
research on the human developing brain. 
Using neurogenesis as a criterion, it has 
been shown that E18 and E21 rat brain 
match with week 8–9 and week 15–16 after 
fertilization in the human embryo, respec-
tively (Bayer et al., 1993). But the timing 
of neurogenesis differs substantially across 
brain regions increasing the challenge to 
compare brain maturation between species. 
Moreover, most of the neuronal/astrocytic 
migration ends at 20 weeks of gestation 
(WG) in humans while this process is 
mainly observed between E19 and E21 in 
rats (Raedler et al., 1980). Other param-
eters such as functional measures could be 
used to evaluate postnatal development. 
As an example, the age at which the abil-
ity to move is achieved can be compared. 
Locomotion in the rat matures during the 
first few weeks after birth. Rat pups are 
able to ambulate through the use of their 
forelimbs, upper torso and head beginning 
around P3–P4. This ‘‘crawling’’ behavior 
peaks around P7 and disappears around 
P15. It is not until around P8–P10 that 
rat pups can stand with their abdomens 
completely off the floor. Around P12–P13, 
rat pups can walk while supporting their 
full weight, but the hindlimbs are typically 
rotated outward (Wood et al., 2003). In 
human infants, the last stage before walk-
ing around at 13 months of age typically 
involves intermittently placing one foot 
flat on the floor and creeping like a bear 
on hands and feet. Interestingly, an infant 
can bear his full weight (i.e., stand) while 
being held by her hands by 24–28 weeks 
and can walk while holding onto a piece of 
furniture by 48 weeks (Wood et al., 2003). 

The therapeutic need for neurological 
 diseases requires the pursuit of research in 
this area by the development of new models 
of brain diseases as well as preclinical drug 
studies. Among them, the development of 
medicines for newborns has been identified 
as an urgent need for both preclinical and 
clinical research (Silverstein et al., 2008). 
This would lead to more translational stud-
ies on the developing brain. However, there 
are certain risks involved in this translation 
from animal models to humans such as 
the effect on brain maturation, safety, and 
co-morbidity. Interpretation of results of 
preclinical drug studies requires a knowl-
edge of brain maturation among species in 
particular when the efficacy or the safety 
of a drug may be different. Moreover, the 
risk benefit ratio of a drug in development 
should also be considered in the interpreta-
tion of translational studies.

The use of animal models in experimen-
tal studies has led to a dramatic increase in 
our knowledge. Rodents are the most fre-
quently used species in both experimental 
and translational studies. In the field of 
developmental neuroscience several dif-
ferences between human and laboratory 
rodent brain maturation are well recog-
nized, but determining the exact equiva-
lences in developmental milestones between 
species is a multidimensional task and a sin-
gle answer is not always possible.

To put experimental data into clinical 
context, brain maturation among species is 
compared using various criteria such as cer-
ebral growth, neurogenesis, synaptogenesis, 
and other variables (Table 1). These com-
parisons are done to propose  translational 

Using  several criteria, some authors have 
suggested a 12–13-day-old rat pup cerebral 
cortex can be compared to a term human 
newborn (Romijn et al., 1991).

Reviewing these data on brain develop-
ment, we think that the recent data pub-
lished by Wang and Kriegstein (2011) don’t 
provide any argument against the use of 
bumetanide in the human neonate. Wang 
and Kriegstein used different protocols of 
bumetanide administration in four different 
age groups showing that the early life block-
ing Na+-K+-2Cl− co-transporter (NKCC1) 
with bumetanide disrupts the balance of 
excitatory and inhibitory synapses in the 
cortex of adult mice. These effects were 
shown in two of the treated groups. These 
groups received daily systemic injections 
of 0.2 mg/kg of bumetanide from the 15th 
day of gestation (E15) to the 7th postnatal 
day (P7) or from E17 to P7. Interestingly, 
no difference in the synapse excitability was 
observed when the mice became adult in the 
two other groups which were treated with 
bumetanide after birth (P0-P7 and P7-P14). 
The altered neurotransmission in adult 
mice that were exposed to bumetanide early 
in life (E15-P7 and E17-P7) was correlated 
with modifications of neuron morphology 
as well as behavior modifications. Behavior 
studies were conducted in adult mice from 
the E15-P7 group. Long-term consequences 
were observed such as developmental delay 
and impairment in sensorimotor gating. 
Similar findings were observed with other 
antiepileptic drugs (Forcelli et al., 2012a,b).

Bumetanide is a loop diuretic with a 
rapid onset and short duration of action 
blocking the renal NKCC1 co-transporter. 
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the US (Harvard Medical School Boston, 
personal communication) and with the 
NEMO study about to start in Europe (EU 
FP7 funded collaborative project). A recent 
single case report in a 6-week-old baby has 
shown that bumetanide can reduce seizure 
duration and frequency with no clinical or 
metabolic side effects (Kahle et al., 2009).

However, Wang and Kriegstein (2011) 
concluded that “our data suggest caution 
for long-term use of bumetanide to treat 
neonatal seizures.” We think this is a rather 
inappropriate postulation as their data do 

developing brain (Cleary et al., 2013). It 
has been shown that bumetanide reduces 
neuronal firing in immature neurons using 
hippocampal slices (Dzhala et al., 2005) or 
intact hippocampus (Kilb et al., 2007). In 
vivo models studies have also shown the 
effect on seizure of bumetanide in both 
the kainate model (Dzhala et al., 2005) and 
the PTZ model in rat pups (Mares, 2009). 
Moreover, antiepileptogenic properties 
have been reported using the rapid kindling 
model in rat pups (Mazarati et al., 2009). 
Clinical trials in neonates are under way in 

Bumetanide is also able to block the neu-
ronal NKCC1 co-transporter which is 
thought to be involved in the excitatory 
action of GABA in the immature brain 
(Ben-Ari and Holmes, 2006). The expres-
sion of NKCC1 in the developing brain 
starts embryonically in both human (ges-
tational age of 20 weeks = GA20) and mouse 
(E12) but the peak of expression is prenatal 
in human (GA35) while it is postnatal in 
mice (P7) (Dzhala et al., 2005). Moreover, 
it has been shown that NKCC1 is increased 
by experimental hypoxic seizures in the 

Table 1 | Comparative development of the cortex between laboratory rodents and humans using various criteria.

Parameters Rodents Humans Reference

Maximal growth 

velocity

8–12 Postnatal days 2–3 Postnatal months Gottlieb et al. (1977), Herschkowitz et al. 

(1997), Khazipov et al. (2001), Kretschmann 

et al. (1986)

Neurogenesis

Birth Mouse: E11–13

Rat: E12–15

GW5–6 Al-Ghoul and Miller (1989), Bayer et al. 

(1993), Del Rio et al. (2000), Kostovic and 

Rakic (1990), Price et al. (1997), Wood et al. 

(1992), Zeng et al. (2009)

Waiting Mouse: E14–P0

Rat: E16–17

GW20–26 Catalano et al. (1991), Del Rio et al. (2000), 

Deng and Elberger (2003), Hevner (2000), 

Kostovic and Judas (2002)

Death (0–80%) Mouse: E18–P21

Rat: E20–P30

GW34–41 Al-Ghoul and Miller (1989), Ferrer et al. 

(1990), Kostovic and Rakic (1990), Price et al. 

(1997), Wood et al. (1992)

Neuronal migration Rats: mainly observed between E19 

and E21

Mice: the preplate (PP) appears at 

E12. At E14, the intermediate zone is 

traversed by migrating neurons en 

route to the cortical plate (CP). At E16, 

the normal CP increases in thickness 

following the arrival of young neurons

This telencephalic – diencephalic 

migration occurs between 18 and 

36 weeks PMA but mostly before 

20 weeks of gestation

Bar et al. (2000), Gupta et al. (2005), Letinic 

and Kostovic (1997), Letinic and Rakic (2001), 

Raedler et al. (1980)

Synaptogenesis

Duration of 

synaptogenesis

Rats: synaptogenesis continues for 

the first 3 weeks postnatally, 

peaking in the first 2 weeks

Synaptogenesis continues until 

approximately 3.5 years of age; 

the last structure to undergo 

synaptogenesis is the prefrontal 

cortex

Levitt (2003), Zagon and McLaughlin (1977)

First synapses Rats: thalamocortical E17 Found at 9–10 weeks PMA in the 

cerebral cortex

Molliver et al. (1973), Zecevic et al. (1989)

Synaptic density and 

function

Rats: connections increase in 

neocortex from E16 to E21

Mice: P5–P6, 20% of fast-spiking 
neurons were electrically coupled; 
P15–P18, 42% of FS pairs had 
established electrical synapses

Synaptic density steadily increases 

with a rate of about 4% per week 

till 24–26 weeks PMA. Second 

increase of synaptic formation 

resulting in a 6-fold increase from 

28 weeks PMA till the age at which 

the peak in synaptic density occurs

Huttenlocher and Dabholkar (1997), Kostovic 

and Jovanov-Milosevic (2006), Pangratz-

Fuehrer and Hestrin (2011), Schlumpf et al. 

(1980), Zecevic (1998)
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in adult rats. J. Pharmacol. Exp. Ther. 340, 558–566.
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32, 166–176.
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Res. 81, 172–178.
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Hevner, R. F. (2000). Development of connections in 
the human visual system during fetal mid-gestation: 
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Holmes, G. L. (2005). Effects of seizures on brain devel-
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differences in synaptogenesis in human cerebral cor-
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age-specific therapeutic strategies. One 
important example is the above mentioned 
finding that GABA has excitatory proper-
ties in the immature brain which may be 
susceptible to treatment with bumetanide 
(Dzhala et al., 2005). The above mentioned 
clinical trials on the efficacy of bumetanide 
are the first steps toward high standard, 
multicenter trials using innovative meth-
ods to improve outcome for neonates at risk 
for acute and long-term neurologic damage 
from neonatal seizures.

A large amount of data on the brain 
maturation in the various species show the 
complexities of developmental timing. It 
seems that laboratory rodent P0 matches 
with the antenatal or early premature 
human baby. Based on these, it is clear that 
the issue of bumetanide safety is still open. 
Inappropriate or premature caution against 
bumetanide trials could have far reaching 
consequences for a potentially beneficial 
drug for neonatal seizure while this drug 
has been widely used in neonates for non-
seizure conditions.
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