into 5 mL centrifuge tubes from Eppen-
dorf. The 2 mL aliquots were centrifuged at room temperature at 3761× g for 30 min to
separate the urinary sediment from solution using a Sorvall Legend RT centrifuge. The
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supernatant was transferred to Amicon Ultra-4 10 kDa molecular weight cut-off filters
from Merck Millipore (Burlington, MA, USA) and 2 mL Milli-Q water was added to give a
final volume of 4 mL. To concentrate the urinary proteins, the samples were centrifuged
at room temperature for one hour at 4444× g (Sorvall Legend RT). The concentrate was
transferred to a 1.5 mL centrifuge tube (Eppendorf). To ensure maximum recovery, the
filters were washed with 100 µL 50 mM ammonium bicarbonate which was pooled with
the concentrate. 800 µL ice-cold acetone was added to the pooled concentrate and the
samples were vortexed for five seconds before overnight incubation in −20 ◦C. To separate
the supernatant from the protein pellet, the samples were centrifuged for 10 min at +4 ◦C
and 16,900× g using a Micro-centrifuge 5424 R (Eppendorf). The supernatant was carefully
pipetted off and discarded. The pellet was air-dried in a fume hood for 20 min to evaporate
residual acetone. 100 µL Milli-Q water was added to the samples and the protein pellet
broken up by vigorous vortexing. The samples were thereafter freeze-dried overnight,
followed by tryptic digestion with overnight incubation, solid phase extraction to purify
the peptides and overnight evaporation of solvents [49]. The digested and SPE-cleaned
samples were reconstituted in 50 µL 3% acetonitrile, 0.1% TFA and a peptide assay was
performed. The peptide concentration in the samples was normalised to 1000 ng/µL before
instrumental proteomics discovery analysis by 2D-LC-MS.

The peptides were separated using a 2D-NanoAquity liquid chromatography system
(Waters, Manchester, UK). All samples were fractionated online into ten fractions over a 12-h
period as previously described [50]. After acquisition, data were imported to Progenesis QI
for proteomics (Waters) and the fractions 1–10 were individually processed before all results
were merged into one experiment. The Ion Accounting workflow was utilised, with UniProt
Canonical Human Proteome (exported 2017) as database. The digestion enzyme was set as
trypsin. Carbamidomethyl on cysteines was set as a fixed modification; deamidation of
glutamine and asparagine, oxidation of tryptophan and pyrrolidone carboxylic acid on the
N-terminus were set as variable modifications. The identification tolerance was restricted to
at least two fragments per peptide, three fragments per protein and one peptide per protein.
A false discovery rate of 4% or less was accepted. The individual fractions were combined
in Progenesis, using the multifraction experiment workflow. At least two unique peptides
per protein and an identification confidence score larger than 15 were set as thresholds for
classifying a protein as a confident identification.

4.6. Development of a High-Throughput, Multiplexed and Targeted Proteomic Assay

Potential biomarkers and those proteins demonstrating significant changes in protein
expression were further subdivided and ranked into three groups A, B and C. Rank A
biomarkers consisted of protein identifications where at least two unique peptides were
observed and had a confidence score higher than 15. Other proteins were ranked B by
having at least two unique peptides were identified/confidence score higher than 15, and C
ranking indicates that one unique peptide was observed and the confidence score was lower
than 15. All proteins, regardless of confidence rank, were then included in bioinformatic
analyses where we looked for statistically significant changes in expression and fold change.
However, only proteins ranked as A and identified by this high stringency analysis, thus
more likely to better and more robust biomarkers, were taken forward for validation using
a targeted proteomic approach.

The sample cohort for the targeted validation study was prepared using the same
method as the discovery cohort but using 4 mL of urine and with 150 ng whole protein
ENO1 (yeast) added as an internal standard to account for losses during sample preparation
and for quantitation. The concentrated, digested and SPE-cleaned urine samples were
reconstituted in 50 µL 3% acetonitrile, 0.1% TFA, containing 0.1 µM of stable heavy isotope
labelled peptides or ‘AquaPeptides’ (ALDOA, C3, GSTO1, RSU1 and TSP1) prior to analysis
by UPLC-MS/MS. The analytical settings have been described previously [28]. The MRM
method consisted of 189 unique peptides and was split over two injections to ensure
adequate acquisition of the transitions. A table detailing MRM transitions is available
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in Supplementary Table S2. After acquisition, data were peak picked using an in-house
developed Python-based guided user interface (GUI) and peak picking application [51] or
the MassLynx (version 4.1) module TargetLynx (Waters). In the GUI application workflow,
the raw instrument files were converted to text files using the application MSConvert from
ProteoWizard [52] and imported to the application. Peaks were aligned if necessary, and
thereafter integrated. When TargetLynx was used, data were imported to the application
and quantitative methods were created and applied to the data. The targeted raw data are
available via the Panorama repository https://panoramaweb.org/AD_Urine_Proteomics.
url (accessed on 27 August 2023). A complete summary of the workflow and methodology
is described in Figure 5.
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4.7. Statistical Analysis

Most of the statistical analyses were performed in Python (version 3.6) [53]. The
proteins detected in the discovery analysis transformed to normality using a Box-Cox
transformation (boxcox) from SciPy’s stats package (version 1.11.0). Student’s t-test with a
nominal p-value threshold of 0.05 was applied to determine differential protein expression
between the groups. Correlation analyses were performed using Pearson correlation (SciPy).
The data were visualised using the Seaborn library (version 0.12.2) and the multivariate
tool principal component analysis in the software SIMCA, version 17 (Umetrics Sartorius
Stedim, Umeå, Sweden).

Linear regression models of proteins analysed in the targeted workflow were built
using Scikit-learn (version 1.2.2). Feature selection was performed using a 5-fold cross
validated elastic net regression (Scikit-learn) to pinpoint the variables of greatest importance
to discriminate between AD and control samples. A multiple linear regression model was
built using the panel of selected proteins. Cross validation was performed using KFold
cross validations from Scikit-learn with ten splits of the data.

4.8. Pathway Analysis

The proteins expressing a nominally significant difference (p < 0.05) between the
AD and the control groups were investigated using the expression analysis workflow
in Ingenuity Pathway Analysis (Qiagen, Venlo, The Netherlands). To determine up- or
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downregulation of a protein in the AD group, the average fold-change compared to the
control group was calculated.

4.9. Ethics

Ethical approval was obtained from the National Hospital for Neurology and Neuro-
surgery Research Ethics Committee (12 LO 1504, Dec 2012, Queen Square ethics committee)
and written informed consent was obtained from all participants.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms241813758/s1.
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