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A Closed-form Expression for the Gaussian Noise
Model in the Presence of Raman Amplification

H. Buglia, M. Jarmolovičius, L. Galdino, R.I. Killey, and P. Bayvel

Abstract—A closed-form model for the nonlinear interference
(NLI) in Raman amplified links is presented, the formula ac-
counts for both forward (FW) and backward (BW) pumping
schemes and inter-channel stimulated Raman scattering (ISRS)
effect. The formula also accounts for an arbitrary number of
pumps, wavelength-dependent fibre parameters, launch-power
profiles, and is tested over a distributed Raman-amplified system
setup. The formula is suitable for ultra-wideband (UWB) optical
transmission systems and is applied in a signal with 13 THz
optical bandwidth corresponding to transmission over the S-
, C-, and L- band. The accuracy of the closed-form formula
is validated through comparison with numerical integration of
the Gaussian noise (GN) model and split-step Fourier method
(SSFM) simulations in a point-to-point transmission link.

Index Terms—Ultra-wideband transmission, Raman amplifi-
cation, S+C+L band transmission, closed-form approximation,
Gaussian noise model, nonlinear interference, nonlinear dis-
tortion, optical fiber communications, inter-channel stimulated
Raman scattering

I. INTRODUCTION

TO cope with the exponential growth of data transmission
required by internet services such as high-definition video

streaming, cloud computing, artificial intelligence, Big Data
and the Internet of Things, new technologies such as UWB
transmission and space-division multiplexing (SDM) have
been widely explored in recent years [1]–[3]. For UWB trans-
mission systems, exploring the low-loss wavelength window
of a silica-based optical fibre, as shown in Fig. 1, requires
the utilisation of new amplifier technologies in addition to
Erbium-doped fibre amplifiers (EDFAs). Among these, we can
cite Thulium and Bismuth doped fibre amplifiers (TDFAs and
BDFAs), semiconductor optical amplifiers (SOA) and Raman
amplifiers.

Recently, a wide range of works has shown the benefits of
using Raman amplification (RA) to achieve higher through-
puts [4]–[13]. RA can be divided into two types, namely
distributed RA and discrete RA. For the former, the pumps
are injected into the transmission fibre, while for the latter a
separate fibre is used as the amplification stage. In both cases,
the pumps interact with the signal to provide the desired signal
amplification.
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Fig. 1. Attenuation coefficient (a) and Raman gain spectrum (b) of an ITU-T
G652.D fibre.

Together with new amplifier technologies, the key goals in
optical network design are to maximise system throughput and
introduce intelligence in the network, delivering capacity when
and where it is needed [14], [15]. To that purpose, real-time
estimation of the UWB system performance is essential, as
it enables efficient and rapid system design, online network
optimisation routines and virtualisation of the physical layer.

Such real-time prediction of UWB optical fibre transmission
systems can be achieved via closed-form expressions of the
GN model and its extensions [16]–[18]. This model offers a
simple way of estimating the fibre NLI by treating it as additive
Gaussian noise. Numerous closed-form expressions have been
proposed to date [19]. Of interest for UWB transmission
systems are closed-form expressions for the GN model in the
presence of ISRS effect [18], namely ISRS GN model. Closed-
form expressions of this model were derived in [20]–[28].

This work focuses on the derivation of a closed-form
formula to estimate the NLI in Raman-amplified links. Apart
from [24], [25], the remaining closed-form expressions are
valid or tested for lumped-amplified links only. Despite the
closed-form formula in [24], [25] being valid and tested for
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Raman amplified links, it is limited to FW pumping schemes
and was tested only over C-band systems. A closed-form
formula limited to BW pumping schemes can be found in [29],
however, it is only valid for C-band systems and limited to
2nd order Raman amplification, i.e, the utilisation of two or
fewer pumps.

In this work, we developed a general closed-form expression
of the ISRS GN model [18] supporting both FW-RA and
BW-RA, ISRS, valid for arbitrary-order RA, i.e, an arbitrary
number of pumps. This was enabled by deriving for the first
time a semi-analytical solution to model the signal profile
in the presence of RA and ISRS. The proposed closed-form
formulation is valid for Gaussian constellations, and in this
work is tested using a distributed RA setup. Its accuracy is
verified with numerical integration of the ISRS GN model
and SSFM simulations.

The closed-form expression presented in this work was first
published in [30]. In this work, we extensively discuss its
validation and present all the mathematical derivations used
to obtain it. We also include a complete discussion on the
semi-analytical approach used to obtain an accurate estimation
of the fibre signal profile evolution along the fibre distance.
This work together with [30] represents the first closed-form
expression of the GN model supporting FW-RA and BW-RA
in the presence of ISRS.

II. THE SIGNAL PROFILE EVOLUTION

This section shows the derivation of the semi-analytical
expression for the signal power evolution along the fibre
distance in the presence of RA and ISRS. The second part
of this section shows the accuracy of the utilisation of the
proposed approach.

A. The derivation of the closed-form expression for signal
profile evolution

For NLI estimation expressions based on regular perturba-
tion analysis, such as the GN model and its extensions [16]–
[18], the estimation of the NLI interference is dependent on the
signal power profile evolution along the optical fibre distance.
Because of this, a fundamental step in deriving any closed-
form expression for NLI estimation is to first derive a closed-
form expression for the signal power profile evolution.

In the case of C-band systems, such an expression is trivial
as the signal power evolution is only loss-dependent [16]. The
situation is more tricky in the presence of ISRS as the power
of each channel interacts with one another and a set of coupled
differential equations must be solved. Analytical expressions
for this case were derived in [31], [32]. These expressions
are used in [21] (Eq. 16 and 17) to derive a semi-analytical
solution of the signal power profile evolution. The solution
is semi-analytical because it is further optimised to correctly
reproduce the solution of the coupled differential equations.

The situation is even more complicated in the case of RA,
whereas besides the channel-channel interactions, pump-signal
and pump-pump interactions must also be considered, not only
in the forward direction but also in the backward one. Indeed,
for the case of RA and ISRS, the solution of the so-called

coupled differential Raman equations in the presence of RA
must be solved, and it is given by
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Forward + Backward Raman Amplification

Fig. 2. Per-channel launch power evolution along the fibre distance for (a)
FW-RA (b) BW-RA and (c) FW+BW-RA.

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3315127

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on September 21,2023 at 10:27:32 UTC from IEEE Xplore.  Restrictions apply. 



3

TABLE I
PUMPS’ POWER AND WAVELENGTH ALLOCATION WHICH YIELDS THE POWER PROFILES SHOWN IN FIG 2.

E-band S-band
Wavelength [nm] 1402.1 1408.7 1415.4 1422.1 1428.8 1435.7 1442.6 1449.6 1456.6 1463.7 1485.4

Forward Raman Pump Scenario
FW pumps’ power at z = 0 [mW] 150.9 331.3 161.2 119.5 34.3 35.8 30.4 25.7 - 63.0 17.2

Backward Raman Pump Scenario
BW pumps’ power at z = L [mW] - 668.7 64.6 167.7 14.3 58.2 45.3 50.8 - 13.4 58.5
BW pumps’ power at z = 0 [µW] - 203.9 40.0 200.9 30.7 198.7 225.6 350.0 - 186.4 5235

Forward + Backward Raman Pump Scenario
FW pump power at z = 0 [mW] - - - - - - - - - - 393.32

BW pumps’ power at z = L [mW] 297.79 123.07 130.92 184.78 - 80.68 17.88 - 24.23 27.41 -
BW pumps’ power at z = 0 [µW] 53.9 43.7 96.6 263.5 - 327.9 103.9 - 250.8 396.7 -

±∂Pi
∂z

= −
Nch∑

k=i+1

fk
fi
g(∆f)PkPi −

∑
p:fi>fp

fp
fi
g(∆f)PpPi+

+

i−1∑
k=1

g(∆f)PkPi +
∑

p:fi<fp

g(∆f)PpPi − αiPi,

(1)
where, Pi, fi are the power and frequency of the channel
of interest (COI), Pk, fk are the power and frequency of
the remaining WDM channels, Pp, fp are the power and the
frequency of the pumps, gr(∆f) is the polarization averaged,
normalized (by the effective core area Aeff) Raman gain
spectrum for a frequency separation ∆f = |fi − fk|, j = k, p
and αi is the frequency-dependent attenuation coefficient. Note
that the symbol ± represents the pump under consideration,
i.e., + for FW-pump and − for BW-pump configurations. The
pump equations are obtained by replacing i = p in Eq. (1).

The first step in deriving the proposed closed-form expres-
sion for NLI estimation in this paper is to find a semi-analytical
expression for Eq. (1). Semi-analytical approaches were used
in [21], [25], [29], [33] to model specific transmission setups.
However, other types of approaches are also possible, e.g. [34].
In this paper for the first time, we proposed a general semi-
analytical solution to account for any RA setup scenario with
ISRS effect.

To carry this derivation, we based ourselves in [31] and
show the derivation in Appedix A. Let ρ(z, fi) be the signal
profile evolution normalised by the input power profile, i.e,
ρ(z, fi) = P (z,fi)

P (0,fi)
. Thus, a semi-analytical solution of Eq. (1)

is given by

ρ(z, fi) = e−αiz[1− (Cf,iPfLeff +Cb,iPbL̃eff)(fi− f̂)], (2)

where

Leff(z) = (1− e−αf,iz)/αf,i ,

L̃eff(z) = (e−αb,i(L−z) − e−αb,iL)/αb,i ,

L is the span length, αi, αf,i and αb,i are fibre attenuation
coefficients, f̂ is the average frequency of the FW and BW
pumps, Pf , and Pb are the total launch power respectively
from the WDM channels together with any FW pumps, and
the BW pumps, Cf,i and Cb,i is the slope of a linear regression
of the normalised Raman gain spectrum. The proof of Eq. (2)
is given in Appendix A.

The coefficients αi, Cf,i, Cb,i, αf,i, and αb,i are channel-
dependent parameters and matched using nonlinear least-
squares fitting to correctly reproduce the solution of the Raman
differential equations in the presence of RA, which is obtained
by numerically solving Eq. (1). Note that, three different loss
coefficients (αi, αf,i, and αb,i) and two different slopes of
the Raman gain spectrum (Cf,i and Cb,i) are considered -
this enables an increase in the dimension of optimisation
space and is essential for modelling all the RA scenarios. The
parameters αi, Cf,i, Cb,i, αf,i, and αb,i can be interpreted
as modelling respectively the fibre loss, the gain/loss due to
FW-RA and BW-RA together with ISRS and how fast the
channel gain/loss due to the FW-RA and BW-RA together with
ISRS extinguishes along the fibre. This fitting optimisation
overcomes the restrictive assumptions used to derive Eq. (2)
and enables its utilisation in any simulation scenario, such as
any number of pumps, launch power profiles and bandwidths.

A main difference between the semi-analytical approach
proposed here and the one in [21], is the utilisation of
5 optimisation coefficients, against 3 for the latter. The 2
additional coefficients are essential to model BW-RA. Note
that, our approach is valid for arbitrary-order RA, i.e, an
arbitrary number of Raman pumps. The approach is also a
generalisation of [21] as it is also valid for lumped amplifi-
cation - if one sets Cb,i = 0 and f̂ = 0, the semi-analytical
solution for the normalised signal profile shown in [21] is
obtained.

B. Results for signal profile evolution estimation

This section illustrates the utilisation of the semi-analytical
solution proposed in Eq. (2) to reproduce the solution of the
differential Raman equations in Eq. (1).

The transmission setup consists of a WDM signal with
Nch=131 channels spaced by 100 GHz and centred at 1550 nm.
The signal is amplified using distributed RA. Each channel
was modulated at the symbol rate of 96 GBd, resulting
in a total bandwidth of 13 THz (105 nm), ranging from
1500 nm to 1605 nm, corresponding to the transmission
over the S- (1470 nm - 1530nm), C- (1530 nm - 1565nm)
and L- (1565 nm - 1615nm) bands. Gaussian symbols are
considered in the transmission. For both scenarios, the span
length is 80 km and an ITU-T G652.D fibre is considered
with attenuation profile and the Raman gain spectrum shown
in Fig. 1.
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We consider three different simulation scenarios: FW-RA,
BW-RA and FW+BW-RA. A spectrally uniform launch power
profile, where each channel carries -4 dBm, 0 dBm and -2 dBm
is considered respectively for each one of the scenarios. For
all the cases, the number of pumps, and their wavelengths and
powers are chosen based on a ”find minimum of constrained
nonlinear multivariable” optimisation algorithm implemented
in Matlab. Because this paper deals only with the SNRNLI,
this optimisation is based on the received power and pump
powers as the figures of merit (and not the total SNR). In this
algorithm, the cost function considered is

∑
p Pp, such that

the total power of the pumps is minimised. The optimisation
is done over a single span. A nonlinear constraint is also
considered such that the received per-channel launch power
is above a given threshold. Over the E- and S-band we place
15 pumps spaced from 0.5 THz apart and let the algorithm
find the best power allocation. The highest-wavelength pump
was chosen to be 2 THz away from the lowest-wavelength
channel.

Ideal amplification is assumed such that the received power
is equal to the transmitted power. For FW-RA, pumps are
optimised such that at least a quarter of the launch power
is recovered at the receiver, for BW-RA and FW+BW-RA,
pumps are optimised such that at least half of the launch
power is recovered at the receiver. The remaining launch power
can be recovered, for instance, with lumped amplification. An
example of fully recovered launch power using RA can be
found in [30]. For all scenarios, the pumps’ allocation with
non-zero power found by the described algorithm is shown in
Table I.

For the three scenarios, the per-channel power profile along
the distance, i.e, the solution of Eq. (1), are shown in Fig. 2 for
(a) FW-RA, (b) BW-RA and (c) FW+BW-RA cases. Note that,
for the FW-RA lower per-channel launch power is chosen (-
4 dBm) to limit the per-channel-power peak along the distance
to less than 4 dBm as shown in in Fig. 2 (a); for this case, such
high power may be impractical in current deployed systems,
but still, we keep this scenario as a stress-test of the proposed
NLI model.

Our goal is now to reproduce the profiles shown in Fig. 2,
obtained from Eq. (1) using the semi-analytical solution shown
in Eq. (2) after the fitting optimisation routine described in
Sec II-A. For better visualisation, Fig. 3 shows the results for
the worst-performing channel in terms of accuracy between
Eq. (1) and Eq. (2) for (a) FW-RA, (b) BW-RA and (c)
FW+BW-RA.

Note that, for the NLI estimation, the effect of the nor-
malised signal profile for each channel is taken into account
as an integration over the fibre length (see Eq. (8)); this means
that the inaccuracies shown in Fig. 3 have a negligible impact
on the accuracy of the NLI estimation, which is validated in the
next section. This is because, for the FW-RA case (Fig. 3(a)
green), the overestimation of power shown in the first 10 km of
fibre is compensated by an underestimation in the remaining
kilometres, while for the BW-RA case (Fig. 3(b)) the inac-
curacies occur only for reduced-power levels which do not
contribute significantly to the result of the integral in Eq. (8).
Thus, Fig. 3 shows that the proposed fitting strategy enables

reproducing Eq. (1) by using Eq. (2) and accurately capturing
the most impactful contributions to the integral in Eq. (8).

III. THE CLOSED-FORM EXPRESSION FOR THE NLI
ESTIMATION

This section describes the closed-form expression used
to estimate the NLI in the presence of RA. The integral
expressions used as a baseline to derive the closed-form
expression are presented in Sec. III-A. As we will see, these
expressions depend on the normalised signal power profile
evolution ρ(z, fi), which were derived in Sec. II-A. Thus,
Eq. (2) is of fundamental importance to derive the closed-
form expressions shown in Sec. III-B. This section ends with
the application of the closed-form expression in a transmission
system and the verification of its accuracy in Sec. III-C.

Let i indicate the channel index, the nonlinear signal-to-
noise ratio, SNRNLI,i is given by

SNRNLI,i =
Pi

ηn(fi)P 3
i

, (3)

where Pi is the launch power of the COI and ηn(fi) is the
nonlinear coefficient obtained at the end of the nth span. Note
that, as this paper aims to derive a model for NLI noise
in Raman-amplified links, we do not extend our analysis to
include the amplified spontaneous emission noise, which is
left for future work.

A. The Integral Expressions

The integral expressions used to derive the proposed closed-
form expressions are as follows. The nonlinear coefficient
ηn(fi) in Eq. (3), can be rewritten as [21]

ηn(fi) ≈
n∑
j=1

[
Pi,j
Pi

]2
· [ηSPMj (fi)n

ε + ηXPMj (fi)], (4)

where ηSPMj (fi) is the self-phase modulation (SPM) contribu-
tion and ηXPMj (fi) is the total cross-phase modulation (XPM)
contribution to the NLI both generated in the jth span. Pi,j
is the power of channel i launched into the jth span, ε is
the coherent factor [16, Eq. 22]. In Eq. (4), the four-wave
mixing (FWM) contributions to the NLI are neglected, the
SPM is assumed to accumulate coherently along the fibre
spans, while the XPM is assumed to accumulate incoherently
- the accuracy of these assumptions was validated in [21]. For
notation convenience, the j dependence of the SPM and XPM
contribution is suppressed throughout this paper.

The XPM contribution (ηXPM(fi)) in Eq. (4) is obtained
by summing over all COI-interfering pairs present in the
transmitted signal, i.e,

ηXPM(fi) =

Nch∑
k=i,k 6=i

η
(k)
XPM(fi), (5)

where Nch is the number of WDM channels and η
(k)
XPM(fi)

is the XPM contribution of a single interfering channel k on
channel i.
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Fig. 3. Signal power evolution along the fibre distance obtained using the numerical solution of the Raman differential equations in Eq. (1) and the semi-
analytical solution shown in Eq. (2) for (a) FW-RA at 1513.25 nm, FW+BW-RA at 1591.1 nm and (b) BW-RA at 1512.49 nm. In all cases, the results are
shown for the worst-performing channel in terms of accuracy between Eq. (1) and Eq. (2).

The XPM and SPM contributions of a single interfering
channel are given respectively by [21, Eq. 8,9]

η
(k)
XPM(fi) =

32

27

γ2

B2
k

(
Pk
Pi

)2

×

×
∫ Bi

2

−Bi
2

df1

∫ Bk
2

−Bk
2

df2 Π

(
f1 + f2
Bk

)
|µ(f1 + fi, f2 + fk, fi)|2 ,

(6)
and

ηSPM(fi) =
1

2
η
(i)
XPM(fi), (7)

where γ is the nonlinear parameter, Π(x) denotes the rect-
angular function and Bk is the bandwidth of the channel
k. µ(f1, f2, fi) is the so-called link function or FWM effi-
ciency [16], which is given by [18, Eq. 4]

µ (f1, f2, fi) =

=

∣∣∣∣∣
∫ L

0

dζ

√
ρ(ζ, f1)ρ(ζ, f2)ρ(ζ, f1 + f2 − fi)

ρ(ζ, fi)
ejφ(f1,f2,fi)ζ

∣∣∣∣∣
2

(8)

where φ = −4π2 (f1 − fi) (f2 − fi) [β2 + πβ3(f1 + f2)], and
ρ(z, fi) is the normalized signal power profile (see Sec. II-A).
β2 is the group velocity dispersion (GVD) parameter, β3 is
the linear slope of the GVD parameter.

B. The derivation of the closed-form expression

This section is devoted to the calculation of ηn(fi) in
closed-form, which is then used to calculate SNRNLI,i in
Eq. (3). The new closed-form expression supporting RA is pre-
sented. The formula is obtained by using the semi-analytical
solution of the power evolution, obtained in Eq. (2) to derive
a closed-form expression of the NLI.

The first step is to derive a closed-form expression of the
link function shown in Eq. (8). Let

Tf,i = −PfCf,i(fi − f̂)

αf,i

Tb,i = −PbCb,i(fi − f̂)

αb,i

Ti = 1 + Tf,i − Tb,ie−αb,iL

αl,i = αi + l1αf,i − l2αb,i
κf,i = e−(αi+l1αf,i)L

κb,i = e−l2αb,iL

The link function is approximated in closed-form as

µ (f1 + fi, f2 + fi, fi) ≈

≈
∑

0≤l1+l2≤1
0≤l′1+l

′
2≤1

ΥiΥ
′
i

[
(κf,iκ

′
f,i + κb,iκ

′
b,i)(αl,iα

′
l,i + φ2)

(α2
l,i + φ2)(α′2l,i + φ2)

−

−
(κf,iκ

′
b,i + κb,iκ

′
f,i)(αl,iα

′
l,i + φ2)

(α2
l,i + φ2)(α′2l,i + φ2)

cos(φL)+

+
(κf,iκ

′
b,i − κb,iκ′f,i)(αl,i − α′l,i)φ
(α2
l,i + φ2)(α′2l,i + φ2)

sin(φL)

]
, (9)

where Υi is given by

Υi = Ti

(
−Tf,i
Ti

)l1 (Tb,i
Ti

)l2
. (10)

The proof of Eq. (9) is given in Appendix B. The coefficient
Υ′i is respectively the same as the one in Eq. (10) with the
indices l1 and l2 replaced by l′1 and l′2. The same is valid for
the variables α′l,i, κ

′
f,i and κ′b,i.

We now present a closed-form expression for the XPM and
SPM NLI contributions shown in Eqs. (6) and (7), respectively.
Using Eq. (9) as an analytical solution of the link function,
a closed-form expression for the XPM and SPM are given
respectively by

η
(k)
XPM(fi) =

32

27

γ2

Bk

(
Pk
Pi

)2 ∑
0≤l1+l2≤1
0≤l′1+l

′
2≤1

ΥkΥ′k
1

φi,k(αl,k + α′l,k)
×

×

2(κf,kκ
′
f,k + κb,kκ

′
b,k)

[
atan

(
φi,kBi
2αl,k

)
+ atan

(
φi,kBi
2α′l,k

)]
+

+ π

[
−(κf,kκ

′
b,k + κb,kκ

′
f,k)

(
sign

(
αl,k
φi,k

)
e−|αl,kL| +

+ sign

(
α′l,k
φi,k

)
e−|α

′
l,kL|

)
+ (κf,kκ

′
b,k − κb,kκ′f,k)×

×
(

sign(−φi,k) e−|αl,kL| + sign(φi,k) e−|α
′
l,kL|

)]
(11)
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6

and

ηSPM(fi) =
16

27

γ2

B2
i

∑
0≤l1+l2≤1
0≤l′1+l

′
2≤1

ΥiΥ
′
i

π

φi(αl,i + α′l,i)
×

×

2(κf,iκ
′
f,i + κb,iκ

′
b,i)

[
asinh

(
3φiB

2
i

8παl,i

)
+ asinh

(
3φiB

2
i

8πα′l,i

)]
+

+ 4 ln

(√
φiL

2π
Bi

)[
−(κf,iκ

′
b,i + κb,iκ

′
f,i)

(
sign

(
αl,i
φi

)
e−|αl,iL|+

+ sign

(
α′l,i
φi

)
e−|α

′
l,iL|

)
+ (κf,iκ

′
b,i − κb,iκ′f,i)×

×
(

sign (−φi) e−|αl,iL| sign (φi) e
−|α′l,iL|

)],
(12)

where

φi = −4π2 (β2 + 2πβ3fi) ,

φi,k = −4π2 (fk − fi) [β2 + πβ3 (fi + fk)] .

The proof of Eqs. (11) and (12) are given respectively in
Appendix C and D.

Finally, the SNRNLI,i can be calculated analytically by
inserting Eqs. (4), (5), (11) and (12) in Eq. (3). The final
expression accounts for wavelength-dependent fibre parame-
ters and different launch power per channel. Additionally, the
formula is also valid for links made of different span setups
- in that case, all the fibre parameters and per-channel launch
power depend not only on the channel i, but also on the span j.

C. Results for the nonlinear interference estimation

This section shows the validation of Eq. (12) and Eq. (11).
To that end, we consider the transmission system described
in Sec. II-A, i.e, a distributed RA link consisting of a WDM
transmission with Nch=131 channels spaced by 100 GHz and
centred at 1550 nm. Each channel was modulated at the
symbol rate of 96 GBd, resulting in a total bandwidth of
13 THz (105 nm). Gaussian symbols are considered in the
transmission. The span length is 80 km and an ITU-T G652.D
fibre is considered with Raman gain spectrum and attenuation
shown in Fig. 1. Nonlinear coefficient and dispersion param-
eters are γ = 1.16 W−1km−1, D = 16.5 ps nm−1km−1,
S = 0.09 ps nm−2km−1, respectively. A spectrally uniform
launch power profile, where each channel carries -4 dBm,
0 dBm and -2 dBm is considered respectively for FW-RA,
BW-RA and FW+BW-RA (see Sec.II-B). The power profiles
along the fibre distance are shown in Fig. 2 and the pumps’
allocation used for each one of the scenarios is shown in
Table I. Results are obtained for single-span, 3-span and 10-
span transmissions. The amplifiers are assumed to be ideal,
such that the launch power profile is the same at the beginning
of each span and equal to the transmitted power.

The SNRNLI as a function of wavelength is shown in Fig. 4
for (a) FW-RA, (b) BW-RA and (c) FW+BW-RA for the
cases of a single span, 3-span and 10-span transmissions. To
verify the accuracy of the closed-form expression shown in
Eqs. (11) and (12), the SNRNLI is also computed using the
integral ISRS GN model [18] and SSFM simulations. For
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Fig. 4. Nonlinear performance after 1 x 80 km, 3 x 80 km and 10 x 80 km
transmission for (a) FW-RA, (b) BW-RA and (c) FW+BW-RA.

the former, the results are obtained by inserting the power
profiles shown in Fig. 2 in [18, Eq. 4]. For the latter, the same
power profiles from Fig. 2 are used and interpolated along the
fibre distance for each step in the SSFM simulation. To ensure
accurate simulation results, adaptive step sizes with local-error
method [35] was used, where goal local error δG = 10−10

and sequence of 217 Gaussian symbols per channel were
considered. Note that, for all the results, the XPM generated
by the pumps is neglected; as shown in [36], this is a valid
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assumption when the WDM spectra are sufficiently far from
the pumps - in our case, as described in Sec. III-C, the highest-
wavelength pump was chosen to be 2 THz away from the
lowest-wavelength channel, such that these effects could be
neglected. Despite that, the aforementioned effects can be
included in this model by considering the pumps as additional
interfering channels.

Fig. 4 shows the SNRNLI for (a) FW-RA, (b) BW-RA and
(c) FW+BW-RA. It is interesting to note the correlation of
the SNRNLI profile with the power profiles shown in Fig. 2.
Indeed, for the FW-RA case, shown in Fig. 4(a), the high-
power levels in short wavelengths (see Fig. 2(a)), reduce the
SNRNLI, degrading the performance of those channels; on
the other hand, the performance of long-wavelength channels
is higher, due to their reduced power levels, yielding to a
tilt in the SNRNLI profile. For the BW-RA case, shown in
Fig. 4(b) the interaction between fibre attenuation, dispersion
and power profile (see Fig. 2(b)) yields a relatively flat SNRNLI
profile; however, a smooth tilt can still be observed, which
also correlate with the power profile shown in Fig. 2(b) as
high-power levels are observed for the longer wavelengths.
Note that, in general, BW-RA performs better in terms of
SNRNLI when compared with FW-RA case because of the
reduced per-channel power evolution along the fibre. Finally,
for the FW+BW-RA case shown in Fig. 4(c), the increased
power levels at higher wavelengths (see Fig. 2(c)), which is a
result of the FW pumping, degrades the performance of those
channels when compared to the lower wavelengths channels,
where BW pumping dominates. This results in higher SNRNLI
values for channels located in the S-band when compared to
those in the L-band, also yielding a tilt in the SNRNLI profile.

In terms of accuracy, for a single-span FW-RA transmission,
maximum per-channel errors of 0.81 dB and 0.64 dB were
found between the closed-form expression and the integral
ISRS GN model, and between the closed-form expression and
the SSFM simulation, respectively. For the transmission over
3 spans, these errors are respectively 0.78 dB and 0.61 dB. For
the transmission over 10 spans, these errors are respectively
0.74 dB and XX dB. The same analyses for the BW-RA
transmission over a single span yield errors of 0.47 dB and
0.54 dB respectively, while for the transmission over 3 spans,
these errors are both equal to 0.67 dB. Over 10 spans, these
errors are respectively 0.80 dB and 0.68 dB. Finally, the same
analysis for the FW+BW-RA over a single span yield errors
of 0.31 dB and 1.18 dB respectively, for the transmission over
3 spans, these errors are respectively 0.41 dB and 0.65 dB,
and for transmission over 10 spans, these errors are 0.68 dB
and 1.23 dB.

IV. CONCLUSIONS

In this work, we presented a closed-form formula of
the Gaussian noise (GN) model suitable for ultra-wideband
(UWB) transmission systems and tested over a distributed
Raman amplification setup. This formula is the first to account
for any setup of Raman amplification technologies together
with the inter-channel stimulated Raman scattering (ISRS)
effect. The formula is shown to support forward (FW) and

backward (BW) pumping schemes and accurately predict the
nonlinear interference (NLI) for an arbitrary number of pumps
and wavelength-dependent fibre parameters and launch power
profiles. A fundamental step to deriving this closed formula
was to derive a semi-analytical solution to correctly reproduce
the signal power profile evolution along the fibre distance in
the presence of Raman amplification and ISRS effect.

The formula was applied to 13 THz optical bandwidth
corresponding to transmission over the S-, C-, and L- bands.
In terms of accuracy, among all of the scenarios tested in
this work, the formula showed maximum errors of 0.81 dB
and 1.23 dB when compared to the integral model and slit-
step Fourier method (SSFM) simulations. Additionally, the
formula is capable of estimating the NLI in only a few seconds,
where the majority of the computational time was required to
numerically solve the differential Raman equations. Because
of the speed of computation, the formula is suitable for real-
time estimation of the NLI and can be applied as an enabling
tool for future intelligent and dynamic optical fibre networks.

DATA AVAILABILITY STATEMENT

The data that support the figures in this paper are
available from the UCL Research Data Repository
(DOI:10.5522/04/21696401), hosted by FigShare.

APPENDIX A
DERIVATION OF THE ANALYTICAL SOLUTION OF THE

NORMALIZED SIGNAL POWER PROFILE.

This section shows the derivation of Eq. (2). We stress that
most of the assumptions made in this section is not exact,
however, this is not an issue as this equation is used as a semi-
analytical solution of the Raman equations and the coefficients
will be fitted and optimised.

We start with Eq. (1). The derivation is analogous to [32].
We start by considering a constant attenuation α for all the
channels and neglecting the energy that is lost whenever a
high-frequency photon is transformed into a low-frequency
photon, i.e, fkfi ≈ 1 and fp

fi
≈ 1. Also, we assume the triangular

approximation of the Raman spectrum, i.e, gr(∆f) ≈ Cr∆f ,
where Cr is the slope of the linear regression (normalized
by the effective core area Aeff) and ∆f is the frequency
separation between the channels and between the channels and
the pumps. Under these assumptions, Eq. (1) can be written
as

∂Pi
∂z

=

=

Nch∑
k=1

Cr(fk − fi)PkPi +

Np∑
p=1

Cr(fp − fi)PkPi − αPi =

= CrPi

Nch∑
k=1

(fk − fi)Pk +

Np∑
p=1

(fp − fi)Pk

− αPi.
(13)

We now write the coupled differential equations into one equa-
tion, by replacing the Nch signals and Np pumps by a signal
and pump density spectrum. Also, we replace the summation
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by an integration over the entire frequency spectrum of the
signal and the pumps. Thus, Eq. (13) can be written as

dP (z, f)

dz
=

= CrP (z, f)

(∫ fch,max

fch,min

(Λch − f)P (z,Λch) dΛch +

+

∫ fp,max

fp,min

(Λp − f)P (z,Λp) dΛp

)
− αP (z, f),

(14)

where fch,max, fch,min, fp,max and fp,min are respectively
the maximum and minimum frequencies of the channels, and
the pumps. Dividing both sides of Eq. (14) by P (z, f) and
taking the derivative with respect to the frequency f , we have

d

df

(
dP (z, f)/dz

P (z, f)

)
= −Cr×

×


∫ fch,max

fch,min

P (z,Λch) dΛch︸ ︷︷ ︸
Ptotal,ch

+

∫ fp,max

fp,min

P (z,Λp) dΛp︸ ︷︷ ︸
Ptotal,p


(15)

Note that, the integrals represent the total launch power
(P (z)), i.e., a sum of the channel (Ptotal,ch), the forward pump
(Ptotal,fw) and backward pump (Ptotal,bw) launch powers.
Moreover, Ptotal,ch and Ptotal,fw must decay with e−αz , while
Ptotal,bw decays with e−α(L−z). Thus, Eq. (15) can be written
as
d

df

(
dP (z, f)/dz

P (z, f)

)
= −CrP (z) =

= −Cr (Ptotal,che
−αz + Ptotal,fwe

−αz + Ptotal,bwe
−α(L−z)).

(16)
In order to apply this equation in more general scenarios and
overcome the assumptions done so far, we define separate
wavelength-dependent attenuation to model channels together
with FW pumps (αf,i) and together with BW pumps (αb,i).
These parameters can be interpreted as modelling respectively
how fast the channel gain/loss due to the FW-RA and BW-RA
together with ISRS extinguishes along the fibre. Similarly, we
define separate wavelength-dependent Cr, i.e, Cf,i and Cb,i,
respectively for channels together with FW pumps and BW
pumps. These two parameters model respectively the gain/loss
due to FW-RA and BW-RA together with the ISRS effect.
Note that, a more rigorous approach would be to define 3
wavelength-dependent Cr and α for each one of the terms
on the right-hand side of Eq (16) (as they occupy different
locations of the frequency spectrum); however, as ISRS + FW
pumping have effectively the same effect (a power transfer
from pumps/channels to the COI) they can be modelled joint,
resulting in a total of 2 wavelength-dependent Cr and α. Thus,
by letting Pf = Ptotal,ch + Ptotal,fw and Pb = Ptotal,bw,
Eq. (16) is rewritten as

d

df

(
dP (z, f)/dz

P (z, f)

)
=

= −(Cf,iPfe
−αf,iz + Cb,iPbe

−αb,i(L−z)). (17)

Now, we integrate with respect to z and f . For the integration
in f , note that, the WDM spectra and the pumps occupy
different parts of the frequency spectrum. This fact massively
complicates the derivation of the closed-form expression. To
tackle this, without loss of generality, let us consider a new
central frequency (common to the WDM spectra and the
pumps) as the average frequencies of the pumps, which we
denote by f̂ (other choices are also possible). Thus, integrating
over z and f yields

P (z, f) = e−[Cf,iPfLeff(f−f̂)+Cb,iPbL̃eff(f−f̂)]+A(z)+B(f),
(18)

where Leff = 1−e−αf,iz
αf,i

and L̃eff = e−αb,i(L−z)−e−αb,iL
αb,i

,
and A(z), B(f) arbitrary functions which their values de-
termined by requiring that P (z = 0, f) = P (0, f), which
immediately implies that eB(f) = P (0, f), and, by requiring∫
P (z, f) df = P (z), the value of eA(z) is obtained. The

evolution of the power P (z) is assumed to be modelled as
P (z) = Ptotale

−αiz . This is not strictly true as a power gain at
the end of the fibre is expected because of the presence of BW
pumps. However, in addition to facilitating the derivation of
the closed-form expression, this assumption is also overcome
by the wavelength-dependent fitting parameters αb,i and Cb,i,
which are responsible for giving gains at the end of the fibre.
Thus, Eq. (18) is written as

ρ(z, f) =
P (z, f)

P (0, f)
=

=
Ptotale

−αize−(Cf,iPfLeff+Cb,iPbL̃eff)(f−f̂)∫
GTx(ν)e−(Cf,iPfLeff+Cb,iPbL̃eff)νdν

, (19)

where GTx(f) is the input signal spectra including the
WDM channels and the pumps and Ptotal is the sum of its
launch power. Moreover, the coefficient α is also considered
a wavelength-dependent loss αi. Let xi = Cf,iPfLeff +
Cb,iPbL̃eff. By assuming that the input power GTx(f) is
uniformly distributed over the optical bandwidth B with power
Ptotal we can write,∫

GTx(ν)e−xiνdν =
2Ptotal sinh

(
xiB
2

)
xiB

. (20)

Replacing Eq.(20) in Eq.(19) leads to

ρ(z, f) = e−αiz
xiBe

−xi(f−f̂)

2 sinh
(
xB
2

) . (21)

Finally, by expanding Eq. (21) using a 1st order Taylor
approximation around the point xi = 0, yields

ρ(z, f) = e−αiz[1− x(f − f̂)], (22)

and setting f = fi, Eq. (2) is obtained concluding the proof.
In the derivation of Eq. (22), 5 wavelength-dependent

coefficients are introduced, namely, αi, αf,i, αb,i, Cf,i and
Cb,i. These coefficients are chosen to overcome the restric-
tive assumptions used to derive Eq. (22) and to enable a
simplified derivation of the closed-form expression in the
following Appendices. The restrictive assumptions overcome
by the aforementioned fitting parameters are: the constant
attenuation α for all the channels; the energy that is lost
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whenever a high-frequency photon is transformed into a low-
frequency photon; the triangular approximation of the Raman
spectrum; the different spectrum locations of FW pumps,
BW pumps and channels through a new central frequency
of the spectrum f̂ and the joint consideration of the FW
amplification and ISRS effect; the power evolution along the
distance P (z) = Ptotale

−αiz; the spectrally uniform input
power profile GTx(f); and the 1st order Taylor approximation.

APPENDIX B
DERIVATION OF THE LINK FUNCTION.

This section shows the derivation of Eq. (9). Let xi(ζ) =
Cf,iPfLeff + Cb,iPbL̃eff, τi(ζ) = 1 − xi(ζ)(fi − f̂) with
Leff(ζ) = 1−e−αf,iζ

αf,i
and L̃eff(ζ) = e−αb,i(L−ζ)−e−αb,iL

αb,i
. The

first step is to insert Eq. (19) in Eq. (8) and use the approxi-
mation in Eq. (20) yielding

µ (f1, f2, fi) =

=

∣∣∣∣∣
∫ L

0

dζ e−αiζ
xiBe

−xi(f1+f2−fi−f̂)

2 sinh
(
xiB
2

) ejφ(f1,f2,fi)ζ

∣∣∣∣∣
2

.

(23)

Now, we consider the link function for the XPM contribu-
tion in Eq. (6), i.e, µ (f1 + fi, f2 + fk, fi) (the derivation for
the link function for SPM is analogous and one simply needs
to replace fk = fi and the indices k = i). Assuming that the
frequency separation between channels k and i (∆f = fk−fi)
is much larger than half of the bandwidth of channel k
(|∆f | � Bk

2 ), we can assume that f2 + ∆f ≈ ∆f . Also,
we assume that the signal power profile is constant over the
channel bandwidth (see Appendices in [21] for additional
details). Then, using the 1 st order Taylor approximation shown
in Eq. (22), yields to

µ (f1 + fi, f2 + fk, fi) =

=

∣∣∣∣∣
∫ L

0

dζ e−αkζτk(ζ)ejφ(f1+fi,f2+fk,fi)ζ

∣∣∣∣∣
2

. (24)

The term τk(ζ) can be written as

τk(ζ) = 1−
[(

Cf,kPf
αf,k

)(
1− e−αf,kζ

)
+

+

(
Cb,kPb
αb,k

)
e−αb,kL

(
eαb,kζ − 1

)]
(fk − f̂). (25)

Let Tf,k =
−PfCf,k(fk−f̂)

αf,k
, Tb,k =

−PbCb,k(fk−f̂)
αb,k

,
Tk = 1 + Tf,k − Tb,ke−αb,kL. Thus, the term τk(ζ) is written
as

τk(ζ) = Tk

[
1− Tf,k

Tk
e−αf,kζ +

Tb,k
Tk

e−αb,kLeαb,kζ
]
. (26)

Eq. (26) can be conveniently rewritten in terms of a summation
using identity (57), which will facilitate all the mathematical
derivations,

τk(ζ) = Tk
∑

0≤l1+l2≤1

(
−Tf,k
Tk

)l1 (Tb,k
Tk

)l2
×

× e−(l1αf,kζ+l2αb,kL−l2αb,kζ). (27)

Now, defining

Υk = Tk

(
−Tf,k
Tk

)l1 (Tb,k
Tk

)l2
, (28)

Eq. (27) is written as

τk(ζ) =
∑

0≤l1+l2≤1

Υke
−(l1αf,kζ+l2αb,kL−l2αb,kζ). (29)

Note that Υk is a variable which depends on the indices of
the summation. Now, inserting Eq. (29) in Eq. (24), we obtain

µ (f1 + fi, f2 + fk, fi) =

=

∣∣∣∣∣∣
∑

0≤l1+l2≤1

Υk

∫ L

0

dζ e−(αkζ+l1αf,kζ+l2αb,kL−l2αb,kζ)+jφζ

∣∣∣∣∣∣
2

,

(30)
and solving the integral in Eq.(30) yields to

µ (f1 + fi, f2 + fk, fi) =

=

∣∣∣∣∣∣
∑

0≤l1+l2≤1

Υk
e−(αk+l1αf,k)L+jφL − e−l2αb,kL

−(αk + l1αf,k − l2αb,k) + jφ

∣∣∣∣∣∣
2

. (31)

Now, let define αl,k = αk + l1αf,k − l2αb,k, κf,k =
e−(αk+l1αf,k)L and κb,k = e−l2αb,kL. Eq. (31) can then be
written as

µ (f1 + fi, f2 + fk, fi) =

∣∣∣∣∣∣
∑

0≤l1+l2≤1

Υk
κf,ke

jφL − κb,k
−αl,k + jφ

∣∣∣∣∣∣
2

.

(32)

The last step of the derivation is to calculate the modulus of
Eq. (32). Using the identity (58) we can write Eq. (32) as

µ (f1 + fi, f2 + fk, fi) =

 ∑
0≤l1+l2≤1

Υk
κf,ke

jφL − κb,k
−αl,k + jφ

×
×

 ∑
0≤l′1+l

′
2≤1

Υ′k
κ′f,ke

−jφL − κ′b,k
−α′l,k − jφ

 .

(33)
Finally, performing the multiplication in Eq. (33) together with
the identity (59) and considering the channel fk = fi yields
to Eq. (9), concluding the proof.

APPENDIX C
DERIVATION OF THE XPM CONTRIBUTION.

This section shows the derivation of Eq. (11). We start
by approximating the phase mismatch term in Eq. (8). For
the XPM contribution, let ∆f = fk − fi be the frequency
separation between channels k and i - here the pumps are
also included as additional indices k. Assuming that frequency
separation is much larger than half of the bandwidth of
channel k (|∆f | � Bk

2 ), we can make the assumption that
f2 + ∆f ≈ ∆f . Also, we assume that the dispersion slope
β3 is constant over the channel bandwidth. Thus, the phase
mismatch term can be approximated as [21, Eq. 15],
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φ(f1 + fi, f2 + fk, fi) =

= −4π2f1∆f [β2 + πβ3(f1 + f2 + fi + fk)] ≈
≈ −4π2(fk − fi) [β2 + πβ3(fi + fk)]f1 =

= φi,kf1,

(34)

with φi,k = −4π(fk − fi) [β2 + πβ3(fi + fk)]. The most
impacted channels by this approximation is the ones near the
COI. The error relative to this approximation is given by [21,
Eq. 25].

Now, we consider Eq. (6) giving us the XPM contribution.

For notation brevity, we will omit the factor 32
27

γ2

B2
k

(
Pk
Pi

)2
.

Also, the term Π
(
f1+f2
Bk

)
is neglected - this is equivalent to

approximating the integration domain of the GN model to a
rectangle [16]. Because of the approximation in Eq. (34), φ
no longer depends on f2, and the double integral in (6) turns
to be a single integral. Thus, inserting Eq. (9) in Eq. (6), we
can identify, three terms as follows

η
(k)
XPM(fi) =

∑
0≤l1+l2≤1
0≤l′1+l

′
2≤1

ΥkΥ′k[(κf,kκ
′
f,k + κb,kκ

′
b,k)×

× η(k)XPM,main(fi)− (κf,kκ
′
b,k + κb,kκ

′
f,k)η

(k)
XPM,cos(fi)+

+ (κf,kκ
′
b,k − κb,kκ′f,k)η

(k)
XPM,sin(fi)],

(35)

with

η
(k)
XPM,main(fi) = 2Bk

∫ Bi
2

0

df1
αl,kα

′
l,k + φ2i,kf

2
1

(α2
l,k + φ2i,kf

2
1 )(α′2l,k + φ2i,kf

2
1 )
,

(36)

η
(k)
XPM,cos(fi) =

= 2Bk

∫ Bi
2

0

df1
αl,kα

′
l,k + φ2i,kf

2
1

(α2
l,k + φ2i,kf

2
1 )(α′2l,k + φ2i,kf

2
1 )

cos(φi,kLf1)

(37)

and

η
(k)
XPM,sin(fi) =

= 2Bk

∫ Bi
2

0

df1
(αl,k − α′l,k)φi,kf1

(α2
l,k + φ2i,kf

2
1 )(α′2l,k + φ2i,kf

2
1 )

sin(φi,kLf1).

(38)

In the following, the above three integrals are solved. Eq. (36)
is solving using identity (60) as

η
(k)
XPM,main(fi) =

2Bk
φi,k(αl,k + α′l,k)

×

×

[
arctan

(
φi,kBi
2αl,k

)
+ arctan

(
φi,kBi
2α′l,k

)]
, (39)

Eqs. (37) and (38) do not have analytical solutions in their
current form. In order to derive an analytical solution, we

extend the channel bandwidth Bi → ∞ and solve it using
identities (63) and (64), yielding to

η
(k)
XPM,cos(fi) =

πBk
φi,k(αl,k + α′l,k)

×

×

[
e−|αl,kL| sign

(
φi,k
αl,k

)
+ e−|α

′
l,kL| sign

(
φi,k
α′l,k

)]
(40)

and

η
(k)
XPM,sin(fi) =

πBk
φi,k(αl,k + α′l,k)

×

×
[
e−|αl,kL| sign (−φi,k) + e−|α

′
l,kL| sign (φi,k)

]
(41)

Finally, by inserting Eqs. (39), (40) and (41) in Eq.(35)

together with the pre-factor 32
27

γ2

B2
k

(
Pk
Pi

)2
, Eq. (11) is obtained

concluding the proof.

APPENDIX D
DERIVATION OF THE SPM CONTRIBUTION.

This section shows the derivation of Eq. (12). We start by
approximating the phase mismatch term. We assume that the
dispersion slope β3 is constant over the channel bandwidth.
Thus, the phase mismatch term can be approximated as

φ(f1 + fi, f2 + fi, fi) =

= −4π2f1f2 [β2 + πβ3(f1 + f2 − 2fi)] ≈
≈ −4π2f1f2(β2 + 2πβ3fi) =

= φif1f2,

(42)

with φi = −4π2(β2 + 2πβ3fi).
Now, using Eq. (7) together with Eqs. (6) and (9) with k = i,

and omitting the pre-factor of 16
27

γ2

B2
i

, we can write

ηSPM(fi) =
∑

0≤l1+l2≤1
0≤l′1+l

′
2≤1

ΥiΥ
′
i

[
(κf,iκ

′
f,i + κb,iκ

′
b,i)ηSPM,main(fi)−

−(κf,iκ
′
b,i + κb,iκ

′
f,i)ηSPM,cos(fi)+

+(κf,iκ
′
b,i − κb,iκ′f,i)ηSPM,sin(fi)

]
,

(43)
where ηSPM(fi), ηSPM,cos(fi) and ηSPM,sin(fi) are given respec-
tively by

ηSPM,main(fi) =

=

∫ Bi
2

−Bi2
df1

∫ Bi
2

−Bi2
df2

αl,iα
′
l,i + φ2i f

2
1 f

2
2

(α2
l,i + φ2i f

2
1 f

2
2 )(α′2l,i + φ2i f

2
1 f

2
2 )
,

(44)

ηSPM,cos(fi) =

=

∫ Bi
2

−Bi2
df1

∫ Bi
2

−Bi2
df2

αl,iα
′
l,i + φ2i f

2
1 f

2
2

(α2
l,i + φ2i f

2
1 f

2
2 )(α′2l,i + φ2i f

2
1 f

2
2 )

cos(φiLf1f2)

(45)
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and
ηSPM,sin(fi) =

=

∫ Bi
2

−Bi2
df1

∫ Bi
2

−Bi2
df2

(αl,i − α′l,i)φif1f2
(α2
l,i + φ2i f

2
1 f

2
2 )(α′2l,i + φ2i f

2
1 f

2
2 )

sin(φiLf1f2).

(46)
Note that, similar to Appendix C, the term Π

(
f1+f2
Bi

)
is

neglected.
In the following the three integrals above are solved. The

integral in Eq. (44) is rewritten in polar coordinates (r, ϕ) as

ηSPM,main(fi) ≈ 4

∫ √ 3
π

Bi
2

0

dr

∫ π
2

0

dϕ ×

×
r
[
αl,iα

′
l,i +

φ2
i

4 (r4 sin2 (ϕ))
]

[
α2
l,i +

φ2
i

4 (r4 sin2 (ϕ))
] [
α′2l,i +

φ2
i

4 (r4 sin2 (ϕ))
] , (47)

where it was used the relations f1 = r cos (ϕ/2), f2 =

r sin (ϕ/2) and sin (ϕ/2) cos (ϕ/2) = sin (ϕ)
2 . Also, the in-

tegration domain of Eq. (7) was approximated by a circular
domain such that the area of both domains are equal [21, Fig.
3]. This yields the variation of the radius in the outer integral
as shown in Eq. (47). The inner integral in Eq. (47) can be
solved using identity (61), yielding to

ηSPM,main(fi) ≈ 4

∫ √ 3
π

Bi
2

0

dr×

× rπ

αl,i + α′l,i

 1√
4α2

l,i + φ2i r
4

+
1√

4α′2l,i + φ2i r
4

 . (48)

This integral can be rewritten as:

ηSPM,main(fi) =
2π

αl,i + α′l,i

∫ √ 3
π

Bi
2

0

dr×

×

 r

αl,i

√
1 +

φ2
i r

4

4α2
l,i

+
r

α′l,i

√
1 +

φ2
i r

4

4α′2l,i

 . (49)

The integral in Eq. (49) is solved using identity (62) as

ηSPM,main(fi) =
2π

φi(αl,i + α′l,i)
×

×

[
asinh

(
3φiB

2
i

8παl,i

)
+ asinh

(
3φiB

2
i

8πα′l,i

)]
. (50)

To solve the integrals in Eqs. (45) and (46), a similar
approach use in [37] is used. The integrals are converted to
hyperbolic coordinates using the relations ν1 =

√
f1f2, ν2 =

− 1
2 ln

(
f1
f2

)
, f1 = ν1e

ν2 and f2 = ν1e
−ν2 [16, Sec. VIII-A];

this change of coordinates yields a one-dimensional integral in
ν1. We also use the change of variable ν = ν21 [37] to rewrite
Eqs. (45) and (46) as

ηSPM,cos(fi) =

= 8

∫ Bi
2

0

dν ln

(
Bi

2
√
ν

)
αl,iα

′
l,i + φ2i ν

2

(α2
l,i + φ2i ν

2)(α′2l,i + φ2i ν
2)

cos(φiLν)

(51)

and

ηSPM,sin(fi) =

= 8

∫ Bi
2

0

dν ln

(
Bi

2
√
ν

)
(αl,i − α′l,i)φiν

(α2
l,i + φ2i ν

2)(α′2l,i + φ2i ν
2)

sin(φiLν).

(52)
The integrals in Eqs. (51) and (52) do not have analytical
solutions in their current form. In order to obtain an integral
that yields an analytical solution we evaluate the logarithm
functions in the point ν = π

2φiL
, where this point was chosen

such that the cosine function achieves its minima and the sine
function achieves its maxima. This yields to

ηSPM,cos(fi) =

= 8 ln

(√
φiL

2π
Bi

)∫ Bi
2

0

dν
αl,iα

′
l,i + φ2i ν

2

(α2
l,i + φ2i ν

2)(α′2l,i + φ2i ν
2)

cos(φiLν)

(53)
and

ηSPM,sin(fi) =

= 8 ln

(√
φiL

2π
Bi

)∫ Bi
2

0

dν
(αl,i − α′l,i)φiν

(α2
l,i + φ2i ν

2)(α′2l,i + φ2i ν
2)

sin(φiLν).

(54)
The integrals in Eqs. (53) and (54) can now be solved similar
to Appendix C, i.e, by letting Bi →∞. This yields to

ηSPM,cos(fi) = 4π ln

(√
φiL

2π
Bi

)
×

×

[
e−|αl,iL| sign

(
φi
αl,i

)
+ e−|α

′
l,iL| sign

(
φi
α′l,i

)]
(55)

and

ηSPM,sin(fi) = 4π ln

(√
φiL

2π
Bi

)
×

×
[
e−|αl,iL| sign (−φi) + e−|α

′
l,iL| sign (φi)

]
. (56)

Finally, by inserting Eqs. (50), (55) and (56) in Eq. (43)
together with the pre-factor of 16

27
γ2

B2
i

, Eq. (12) is obtained
concluding the proof.

APPENDIX E
MATHEMATICAL IDENTITIES

(x+ y + z)i =

=
∑

0≤11+12≤i

i!

l1!l2!(i− l1 − 12)!
xl1yl2zi−l1−l2 . (57)

|zk|2 = <(zk · zk) = zk · zk. (58)

zi · zj + zj · zi = 2<(zi · zj), j < i. (59)
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∫ X

0

dx
ab+ c2x2

(a2 + c2x2)(b2 + c2x2)
=

=
1

c(a+ b)

[
arctan

(cx
a

)
+ arctan

(cx
b

)]
.

(60)

∫ π
2

0

dx
ab+ c2 sin2 (x)

[a2 + c2 sin2 (x)][b2 + c2 sin2 (x)]
=

=
π

2(a+ b)

(
1√

a2 + c2
+

1√
b2 + c2

)
.

(61)

∫ X

0

dx
x√

1 + d2x4
=

1

2d
asinh (dX2). (62)

∫ ∞
0

dx
ab+ c2x2

(a2 + c2x2)(b2 + c2x2)
cos(cxL) =

=
π

2

e−|aL| sign(c/a) + e−|bL| sign(c/b)

c(a+ b)
.

(63)

∫ ∞
0

dx
(a− b)cx

(a2 + c2x2)(b2 + c2x2)
sin(cxL) =

=
π

2

e−|aL| sign(−c) + e−|bL| sign(c)

c(a+ b)
.

(64)
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