
Parton Showering with Higher Logarithmic Accuracy for Soft Emissions

Silvia Ferrario Ravasio ,1 Keith Hamilton ,2 Alexander Karlberg ,1 Gavin P. Salam,3,4

Ludovic Scyboz ,3 and Gregory Soyez1,5
1CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland

2Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
3Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom

4All Souls College, Oxford OX1 4AL, United Kingdom
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The accuracy of parton-shower simulations is often a limiting factor in the interpretation of data from
high-energy colliders. We present the first formulation of parton showers with accuracy 1 order beyond
state-of-the-art next-to-leading logarithms, for classes of observables that are dominantly sensitive to
low-energy (soft) emissions, specifically nonglobal observables and subjet multiplicities. This represents
a major step toward general next-to-next-to-leading logarithmic accuracy for parton showers.
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Parton showers simulate the repeated branching of
quarks and gluons (partons) from a high momentum scale
down to the nonperturbative scale of quantum chromody-
namics (QCD). They are one of the core components of the
general-purpose Monte Carlo event-simulation programs
that are used in almost every experimental and phenom-
enological study involving high-energy particle colliders
such as CERN’s Large Hadron Collider (LHC). Parton-
shower accuracy is critical at colliders, both because it
limits the interpretation of data and because of the
increasing importance of showers in training powerful
machine-learning-based data-analysis methods.
In the past few years it has become clear that it is

instructive to relate the question of parton-shower accuracy
to a shower’s ability to reproduce results from the field
of resummation, which sums dominant (logarithmically
enhanced) terms in perturbation theory to all orders in the
strong coupling, αs. Given a logarithm L of some large ratio
of momentum scales, resummation accounts for terms
αnsLnþ1−p, NpLL in a leading-logarithmic counting for
L ∼ 1=αs, or αnsL2n−p, NpDL in a double-logarithmic
counting, for L ∼ 1=

ffiffiffiffiffi
αs

p
.

Several groups have recently proposed parton showers
designed to achieve next-to-leading logarithmic (NLL) and
next-to-double logarithmic (NDL) accuracy for varying
sets of observables [1–10]. A core underlying requirement
is the condition that a shower should accurately reproduce
the tree-level matrix elements for configurations with any

number of low-energy (“soft”) and/or collinear particles, as
long as these particles are well separated in logarithmic
phase space [2,11,12].
In this Letter, we shall demonstrate a first major step

toward the next order in resummation in a full parton
shower, concentrating on the sector of phase space involv-
ing soft partons. This sector is connected with two
important aspects of LHC simulations, namely the total
number of particles produced, and the presence of soft
QCD radiation around leptons and photons (“isolation”),
which is critical in their experimental identification in a
wide range of LHC analyses. The corresponding areas of
resummation theory, for subjet multiplicity [13–15] and so-
called nonglobal logarithms [16–42], have seen extensive
recent developments towards higher accuracy in their own
right, with several groups working either on next-to-next-
to-double logarithmic (NNDL) accuracy, αnsL2n−2, for
multiplicity [43,44] or next-to-single logarithmic (NSL)
accuracy, αnsLn−1, for nonglobal logarithms [45–48].
To achieve NSL or NNDL accuracy for soft-dominated

observables, a crucial new ingredient is that the shower
should obtain the correct matrix element even when there
are pairs of soft particles that are commensurate in energy
and in angle with respect to their emitter. Several groups
have worked on incorporating higher-order soft or collin-
ear matrix elements into parton showers [49–58]. Our
approach will be distinct in two respects: firstly, that it is in
the context of a full shower that is already NLL accurate,
which is crucial to ensure that the correctness of any
higher-order matrix element is not broken by recoil effects
from subsequent shower emissions; and secondly in that
we will be able to demonstrate the logarithmic accuracy
for concrete observables through comparisons to known
resummations.
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Wewill work in the context of the “PanGlobal” family of
parton showers, concentrating on the final-state case [2]. As
is common for parton showers, it organizes particles into
color dipoles [59], a picture based on the limit of a large
number of colors Nc. Such showers iterate 2 → 3 splitting
of color dipoles, each splitting thus adding one particle to
the ensemble, and typically breaking the original dipole
into two dipoles. The splittings are performed sequentially
in some ordering variable, v, for example in decreasing
transverse momentum kt. Given a dipole composed of
particles with momenta p̃i and p̃j, the basic kinematic map
for producing a new particle k is

p̄k ¼ akp̃i þ bkp̃j þ k⊥; ð1aÞ

p̄i ¼ ð1 − akÞp̃i; ð1bÞ

p̄j ¼ ð1 − bkÞp̃j: ð1cÞ

followed by a readjustment involving all particles so as to
conserve momentum; see Supplemental Material [60],
Sec. I. For the original PanGlobal NLL shower, the splitting
probability was given by

dPn→nþ1

d lnv
¼

X
f{̃;|̃g∈dip

Z
dη̄

dϕ
2π

αsðktÞ
π

�
1þαsðktÞKCMW

2π

�

× ½fðη̄ÞakP{̃→ikðakÞþ fð−η̄ÞbkP|̃→jkðbkÞ�: ð2Þ

Here, P{̃→ikðakÞ is a leading-order QCD splitting
function, η̄ ¼ 1

2
ln ak=bk þ const., with the constant

arranged so that η̄ ¼ 0 when the emission bisects the
dipole in the event center-of-mass frame, and fðη̄Þ ¼
1=ð1þ e−2η̄Þ is a partitioning function. Additionally, the
MS coupling, αsðktÞ, uses at least 2-loop running, and
KCMW ¼ ð67=18 − π2=6ÞCA − 5=9nf [61].
In moving toward higher accuracy, the two relevant

elements are the analogs of the real and virtual corrections

in a fixed-order calculation. We focus first on the real term,
where we require the shower to generate the correct double-
soft matrix element when two particles are produced at
commensurate angles and (small) energies, while well-
separated from all other particles.
Our approach is illustrated in Fig. 1. Consider the case

where a dipole ab first emits a soft gluon 1̃, followed by a
splitting of the dipole 1̃b whereby a new particle 2 is
emitted, and 1̃ becomes 1 after recoil. When the branching
from Eq. (1) produces a particle 2 from the 1̃b dipole, if
p1:p2 < p2:pb, we select the f1; 2g pair as the one whose
double-soft effective matrix element needs correcting. To
evaluate the double-soft correction to this configuration, we
first identify all shower histories that could have produced
the same nearby f1; 2g pair. This includes the history
actually followed by the shower, as well as the case where 2
was emitted from the a1̃ dipole, and two extra configura-
tions where the shower produced a particle 2̃ before 1, i.e.,
where, in the second splitting, gluon 1 was radiated with 2
taking the recoil.
Each history h is associated with an effective squared

shower matrix element jMshower;hj2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the f1; 2g pair in that order and color configu-
ration (we address the question of the flavor configuration
below). jMshower;hj2 is evaluated in the double-soft limit;
see Supplemental Material ([60], Sec. 2a). In principle,
emission 2 should be accepted with probability

Paccept ¼
jMDSj2P

hjMshower;hj2
; ð3Þ

where jMDSj2 is the known double-soft matrix element
for emitting the f1; 2g soft pair from the ab dipole [62–64].
In practice, however, there are regions where the shower
underestimates the true matrix element, leading to
Paccept > 1. Nevertheless, we find that Paccept always
remains smaller than some finite value Ω. We therefore
enhance the splitting probability Eq. (2) by an overhead
factorΩ, and accept the emission with probabilityPaccept=Ω.
The numerator and denominator in Eq. (3) are evaluated

in the same double-soft limit, defined by rescaling
p1 → λp1, p2 → λp2, and taking the limit λ → 0. This
ensures that Paccept ¼ 1 when 1 and 2 are well-separated,
thus not affecting regions where the shower was already
correct.
The acceptance procedure is sufficient to ensure the

proper generation of the f1; 2g kinematics, but not the
relative weights of the a12b and a21b color connections,
which is crucial to reproduce the pattern of subsequent
much softer radiation from the fa; 1; 2; bg system, as
required for NSL accuracy. To address this problem, we

evaluate Fð12Þ
shower, the fraction of the shower effective

double-soft matrix element associated with the a12b

FIG. 1. Top: one shower history that produced a proximate
f1; 2g soft pair. Bottom: other histories that could have led to the
same configuration of momenta, also taken into account in
correcting the branching. The dashed parton is emitted second
in the showering history.

PHYSICAL REVIEW LETTERS 131, 161906 (2023)

161906-2



color connection, and similarly Fð12Þ
DS for the full double-

soft matrix element, in its large-Nc limit [63,64]. If the
shower has generated the a12b color connection and

Fð12Þ
shower > Fð12Þ

DS , then we swap the color connection with
probability

Pswap ¼
Fð12Þ
shower − Fð12Þ

DS

Fð12Þ
shower

: ð4Þ

We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the color
swap with an analogous procedure for adjusting the
relative weights of gg and qq̄ flavors for the f1; 2g pair.
An alternative would have been to apply Paccept separately
for each color ordering and flavor combination. However,
when we investigated that option for the PanGlobal class
of showers, we encountered regions of phase space where
the acceptance probability was unbounded. Illustrative
plots of the shower matrix element and corrections are
given in the Supplemental Material [60], Sec. 2b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of the
ab dipole, i.e., θa1̃ ≪ θab or θ1̃b ≪ θab, the inclusion of
KCMW in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, KCMW alone is not
sufficient when θa1 ∼ θ1b ∼ θab, notably because of the
nontrivial η̄ dependence in Eq. (2) and the way in which it
connects with the overall event momentum Q. Therefore,
we need to generalize KCMW → KðΦ1̃;abÞ, where the full K
is a function of the kinematics of 1̃ and of the opening angle
of the ab dipole. In the same vein as the MC@NLO [65]
and POWHEG [66,67] methods and their MINLO [68,69]
extension, the correct next-to-leading order (NLO) nor-
malization for the emission is given by

KðΦ1̃;abÞ ¼ VðΦ1̃;abÞ þ
Z

dΦPS
12=1̃

jMðPSÞ
12=1̃

j2 − ΔðPS;1Þ
1̃

: ð5Þ

Here, V is the exact QCD 1-loop contribution for a
single soft emission, renormalized at scale μ ¼ kt;1̃;

dΦPS
12=1̃

jMðPSÞ
12=1̃

j2 is the product of shower phase space and

matrix element associated with real 1̃ → 12 branching,

including double-soft corrections; and ΔðPS;1Þ
1̃

is the coef-
ficient of αs=ð2πÞ in the fixed-order expansion of the
shower Sudakov factor. To aid in the evaluation of
KðΦ1̃;abÞ we make use of two main elements: firstly, in
the soft-collinear limit, KðΦ1̃;abÞ → KCMW; secondly, both

VðΦ1̃;abÞ and ΔðPS;1Þ
1̃

are independent of the rapidity of 1̃, as

long as 1̃ is soft and (for ΔðPS;1Þ
1̃

) kept at some fixed value of

the evolution scale. We can therefore reformulate Eq. (5) as
K ¼ KCMW þ ΔK, with

ΔK ¼
Z
r
dΦðPSÞ

12=1̃
jMðPSÞ

12=1̃
j2 −

Z
rsc

dΦðPSÞ
12=1̃sc

jMðPSÞ
12=1̃sc

j2: ð6Þ

In the second term, 1̃sc is at the same shower scale
v as 1̃, but shifted by a constant in rapidity with respect
to ab so as to be in the soft-collinear region, wherein
KðΦ1̃sc;ab

Þ → KCMW. The labels r and rsc indicate a
regularization of the phase space, which should be
equivalent between the two terms. Specifically, we sep-
arateMDS in Eq. (3) into correlated and uncorrelated parts,
respectively those involving CFCA versus C2

F color factors
for the q̄ggqmatrix element. For the correlated part, we cut
on the relative transverse momentum of 1 and 2, while for
the uncorrelated part, we cut on the transverse momentum
with respect to the ab dipole and impose jΔy12j < Δymax.
In practice we tabulate ΔK as a function of θab, η̄1̃, and ϕ1̃,
though one could also envisage on-the-fly evaluation. We
incorporate ΔK in Eq. (2), through a multiplicative factor
1þ tanh½ðαs=2πÞΔKð1 − akÞð1 − bkÞ�. This form keeps
the correction positive and bounded. It also leaves the
shower unmodified in the hard-collinear region.
We study the above approach with several variants of the

PanGlobal shower. All have been adapted relative to
Ref. [2] with regards to the precise way in which they
restore momentum conservation after the map of Eq. (1).
This was motivated by the discovery that in higher-order
shower configurations involving three similarly collinear
hard particles, the original recoil prescription could lead to
unwanted long-distance kinematic side effects. Details are
given in the Supplemental Material [60], Sec. 1, and tests
were carried out using the method of Ref. [75].
We will consider three variants of the PanGlobal shower:

two choices of the ordering variable, ∼ktθβ with β ¼ 0
(PGβ¼0) and 1=2 (PGβ¼1=2), and also a “split-dipole-frame”
β ¼ 0 variant (PGsdf

β¼0), which replaces fð�η̄Þ → fð�ηÞ in
Eq. (2), with η ¼ 1

2
logak=bk. The η ¼ 0 transition region

bisects the dipole in its rest frame rather than the event
frame. This makes the 1̃ → 12 branching independent of
the 1̃ rapidity in the dipole frame, resulting in ΔK ¼ 0.
Illustrative plots of ΔK and its impact are given in
Ref. [60], Sec. 2c. For the three shower variants, the
overhead factors Ω associated with Eq. (3) are respectively
taken equal to 3.1, 20, and 4, independently of the dipole
kinematics.
All results, both with and without double-soft correc-

tions, include NLO 2-jet matching [70], which is required
for the NNDL and NSL accuracy that we aim for. Spin
correlations [71,72] are turned off because we have yet to
integrate them with the double-soft corrections. The dou-
ble-soft corrections are implemented at large Nc, in such a
way as to preserve the full-Nc NLL and NDL accuracies
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obtained in Ref. [73] for global observables and multiplic-
ities. All events have (positive) unit weight.
To test the enhanced logarithmic accuracy of the shower,

the first observable that we consider is the Lund subjet
multiplicity [43] in eþe− → qq̄ events. This is a perturba-
tively calculable observable that is conceptually close to the
experimentally important total charged-particle multiplicity.
For a center-of-mass energy Q and a transverse momentum
cutoff kt, the subjet multiplicity has a double-logarithmic
resummation structure αnsL2n with L ¼ ln kt=Q. The
PanGlobal showers already reproduce terms up to NDL
αnsL2n−1. The addition of the double-soft corrections and
matching [70] is expected to bring NNDL accuracy,
αnsL2n−2. To test this, in Fig. 2, we examine

lim
αs→0

NPS − NNNDL

αsNDL

����
fixedαsL2

; ð7Þ

where NPS is the parton-shower result and NNNDL (NDL) is
the known analytic NNDL (DL) result [43]. The αs → 0
limit follows the procedure from earlier work [2].
Equation (7) is expected to be zero if the parton shower
is NNDL accurate. The original showers, without double-
soft corrections (left), clearly differ from each other and
from zero, by up to ∼100%. With double-soft corrections
turned on (right), all three PanGlobal variants are consistent
with zero, i.e., with NNDL accuracy, to within ∼1%.
Next we turn to the study of nonglobal logarithms at

leading color. These were recently calculated at NSL
accuracy [45,46,48], αnsLn−1, and are available in the
corresponding “Gnole” code [46]. We again consider
eþe− events, and sum the transverse energies (Et) of
particles with jyj < 1, where y is the rapidity with respect
to an axis determined by clustering the event to two jets
with the Cambridge algorithm [74]. The fraction of events
where the sum is below some Et;max is denoted by Σ and for

a given shower we define

ΣðPSÞ
NSL ¼ lim

αs→0

ΣðPSÞ − ΣSL

αs

����
fixedαsL

; L≡ ln
Et;max

Q
: ð8Þ

Figure 3 (left) shows ΣðPSÞ
NSL=ΣSL for our three PanGlobal

variants without double-soft corrections. As expected, they
differ.
Figure 3 (middle) compares our PGsdf

β¼0 shower with
double-soft corrections to the NSL Gnole code, showing
good agreement, within< 1%. Gnole has nf ¼ 0 in the real
contribution and counterterm, but keeps the full nf ¼ 5

in the running of the coupling and inclusive KCMW

(“nrealf ¼ 0”). Among our showers it is relatively straight-
forward to make the same choice with PGsdf

β¼0, in particular
becauseΔK ¼ 0. Also, Gnole uses the thrust axis, while we
use the jet axis; this is beyond NSL as the two axes coincide
for hard three-parton events.
Figure 3 (right) shows the results from our three

PanGlobal showers with complete (full-nf) double-soft
corrections included. They agree with each other to within
1% of the NSL contribution, providing a powerful test of the
consistency of the full combination of the double-soft
matrix element and ΔK across the variants. That plot also
provides the first NSL calculation of nonglobal logarithms
to include the full nf dependence. An extended selection of
results and comparisons is provided in Sec. 3 of Ref. [60].
We close with a brief examination of the phenomeno-

logical implications of the advances presented here. We
consider eþe− → Z� → jets at Q ¼ 2 TeV. This choice is
intended to help gauge the size of nonglobal effects at the
energies being probed today at the LHC. Figure 4 shows
results for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft

FIG. 2. The result of Eq. (7) for three variants of the PanGlobal
shower without double-soft corrections (left) and with them
(right). The latter are consistent with NNDL accuracy. The bands
represent statistical errors in an αs → 0 extrapolation based on
four finite αs values.

FIG. 3. Determinations of ΣðPSÞ
NSL=ΣSL for the transverse energy

in a slice. Left: parton showers without double-soft corrections
illustrating NSL differences between them. Middle: with double-
soft corrections but nrealf ¼ 0 (cf. text for details), for comparison
with the Gnole NSL code. Right: with full double-soft correc-
tions, showing NSL agreement between the three PanGlobal
showers.
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corrections (left) and with them, i.e., at NSL accuracy
(right). It uses the nested ordered double-soft (NODS) color
scheme, which while not full-Nc accurate for nonglobal
logarithms, numerically coincides with the full-Nc single
logarithmic results of Refs. [38–40], to within their percent-
level numerical accuracy [73]. With a central scale choice
(solid lines), the impact of the NSL corrections is modest.
This is consistent with the observation from Fig. 3 that the
NLL PanGlobal showers are numerically not so far from
NSL accurate. However, the NSL double-soft corrections do
bring a substantial reduction in the renormalization scale
uncertainty, from about 10% to just a few percent.
Conclusions are similar for H� → gg.
The results here provide the first demonstration that it is

possible to augment parton-shower accuracy beyond NDL
and NLL. Specifically, our inclusion of real and virtual
double-soft effects has simultaneously brought NNDL and
NSL accuracy for two phenomenologically important
classes of observable: multiplicities, and energy flows as
relevant for isolation. It has also enabled the first leading-
color, full-nf predictions for NSL nonglobal logarithms.
Overall, our methods and results represent a significant step
toward a broader future goal of general next-to-next-to-
leading logarithmic accuracy in parton showers.
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