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a b s t r a c t

Periodic mechanical metamaterials, such as hexagonal honeycombs, have traditionally been designed
with uniform cell walls to simplify manufacturing and modelling. However, recent research has
suggested that varying strut thickness within the lattice could improve its mechanical properties. To
fully explore this design space, we developed a computational framework that leverages Bayesian
optimisation to identify configurations with increased uniaxial effective elastic stiffness and plastic or
buckling strength. The best topologies found, representative of relative densities with distinct failure
modes, were additively manufactured and tested, resulting in a 54% increase in stiffness without
compromising the buckling strength for slender architectures, and a 63% increase in elastic modulus
and a 88% increase in plastic strength for higher volume fractions. Our results demonstrate the
potential of Bayesian optimisation and solid material redistribution to enhance the performance of
mechanical metamaterials.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Architected materials represent a class of metamaterials whose
nique mechanical properties, unattainable in conventional solids,
re introduced through a rational design of their geometry and
ombination of different constituent materials [1–4]. Examples of
aterial properties and functionalities created within mechanical
etamaterial include negative stiffness [5] and refraction [6], su-
erelasticity [7], extreme auxeticity [8,9], tunable band gaps [10],
emarkable stiffness and strength-to-weight ratios [11,12], re-
onfigurability and multi-physics characteristics [13], to name a
ew. The significant research advances obtained over the last two
ecades have been fostered by the development of additive man-
facturing (AM) techniques, which enable the micro- and nano-
abrication of complex structured materials with precise control
ver their geometry and various constituent materials [14–16].
lthough AM offers the possibility of fabricating a plethora of
opologies, most mechanical metamaterials designed and realised
o date are regular periodic truss-, beam-, plate-, and shell-
ased configurations characterised by cell walls with uniform
hickness and cross-section [17,18], mainly for ease of analytical
odelling and traditional fabrication. Such regular solid material
istribution often results in suboptimal mechanical properties
ecause of the inhomogeneous stress and strain distributions
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present along the cell walls for most of the lattice topologies and
loading conditions. Bending-dominated lattices – which deform
primarily by bending their cell walls – can benefit the most
from shape optimisation of their strut to redistribute material
where it is most needed. Previous studies, mainly focusing on
hexagonal honeycombs, have shown (through analytical, numer-
ical and experimental techniques) that the redistribution of solid
material leads to an enhancement of elastic lattice properties
[19–27]. Nevertheless, those attempts assumed a predefined vari-
able strut thickness guided by designers’ experience or experi-
mental observations, which prevent the exploration of untapped
regions of the design space and therefore limit the potential gain
in mechanical properties.

To overcome these limitations, topology optimisation (TO) has
been employed alongside computational homogenisation tech-
niques to seek optimal solid material distribution in unit cell of
periodic lattices and improve single static and dynamic macro-
scopic elastic properties [28,29]. More recently, TO has been
applied to enhance the design of mechanical metamaterials by
simultaneously maximising stiffness and strength [30], consider-
ing non-uniform [31] or multi-material lattices via a multi-scale
approach [32]. Within this framework, machine learning and
deep learning are alternative techniques that can favour the cre-
ation of metamaterials for different applications. They offer a fast
and efficient search for optimal configurations in large design
spaces difficult to manage by conventional methods, while pro-
viding surrogate models of the properties of interest as a function

of the design variables [33–38]. Bayesian optimisation (BO) is

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Regular hexagonal lattice and unit cell with uniform and variable strut thickness. The strut profile for the unit cell with solid material redistributed is shown
in red, alongside the three independent design parameters η, ξ, γ and three configurations obtainable through the chosen shape parametrisation. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)
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particularly desirable approach in the context of metamate-
ial optimisation because it limits the extensive pre-sampling of
he design space while being able to deal with noisy objective
unction evaluations and quantifying uncertainty, which results
seful when dealing with small-scale architectures sensitive to
anufacturing imperfections and instabilities [39,40].
In this letter, we aim to demonstrate that such a data-driven

pproach offers a breakthrough in the optimisation of mechanical
roperties of architected metamaterials through solid material
edistribution. In particular, we advance on the previous ap-
roaches by treating material redistribution in the cell walls as
parametric shape optimisation problem. Although the choice
f parametrisation inherently constrains the design space, the
pproach offers notable advantages compared to the more gen-
ral TO approach. Firstly, parametrisations can implicitly enforce
anufacturing constraints, ensuring that the resulting material

edistribution design is not only optimised but also feasible and
ractical to manufacture. Secondly, as demonstrated later in this
tudy, the approach readily applies to scenarios where differ-
nt topologies present different failure modes. Lastly, the BO
pproach provides not only the optimal solution but also com-
utationally cheap metamodels that enable designers to evaluate
he evolution of mechanical properties over the entire design
pace and select different configurations depending on additional
onsiderations.

. Model and methodology

Without loss of generality, we illustrate the conceived method-
logy on the parametric shape optimisation of a regular two-
imensional bending-dominated hexagonal honeycomb subjected
o uniaxial compression. The material along the cell walls is
edistributed to increase the elastic stiffness and strength of the
niform thickness lattice, for the same mass and relative density

ρ (defined as the density ratio of lattice material to the solid
material of equivalent size). Regular periodic honeycombs are
characterised by struts, or cell walls, of constant length l and
hickness t , as shown in Fig. 1(left). Their effective mechani-
al properties can be analytically found as a function of ρu (=
t/(

√
3l) − t2/(3l2)) as [17]

Eu
Es

=
3
2
ρ3
u,

σy,u

σy,s
=

1
2
ρ2
u,

σb,u

Es
= 0.143 ρ3

u (1)

where E, σy and σb are Young’s modulus, plastic and buckling
strengths, respectively. The subscripts u and s denote the prop-
erties of the lattice with uniform thickness and that of its con-
stituent material, respectively. The scaling laws above are ob-
tained using the first-order approximation of the relative density,
neglecting the second-order term of t/l, which means the ex-
pressions are only valid for low relative densities or high strut
2

slenderness ratios. However, those expressions are not used in
this work, where the mechanical properties of uniform and non-
uniform honeycombs are computed directly from the finite ele-
ment analyses, as described in the following.

The non-uniform hexagonal honeycombs with variable thick-
ness (indicated by the subscript v) are obtained by redistributing
solid material from the middle of the strut (region of low bending
moment) towards the end, or nodal, section (region of high bend-
ing moment). The profile of the cell wall is described through a
parametrisation that guarantees several strut shapes, as shown
in Fig. 1(right). Exploiting symmetry along the longitudinal axis
x and middle section, the shape of a quarter of a strut with an
effective length le and middle thickness tm is modelled using a
yperbolic tangent function described by

(x) = y0 + α tanh
(
tan γ

α
(x0 − x)

)
, x ∈

[
0,

le
2

]
, (2)

where le ≈ l −
√
3tm/(3η), y0 = tm/4 (1/η + 1), x0 = le(1 − ξ )/2

nd α = tm/4 (1/η − 1). The parametrisation was set up so that
ach parameter has a well-defined meaning: η ∈ (0, 1] is the ratio
f the middle section thickness tm to the nodal section thickness
n, ξ ∈ [0, 1] is the ratio of the middle section length lm to beam’s
ffective length le, and γ ∈ [0, π/2] is the angle (in radians)
etween the transition section at x = x0 and the longitudinal
-axis.
The analytical expression of the strut profile enables the calcu-

ation of relative density ρv of the non-uniform honeycomb with
variable thickness, which depends on l, tm, η, ξ and γ , as reported
in the Supplementary Material (SM). Since the objective of the
work is to improve the mechanical properties by redistributing
material while keeping constant the total mass (volume) and
strut length l, a relative density equivalency has to be established
between the uniform and non-uniform honeycombs, ρu = ρv (=
ρ). Therefore, for each parametrisation considered, tm can be ex-
ressed as a function of t , and the three-dimensional design space
f the non-uniform honeycomb is constituted by the parameters
, ξ and γ .
The workflow of the data-driven shape optimisation of hexag-

nal honeycomb is summarised in Fig. 2 and described in more
etail in the SM. Once the relative density ρ and the strut length

l are set, the unit cell of the variable thickness honeycomb is gen-
erated through the parametrisation described above, with tm ob-
tained from the relative density equivalency. Different designs are
originated by sampling the bounded three-dimensional design
space using a quasi-random low-discrepancy Sobol sequence, to
facilitate the subsequent machine learning step [36].

Each design is then imported into the Finite Element (FE) soft-
ware to predict the compressive behaviour and build a response
database, to be used in the learning and optimisation processes,
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Fig. 2. Illustration of the computational framework for the parametric shape optimisation of periodic metamaterials applied to hexagonal lattices with three design
arameters.
d
s
o
B
t
m
t
I
e
a
f
p
i
p
a
p
P
o
b

3

o
c

ee Fig. 2(b). Nonlinear finite element analyses are carried out on
nit cells with translational symmetry, where periodic boundary
onditions are imposed on each side pair to obtain the bulk
roperties of the infinite-sized lattices while reducing the com-
utational time [41–43] (details in Sect. 1.3, SM). Considering the
wo-dimensional geometry and its loading condition, plane stress
lements were used to discretise the unit cells. A remote uni-
xial compressive strain is imposed along the vertical direction
ecause both uniform and non-uniform honeycombs are isotropic
n the linear elastic regime. However, it should be noted that
onlinear geometric effects and plasticity cause on both geome-
ries direction-dependent peak stresses and softening responses.
ertical (with respect to the unit cell orientation of Fig. 1) com-
ression produces a stronger response until the peak stress and
more pronounced softening phase compared to that observable
uring uniaxial horizontal compression. The constituent material
odel is elastic perfectly-plastic, characterised by the average
xperimentally determined Young’s modulus Es = 893.15 MPa
nd yield stress σy,s = 38.99 MPa (details in Sect. 2, SM). It
hould be noted that, although the material assumed for the FE
imulations corresponds to that of the experiments, the lattice
roperties of interest are normalised by those of the uniform
oneycomb. Hence, they result independent on the chosen con-
tituent material properties and only dependent on the geometry.
or each design and numerical experiment, the critical buckling
tress of the honeycomb, σb,v , and the lattice effective stress–
train response, σ vs. ε, are obtained from linear perturbation
nd quasi-static steps of the FE analysis, respectively. From the
atter, the effective elastic stiffness, or Young’s modulus, of the
attice Ev is computed along with its plastic collapse strength
y,v , defined as the peak stress at which plastic hinges form,
ollowed by softening. The unit cell mode of failure, either elastic
uckling (for ρ < ρc , where ρc is the shape-dependent critical
elative density that distinguishes buckling from plastic collapse)
r yielding (for ρ > ρc), is defined by the minimum failure

strength, σv = min[σb,v, σy,v].
Subsequently, the lattice properties of interest, normalised by

hose of the uniform honeycomb obtained via FE, Ev/Eu, σb,v/σb,u
and σy,v/σy,u, are maximised with Bayesian optimisation. After
each evaluation, a probabilistic surrogate model, specifically a
Gaussian process, is fit to the known data and used to predict
how the mechanical properties of interest evolve based on the
design parameters. This iterative process allows for a more ef-
ficient and accurate understanding of the relationship between
3

the design parameters and lattice properties, ultimately aiding
in the optimisation of the material’s mechanical behaviour. The
illustrative example of Fig. 2(c) shows a projection of the design
space (ξ vs. η, for γ = π/2), where the contour plot highlights
the changes of normalised elastic stiffness Ev/Eu. Some training
ata points can be observed, alongside the region where the
olid material redistribution is effectively enhancing the stiffness
f the uniform honeycomb, Ev/Eu > 1. The Multi-Objective
ayesian Optimisation (MOBO) step aims at finding Pareto op-
imal solutions in the presence of competing objectives, while
inimising the number of performed evaluations. The search for

he optimal configuration is guided by the Expected Hypervolume
mprovement acquisition function [44], in a trade-off between
xploration of regions of the design space with high uncertainty
nd exploitation of the areas with potentially high objective
unctions’ values. Hence, a new parametrisation with the highest
robability of achieving a higher hypervolume is (i) selected, (ii)
ts CAD created, (iii) its response predicted by FE, and (iv) new
robabilistic models of the quantities of interests (Ev/Eu, σb,v/σb,u
nd σy,v/σy,u) updated after each evaluation, in an iterative ap-
roach that converges towards the true Pareto front. The final
areto front is used in conjunction with the Technique for Order
f Preference by Similarity to Ideal Solution (TOPSIS) to select the
est design [45].

. Results and discussion

The presented data-driven framework is applied to the shape
ptimisation through material redistribution of hexagonal honey-
ombs of relative densities ρ = 0.10 and ρ = 0.23, representative
of configurations that undergo buckling and plastic collapse, re-
spectively. The trials evaluated in the optimisation processes are
reported in Fig. 3(left), showing a good sampling of the three-
dimensional design space, especially towards the combination
of parameters that guarantee enhanced mechanical properties.
The consecutive trials of the MOBO are shown in the objective
space of the problem σv/σu vs. Ev/Eu, Fig. 3(centre), proving that
the procedure quickly converges and identifies promising designs
that trade-off high stiffness and strength ratios. Considering the
presence of competing mechanical properties, Fig. 3(right) shows
a combination of Pareto optimal (non-dominated) configurations
obtained from actual trials as well as predictions from the pos-
terior surrogate model. Although the shape of the Pareto front
is similar for both relative densities, the values of the best objec-
tive properties achievable, especially strength, differ considerably.
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Fig. 3. Results obtained from the Bayesian optimisation process for the parametric shape optimisation of hexagonal lattices with relative densities ρ = 0.10 (top)
nd ρ = 0.23 (bottom). For each relative density, the training points are shown in the design space (left) and in the plane of normalised quantities of interest σv/σu
s. Ev/Eu (centre), where values higher than one testify an improvement of mechanical properties with respect to uniform thickness honeycomb. The posterior front
right) highlights the Pareto optimal solutions and the selected configuration.
0

c
9
s
0

w
t
f
c
b
t
i
b
p
f
a
s

t
o
f
f
t
t

his behaviour can be explained by the different failure modes of
he two configurations. When ρ = 0.10, the loss of load-carrying
apacity is caused by elastic buckling and the limited strength
mprovement compared to the uniform honeycomb is attributed
o the ineffectiveness of the assumed material redistribution in
xial instability phenomena, for which a reduction of the cross-
ection (and second moment of area) in the central region of the
ell wall can lead to a significant decrease of the buckling stress.
evertheless, Bayesian optimisation was able to pinpoint the best
oneycomb shape with σv/σu = 1.05 and Ev/Eu = 1.59 within
00 iterations. Improved buckling stress could be obtained by
onsidering a hierarchical design that reduces the effective struts
ength, thus increasing their buckling load [28]. For ρ = 0.23, the
lattice fails primarily due to plastic collapse. In this scenario, a
solid redistribution that follows the bending moment evolution
along the strut’s longitudinal axis, with more material at the
nodal section and less at the centre, can simultaneously increase
the yield strength and elastic stiffness up to σv/σu = 1.93 and
Ev/Eu = 1.72.

It should be noted that both best strut configurations were
found to assume an almost tapered profile, as was expected
from the linear variation of the bending moment in the inclined
strut predicted by beam theory [19]. Such best configurations are
named as ‘optimised’ in the context of Bayesian optimisation,
where the TOPSIS best (optimal) shape is found by ranking the
points given the assumption on the design space and the infor-
mation on the surrogate model. However, it is acknowledged that
the assumed parametric shape equation defining the evolution
of strut thickness, which maintains an hexagonal-like unit cell
topology, reduce the design space. If this hypothesis is relaxed,
other topologies with enhanced mechanical properties could be
obtained, for example through topology optimisation [28,30,32].
However, such approach would not yield a surrogate model of the
design objectives nor provide uncertain quantification.

Based on the computational results, we additively manufac-
tured the optimised configurations to validate the data-driven
4

approach. Uniform and shape-optimised honeycombs with ρ =

.10 and ρ = 0.23 were fabricated with a photo-curable resin
through stereolithography technique (full details of the experi-
mental method in the SM). The finite lattices consisted of 10 × 9
ells (width × height) to achieve mechanical properties within
0% of the bulk value from unit cell analysis [46]. The minimum
trut thickness was set to 0.5 mm and 0.75 mm for the ρ =

.10 and ρ = 0.23 lattices, respectively, while the depth of
the specimens was D = 20 mm to avoid out-of-plane insta-
bilities. Compression experiments were performed under quasi-
static conditions by imposing a vertical displacement to the lat-
tice and measuring the resulting force, from which the effective
engineering stress (normalised by the failure strength of the
uniform honeycomb, σu = min[σb,u, σy,u]) vs. strain responses
ere calculated. They are reported (solid curves) and compared
o the FE predictions (dashed curves) of the unit cell and of the
inite lattice in Fig. 4(a) and (b) for the two relative densities
onsidered. The FE results for the finite lattices were obtained
y using an adaptive mesh constituted of plane stress elements
hat discretise the CAD geometry of the manufactured samples,
n a trade-off between accuracy and computational time. The
oundary and loading conditions reproduced those of the ex-
eriments, with the finite lattices compressed through rigid and
rictional platens, while self-contact properties were defined on
ll surfaces of the lattice to capture the response at high remote
trains (details in Sect. 1.3, SM).
Focusing only on the region until the first peak stress, where

he mechanical properties of interest are optimised, it can be
bserved that the elastic stiffness and strength of both best con-
igurations are well above those of the uniform honeycombs,
or the same relative density. This proves the effectiveness of
he material redistribution strategy and the Bayesian shape op-
imisation. In particular, for ρ = 0.10, the measured increase
in stiffness with respect to the uniform lattice is 54%, while
the buckling strength is reduced by 5%. The marginally lower
improvement of mechanical properties achieved experimentally,
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Fig. 4. Compressive stress–strain response of hexagonal honeycombs with uniform (red) and optimised (blue) strut thickness profile for ρ = 0.10 (a) and ρ = 0.23
(b). Experimental measurements (average and standard deviation, solid curves) are reported together with FE results for unit cell (dashed curves) and finite lattice
(dot-dashed curves). The region after the first peak stress is shown with higher transparency because was not part of the mechanical properties optimisation,
limited to stiffness and buckling or plastic strength. (c) Images from the compression experiments on optimised design at increasing remote strain, taken from the
experimental mean (blue solid) curves of plots (a) and (b), as highlighted by points (i) to (iv). Images (i) represent the virgin samples, (ii) the configurations at the
peak stress, while (iii) and (iv) show an auxetic response of the non-uniform lattices beyond the peak stress. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
compared with that computationally obtained via unit cell anal-
ysis, is attributed to the slightly lower relative density (ca. 3%)
of the optimised lattices. If experiments are carried out on uni-
form and non-uniform lattices with the same relative density,
the gain achievable would be higher, as shown in Table II, SM.
For ρ = 0.23, the experimental gains in Young’s modulus and
plastic strength are 63% and 88%, respectively (see also Table
II, SM). When the measured responses are compared with FE
predictions, it can be observed that there is good agreement
with the results from the finite lattices. They resulted ≈10%
ower than the infinite lattice (unit cell analysis) because the
dge effects of the finite samples reduce the uniaxial compressive
roperties [46]. The minor discrepancies between the finite-sized
E results and experiments, especially in the non-uniform geome-
ries, are attributed to their higher sensitivity to manufacturing
mperfections. We note that imperfection sensitivity can also
e included in the data-driven optimisation process, as demon-
trated previously [36], if the nominal shape of the metamaterial
5

is perturbed by an amplitude estimated from the manufacturing
process. However, since significant discrepancies have not been
observed, this avenue was not pursued.

Although the post-failure regime was not part of the op-
timisation procedure, it is worth noting that the stress–strain
plots of the uniform and non-uniform honeycombs, as well as
finite or infinite lattices, show different softening responses, as
discussed in the SM. Moreover, from Fig. 4(c) and SM Fig. 6, it can
be observed that the material redistribution not only enhances
the mechanical properties, but has also reduced the effective
Poisson’s ratio of the uniform honeycomb. A pronounced strain-
dependent auxetic response develops beyond the linear elastic
regime, where the minimum Poisson’s ratio of the non-uniform
lattice reaches νv,min,0.10 ≈ −0.13 and νv,min,0.23 ≈ −0.58. By
contrast, the measured Poisson’s ratio of the uniform honeycomb
always remains positive, ranging from νu,max ≈ 0.97 in the linear
elastic phase to ν ≈ 0.22 at the maximum imposed strain.
u,min
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. Conclusion

In conclusion, we demonstrated significant enhancements of
echanical metamaterial properties through solid material redis-

ribution. Furthermore, we have shown that data-driven multi-
bjective Bayesian optimisation is a valuable tool for exploring
omplex design spaces to achieve lighter, stiffer, and stronger
opologies. Although we utilised this framework on relatively
imple hexagonal unit cell topologies, where mechanics knowl-
dge and intuition could have been sufficient to propose a ta-
ered cell wall profile, it has even greater potential for problems
here the underlying objective function is not well-understood
r where intuition may not be enough. The ability of Bayesian
ptimisation to converge to optimal solutions with a limited
valuation budget is a clear indication of its efficacy. Its potential
n solving more complex optimisation problems in multi-physics
nd other domains is therefore highly anticipated.
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