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Abstract 

Phosphoinositides are phosphorylated derivatives of phosphatidylinositol, a phospholipid that is 

synthesised at the endoplasmic reticulum. The plasma membrane contains the enzymes to 

phosphorylate phosphatidylinositol and is therefore rich in the phosphorylated derivatives, PI4P and 

PI(4,5)P2. PI(4,5)P2 is a substrate for phospholipase C and during cell signalling, PI(4,5)P2 levels are 

reduced. Here I discuss a family of proteins, phosphatidylinositol transfer proteins (PITPs) that can 

restore PI(4,5)P2 levels.  

 

Introduction 

Of the many phospholipids of mammalian cells, phosphatidylinositol (PI) is the only lipid that can be 

phosphorylated; positions 3, 4, and 5 of the inositol ring are accessible for phosphorylation by lipid 

kinases. Cells can phosphorylate PI either singly or at multiple positions in every possible combination 

giving rise to seven different derivatives. Of these, PI4P and PI(4,5)P2 are the major phosphorylated 

forms whilst the 3’-phosphorylated derivatives and PI5P are present at considerably lower levels. 

PI(4,5)P2 is highly enriched at the plasma membrane whilst PI4P is enriched at both the plasma 

membrane and the Golgi. Both lipids participate in a multitude of functions, including as substrates for 

lipid kinases, phosphatases and phospholipases C. PI(4,5)P2, a negatively-charged lipid, can bind and 

recruit hundreds of proteins either through specific domains (e.g. pleckstrin homology (PH) domains) 

or it can bind to unstructured clusters of positively-charged lysine and arginine residues in proteins due 

to electrostatic interactions. Thus, endocytosis, exocytosis, phagocytosis, ion channel function, actin 

dynamics are all processes that depend on PI(4,5)P2 [1]. In addition, PI4P and PI(4,5)P2 at the plasma 

membrane are utilised by lipid transfer proteins to move cholesterol and also phosphatidylserine from 

the endoplasmic reticulum by lipid exchange [2, 3]. New PI(4,5)P2 functions are being constantly 

discovered and Table 1 provides a few recent examples.  

Some recent examples of plasma membrane (PI(4,5)P2 functions 
Hippo signaling 

pathway 

PI(4,5)P2 binds and recruits NF2 (neurofibromin 2) to the plasma 

membrane to activate the Hippo pathway. 

[4] 

Exocytosis  Synaptotagmin via its C2 domain docks at PI(4,5)P2-rich clusters 

that define the active zones of exocytotic release. 

[5] 

Immunity and 

inflammation  

PI(4,5)P2 enrichment marks the locations where Gasdermin 

(GSDMD) preferentially inserts and causes calcium flares for 

release of proinflammatory cytokines IL-1β and IL-18 and for 

pyroptic cell death.  

[6] 

Immune Signalling Activated Toll Receptors recruit the adaptor protein, TIRAP 

(Toll/IL-1R domain–containing adaptor protein) to the plasma 

membranes via PI(4,5)P2. 

[7] 
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Epithelial cell 

characteristics 

Epithelial cells have a higher level of PI(4,5)P2 than non-epithelial 

cells and regulates epithelial cell characteristics by recruiting 

PARD3 to the plasma membrane. 

[8] 

β-arrestin recruitment to 

G-protein coupled 

receptors 

PI(4,5,)P2 acts as allosteric regulators of β-arrestin conformation, 

and can potentiate an active conformation of β-arrestin and stabilize 

GPCR-β-arrestin complexes. 

[9] 

Table 1. 

 

Phospholipase C signaling by G-protein-couple receptors, receptor tyrosine kinases or by cytosol Ca2+ 

in the micromolar range is a universal signaling system present in almost all mammalian cells. There 

are thirteen classical phospholipases C and three atypical phospholipases C [10]. PI(4,5)P2 is hydrolysed 

by phospholipase C to the second messengers, I(1,4,5)P3 and diacylglycerol, destroying the lipid, which 

can only be replaced by resynthesis. The challenge for the cells is the rapid replacement of PI(4,5)P2 

following phospholipase C activation as this will have an impact on other cellular events. Taking 

endocytosis as an example, recruitment of the adaptor protein, AP2, which depends on PI(4,5)P2, would 

be stalled; therefore a decrease in PI(4,5)P2 during phospholipase C activation would result in slowing 

down clathrin-mediated endocytosis [11, 12].  

 

Mechanisms for restoring PI(4,5)P2 levels during phospholipase C signaling 

During phospholipase C signaling, PI(4,5)P2 levels are rapidly depleted. PI(4,5)P2 is produced by 

phosphorylation of PI by PI 4-kinase and a PI4P-5-kinase operating sequentially at the plasma 

membrane. Thus, it is PI that needs to be replenished as PI levels at the plasma membrane are limited 

[13, 14]. The synthesis of PI is confined to the endoplasmic reticulum (Figure 1) and therefore must be 

transferred to the plasma membrane. In principle, lipids from the endoplasmic reticulum in the form of 

vesicles can be transferred to the plasma membrane through the secretory pathway. However, traffic 

through the secretory pathway is slow compared to transfer by lipid transfer proteins. In addition, 

vesicular traffic will move a mixture of lipids, rather than specific lipids [15].  

A class of proteins that can facilitate PI transfer is the phosphatidylinositol transfer proteins (PITPs). PI 

transfer between two membrane compartments was first detected in beef brain cytosol in 1973 and 

subsequently characterized as a 32kDa soluble protein with the ability to bind one lipid molecule in its 

hydrophobic cavity; it could bind either PI or phosphatidylcholine (PC) [16]. The protein became 

known as PITP – phosphatidylinositol transfer protein. Since this discovery the PITP family has grown 

to 5 members in mammals; three soluble proteins (PITPα, PITPβ and PITPNC1) and two membrane-

associated proteins containing multiple domains (PITPNM1/Nir2 and PITPNM2/Nir3) (Figure 2). 

Using in vitro assays, PI and PC lipid exchange between two membrane compartments occurs with no 

requirement of ATP [16]. PITPα and PITPβ are by far the best studied PITPs and are found in all cell-

types examined [17-20]. PITPNC1 is the least studied PITP but it is emerging as an important 

contributor to cancer. PITPNC1 together with the lipid kinase, PI-4-kinase-IIIβ and GOLPH3 are highly 

expressed in cancer cells where they promote release of pro-tumorigenic proteins to maintain cancer 

cell survival and influence the pro-metastatic process in the tumor micro-environment [21]. The best 

studied membrane-associated PITPNM proteins is RdgB, the Drosophila PITP (see below) and the 

mammalian orthologues, Nir2 and Nir3 [22-24].  

The requirement for PITP in phospholipase C signaling was first demonstrated using cytosol-depleted 

cells. It was observed that G-protein-stimulated phospholipase C signaling (as measured by inositol 

phosphate production) was greatly diminished but could be restored with bovine brain cytosol. The 

component in the brain cytosol responsible for restoring function was identified as PITPα [25]. 

Subsequent work identified a second soluble PITP, PITPβ which is highly enriched in liver and lung 
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tissue [26]. PITPα and PITPβ are 77% identical (94% homologous) at the primary sequence level and 

are differentially localised. PITPα is mainly cytosolic whilst PITPβ also localizes at the Golgi [26-28]. 

Both PITPs can reconstitute phospholipase C activity in permeabilized cell systems [26, 29]. A 

requirement for PITP has been demonstrated for different phospholipase C sub-types, G-protein-

coupled phospholipase Cβ, receptor-tyrosine kinase stimulated phospholipase Cγ or Ca2+-stimulated 

phospholipase Cδ [25, 30, 31].  

Parallel studies in Drosophila identified RdgB (retinal degeneration Mutant B) as a PITP belonging to 

the PITPNM family (Figure 2) [32]. RdgB is highly expressed in photoreceptor cells required for 

maintaining PI(4,5)P2 levels during phototransduction. Sensing of light in Drosophila is dependent on 

the activation of the Gq-phospholipase Cβ pathway and in the absence of RdgB, phototransduction is 

inhibited [33, 34]. The Drosophila system where the studies have been conducted in a living fly has 

provided the best evidence for the requirement of a PITP protein during phospholipase C signaling [34, 

35].  

RdgB is a multi-domain protein comprising of a N-terminal PITP domain followed by a long 

unstructured sequence, a DDHD and LNS2 domain (Figure 2). In addition, the protein contains a FFAT 

motif for binding to VAP, an ER protein. Thus, RdgB is localized at a special region of the ER 

sufficiently close to the plasma membrane, that the PITP domain could facilitate lipid transfer between 

the two membranes. However, the PITP domain is sufficient for restoring phototransduction although 

it is less efficient [36]. PI binding and transfer by the PITP domain of RdgB is essential as mutations 

that disrupt PI binding or transfer are unable to restore phototransduction as well as phospholipase C 

signalling [34]. Studies in mammalian cell-lines have also found that PITPNM proteins can participate 

in phospholipase C signaling [23, 24, 34]. Although PITPs were initially identified for phospholipase 

C signaling, its underlying function is to maintain PI4P and PI(4,5)P2 levels potentially. Thus, PITPs 

have been shown to participate in many other signaling pathways where phosphoinositides are required. 

Examples include exocytosis [37], secretory vesicle formation [38], viral replication [39], membrane 

traffic [40] and phagocytosis [41]. 

Participation of PITPs in new signaling pathways where phosphoinositides are required are being 

discovered. PITPα/β participate in the non-canonical planar cell polarity pathway by promoting the 

trafficking of the planar cell polarity receptor, VANGL, from the Golgi to the plasma membrane [42]. 

Similarly, PITPα is required at the trans-Golgi to produce PI4P to promote insulin granule maturation 

[43]. In contrast, PITPα/β play a critical role in the regulation of LATS and YAP in the Hippo pathway 

by regulating PI4P levels at the plasma membrane [4]. 

Although it has been known that PITPα localizes to the nucleus, its requirement in nuclear 

phosphoinositide signaling had not been identified till recently [44]. PITPα/β form a complex with p53 

participating in supplying PI to p53; phosphorylation of the PI by lipid kinases form a p53-PI(3,4,5)P3 

complex that activates nuclear Akt in response to genotoxic stress [44, 45]. PITPα/β levels increase in 

the nucleus following genotoxic stress.  

Phagocytosis is another example where phosphoinositides play an important role. During phagocytosis, 

there is an increase in PI(4,5)P2 at the phagocytic cup leading to actin accumulation. Nir3 is also 

recruited to phagocytic cups and depletion of Nir2/3 decreases peri-phagosomal PI4P and PI(4,5)P2 and 

F-actin accumulation around the forming phagosome [41]. Thus, Class IIB PITPs appear to provide PI 

specifically to the forming phagosome to generate PI(4,5)P2 [41].  

How do PITPs maintain PI4P and PI(4,5)P2 levels ? 

The simplest and most parsimonious mechanism of action is that the PITP domain can transfer PI from 

the ER to the plasma membrane and the Golgi to maintain PI4P and/or PI(4,5)P2 levels. Indeed, in flies 

devoid of RdgB, PI(4,5)P2 levels are diminished even under basal conditions [34]. Knockdown of 

PITPβ reduced PI4P levels in HeLa cells [40], whilst knockout of both PITPβ and PITPα was required 
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for a reduction in PI4P levels in platelets [46]. Both PITPNM1 (Nir2) and PITPNM2 (Nir3) have been 

shown to maintain PI(4,5)P2 homeostasis in angiotensin II and histamine stimulated cells [23, 24]. Like 

Drosophila photoreceptors, lipid transfer occurs at ER-plasma membrane contact sites. In neurons, Nir2 

is concentrated at ER-PM contacts sites formed by ER-localised VAP and the voltage-gated potassium 

(Kv2.1) channels. During muscarinic signaling, the kinetics of PI(4,5)P2 replenishment is slow when 

the Kv2.1 is deleted [47]. Whilst transfer of lipids by soluble PITPs is possible as they are single domain 

proteins, for the multi-domain proteins, the PITP domain would have to be sufficiently mobile to swing 

from one membrane to another. Molecular modelling suggests the 10nm length of the predicted RDGB-

VAP complex can span the distance between the plasma membrane and the endoplasmic reticulum. 

Moreover, the PITP domain localizes between the two regions that interact with PM and ER and is 

connected to the rest of the protein by an unstructured region at one end and FFAT motif at the other 

[48]. Thus, in principle, the PITP domain could undergo rapid movements between the two membranes.  

 

Concluding Remarks 

In conclusion, mammalian PITPs are increasingly identified in cellular processes where 

phosphoinositides are required. Early studies on PITP function in the 1990’s had identified roles in 

exocytosis [37], vesicle formation at the Golgi [38] and in phospholipase C signalling [25]. Although 

much progress has been made in the intervening years, our understanding of how these PITPs regulate 

phosphoinositide levels remains enigmatic. Nonetheless, PI binding, exchange and transfer remain 

properties that are essential for their function. 

 

Acknowledgements: Thanks to Dr Paras Anand for his comments. 
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Figure Legends 

Figure 1 

PI(4,5)P2 cycle during phospholipase C signalling. 

Hydrolysis of PI(4,5)P2 at the plasma membrane by phospholipase C results in the two second 

messengers, diacylglycerol (DAG) and inositol trisphosphate (IP3). DAG is converted into phosphatidic 

acid (PA) by DAG kinase (DAGK) and transferred to the endoplasmic reticulum by Class II PITPs (See 

Figure 2). At the endoplasmic reticulum, PA is converted into the intermediate CDP-DAG by one of 

two CDS enzymes, CDS1 and CDS2. The final step in PI resynthesis is catalysed by PI synthase (PIS) 

where CDP-DAG and inositol are combined. PI is then available for transfer to the plasma membrane 

by the PITP family of proteins where it can be phosphorylated sequentially by the lipid kinases, PI4K 

and PI4P5K. 

Figure 2 

PITP proteins found in mammals and in Drosophila 

PITP proteins are classified as Class I and Class II based on their binding properties. Class I PITPs bind 

and transfer PI and PC whilst Class II PITPs bind and transfer PI and PA. Splice variants of PITPβ and 

PITPNC1 are indicated. PITPNM proteins are also known as Nir proteins. PITPNM1 (Nir2) and 

PITPNM2 (Nir3). In Drosophila, the single PITPNM protein is known as RdgBα (Retinal degeneration 

Class B).  
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