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Abstract
In the era of industry 4.0, digitalization and smart operation of industrial systems contribute to higher productivity, improved 
quality, and efficient resource utilization for industrial operations and processes. However, artificial intelligence (AI)–based 
modelling and optimization analysis following a generic analysis framework is lacking in literature for the manufacturing 
sector thereby impeding the inclusion of AI for its potential application's domain. Herein, a comprehensive and generic 
analysis framework is presented depicting the key stages involved for carrying out the AI-based modelling and optimization 
analysis for the manufacturing system. The suggested AI framework is put into practice on wire electric discharge machin-
ing (WEDM) system, and the cutting speed of WEDM is adjusted for the stainless cladding steel material. Artificial neural 
network (ANN), support vector machine (SVM), and extreme learning machine (ELM) are three AI modelling techniques 
that are trained with meticulous hyperparameter tuning. A better-performing model is chosen once the trained AI models 
have undergone the external validation test to investigate their prediction performance. The sensitivity analysis on the devel-
oped AI model is performed and it is found that pulse on time (Pon) is the noteworthy factor affecting the cutting speed of 
WEDM having the percentage significance value of 26.6 followed by the Dw and LTSS, with the percentage significance 
value of 17.3 and 16.7 respectively. The parametric optimization incorporating the AI model is conducted and the results 
pertain to the cutting speed are 27.3% higher than the maximum value of cutting speed achieved for WEDM. The cutting 
speed performance optimization is realized following the proposed AI-based analysis framework that can be applied, in 
general, to other manufacturing systems therefore unlocking the potential of AI to contribute to industry 4.0 for the smart 
operation of manufacturing systems.
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1  Introduction

Modern information and communication technology 
advancements have made it possible to effectively monitor, 
manage, and store data for industrial systems. With this, 
the industrial systems in general and manufacturing sector 
in particular store real-time operation data of the processes 
carried out for the value-added product development. The 
data stored in the data-storage banks of the manufacturing 
industries possess the chief characteristics and information 
of the system can be deployed to conduct the customized 
and problem-specific analytics thereby enhancing the pro-
ductivity and smart operation, informed and knowledgeable 
decision-making and operational excellence of the systems.

The conventional process modelling and analytical 
techniques like physical models and regression techniques 
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are being used by the manufacturing sector community to 
exploit the operational data of their manufacturing systems 
[1]. However, the physical models built on certain assump-
tions cannot effectively model the hyperdimensional system 
that contains highly nonlinear and interactive relationships 
among the input-output variables [2]. Furthermore, the sim-
ulation and optimization of the physical model can be com-
putationally prohibitive thereby limiting their applications 
[3]. On the other hand, simple regression-based techniques 
are not capable enough to capture the underlying informa-
tion and interactions present in the heap of the data; thus, 
the regression models may lead to sub-optimal results for 
the nonlinear and complex output space of the large-scale 
manufacturing systems [4].

To address the challenges of modelling for the complex 
systems, artificial intelligence (AI)–based algorithms are 
emerged as alternative modelling paradigm that not only 
model the complex system with reasonable accuracy but are 
also computationally cheaper to be developed with the avail-
able computational power [5]. The AI models are thus cus-
tomized for the particular applications and can be adapted 
to similar application domains thereby offering their gen-
eralized utilization [6]. In some application domains like 
energy, material discovery, process design and optimization, 
AI is serving its customers with its excellent modelling and 
feature detector capabilities. However, a generic analysis 
framework depicting the key analysis stages and incorpo-
rating the AI-based modelling algorithms for the operation 
analysis of the manufacturing sector is lacking in the litera-
ture. Thus, this study proposes a generic analysis framework 
to determine the manufacturing system’s optimal operating 
conditions. The proposed AI-built analysis framework opti-
mizes WEDM cutting speed for stainless cladding steel. The 
non-conventional machining variants, i.e., electric discharge 
machining (EDM) die sinking and WEDM, play a major 
role in the manufacturing industry. The said non-traditional 
processes are used in manufacturing to cut materials with 
greater precision and prepare intricate dies, molds, and parts 
used in aerospace, automobile, and many other industrial 
applications [7]. Therefore, to enhance the productivity of 
the process and increase the finishing proficiencies, mod-
elling the said machining variants is of great importance 
today. WEDM tends to machine the materials with greater 
wear-resistant resistance, high strength, and hardness. The 
conventional machining processes cannot produce complex 
shapes with greater precision, but with the WEDM, these 
complex shapes and cutting are done with higher accuracy 
[8, 9].

Literature survey is conducted to find the reported 
research using AI based modelling and optimization analysis 
for the WEDM system. Computational methods, including 
the genetic algorithm (GA), support vector machine (SVM), 
and artificial neural network (ANN), gained tremendous 

popularity in giving process modelling and optimization 
with a high degree of precision. The process efficiency 
results obtained by these models are highly accurate com-
pared to the statistical models. The said models are highly 
flexible to integrate the non-linear datasets and can estimate 
any function with the high-dimensional system [10]. Paturi 
et al. [11] investigated the surface roughness (SR) of the 
Inconel 718 in WEDM. The authors developed the AI mod-
els, i.e., SVM, ANN, and GA to optimize the response, i.e., 
SR via machine learning techniques. The authors found that 
the predictions developed to study the SR using machine 
learning techniques were accurate and the developed predic-
tion was compared with the statistical RSM model. How-
ever, GA gave 61.31% better surface finish compared to 
the statistical RSM model under the defined range of input 
parameters.

Sivanaga Malleswara Rao et al. [12] determined the influ-
ence of input parameters of WEDM, i.e., cutting speed, 
current, and spark gap, on the SR of high-speed steel. The 
experimental values obtained during the investigational 
procedure were compared with the AI models of SVM 
and ANN. The investigation results depicted that the error 
between the predicted values from machine learning tech-
niques and statistical machining results was less than 5%. 
Amini et al. [13] evaluated the effect of machining param-
eters (pulse off time (Poff), servo, voltage, wire feed rate (Fw), 
and powder) in the WEDM for the TiB2 nano-ceramic com-
posites by using the GA. The authors found that the proposed 
neural network gave the highest accuracy of MRR and SR. 
Moreover, GA helped to find the best optimal settings for 
WEDM with 94% accuracy between the experimental and 
optimized settings. Yusoff et al. [14] determined the influ-
ence of machining parameters (Ton, Toff, peak current (Ip), 
servo voltage (SV), and flushing pressure) in WEDM for the 
Inconel 718 using the ANN model. The authors revealed 
that AI models are the best tools to minimize machining 
costs. Moreover, an error of 5.16% was found in the statisti-
cal data and the ANN model for the given data set of input 
and output parameters.

Huang et al. [15] determined the online workpiece height 
joined with the CNC system to evaluate the machining 
responses in the WEDM by applying the SVM model. The 
authors engaged the pulse interval, discharge frequency, and 
Fr as the input variables for the estimation model (kernel 
function). An error of less than 2 mm was found by employ-
ing the SVM model compared to the experimental results. 
The authors also elaborated that different workpieces with 
varying heights can be machined using an adaptive control 
unit, but the AI models provided the best solution for uni-
directional WEDM. The proficiency of WEDM was deter-
mined by Nain et al. [16] by employing the gray relational 
analysis (GRA) and the SVM model in terms of material 
removal rate (MRR) and SR of the superalloy Udimet L605. 
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The experimental results revealed that SVM gave better out-
comes compared to the non-linear regression models. More-
over, the authors also found that the percentage significance 
of Ton in the case of MRR was 60.18%, and in the case of SR, 
it was 79.10%. Varun and Venkaiah [17] evaluated the opti-
mization strategy for the parameters (MRR, cutting width 
and SR) by employing the GRA with the generic algorithm 
for cutting EN 353 in the WEDM. The authors declared that 
Ip is the highest inducing factor for MRR, cutting width, and 
SR among the other input variables. The authors found that 
GRA optimized the situation based on experimental results. 
However, the GA optimized the single process parameter 
based on other response parameters. Akıncıoğlu [18] used 
the EDM to investigate the machining of titanium alloy in 
terms of MRR, SR, depth and electrode wear rate (EWR) 
under distinct process parameters. The authors revealed 
that for the aforementioned response measures, amperage 
was the most significant factor. However, the best average 
magnitude of SR was achieved at 8A of current. Nas et al. 
[19] used electro erosion machine tools, a copper electrode 
abrased super alloy Hastelloy C22. The experimental study 
included pulse durations, waiting times, and discharge cur-
rents. The minimum mean SR (2.86 μm) was obtained at the 
magnitudes of 20 μs, 10 μs, and 5 A of pulse duration, delay 
time, and current, respectively. Moreover, the maximum 
average SR (4.07 μm) was gained at 10 μs waiting time and 
15 A current. Industry 4.0 involves automating most indus-
trial processes, from machinery status monitoring to produc-
tion efficiency optimization with robots and digital twins. 
Predictive maintenance (PdM) uses AI to analyze machinery 
health data and enable timely repairs. The manufacturer can 
arrange maintenance actions in advance to avoid machine 
failure. Kotecha et al. [20] discusses AI-enabled machinery 
defect detection and reviews classic and new fault detection 
methods. It examines current advances in sensors used and 
extracted for defect detection in case studies.

Jain et al. [21] studied the SR and acoustic signals (AE) of 
titanium alloy grade-2 in WEDM using the machine learning 
technique, i.e., ANN. The authors found that neural network 
training gave results with 70% good prediction compared 
with the least R-value in the training data of 50 to 60%. 
Altug et al. [22] optimized the kerf width of titanium alloy 
in the WEDM by employing the GA. The authors found that 
a fine kerf width was obtained when the sample quenched 
but the quenched sample has lower electrical conductivity, 
and GA gave the optimal settings for the better kerf width 
as the function of heat treatment. However, the worst kerf 
width was obtained when the sample is just tempered to 
martensite. Chen et al. [23] evaluated the machining param-
eters for pure tungsten material in the WEDM by engaging 
the backpropagation neural network (BPNN) and stimulated 
annealing algorithm (SAA). The authors concluded that the 
results obtained by the said techniques were closely matched 

with the actual experimental. Sunkara et al. [24] determined 
the proficiency of WEDM in machining holes for the alu-
minum 6061 by employing the GA. The results obtained 
after the actual machining and by the proposed model were 
compared. The authors found the 95% confidence when the 
GA-predicted results were computed with experimental 
results.

Considering the literature cited above, substantial work 
has been conducted to determine the MRR, and SR gener-
ated by the application of WEDM for machining different 
materials. Moreover, distinct algorithms such as GA, RSM, 
etc., have also been utilized for the said responses (MRR 
and SR) in WEDM. Various input parameters have been 
employed to examine the variables’ effect on the execu-
tion of WEDM with or without the use of different algo-
rithms. However, the WEDM’s cutting speed by engaging 
the stainless clad steel material has not been investigated 
so far by AI-based modelling algorithms (ANN, SVM, and 
ELM). Moreover, the gap identified above, i.e., the expan-
sion of a generic AI-model-based optimization framework 
for the performance augmentation of the WEDM process 
is presented that contributes towards the novel aspects of 
this study. Herein, a case study for the machining of clad 
material through the WEDM process is presented using the 
proposed AI-based modelling and optimization framework. 
AI-based computational techniques are implemented in this 
study to model the cutting speed of the WEDM process and 
validated it on the experimental conditions thereby address-
ing the identified gap. In addition, sensitivity analysis is per-
formed in order to analyze the importance of input factors 
on the cutting speed of WEDM. This discovery, which is not 
documented in the literature and is one of the novel discov-
eries of this case study, is being carried out as part of the 
research. Moreover, the parametric optimization technique 
is utilized to determine the optimal input parametric settings 
corresponding to higher cutting rates that are potentially 
missing in the literature and is of industrial relevance and 
competitiveness for enhancing the performance of WEDM 
and resource competitiveness. The increased and widespread 
utilization of AI based analytics leads to the smart operation 
of manufacturing system, digitalization of the processes and 
efficient operation management of the manufacturing sys-
tems that contributes to industry 4.0 vision.

2 � Materials and methods

The approach taken to accomplish this study’s objective is 
shown in Fig. 1. The foremost step includes the collection of 
characteristic data for the WEDM procedure including the 
observations for the input and output variables of the process, 
and the resulting dataset is then deployed for the data process-
ing and visualization in the second step. The actual WEDM 
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used for cutting the clad material is shown in Fig. 2(a). In this 
work, eight input parameters have been considered namely, 
layer thickness of stainless steel (LTss), the layer thickness 
of mild steel (LTMS), SV, wire diameter (Dw), pressure ratio 
(Pr), wire feed rate (Fw), pulse on time (Pon) and orientation 
(Or). There exists two levels for orientation control variables 
whereas for the rest of the parameters, three levels have been 
employed for experimentations. The stainless clad steel mate-
rial is shown in Fig. 2(b). The data for the cutting speed of 
the WEDM process is taken from the literature [25]. The 

WebPlotDigitizer software is used to extract the data from 
the research paper and 35 observations covering the whole 
design space for the input-output variables are collected. 
Thirty observations (for the statistical inference) considering 
the influence of the input variables are used for the training 
of the AI models. Whereas, the remaining five observations 
considering the variation of the input variables are deployed 
for validating the trained AI models.

The collected data of the cutting speed from the WEDM 
against the input variables can be represented in the form of 

Fig. 1   Methodology implemented on the case study taken from WEDM. A number of stages are devised for the AI based modelling and optimi-
zation framework which is implemented on the WEDM process

Fig. 2   a Working setup of WEDM; b stainless clad steel material
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box plots as it presents an effective graphical visualization of 
the data. The investigation of the linear dependence among 
the variables is imperative to identify the truly independent 
variables. The independent variables can construct an effec-
tive AI-based model that can predict the accurate values of 
the output variables taken from the hyperdimensional and 
complex system. Pearson correlation coefficient is a reli-
able measure to investigate the linear dependence among 
the variables. The mathematical expression of the Pearson 
correlation coefficient is given as:

where x denotes the input whereas y is the response measure; 
i = 1,2, 3,…, N. x and y are the mean-value of x and y respec-
tively. The value of Rxy ranges from −1 (strongly negatively 
correlated) to +1 (perfect positive correlation). Whereas Rxy = 
0 indicates no linear dependence among the variables.

After the data-processing and visualization step, in the 
third step, the AI-based modelling algorithms like ANN, 
SVM and ELM are trained under rigorous hyperparam-
eters tuning. The three AI-based models are considered 
since the nonlinear and complex characteristics of the 
system can be effectively learned by these algorithms as 
reported in the literature [26–29]. Furthermore, the work-
ing of ANN, SVM, and ELM can be found in [27, 30].

To assess the effectiveness of trained AI models, three 
statistical metrics are selected. Coefficient of determina-
tion (R2), root-mean-squared-error (RMSE), and mean 
absolute error (MAE) are commonly deployed to evaluate 
the predictive performance of the AI models [31]. Below 
are the mathematical Equations (2)–(4) for the chosen per-
formance parameters:

Where N denotes the sample size; ŷi, and yi represent the 
predicted and actual values; yi and ŷi denote the mean of 
actual and predicted values respectively. R2 is a measure of 
accuracy and it varies from zero (poor prediction accuracy) 
to one (100% accurate predictions). While RMSE and MAE 
are the error terms to measure the difference between the 
actual values and the model-predicted responses.
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To evaluate the generalization and prediction performance 
of the trained AI models as carried out in the fourth step, an 
external validation test (Valext test) is executed. The Valext test 
consists of predicting the unseen data from the trained AI 
models to evaluate their generalization capability and a well-
performing AI model can be selected. In the fifth step, the 
comparative prediction capacity of the models is evaluated on 
the performance metrics, built on the R2, RMSE, and MAE, 
and a better-performing AI model is selected. In the sixth step 
of the methodology, sensitivity analysis is performed using 
the better-performing AI model, and the significance order of 
the input variables to predict the cutting speed of the WEDM 
process is established. Finally, in the last step, the parametric 
optimization technique is utilized to determine the optimized 
values of the input variables so that the cutting speed of the 
WEDM process is maximum.

3 � Results and discussion

3.1 � Descriptive statistics

After obtaining the training data on cutting speed of WEDM 
process, the box plots are constructed to visualize the data. 
Fig. 3 depicts the box plot for the training data of WEDM’s 
cutting speed for the machining of clad steel material under 
the input variables. From Fig. 3, it is apparent that the lower 
values of input variables, i.e., LTss, LTMS, SV, and Dw sig-
nificantly affect the cutting speed of WEDM for the clad 
material. However, the rest of the input variables, such as Pr, 
Fw, and Pon, at their moderate value level, cause an increase 
in the WEDM’s cutting speed.

A little description of all the input variables is presented 
herein. The material used in this study is clad which is com-
posed of two types of materials. LTSS has presented the layer 
thickness of stainless steel, whereas the LTMS indicates the 
layer thickness of mild steel. SV plays a crucial role in cut-
ting rates of material. Different Dw is engaged for the cut-
ting of materials in WEDM which influenced the machining 
characteristics of materials. However, three different Dw (0.2 
mm, 0.25 mm, and 0.3 mm) were used for the cutting of clad 
material. Pr indicates the ratio between the movement of the 
ram and the flushing pressure during the Poff. Fw is the wire 
feed rate for the cutting of clad material and is changed from 
4 to 10 feed mode measured in mm/s. Pon is the duration in 
which a spark is generated in the middle of the workpiece 
and the wire for the cutting of material.

The box plots shown in Fig. 3 indicate the ranges of eight 
input variables taken to conduct the experimentation against 
the cutting speed of clad material [25]. It was observed that 
if the LTSS, and LTMS were taken 2 mm and 6 mm, respec-
tively, then they significantly improved the cutting speed of 
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clad material. In addition to that, the lower magnitudes of 
Dw (0.2 mm), SV (30 V), and Fw (2 mm/s) also increased 
the cutting speed of WEDM for clad material. However, the 
moderate value of Pr (1.0), and the highest value of Pon (5 
μs) mainly increased cutting speed.

The range of cutting speed within the 1.5IQR indicates 
that the maximum and minimum values of cutting speed 
were 2.59 mm/s and 1.42 mm/s, respectively. However, the 
mean cutting speed lies below the median line of the data. 
Additionally, 75% of the cutting speed data indicates the 
range from 2 mm/s to 2.5 mm/s; the rest covers 25% and 
ranges from 1.8 to 2.1 mm/s.

Investigating the linear relationship among the input and 
output parameters is significant before deploying the design 
space to construct the model by AI algorithms. By evaluat-
ing the relationship between input and output variables, the 
extent of dependence of the input variables on the output 
variable can be assessed, enabling the removal of strongly 
dependent input variables. A heat map representing the Pear-
son correlation coefficient among the variables of WEDM is 
shown in Fig. 4. The correlation values computed between 
the variables lie from −0.59 to 0.64 indicating the absence 

Fig. 3   Box plot for the cutting 
speed of WEDM

Fig. 4   Pearson correlation coefficient-based heat map constructed for 
the variables of the WEDM process
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of strong linear dependence among the variables. Thus, the 
identified input variables of WEDM are independent of each 
other and can be deployed for constructing the AI-based 
models.

3.2 � Development of AI‑based models

This section contains the details on the development of AI-
based modelling algorithms like ANN, SVM, and ELM 
trained in this work. The data was taken from experiments 
conducted on the stainless-clad steel material in the WEDM. 
The Valext test was conducted on the trained AI models, and 
the modelling performance is compared to selecting a bet-
ter AI model. A detailed discussion of the model’s devel-
opment, sensitivity analysis, and parametric optimization 
analysis is provided in the subdivision of section 3.

3.2.1 � Artificial neural network (ANN) model

ANN is one of the innovative modelling algorithms of AI and 
is used in various engineering areas, including automobiles, 
development trade, manufacturing, and energy [30, 32, 33]. 
ANN is a function approximation algorithm and can construct 
the effective functional mapping among the variables. The 
ANN model has three layers (input, hidden and output). All 
the input variables used in this study are incorporated into 
the input layer that receives and then transmits the data to the 
next layer. The general working schematic of the ANN for the 
WEDM process is shown in Fig. 5.

The data is moved from the input layer of the ANN to the 
hidden layer after being processed. There are two different 
approaches that can be taken when defining the transmis-
sion of information in the hidden layer, which is the primary 
processing layer in ANNs. First, decisions have to be made 
regarding the neurons in the hidden layer. It is common prac-
tice to estimate the number of neurons in the hidden layer 
to be between one and two and a half times the number of 
neurons in the input layer [34]. Second, the number of hidden 
layers to be included in the architecture of ANN model. The 
complexity of the system that is going to be modeled will 
determine how many processing layers—one, two, or more—
are going to be selected. However, in order to ensure that 
the ANN has reasonable modelling performance, one hidden 
layer can be enough given that an adequate number of neurons 
are provided [35, 36].

The information compiled at the hidden layer is then 
sent to the output layer. The information processing takes 
place at the output layer and a value is simulated for the 
output variable. The error is calculated between the actual 
and model-simulated response and the error-back propaga-
tion tunes the parameters (weights and biases) to make the 
model-simulated response closer to the actual value. The 
mathematical model of ANN can be written as.

ANN’s output layer value is Yi, and Xi is the input vec-
tor, where i = 1,2,3,..., N. ANN’s hidden and output lay-
ers have biases (b1, b2) and activation functions (f1, f2), 

(5)Yi = f2

(∑
W2

[
f1

(∑
XiW1 + b1

)]
+ b2

)

Fig. 5   Schematic for the working of the ANN model
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respectively. W1, W2 are the weight matrices that connect 
the input to the hidden layer and the hidden to the output 
layer of ANN, respectively.

In this work, a three-layered shallow ANN model is 
constructed for modelling the cutting speed of the WEDM 
process on the eight input variables. The data-split ratio 
of 0.8, 0.1, and 0.1 is used for the model development in 
the training, testing, and validation phases respectively. 
The ANNs are trained on various numbers of hidden layer 
neurons ranging from 8 to 20. The Levenberg Marquardt 
method and sum-of-squared error are used to optimize the 
parameters of the ANN algorithm. The modelling perfor-
mance of the trained ANN is evaluated on the performance 
metrics built on R2, RMSE adn MAE.

When the hidden layer neurons are varied from eight to 
twenty, as shown in Fig. 6, the modelling performance of 

the ANN model during the training, testing, and validation 
phases is shown. Each ANN has a strong prediction perfor-
mance, with an R2-value greater than 0.8 during the training, 
testing, and validation phase for the trained ANNs. Further-
more, the ANN model having fifteen neurons in the hidden 
layer has comparatively better R2 values, i.e., R2_train = 
0.99, R2_test = 0.99, and R2_val = 0.98. Closely observ-
ing the modelling performance of the ANNs with respect to 
RMSE and MAE, it is found that ANN model with fifteen 
hidden layer neurons has lowest modelling errors values. 
The RMSE and MAE values in the three stages of the ANN 
development are as follows: RMSE_train = 0.01 mm/s, 
RMSE_test = 0.04 mm/s, RMSE_val = 0.02 mm/s and 
MAE_train = 0.005 mm/s, MAE_test = 0.04 mm/s, MAE_
val = 0.02 mm/s. Thus, it is suggested that fifteen neurons 
are the best number of hidden layer neurons for ANN since 

Fig. 6   The modelling performance of ANN constructed on varying hidden layer neurons, i.e., 8 to 20 in a training, b testing, and c validation 
phase. The ANN model with 15 hidden layer neurons has comparatively better performance metrics for modelling the cutting speed of WEDM
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it is evident from Fig. 6(a–c) that a trained ANN with fifteen 
hidden layer neurons performed considerably better in the 
training, testing, and validation phase.

3.2.2 � Support vector machine (SVM)

SVM is an AI-based modelling algorithm used to construct 
a model between the input-output variables. The model is 
also used for the classification and approximation of non-
linear and complex data [37, 38]. Basically, SVM divides the 
input data into two separate classes by hyperplanes. There 
are fundamentally two hyperplanes in the SVM, i.e., positive 
hyperplane, and negative hyperplane, and there is another line 
which is referred to as the maximum margin hyperplane as 
shown in Fig. 7. So, every dataset present in the positive or 
negative hyperplane has some distance from the maximum 
margin hyperplane which is taken as ‘margin’. Therefore, a 
dataset having a maximum distance from the maximum mar-
gin hyperplane executes better results for convergence and 
generalization in SVM. The structural risk minimization 
(SRM) method tries to decrease the absolute limit of over-
view error for the response variable by developing an efficient 
SVM model. The non-linear interactions between the output 
and the input variables are extracted after normalizing and 
transforming the training data into a robust feature space. The 
key conditions of the Karush-Kuhn-Tucker (KKT) statements 
result in the global optimum of the output variable.

Epsilon, kernel scale, and box constraint were three signifi-
cant hyperparameters that were used in this work using SVM 
modelling algorithm. The hyperparameters can take values 
between 0.001 and 1000 for the kernel scale, 0.20859 and 
20859.15 for the epsilon, and 0.001 and 1000 for the box 
constraint, respectively. In this study, a grid search algo-
rithm is employed to methodically explore various combi-
nations of hyperparameter values. The model’s performance 
is then assessed using the MAE. To identify the optimal 

hyperparameter combination, a Bayesian optimizer incorpo-
rating an expected improvement per second plus acquisition 
function is utilized. This iterative process is repeated for 30 
epochs within a 5-fold cross-validation training setup.

Ten SVM models are trained under rigorous hyperparam-
eters optimization, and the performance metrics of the mod-
els are compared to select a better-performing SVM model. 
Fig. 8 depicts the performance metrics, i.e., R2, MAE, and 
RMSE calculated for the trained SVM models. Closely 
observing the modelling performance of the trained SVM 
models, it is found that a better-performing SVM model has 
R2 value of 0.87, MAE of 0.02 mm/s, and RMSE of 0.04 
mm/s. The performance metrics of the considered SVM 
model are better (higher R2 and lower MAE and RMSE) 
than those of the remaining nine SVM models. However, the 
trained SVM models are deployed to undergo the Valext test.

3.2.3 � Extreme learning machine (ELM)

The ELM is a single hidden layer feedforward neural net-
work utilized for both regression and classification tasks. In 
Fig. 9, it can be observed that the input weights, hidden layer 
bias, and node numbers are all predetermined and assigned 
by the ELM’s single hidden layer feedforward neural net-
work. The output weights are computed using an approach 
that undergoes minimal changes during the iteration process 
[39]. The main objective of ELM is to achieve superior gen-
eralization by reducing both the training error and the norm 
of output weights. Consequently, the smaller the norm of the 
output weights, the better the generalization performance 
of the network tends to be [40]. In practical applications, 
the training of the ELM model takes precedence, followed 
by prediction. The training process involves incorporating 
actual outcomes and their relevant factors into the data sets, 
which are then utilized for training the ELM model.

Fig. 7   Schematic for the working of the SVM model Fig. 8   Modelling performance of SVM models trained for the cutting 
speed of WEDM process
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In this body of work, ELM models were constructed using 
a range of hidden layer neurons, anything from 5 to 30. The 
performance of these models was assessed based on how 
accurately they predicted the cutting speed of WEDM, with 
R2, MAE, and RMSE serving as the measures for evalua-
tion. The performance of the newly developed ELM models 
is shown in Fig. 10. It was found that the ELM model with 
fifteen hidden layer neurons had the best performance, as indi-
cated by its R2 value of 0.95, as well as its MAE and RMSE 
estimated values of 0.02 mm/s and 0.021 mm/s, respectively. 
These well-performing models were then validated externally.

3.3 � External validation test

The trained AI models — ANN, SVM, and ELM — are 
subjected to an external validation test that involves gather-
ing a comprehensive dataset covering all practical operat-
ing regimes of the system under evaluation. This dataset 
is unknown to the trained networks, providing a reliable 
method to evaluate their predictive capabilities. Further 
details of the test are provided in subsequent subsections. 
Determining the ideal neurons in the hidden layer is essen-
tial for creating an efficient function approximator for an 
ANN model. To do this, many ANNs are tested and trained 
using various hidden layer neuron counts. The trained 
ANNs are then subjected to an independent validation test 
to determine the ideal number of neurons that yield the 
greatest outcomes.

The trained ANNs are subjected to a Valext test with 
hidden layer neuron numbers ranging from 8 to 20. The 
performance of the ANNs is evaluated based on statistical 
measures, as shown in Fig. 11. All ANNs exhibit strong 
prediction capabilities with an R2 value of at least 0.85. 
Among them, the ANN with fifteen hidden layer neurons 
yields the lowest error values of 0.03 mm/s and 0.03 mm/s 
for MAE and RMSE, respectively. When applied to a Valext 
dataset, this ANN achieves an R2 value of 0.90. Figs. 6 and 
11 indicate that the ANN with fifteen hidden layer neurons 
performs significantly better than the others in the Valext test 
with improved performance metrics. Therefore, the optimal 
number of hidden layer neurons for accurately predicting 
WEDM cutting speed with reasonable performance metrics 
is determined to be fifteen.

Fig. 9   Schematic for the working of the ELM model

Fig. 10   Modelling performance of ELM models trained for the cut-
ting speed of WEDM process
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3.3.1 � SVM’s external validation

The trained SVM model’s prediction accuracy is assessed 
using the same Valext dataset. To assess the effectiveness of 
the developed SVM models for predicting the Valext dataset, 
performance measures like R2, MAE, and RMSE are calcu-
lated and presented in Fig. 12. The values of performance 
metrics, i.e., R2, MAE, and RMSE are changed as follows: 
0.21 to 0.36, 0.06 mm/s to 0.07 mm/s and 0.07 mm/s to 0.09 
mm/s respectively. The SVM model having the compara-
tively better performance metrics are as follows: R2 = 0.362, 
RMSE = 0.07 mm/s, MAE = 0.07 mm/s. The R2 value for 
the Valext dataset is not quite high thereby indicating the fair 
prediction performance of the developed model.

3.3.2 � ELM’s external validation

The trained ELM model’s prediction accuracy is assessed 
with the identical Valext dataset. To assess the effectiveness 
of the ELM model for predicting the Valext dataset, perfor-
mance measures like R2, RMSE, and MAE are computed. 
R2, MAE, and RMSE are changed from 0.85 to 0.94, 0.06 
to 0.47 mm/s, and 0.09 to 0.69 mm/s respectively. Closely 
comparing the predictive performance of the trained ELM 
models on the performance metrics, it is found that the ELM 
model having fifteen hidden layer neurons has comparatively 
better R2, MAE, and RMSE compared to those of other ELM 
models. The performance metrics for the ELM model hav-
ing fifteen hidden layer neurons are as follows: R2 = 0.88, 
RMSE = 0.0925 mm/s, MAE = 0.0619 mm/s. Figure 13 
shows a graphic comparison of ELM-predicted speed values.

3.3.3 � Performance evaluation and optimum model 
selection

Figure 14 shows the comparative performance metrics of the 
trained AI models, i.e., ANN, SVM, and ELM, in predicting 
the dataset of the Valext test. In Fig. 14, the performance met-
ric, i.e., R2, is compared against predictions based on ANN, 
SVM, and ELM models for an Valext dataset. Performance 
metrics for ANN are: R2 = 0.903, RMSE = 0.03 mm/s, and 
MAE = 0.03 mm/s, whereas for SVM: R2 = 0.36, RMSE = 
0.07 mm/s, and MAE = 0.07 mm/s. However, in the case 
of ELM, performance metrices are as follows R2 = 0.8838, 
RMSE = 0.09 mm/s, and MAE = 0.06 mm/s.

When associating the performance of the ANN, SVM, 
and ELM models for prediction, it is clear that the ANN has 
a comparatively higher R2 value of 0.90, greater than that 

Fig. 11   Predictive performance 
of ANN models in external 
validation test

Fig. 12   External validation test of cutting speed of WEDM using 
SVM model
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of ELM (0.88), and SVM (0.36). Additionally, the MAE 
(ANN_MAE = 0.03 mm/min < ELM_MAE = 0.06 mm/min 
< SVM_MAE = 0.07 mm/min) and RMSE (ANN_RMSE 
= 0.03 mm/min < SVM_RMSE = 0.07 mm/min < ELM_
RMSE = 0.09 mm/min) of the ANN-based predictions are 
comparatively lower than that of SVM and ELM. As a result, 
ANN is chosen for the successive analysis of interests, which 
is shown in the section below.

3.4 � Sensitivity analysis

The first step in understanding the system is to determine 
how sensitive the output variable is to the input variable. The 
constructed ANN model is subjected to a sensitivity analysis 
to assess the impact of the input variables on the cutting 
speed of the WEDM process. During the sensitivity analysis, 
the variable for whom the sensitivity of the output variable 
is to be evaluated is systematically varied in its operating 
range (minimum to maximum value). In contrast, the other 

input variables are kept at a constant value (usually the vari-
able’s mean value). The total change in the values of the 
output variable to the particular input variable is computed 
and normalized to calculate the input variable’s percentage 
significance.

Figure 15 shows the percentage significance of the input 
variables toward the cutting speed of the WEDM process. 
Pon contributes the most percentage significance, i.e., 26.6%, 
towards the cutting speed, followed by Dw and LTss, having 
% a significance of 17.3% and 16.7%, respectively. Or shares 
the least % significance of 4.3% towards the cutting speed 
of WEDM. The largest % contribution of Pon is explained 
by the fact that it is the duration in which the discharge gap 
between the wire and the workpiece material is generated. 
This discharge gap leads to discharge heat, which melts and 
erodes the material. The higher the value of the Pon, the 
greater will be the plasma channel produced. Thereof, the 
larger pulse value on time produced a plasma channel of 

Fig. 13   Predictive performance of ELM models in external validation 
test

Fig. 14   Comparison of predic-
tive performance of different 
AI-based models

Fig. 15   The percentage significance of input variables on the cutting 
speed of WEDM
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greater width, and then discharge heat melts and erodes the 
material from the workpiece material. The above statement 
favors the higher cutting speed when the Pon has a larger 
value. However, as mentioned earlier, that base material is 
a layered material with two orientations (A & B). Thus, the 
independent variable of input parameter ‘Or,’ either A or 
B, shows the least % effect on the cutting speed of stainless 
clad steel material.

3.5 � Parametric optimization for cutting speed 
in WEDM

Parametric optimization represents a concise and simplest 
design approach where a set of input variables indicates 
the enhanced magnitudes of output variables in the defined 
range of input data. The WEDM process is essentially a non-
linear process and thus parametric optimization technique 
suits well for maximizing the cutting speed of WEDM and 
the optimized values of input variables can be determined. 
Thereof, for parametric optimization, an optimal value was 
determined against every single level of an input variable. 
Then, the investigated optimized value of each input vari-
able is used to determine the cutting speed in WEDM for 
the clad material.

Figure 16 shows the optimized values of the input vari-
ables of the WEDM process determined by the parametric 
optimization analysis for maximizing the cutting speed of 
the WEDM process. The optimized values of the input vari-
ables are as follows: Or = 0; LTSS = 2 mm, LTMS = 6 mm, 

Dw = 0.2 mm, SV = 30 V, Fw = 4 (60 mm/s), Pr = 0.7, and 
Pon = 5μs and the cutting speed of WEDM process is 2.90 
mm/min, 27.3% higher than the maximum speed achieved 
in the actual dataset. The parametric optimized values of the 
input variables comply with the domain knowledge of the 
WEDM process as well [25].

4 � Conclusions

The traditional conventional process modelling, and analyti-
cal techniques are used to analyze the performance of the 
manufacturing systems that may lead to suboptimal results. 
Herein, we have presented a generic AI-based process analy-
sis framework for the manufacturing sector that contains the 
key analysis stages and explains to carry out the analysis at 
each stage for the performance enhancement of the system 
under consideration. The suggested analysis framework is 
applied on the WEDM system so that the cutting speed of 
the WEDM process can be maximized for use with the stain-
less cladding steel material. The conclusions of this case 
study are summarized as follows:

1.	 Rigorous hyperparameter tuning is carried out to train 
the AI models, i.e., ANN, SVM, and ELM in this study. 
The modelling performance of the AI models is com-
puted. Amongst all the developed models (ANN, SVM, 
and ELM), the ANN model performed comparatively 
better to predict the cutting speed of WEDM for the 
stainless cladding steel. The R2 value of 0.90, MAE of 
0.03 mm/s, and the RMSE of 0.03 mm/s are measured 
for the Valext dataset thereby demonstrating the excellent 
generalization capability of the trained ANN model.

2.	 The ANN model performed comparatively better, i.e., 
59.9% and 2.19% higher R2 value than that of SVM and 
ELM models, respectively.

3.	 The sensitivity analysis has been conducted to establish 
the variables’ significance order for the WEDM process. 
The sensitivity analysis depicts that Pon is the signifi-
cant factor and shares 26.6% towards the cutting speed 
of stainless clad steel material, followed by the Dw and 
LTSS, with a significant percentage of 17.3% and 16.7% 
respectively.

4.	 The variable Or has the least significant effect of 4.3% 
on the cutting speed of clad material in the machining 
process of WEDM. However, the layered material gave 
the highest cutting speed when the orientation of the 
material was set stainless steel over the cast iron.

5.	 The parametric optimization has been performed and the 
optimal values of the input variables are determined to 
correspond to the maximum cutting speed of WEDM. 
The parametric optimization technique is applied to 
maximize the cutting speed of the WEDM process. The 

Fig. 16   Parametric optimization analysis for maximizing the cutting 
speed of the WEDM process. The optimized values of input variables 
are determined
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optimized values of the input variables are determined 
as follows: Or = 0; LTSS = 2 mm, LTMS = 6 mm, Dw = 
0.2 mm, SV = 30 V, Fw = 4 (60 mm/s), Pr = 0.7, and Pon 
= 5 μs.

6.	 The cutting speed in WEDM obtained at optimal param-
eters during the parametric optimization is 27.3% higher 
than the maximum value of cutting speed achieved dur-
ing the cutting of clad material.

7.	 The application of AI-based modelling techniques is an 
emerging area of research nowadays in the manufac-
turing sector. The suggested machine learning models 
will assist the manufacturing sector in thinking about, 
amending, and analyzing the machining processes prior 
to the actual cutting and machining activities. Adopting 
the suggested framework, which incorporates an AI-
based model and optimization technique, may assist in 
obtaining the increase in productivity, improvement in 
quality, and reduction of material, financial, and time 
waste.

This study covers the use of AI-based modelling tech-
niques integrated within the optimization environment to 
determine the optimum operating conditions for maximizing 
the cutting speed of the WEDM process. However, in the 
future, different materials and wide operating ranges would 
be investigated to further generalize the utilization of the 
developed AI-based modelling and optimization framework. 
Furthermore, model-based control of the process would also 
be investigated.
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