
Articles
eBioMedicine
2023;95: 104769

Published Online 4

September 2023

https://doi.org/10.
1016/j.ebiom.2023.
104769
Self-supervised deep learning for highly efficient spatial
immunophenotyping
Hanyun Zhang,a,b Khalid AbdulJabbar,a,b Tami Grunewald,c Ayse U. Akarca,d Yeman Hagos,a,b Faranak Sobhani,a,b Catherine S. Y. Lecat,e

Dominic Patel,e Lydia Lee,e Manuel Rodriguez-Justo,e Kwee Yong,e Jonathan A. Ledermann,c John Le Quesne,f ,g,h E. Shelley Hwang,i

Teresa Marafioti,d and Yinyin Yuana,b,∗

aCentre for Evolution and Cancer, The Institute of Cancer Research, London, UK
bDivision of Molecular Pathology, The Institute of Cancer Research, London, UK
cDepartment of Oncology, UCL Cancer Institute, University College London, London, UK
dDepartment of Cellular Pathology, University College London Hospital, London, UK
eResearch Department of Hematology, Cancer Institute, University College London, UK
fSchool of Cancer Sciences, University of Glasgow, Glasgow, UK
gCRUK Beatson Institute, Garscube Estate, Glasgow, UK
hDepartment of Histopathology, Queen Elizabeth University Hospital, Glasgow, UK
iDepartment of Surgery, Duke University Medical Center, Durham, NC, USA

Summary
Background Efficient biomarker discovery and clinical translation depend on the fast and accurate analytical output
from crucial technologies such as multiplex imaging. However, reliable cell classification often requires extensive
annotations. Label-efficient strategies are urgently needed to reveal diverse cell distribution and spatial interactions in
large-scale multiplex datasets.

Methods This study proposed Self-supervised Learning for Antigen Detection (SANDI) for accurate cell phenotyping
while mitigating the annotation burden. The model first learns intrinsic pairwise similarities in unlabelled cell
images, followed by a classification step to map learnt features to cell labels using a small set of annotated
references. We acquired four multiplex immunohistochemistry datasets and one imaging mass cytometry dataset,
comprising 2825 to 15,258 single-cell images to train and test the model.

Findings With 1% annotations (18–114 cells), SANDI achieved weighted F1-scores ranging from 0.82 to 0.98 across
the five datasets, which was comparable to the fully supervised classifier trained on 1828–11,459 annotated cells
(−0.002 to −0.053 of averaged weighted F1-score, Wilcoxon rank-sum test, P = 0.31). Leveraging the immune
checkpoint markers stained in ovarian cancer slides, SANDI-based cell identification reveals spatial expulsion
between PD1-expressing T helper cells and T regulatory cells, suggesting an interplay between PD1 expression
and T regulatory cell-mediated immunosuppression.

Interpretation By striking a fine balance between minimal expert guidance and the power of deep learning to learn
similarity within abundant data, SANDI presents new opportunities for efficient, large-scale learning for histology
multiplex imaging data.

Funding This study was funded by the Royal Marsden/ICR National Institute of Health Research Biomedical
Research Centre.
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Introduction
The abundance and spatial distribution of cell subsets
are crucial to our understanding of disease progression
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and response to therapies.1 Rapid development of
multiplex imaging techniques such as multiplex
immunohistochemistry (mIHC) and imaging mass
ancer Research, London, UK.
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Research in context

Evidence before this study
We searched PubMed (https://pubmed.ncbi.nlm.nih.gov/) for
studies using self-supervised learning or weakly-supervised
learning to identify cell phenotypes in multiplex images. We
found two relevant studies (PMID: 35758799; PMID:
35217454). In 2022, Murphy et al. trained a self-supervised
model to learn features relevant to targeted genes from
unlabelled immunohistochemistry images of kidney, and to
predict the cell type specificity of images using single-cell
transcriptomic data as references. The approach estimated the
presence of cell types in a tissue region stained with a single
marker, but was unable to locate and classify single cells
defined by a combination of antibodies. In the same year,
Daniel Jiménez-Sánchez et al. proposed a deep learning
framework to associate clinical characteristics of patients to
tumour microenvironment components, inferred from
multiplex-stained cancer tissues. While the study
encompassed cell phenotyping, its primary focus was on
connecting cell types to clinical parameters, rather than
classifying all cells targeted by the markers. To date, dedicated
approaches for cell classification in multiplex images,
especially in multiplex immunohistochemistry images where
the intensities and combinations of staining are inferred from
RGB images, has not yet been proposed.

Added value of this study
The current study introduces a self-supervised-based pipeline
for label-efficient cell classification in multiplex

immunohistochemistry and mass cytometry images. The
method was evaluated across five datasets comprising slides
from ovarian cancer, lung squamous cell carcinoma, ductal
carcinoma in situ, myeloma and pancreas. The method
dramatically reduced the annotation to 1%, equalling to
18–114 cells across five datasets, while achieving a
performance comparable to the model trained on
1828–11,459 cells. Therefore, in the context of current
research, this new study presents an efficient and accurate
method with new functionalities to 1) classify single cells in
multiplex stained tissue sections with a small set of user-
specified examples. 2) be adopted to multiplex
immunohistochemistry images without the need of
estimating marker intensities based on prior knowledge of
the colour spectrum of markers. 3) estimate the uncertainty
of predicted cell classes based on the distance of predicted
cells to user-defined examples, then automatically
recommend the most uncertain cells for manual correction to
efficiently improve model performance. 4) facilitate
hypothesis-driven analysis of cellular spatial distributions on a
large scale.

Implications of all the available evidence
By mitigating the annotation burden for accurate cell
classification, the proposed pipeline demonstrats great
potential to accelerate the multiplex imaging analysis, which
would promote biomarker discovery and clinical applications.

Articles

2

cytometry (IMC) has enabled the accurate quantitative
localization of cellular markers in situ.2 However, the co-
expression of antigens and the coexistence of abundant
and rare cell types impose unique challenges for auto-
mated cell phenotyping in these images.3

The field of multiplex image analysis is currently
dominated by fully supervised learning,4 a model
training approach that requires annotation of every
instance in order to guide the model in predicting
labels for unseen instances.5 To train a model for cell
classification in multiplex images, a substantial
amount of annotations are crucial for capturing vari-
ations in marker intensities and cell morphologies
within and across cell types. The annotation process is
repeated for each panel with specific marker colours
and cellular locations, resulting in dramatically
increased annotation burden as the number of panels
increases. Typically, fully supervised methods require
more than 1000 annotations per cell type per panel,3,6

which sums to over 10 h of work from a pathologist to
annotate for a panel with 3 markers. Also, existing
methods could be sensitive to the class imbalance
issue often observed in multiplex images.3 Unsuper-
vised methods do not require manual annotations,
but mainly rely on colour decomposition, which
involves resolving intensities of determined colour
vectors at each pixel. This method requires prior
knowledge of the colour spectrum corresponding to
each marker. Also, they are often limited to 4–6 colour
channels7 and can be prone to background staining
noise.8

To leverage the latest advantages of deep learning
and to minimise the annotation burden, we propose to
apply a self-supervised deep learning-based approach
that utilises intrinsic features from unlabelled data to
facilitate cell phenotyping. Unlike supervised models
trained using manual labels, self-supervised learning
models can learn the relationship of unlabelled data
without manual guidance (Fig. 1a). The first stage of
self-supervised learning involves training a model on a
pretext task. The data used for pretext tasks are
assigned machine-generated pseudo labels denoting
their similarities to other instances in the dataset. After
being trained on a pretext task, the model can take an
input sample and generate a vector that represents the
intrinsic features of the input (Fig. 1a).9 Self-supervised
learning has shown great promise in the classification
of natural scene images,10–12 haematoxylin and eosin
histology images,13,14 and microscope cell image
data.15,16 Additionally, previous applications of self-
www.thelancet.com Vol 95 September, 2023
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Fig. 1: Overview of the SANDI pipeline. a, Illustration of label-based and pairwise comparison-based training strategies of supervised
and self-supervised learning. Supervised training is based upon a large number of manual labels, whereas self-supervised learning first
infers distinct features of cell types by learning from the pairwise similarities, and then classifies unlabelled cells using a small reference
set. The reference set can be derived from unlabelled cells used for self-supervised learning, or from independent datasets stained by the
same panel. b, Schematic representation of the SANDI pipeline. In the data preparation process, we selected multiple regions on the WSI
that contain a variety of cell types. Then a pre-trained cell detection model was applied to the selected regions to map the coordinates of
cells. Single-cell patches of 28 × 28 pixels were retrieved to constitute the training dataset. The patches were then randomly paired and
cropped into 20 × 20 pixel sub-patches. Subpatch pairs that originated from the same patch were labelled as positive (p+), otherwise
negative (p−). Pairs of input sub-patches were processed by two identical encoders to generate a feature vector of 32 dimensions. The
encoded features were concatenated as inputs for the similarity model, which learnt to discriminate between p+ and p−. The output score
represents the pairwise similarities between a pair of sub-patches. A small set of cells was labelled by the pathologists as reference. Both
the reference and the unknown cell image patches were cropped into 9 overlapping sub-patches of 20 × 20 pixels, which were then
processed by the trained encoder to yield a feature vector of 9 × 32 dimensions. A support vector machine (SVM) classifier was trained
on features extracted from the reference and to classify features extracted from unknown cells. c, Architecture of the self-supervised
model.
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supervised learning on immuno-stained tissue sections
either aimed to estimate cell type compositions in a
region,17 or reveal cell types associated with patient-
level clinical characteristics.18 So far, dedicated ap-
proaches have not yet been developed for the classifi-
cation of single cells in multiplex images with their
unique experimental set-up, often consisting of mul-
tiple panels, therefore resulting in a particularly heavy
annotation burden.
www.thelancet.com Vol 95 September, 2023
Mitigating the annotation bottleneck of cell classifi-
cation using self-supervised learning can produce a fast
and precise mapping of cell phenotypes, thereby accel-
erating the biomarker discovery and the clinical trans-
lation of multiplex imaging.

Here we propose SANDI with a self-supervised
learning framework, leading to a significant reduction
in pathologists’ time. By leveraging the intrinsic simi-
larities in unlabelled cell images, SANDI was able to
3
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perform cell classification with a small reference set
containing as few as 10 manual annotations per type,
while achieving a comparable performance to that of the
supervised model trained on thousands of cell
annotations.

We validated the efficacy of SANDI by comparing its
performance with that of the fully supervised model, and
three state-of-the-art self-supervised frameworks,
SimCLR,10 MoCo,11 and Debiased contrastive learning,12

across a range of annotation burdens. We also examined
the performance of SANDI with automatically selected
reference sets as an approach to further reduce the
necessary annotations for desirable classification accuracy.
We conducted the experiments on four mIHC datasets
and one IMC dataset, which consisted of slides from
ovarian cancer,19 lung squamous cell carcinoma (LUSC),
ductal carcinoma in situ (DCIS),20 myeloma21 and
pancreas22 (Table 1). We focused on the classification of
immune cell types, whose distribution and abundance are
known to have an impact on the disease progression and
prognosis of different cancer types, and are therefore be-
ing targeted by a majority of multiplex imaging studies.
Methods
Datasets
For experiments conducted in the study, the model
was trained and validated on four mIHC datasets and
one IMC dataset, including 9 ovarian cancer slides
stained with CD8/CD4/FOXP3/PD1, 4 LUSC slides
with CD8/CD4/FOXP3/haematoxylin, 12 DCIS slides
with FOXP3, 6 Myeloma slides with CD8/CD4/
FOXP3, and 100 IMC slides with CD4/CD8 channels
extracted. Details of the five datasets are summarised
in Table 1. Slides were assigned for model training,
validation, and testing. Slides from the mIHC datasets
were scanned at 40× magnification and were down-
sampled to 20× (0.44 μm/px) before processing. We
constrained the image resolution to test the model
performance under the common resolution settings of
highly multiplex images.23 The IMC dataset was scan-
ned and processed at 1 μm/px resolution.22

Overview of the SANDI pipeline
The SANDI pipeline incorporated key strategies tailored
for digital pathology to: (1) rapidly generate abundant
examples of each cell type in regions of interest selected
by pathologists, which can be achieved in minutes; (2)
perform a series of operations to assign cell pairs as
similar or dissimilar, extract features from unlabelled
cell images that accurately represent cell identities, even
when slight shifts in views are present; (3) convert learnt
features into cell phenotyping based on a small set of
references using a Support Vector Machine (SVM)
classifier (Fig. 1b).
The self-supervised model of SANDI was built on a
convolution neural network with two identical en-
coders24 (Fig. 1c). The model was trained to discriminate
between pairs of subpatches that originated from the
same cell image (P+), and different cell images (P−).
Each subpatch was encoded into a vector of 32 features
(Fig. 1c). The objective of the training step was to
determine the optimal model parameters by minimising
the loss function. This loss function was calculated as a
combination of normalised temperature-scaled cross-
entropy loss (NT-XEnt)10 and the weighted cross-entropy
loss. By minimising the loss function, features origi-
nating from the same cell were positioned close to one
another, while features derived from different cells were
encouraged to be distant from each other within the
feature space.

The trained self-supervised model of SANDI was
able to extract distinct features for different cell pheno-
types by learning to predict the pairwise similarities
(Fig. 1c). To convert the encoded features into cell
identities, we collected a small set of representative cell
images as references, which showed clear staining,
typical morphology and could be confidently assigned to
a specific cell class. The encoder of the trained self-
supervised model was used to extract features from
both subpatches of references and unknown cells. A
linear SVM trained on features of references was used
to classify unknown cells.

Single-cell patches sampling
All slides were analysed for single-cell detection using a
pre-trained deep learning model25 prior to the proposed
pipeline. To build the dataset for self-learning purposes,
the first step is typically to sample single-cell patches
from the whole slide image (WSI).26 In an ideal situation
where the percentage of each cell type present in the
dataset is balanced, we can randomly sample from the
pool of all detected cells and expect an equal chance of
capturing each cell type of interest. However, in patho-
logical data, cell type imbalance is common, which may
cause some rare cell types to be missed out due to
random sampling.

To tackle this problem and to investigate the
impact of data imbalance on the model performance,
we introduced a data sampling step to capture a va-
riety of cell phenotypes and ensure the inclusion of
rare cell types. First, small regions on the WSI
enriched with diverse cell types were manually iden-
tified. The selection of regions should also consider
excluding areas with low image quality, such as those
exhibiting imperfect staining, artefacts, or being out-
of-focus. Then, a pathologist will label the class of
each cell within these regions by annotating the cell
centre using different colours to denote different cell
types. The selection of regions ensures that a
www.thelancet.com Vol 95 September, 2023
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Dataset Contributors cell phenotypes No. of annotations Total no. of annotations

Training + Validation Testing Training + Validation Testing

Ovarian T cells T.G and J.A.L19 CD4+FOXP3+ 292 197 1828 (4 slides) 997 (5 slides)

CD4+FOXP3- 596 168

PD1+CD8+ 726 347

PD1-CD8+ 139 203

PD1+CD4+ 39 60

PD1+CD8-CD4- 36 22

LUSC T cells T.M, A.U.A, and J.L.Q CD4+FOXP3+ 746 228 2407 (2 slides) 1383 (2 slides)

CD4+FOXP3- 1225 696

CD8+ 204 200

Haematoxylin-stained 232 259

DCIS FOXP3 F.S and E.S.H20 FOXP3+ 1030 576 11,459 (7 slides) 3799 (5 slides)

FOXP3− 10,429 3223

Myeloma Y.H, C.S.Y.L, D.P, L.L, M.R-J and K.Y21 CD8+ 866 979 3269 (4 slides) 1588 (2 slides)

CD4+FOXP3− 2244 493

CD4+FOXP3+ 159 116

IMC CD4-CD8 Damond et al.22 CD4+ 987 828 3954 (80 slides) 1085 (20 slides)

CD8+ 2967 257

Table 1: Composition of the 5 datasets used in the study.

Articles
considerable number of each cell types are included in
the training dataset. Manual labels revealed the compo-
sition of cell types within the regions and provided
ground truth for model evaluation. A 28 × 28 pixels patch
around each dot annotation was retrieved to form the
dataset. For cells present at the edge of a region, we
applied mirror padding to expand the patch to 28 × 28
pixels. All image patches from slides used for model
training and validation (Table 1) were pooled together
and randomly allocated to the training or validation set
with a 4:1 ratio. The validation patches were used for
assessing the model performance during the training
stage. The best model was chosen based on the lowest
loss observed on the validation set. While patches on
testing slides were employed to evaluate the best model’s
generalisation ability to unseen images after the
completion of training.

Patch cropping and pairing
Given a dataset containing n 28 × 28 pixel
(12.32 × 12.32 μm2) single-cell image patches Dn =
{xi, ...,xn}, we first generated all possible combinations
C2 = {(xi, xj) ∈ D|i ∕= j}. For each batch, N pairs (xi, xj)
were randomly sampled from C2 without replacement.
For each pair of single-cell image patches, the ac-
quired patches xi, xj were each randomly cropped into
20 × 20 pixels (8.8 × 8.8 μm2) sub-patches xdi ,si , indi-
cating the si sub-patch cropped from the di patch. Two
sub-patches retrieved from the same patch and the
paired patch were labelled as positive (p+) and negative
www.thelancet.com Vol 95 September, 2023
(p−) respectively, indicating that they were from the
same cell or different cells. These are described as
follows:

P+ = {(xdi ,si , xdj ,sj)∈C2| di = dj , si ∕= sj} (1)

P− = {(xdi ,si , xdj ,sj)∈C2| di ∕= dj , si ∕= sj} (2)

where P+ and P+ denote the set of p+ and p+. The total
number of p+ and p− in a batch is 2N with N set to 256 in
the experiment. RGB-valued images were normalised to
the range [0, 1] before being fed into the network. The sub-
patches randomly cropped from a single-cell image rep-
resented different fields of view for the cell. By assigning
sub-patches derived from the same cell to positive pairs,
we encouraged the model to classify them as the same cell
class. This approach aims to simulate the process of in-
spection performed by pathologists, where cell identifica-
tion remains consistent regardless of the field of view.

To assess the effectiveness of the cropping strategy,
we applied three additional methods to generate sub-
patches from the single-cell image patches. These
methods include random flipping, blurring, and scaling.
Random flipping randomly flips the image patch either
horizontally or vertically. Blurring involves applying
Gaussian blur to the image using a kernel size of 5 and a
sigma value of 1. Scaling entails enlarging the image by
5

www.thelancet.com/digital-health


Articles

6

a factor of 2 and then selecting the 28 × 28 pixels region
at the centre of the rescaled image.

We trained the self-supervised model of SANDI
using subpatches generated by these different
methods, and compared the corresponding cell classi-
fication performance. It was observed that random
cropping consistently resulted in the best or compara-
ble classification performance across most datasets,
except for the IMC CD4-CD8 dataset. In this particular
dataset, the scaling method outperformed the cropping
method at annotation budgets of 10% and 20% (Wil-
coxon rank-sum test, P = 0.01, P = 0.01, Fig. S1a).
These comparisons suggest that random cropping is
generally more effective than the other augmentation
methods tested for optimising the features learned by
the self-supervised model.

Network architecture and training
As shown in Fig. 1c, the self-supervised model consists
of two identical encoders conjoined at their last layers,
followed by a single branch responsible for computing
the pairwise similarity between the outputs of the two
encoders. Each encoder contains a series of convolution,
activation, batch normalisation, max-pooling, and
dropout layers. These layers apply non-linear trans-
formations to the input image, allowing high-
dimensional inputs to be converted into a 32-
dimension feature vector. This feature vector is a
latent representation of an image in a low-dimensional
space. The single branch concatenates feature vectors
from two encoders and feeds them through a dense
layer, followed by a series of activation layers to generate
a value between 0 and 1. This output value corresponds
to the predicted similarity score between the image
pairs. A higher score indicates more similarity between
the two images.

For cell phenotyping purposes, the network was
expected to generate a high score for cells from the
same class and a low score for cells from distinct
classes. However, since the network was trained to
identify similar or dissimilar pairs randomly sampled
from the unlabelled dataset, two images from the
same class might have been labelled as negative
during the data preparation, which biased the network
towards features that discriminate against images
from the same class.12,27 To reduce the impact of
uncertainty in negative labels, we modified the binary-
entropy loss function by applying lower weights to the
P− than to P+.

Lwbce = −
1
N

∑N
i=1

(w+ log(fs(p+i ))+w− log(fs(p−i ))) (3)
where fs denotes the similarity branch, N is the total
number of p+ or p− within a batch. w+,w− denote the
pre-defined weights applied to the entropy loss of posi-
tive pairs p+i and negative pairs p−i . The ratio of w+ and
w− determines the extent to which the model is
encouraged to focus on positive pairs, which have been
ascertained to be labelled correctly as of the same cell
type. We tested various ratios of w+ and w−, including
0.9:0.1, 0.8:0.2, 0.7:0.3, 0.6:0.3 and 1:1 across five data-
sets and a range of annotation budgets (Fig. S1b). The
ratio of 0.7:0.3 demonstrated the highest performance
in the Myeloma dataset across different annotation
burdens (10%, 20%, 30%, 100%, Wilcoxon rank-sum
test, P ≤ 0.043, Fig. S1b). This ratio also showed
similar performance to other weight ratios in most of
the other datasets when considering random sampling
of annotations (Wilcoxon rank-sum test, P ≥ 0.074),
except for the 20% annotations of the LUSC T cells
dataset (P = 0.043, Fig. S1b). Therefore, we have chosen
to set w+ as 0.7 and w− as 0.3 for the remaining
experiments.

To further constrain the latent representations to
maximise the agreement between P+, we combined
Lwbce with the normalised temperature-scaled cross-
entropy loss (NT-XEnt)8, which is expressed as

LNT−XEnt = −log
exp(sim(zi, zj)/τ)

∑2N
k=1

l[k∕=i] exp(sim(zi, zk)/τ)
(4)

where zi and zj denote the l2 normalised embedding of
sub-patch xdi ,si and xdi ,sj , sim denotes cosine similarity,
l[k∕=i] equals to 1 if k ∕= i, otherwise 0. N is the total
number of subpatch pairs within a batch. τ denotes the
temperature parameter. We set the temperature pa-
rameters as 0.1 in the experiment, which was the
optimal value proposed in its previous implementa-
tion.10 For a given sub-patch xdi ,si , the NT-XEnt loss
treats the sub-patch xdi ,sj originated from the same patch
as positive samples, and all the other (2N −2) sub-
patches within the batch as negative samples.

The combined loss is the combination of Lwbce and
LNT−XEnt, as given by

Lcombined = Lwbce+LNT−XEnt (5)

It is worth noting that a debiased variant of NT-XEnt
has been proposed to account for the uncertainty in
negative pairs.12 This Debiased loss is expressed as.

LDebiased = −log
exp(sim(zi, zj)/τ)

exp(sim(zi, zj)/τ)+S (6)
www.thelancet.com Vol 95 September, 2023
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S=max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
−(2N−2) ∗ α ∗ exp(sim(zi, zj)/τ)+ ∑2N

k=1
l[k∕=i] exp(sim(zi, zk)/τ)

1−α
, (2N − 2) ∗ exp( − 1/ τ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (7)
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where the additional parameter α denotes the probability
of a negative pair to be of the same cell type. We
compared the model performance of Lcombined and LDebiased
to assess the effectiveness of different approaches in
mitigating the negative impact of uncertainty in negative
samples. In the experiment, α and τ were set as 0.01 and
0.1 separately, which had been shown to produce the best
performance in their previous implementations.10,12

For rigorous assessment of models, all training was
performed on an Intel i7-9750H CPU for 100 epochs
with a batch size of 256. The training was optimised
using Adam with an initial learning rate of 10−3, along
with other parameter settings suggested by the original
paper.28 The models with the least validation loss were
selected for evaluation.

Reference-based cell classification
Identification of cells from multiplex images is depen-
dent on stain intensities and the morphology of the cell,
which can be affected by experimental artefacts and out-
of-focus regions. The noise in the data/label is a well-
known issue affecting model performance in digital
histology image analysis.29,30 Motivated by the need to
reduce the annotation burden, we selected a set of
reference images Rn = {xi, ..., xn} from the training
dataset D as representations of each cell type. In prac-
tice, the reference can also be extracted from an inde-
pendent subset of cells from images stained with the
same panel as the training dataset. Each cell in a hold-
out testing set is regarded as a query image xqi . Both
the reference image xri and query image xqi were crop-
ped into 9 20 × 20 pixel sub-patches and processed by
the trained encoder to yield the feature vectors f (xri,si)
and f (xqi,si) of size 32 × 9. Assembling features of sub-
patches allow the local regions adjacent to the cell to
be incorporated for downstream classification, which
has been shown to generate more accurate predictions.25

An SVM classifier with a linear kernel implemented
in the libsvm library31 was trained on feature embed-
dings of references f (xri,si) and predicted cell pheno-
types for embeddings of unlabelled samples f (xqi,si).

To evaluate the representative capability of features
learned by the self-supervised model for cell categories, we
conducted a comparative analysis with two alternative
feature extraction methods: autoencoder and colour histo-
gram. The autoencoder is a deep-learning model designed
to reconstruct images from low-dimensional features. For
a fair comparison, we constructed an autoencoder with the
same encoder architecture as SANDI and a decoder that
www.thelancet.com Vol 95 September, 2023
reverses the encoding process to reconstruct the original
image. To extract features from the entire cell image, we
used uncropped image patches of size 28 × 28 pixels as
input. The autoencoder was trained using mean squared
error as the loss function and optimised using Adam with
an initial learning rate of 10−3. The batch size was set as
100 and the model was trained for 500 epochs. Unlike
SANDI, the autoencoder was trained to reconstruct a cell
image without contrastive learning from a pair of cells. The
comparisons between features generated by SANDI and
the autoencoder can therefore illustrate the effectiveness of
the pairwise similarity learning strategy employed by
SANDI. Another method for feature extraction is the
colour histogram, which involves computing separate his-
tograms for the red, green, and blue intensities, with a bin
size of 50. The values of these three channels were
concatenated into a vector, representing the colour distri-
bution in an image patch.

Automatic expansion of the reference set
Although SANDI can obtain high accuracy using a
limited number of labels, being trained on a small set of
representatives may lead to an underestimation of the
intra-cell-type variations in stain intensities, colour
combinations, and morphologies.3,32,33 By contrast, a
larger training set can expose the model to higher vari-
ability in the data but can also deteriorate model per-
formance if poor-quality data is included.32,34 An ideal
approach to capture a good level of variation while
ensuring adequate data quality is to leverage informa-
tion learnt by self-supervised training to inform the
pathologist of cells that are prone to misclassification
and thereby, create ground truth feedback to improve
model performance. For this purpose, we proposed the
automatic expansion method for iteratively adding hu-
man interpretation of the least confident instances as
training events.

The flowchart illustrating the pipeline is shown in
Fig. 2a. Firstly, we nominated 1 image for each cell
phenotype as a representative, and then the minimal
Euclidean distance dist between embeddings of unla-
belled images f (xqi,si) and each reference image f (xri,si)
was used to determine the cell type of unlabelled cells.
This distance-based classification method is described by:

p(y|dist(f (xri,si), f (xqi,si))) (8)

Second, as an automated reference set expansion, for
each group of cells of class K, the cell with the
7
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Fig. 2: Performance of SANDI on five datasets. a, The t-SNE representation of test image embeddings. Cell labels are represented as colour
codes. b, Comparison of the performance based on weighted F1-score of four self-supervised methods (SANDI, SimCLR, MoCo, Debiased
contrastive learning) and the supervised classifier over increasing amounts of annotations. For annotations below 30%, the mean and standard
error from five random samplings are shown. Asterisks above the curves indicate the statistical significance of comparisons between SANDI and
the other four methods, with colours of asterisk representing the corresponding compared method. *, P < 0.05.
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maximum Euclidean distance to any of reference cells of
the same class K was selected and manually labelled.
These newly selected cells were then added to the pre-
vious reference set, while ignoring repeated instances.
The two steps were repeated for 10 rounds and the
weighted F1-score computed on the testing set was
examined using the reference set from each round.

To assess the efficacy of the proposed automatic
expansion method, we compared the classification per-
formance based on reference selected by the proposed
method, random selection, and an established active
learning method in the modAL35 library. The random
selection involved randomly sampling one cell per
round from cells predicted as each category in the pre-
vious round. The modAL35 approach was configured
using the entropy-based sampling strategy,36 which
queries the cells with the least probability of being a
certain class.

Assessment of model performance
To evaluate the model performance under various
annotation budgets, we trained linear SVM classifiers on
feature embeddings of randomly sampled training
subsets containing 1%, 3%, 5%, 10%, 20%, and 30% of
annotated samples from training slides of each dataset
(Table 1). The random sampling was performed in a way
that each subset contained approximately the same
proportion of samples of each cell type as the complete
set. The training of SVM was repeated five times on
different randomly sampled training sets, and the model
performance was tested on hold-out testing sets con-
taining cells from slides excluded from training
(Table 1). Results were compared against the perfor-
mance of SVM-trained features generated by three state-
of-the-art self-supervised methods SimCLR,10 MoCo,11

Debiased contrastive learning,12 and a supervised clas-
sifier trained on 10%, 20%, 30%, and 100% of the
annotations.

For fair comparisons, the supervised classifier,
SimCLR, MoCo, and Debiased contrastive learning
were constructed with the same encoder as SANDI,
and only random flipping was applied for data
augmentation. As compared to SANDI, SimCLR and
Debiased contrastive learning do not incorporate the
www.thelancet.com Vol 95 September, 2023
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similarity branch and were trained to optimise the NT-
XEnt loss and the Debiased loss respectively. All
methods were trained on the same training/validation
set split, and were tested on the same hold-out testing
set as SANDI.

Performance of the model was evaluated using the
weighted F1-score, which is the average of F1-score for
each class weighted by the number of their instances:

weightedF1= 1
n
∑k
i=1

ni ∗ 2TP
2TP+FP+FN (9)

where n is the total number of instances, k is the
number of classes, and ni is the number of instances for
class i. TP, FP, and FN denote true positive, false posi-
tive and false negative respectively. The desired
weighted f1-score can vary for different panels and study
designs. In general, we expect a weighted f1-score of
greater than 0.8 to be acceptable for generating robust
results for downstream analysis.

Ethics
This research involved a retrospective review of dei-
dentified medical images, and the requirement for
informed consent was waived.

Statistics
Statistical significance of performance comparisons was
determined by the Wilcoxon rank-sum test, with all P
values adjusted using the Benjamini-Hochberg correc-
tion. Correlations among cell percentages in the Ovarian
T cells dataset were evaluated using the Pearson corre-
lation coefficient. All statistical analyses were performed
in R (v4.2.2).

Role of funders
The funders had no role in the design of the study; the
collection, analysis, or interpretation of the data; the
writing of the manuscript; or the decision to submit
the manuscript for publication. The authors declare no
competing non-financial interests that may have influ-
enced the publication process.

Results
Evaluation of SANDI for cell classification across
various annotation burdens
The effectiveness of SANDI in discriminating diverse
cell types was first evaluated by visualising the embed-
dings of testing images in the latent space, which was
performed using the t-distributed stochastic neighbour
embedding (t-SNE). To capture the variability in cell
appearance, each testing image was represented by the
embeddings of nine sub-patches in its neighbourhood.
The t-SNE plot revealed compact and distinguishable
clusters corresponding to each cell type (Fig. 2a). In
contrast, features extracted by an autoencoder or colour
www.thelancet.com Vol 95 September, 2023
histogram (Methods) failed to separate different cell
types into distinct clusters (Fig. S2a and b), suggesting
that the self-supervised learning strategy of SANDI was
crucial for capturing features representative of cell
identities.

To investigate the size of reference set required for
SANDI to achieve reasonable performance, we first
trained linear SVM on feature embeddings of randomly
sampled reference sets containing 1%, 3%, 5%, 10%,
20%, and 30% of annotated samples of each cell type.
When the budget was limited to 1%, the number of
annotations ranged from 1 for PD1+CD8-CD4-cells in
the Ovarian T dataset to 104 for FOXP3- cells in the
DCIS FOXP3 dataset (Table 1).

Across 5 datasets, SANDI achieved an impressive
performance using only 1% of annotations (18–-
114 cells, Fig. 2b), comparable to a supervised classifier
constructed using the same encoder trained on
1828–11,459 annotations (−0.002 to −0.053 of weighted
F1-score, Wilcoxon rank-sum test, P = 0.31, Table 2,
Table S1). Thus, SANDI can obtain adequate classifica-
tion accuracy using 100 times fewer annotations than
the conventional supervised training methods. With a
budget of below 30% of annotation data (11–3129 cells
per type), SANDI achieved superior or comparable
performance than the supervised classifier, and the
other three state-of-the-art self-supervised frameworks
SimCLR,10 MoCo,11 and Debiased contrastive learning12

in all the five datasets (P ≥ 0.023, Fig. 2b, Table 2,
Table S1). These comparisons demonstrate the effec-
tiveness of the SANDI loss function and architecture for
the task of cell classification in multiplex images.
Importantly, the superiority of SANDI in the Ovarian T
cells, LUSC T cells and Myeloma datasets with sub-
stantial data imbalance suggests a key advantage of
SANDI in multiplex image analysis.

Notably, there is an inferior performance across all
methods for the Ovarian T cells dataset compared to
other datasets (Table 2). This dataset contains two cell
types defined by the coexpression of two markers:
PD1+CD8+ and PD1+CD4+ (Table 1). Cell types stained
with a combination of markers displayed more varia-
tions in the staining compared to cells expressing a
single marker. It is challenging for the model to
distinguish between co-expressing cells and cells
expressing each marker alone (i.e. PD1+CD8+ cells
versus PD1+CD8- and PD1-CD8+ cells). This is illus-
trated in Fig. S3, where PD1-CD8+ cells with irregular
staining intensities of CD8 were misclassified as
PD1+CD8+ cells. Furthermore, we observed that the
weighted cross-entropy loss improved over the non-
weighted version; and when combined with the
contrastive loss NT-XEnt to learn co-occurring modal-
ities, resulted in the best overall performance regardless
of image types (Table S2). Thus, SANDI is capable of
boosting the performance of unbiased cell identification
regardless of cell abundance, possibly due to its loss
9
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Annotations 1% 3% 5% 10% 20% 30% 100%

Ovarian T cells

No. of cells 18 54 91 182 365 548 1828

Supervised classifier – – – 0.518 (0.03) 0.803 (0.026) 0.797 (0.027) 0.856

SimCLR 0.707 (0.069) 0.782 (0.038) 0.789 (0.032) 0.831 (0.012) 0.839 (0.007) 0.850 (0.014) 0.863

MoCo 0.527 (0.098) 0.671 (0.068) 0.718 (0.052) 0.767 (0.014) 0.776 (0.006) 0.785 (0.007) 0.800

Debiased 0.795 (0.053) 0.802 (0.084) 0.844 (0.042) 0.857 (0.017) 0.858 (0.008) 0.855 (0.014) 0.847

SANDI 0.820 (0.028) 0.817 (0.077) 0.829 (0.064) 0.845 (0.014) 0.853 (0.019) 0.849 (0.012) 0.846

LUSC T cells

No. of cells 24 72 120 240 481 722 2407

Supervised classifier – – – 0.338 (0.005) 0.905 (0.042) 0.918 (0.016) 0.935

SimCLR 0.716 (0.064) 0.757 (0.03) 0.806 (0.017) 0.857 (0.041) 0.880 (0.027) 0.898 (0.005) 0.910

MoCo 0.664 (0.031) 0.725 (0.035) 0.776 (0.012) 0.808 (0.036) 0.827 (0.03) 0.854 (0.013) 0.898

Debiased 0.867 (0.012) 0.869 (0.045) 0.872 (0.03) 0.903 (0.02) 0.929 (0.009) 0.927 (0.007) 0.935

SANDI 0.883 (0.019) 0.886(0.013) 0.887(0.014) 0.898 (0.016) 0.916 (0.022) 0.922 (0.008) 0.934

DCIS FOXP3

No. of cells 114 343 572 1145 2291 3437 11,459

Supervised classifier – – – 0.938 (0.052) 0.981 (0.008) 0.985(0.001) 0.988

SimCLR 0.965 (0.019) 0.979 (0.005) 0.977 (0.009) 0.976 (0.006) 0.981 (0.001) 0.982 (0.003) 0.987

MoCo 0.983 (0.006) 0.982 (0.005) 0.982(0.006) 0.980 (0.005) 0.985(0.001) 0.986(0.001) 0.989

Debiased 0.986 (0.001) 0.986 (0.003) 0.983 (0.004) 0.985 (0.002) 0.986 (0.001) 0.986 (0.002) 0.988

SANDI 0.986(0.003) 0.982 (0.008) 0.984(0.006) 0.984(0.003) 0.985(0.001) 0.985(0.001) 0.986

Myeloma

No. of cells 32 98 163 326 653 980 3269

Supervised classifier – – – 0.958 (0.003) 0.961 (0.007) 0.955 (0.011) 0.965

SimCLR 0.879 (0.016) 0.917 (0.04) 0.949 (0.016) 0.953 (0.008) 0.962 (0.008) 0.968 (0.005) 0.982

MoCo 0.844 (0.024) 0.876 (0.043) 0.912 (0.02) 0.928 (0.002) 0.949 (0.006) 0.967 (0.007) 0.985

Debiased 0.894 (0.024) 0.900 (0.042) 0.918 (0.016) 0.935 (0.010) 0.940 (0.006) 0.940 (0.012) 0.946

SANDI 0.912(0.028) 0.942(0.011) 0.952(0.008) 0.965(0.002) 0.975(0.004) 0.977(0.004) 0.983

IMC CD4-CD8

No. of cells 39 118 197 395 790 1186 3954

Supervised classifier – – – 0.696 (0.073) 0.795 (0.103) 0.777 (0.115) 0.958

SimCLR 0.867 (0.038) 0.908 (0.008) 0.916 (0.009) 0.925 (0.006) 0.933 (0.009) 0.940 (0.003) 0.947

MoCo 0.777 (0.018) 0.820 (0.017) 0.844 (0.007) 0.859 (0.014) 0.875 (0.009) 0.878 (0.007) 0.892

Debiased 0.910 (0.038) 0.933 (0.011) 0.935 (0.004) 0.940 (0.007) 0.942 (0.008) 0.945 (0.006) 0.958

SANDI 0.921(0.014) 0.928 (0.01) 0.932 (0.007) 0.933 (0.005) 0.942(0.005) 0.942 (0.005) 0.957

Results for annotation percentages ranging from 1% to 30% are the average over 5 trials with different random samplings. Standard deviations are shown inside the
parentheses. Bold values are within 0.003 lower than the best.

Table 2: The weighted F1-score of the SVM classifier trained on features generated by different methods, with various percentages of annotations.
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function design and independence of prior-defined
labels.37

Performance with the automatic expansion of the
reference set
To effectively select reference images that contribute the
most to model performance improvement, we designed
an automatic expansion of the reference set. This is
achieved by iteratively estimating the confidence of cell
phenotyping performed by the trained model, and rec-
ommending the least confident instances for manual
labelling (Fig. 3a, Methods). The reference set was ini-
tialised with one arbitrarily selected image for each cell
type (Fig. 3b). With 10 iterations, we gathered a refer-
ence set containing the 10 most diverse representations
of the same cell type. It is worth noticing that we con-
strained the number of iterations to 10 for experiment
purposes. In practice, the number of cells in the initial
reference set, the number of iterations, and the number
of cells recommended at each round can be modified for
particular needs.

Initial references and example cells classified at the
10th iteration were shown in Fig. S3. As the number of
references increases, we have observed an inconsistent
improvement in the weighted F1-score, with the highest
value achieved prior to the 10th iteration in the Ovarian
T cells, LUSC T cells, and DCIS FOXP3 datasets
(Fig. 3c). The decrease in accuracy can potentially be
attributed to the inclusion of references located near
the decision boundary. These references may have
www.thelancet.com Vol 95 September, 2023
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Fig. 3: Automatic expansion of reference sets. a, The automatic expansion scheme of reference sets to effectively select reference images that
contribute most to the improvement of model performance. The unlabelled cell images from the training set D and an initial reference set Rn
containing 1 reference image for each cell type K were provided in the first round. Images in D and Rn were cropped to 9 20 × 20 pixel sub-
patches and processed by the trained feature encoder. The unlabelled cells were assigned with cell type K based on the Euclidean distance
between embeddings of reference and unlabelled cells. The instance with the maximal Euclidean distance was selected for manual labelling and
merged with Rn from the previous round to form the new reference set. In the experiment, the process was repeated 10 times. b, Examples of
initial reference sets for each of the five datasets. c, Weighted F1-score on testing sets for the linear SVM classifier trained on the reference set
generated by 3 different methods at each round of automatic expansion. The process was repeated 3 times with different initial reference
images. The error bar indicates the standard error. The yellow horizontal line denotes the weighted F1-score achieved by the supervised classifier
trained on 100% annotations.

Articles
neighbouring cells from a mixture of classes, leading to
confusion and difficulty in distinguishing adjacent cell
classes within the feature space. Despite the fluctuation
in performance, references at the 10th iteration yielded
comparable weighted F1-scores than the supervised
model trained on 100% of annotations (+0.014 to −0.041
of weighted F1-score, Wilcoxon rank-sum test, P = 0.55,
Tables 2 and 3). These results suggest that the
confidence-based reference selection scheme can effec-
tively boost classification accuracy using as few as 10
annotations per cell type.

To further evaluate the efficacy of the proposed
automatic expansion approach, we compared the clas-
sification performance using reference images selected
by three approaches: the proposed automatic expansion
method, random selection, and the entropy-based
sampling strategy36 in the modAL library,35 which is
an established active learning method for querying
www.thelancet.com Vol 95 September, 2023
uncertain instances to be labelled (Methods). All ap-
proaches were initialised with the same reference set
and evaluated on the same whole-out testing set.
Although the three approaches did not show significant
differences in the classification performance (Wilcoxon
rank-sum test, P ≥ 0.191, Fig. 3c, Table S3), the analysis
of the standard deviation of the weighted F1-score
revealed noteworthy findings. Specifically, in the
Ovarian T cells, LUSC T cells, and IMC CD4-CD8
datasets, the proposed method’s selected references
resulted in significantly lower standard deviation in
weighted F1-scores compared to randomly selected ref-
erences (Wilcoxon rank-sum test, P = 0.043, P = 0.016,
P = 0.085, Table S3), indicating a higher level of per-
formance consistency. Furthermore, in the Ovarian T
cells dataset, the proposed method’s selected references
also demonstrated significantly lower standard deviation
compared to references selected by modAL (Wilcoxon
11
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rank-sum test, P = 0.039, Table S3). Notably, a signifi-
cant difference in standard deviation between modAL
and randomly selected references was observed solely in
the LUSC T cells dataset (Wilcoxon rank-sum test,
P = 0.041, Table S3). These findings suggest that the
proposed automatic expansion method has the potential
to select references that lead to more reliable and stable
results and contribute to robust enhancements in clas-
sification accuracy.

SANDI reveals the association between PD1
expression and T regulatory cell proximity in the
Ovarian T cells dataset
To examine the capability of SANDI in identifying bio-
logical meaningful cellular distributions, we performed
it on cells auto-detected by a pre-trained neural network6

on 9 slides from the Ovarian T cells dataset. It is worth
noting that the auto-detected dataset contains tissue
backgrounds that were over-detected as cells (Fig. S4).
Despite such noise within the data, SANDI trained on
4431 auto-detected cells from 19 regions achieved a
weighted F1-score of 0.855 with the linear SVM classi-
fier trained on 20% of randomly selected training sam-
ples and evaluated on the same testing set as previously
described, suggesting its robustness against incorrect
detection of cells. Additionally, SANDI is capable of
correcting over-detected cells using patches of tissue
background as references (Fig. S4).

We applied SNADI to classify six immune cell sub-
sets using references from the 10th iteration of the
automatic expansion scheme. The classified cells exhibit
a diverse composition across the 9 samples (Fig. 4a),
with PD1-CD4+FOXP3-, PD1+CD8+ and PD1-CD8+
being the top three abundant cell types (Fig. 4b). We
observed negative associations between percentages of
PD1-CD4+FOXP3- T helper cells (Th) and PD1-CD8+
cells (Rho = −0.922, P = 0.0004, 95% confidence interval
(CI) = −0.984 to −0.665), PD1-CD4+FOXP3+ T regula-
tory cells (Treg) and PD1+CD8-CD4-cells (Rho = −0.720,
P = 0.029, 95% CI = −0.936 to −0.107), and
between PD1+CD8+ cells and PD1+CD8-CD4-cells
(Rho = −0.759, P = 0.018, 95% CI = −0.946 to −0.191,
Fig. 4c). PD1 expression has been associated with acti-
vation and exhaustion of CD8+ and CD4+ T cells.38 To
quantify the impact of PD1 expression on the T regu-
latory cell (Treg) mediated immunosuppression, we
measured the distance of PD1+ and PD1- T cells to the
nearest PD1-CD4+FOXP3+ Treg cell. We constrained
the analysis to distance within 250 μm, which was
shown to be the maximal distance of effective cell–cell
interactions.39 This approach showed that PD1-
CD4+FOXP3- Th cells were nearer to Treg cells than
PD1+CD4+FOXP3- Th cells (Fig. 4d), whereas
PD1+CD8+ cells were closer to Treg cells compared to
PD1-CD8+ cells (Fig. 4e). It has been documented that
CD4+ cells with low PD1 expression displayed reduced
cytokine production and was associated with poor
www.thelancet.com Vol 95 September, 2023
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Fig. 4: Cellular composition and cell–cell distance in the Ovarian T cells dataset revealed by SANDI. a. The percentage of immune cell subsets in
each of the 9 ovarian slides. b. Overall compositions of six immune cell subsets. c, Correlation heatmap to illustrate the association between percentages
of six immune cell subsets. d. Density plots showing the distribution of PD1-CD4+FOXP3-, PD1+CD4+FOXP3- within 250 μm to the nearest PD1-
CD4+FOXP3+ Treg cells. e. Density plot showing the distribution of PD1-CD8+ and PD1+CD8+ T cells within 250 μm to the nearest PD1-CD4+FOXP3+
Treg cells. The mean distance is shown as the horizontal line.
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overall survival in follicular lymphoma.40 By contrast,
high expression of PD1 is known to characterise the
dysfunctional CD8+ T cells,38 and the irreversible
exhaustion is partly attributed to the Treg interaction.41

These findings raised the possibility that high PD1
expression on CD8+ T cytotoxic cells may be linked to
increased interaction with Treg cells and co-orchestrate
immunosuppression while having an opposite effect
on Th cells. Overall, these results demonstrated the
potential of SANDI not only to classify cellular compo-
nents but also to facilitate hypothesis-driven analysis of
cell–cell interactions in complex tissues.
www.thelancet.com Vol 95 September, 2023
Discussion
In this work, we developed and demonstrated the per-
formance of a self-supervised framework SANDI for cell
classification in multiplex images to minimise the
workload for pathologists. Results obtained from five
datasets showed that, with an average of 10 labels per
cell type, the performance of SANDI was comparable to
that of the fully supervised classifier trained on more
than 1800 single-cell annotations. Specifically, SANDI
achieved a mean weighted F1-score 0.002 below that of
the fully supervised classifier in the DCIS FOXP3
dataset. We also showed that SANDI achieved superior
13
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or comparable performance to other self-supervised
frameworks when the annotation budget was below
30%, indicating that our proposed framework is highly
effective at reducing the number of annotations
required for accurate classification. We achieved these
results by using a self-supervised model that learns the
distinct features of cell classes using pairwise similar-
ities between subpatches of the same cell and different
cells as labels. Notably, the model demonstrated the
ability to generalise effectively to datasets containing
various compositions of cell types (Tables 1 and 2),
suggesting that the model was robust against varying
distributions of cell types, which can potentially be
introduced by different choices of regions of interest.
Additionally, we showed that the trained encoders can
help identify cells that are prone to misclassification,
thus guiding the annotation efforts towards cells that
can effectively improve classification accuracy. With
SANDI applied to the Ovarian T cell slides, we revealed
a distinct association of PD1 expression on CD8+ and
CD4+ T cells with the Treg-mediated immunosuppres-
sion. These results demonstrate the capability of SANDI
in deconstructing cellular spatial organisation at scale
and suggest its potential application in biomarker dis-
covery and clinical translations.

This work has several limitations. First, the pipe-
line still requires manual selection of regions that
contain a variety of cell phenotypes and are of high
image quality to ensure that a considerable number of
cells of interest are included in the training. Future
work to evaluate automated methods to guide region
selection will help address this issue. Second, the
training images of the self-supervised model is
currently limited to cell-containing images, which in-
volves a pre-trained detection model applied prior to
the pipeline to locate image patches of single cells.
Classification on automatically detected cells showed
that SANDI was capable of distinguishing cell-
containing images from the tissue background when
representative images of background were provided as
references. It would be of interest to identify back-
ground patches using the self-supervised model
trained on randomly cropped image patches to reduce
false positives in cell detection. Also, the performance
of SANDI was contingent on the selection of the
weight ratio in the loss function. An intriguing di-
rection for future research is to automatically learn the
weight ratio along with the weights in layers during
model training. Additionally, the increase in classifi-
cation performance as the automatic expansion of the
reference set was inconsistent, which might be due to
the varied quality of references. A quantitative mea-
sure of image quality is required to evaluate the sus-
tainability of model performance to different choices
of references. Lastly, future work should tailor this
method to other multiplex imaging techniques, such
as phenocycler42 and multiplexed ion beam imaging43

to aid the cell phenotyping in the context of a large
number of antibodies.

In conclusion, SANDI enables labour-efficient cell
phenotyping in multiplex images with minimal manual
inputs, which facilitates the analysis of large-scale
datasets and paves the way for translating multiplex
image analysis into clinical practice. By employing the
prediction of pairwise similarity as the pretext task, self-
supervised learning leverages intrinsic information
from the rich amount of unlabelled data independent
of prior knowledge of cell phenotypes. This strategy
greatly reduces the expert annotations required for
desired classification performance and establishes self-
supervised learning as a promising new technology in
medical artificial intelligence.
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