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Abstract 

The specialization of different urban sectors, theories, and technologies and their confluence in city development 
have led to a greatly accelerated growth in urban informatics, the transdisciplinary field for understanding and 
developing the city through new information technologies. While this young and highly promising field has attracted 
multiple reviews of its advances and outlook for its future, it would be instructive to probe further into the research 
initiatives of this rapidly evolving field, to provide reference to the development of not only urban informatics, but 
moreover the future of cities as a whole. This article thus presents a collection of research initiatives for urban infor-
matics, based on the reviews of the state of the art in this field. The initiatives cover three levels, namely the future 
of urban science; core enabling technologies including geospatial artificial intelligence, high-definition mapping, 
quantum computing, artificial intelligence and the internet of things (AIoT), digital twins, explainable artificial intelli-
gence, distributed machine learning, privacy-preserving deep learning, and applications in urban design and plan-
ning, transport, location-based services, and the metaverse, together with a discussion of algorithmic and data-driven 
approaches. The article concludes with hopes for the future development of urban informatics and focusses on the 
balance between our ever-increasing reliance on technology and important societal concerns.
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1  Introduction
Facing the increasing specialization of contemporary 
urban sectors, theories, and technologies, transdisci-
plinary perspectives are clearly necessary to synergize 
these numerous fields into the wider mission of devel-
oping more efficient and livable cities. Such a transdisci-
plinary approach for understanding and developing the 
city through new information technologies, urban infor-
matics becomes “particularly timely” (Shi et  al.  2021, p. 
1) and has experienced a dramatic growth in the second 
decade of the twenty-first century.

As a young field of immense potential, urban informat-
ics has attracted considerable efforts on summarizing its 
advances, as well as anticipating its future developments 
and accompanying societal concerns. The Handbook of 
Research on Urban Informatics (Foth 2008) emphasized 

public participation and engagement of urban commu-
nities, as well as selected technologies including naviga-
tion, virtual cities, wireless infrastructures, and mobile 
applications. The last chapters of the book elaborated an 
outlook for urban informatics based on a limited num-
ber of forward-looking technologies at that time as well 
as social and cultural concerns. The technologies and 
applications in more fields pertaining to urban infor-
matics have continually been updated in various pro-
ceedings such as that of the 2014 Workshop on Big Data 
and Urban Informatics (Thakuriah et  al.  2017a). The 
innovations and challenges from technical and political-
economic perspectives in the use of big data for urban 
informatics were discussed in that book (Thakuriah 
et al. 2017b) serving to widen the field. The role of urban 
informatics in supporting technologies of planning was 
further elaborated by journal special issues, such as Plan‑
ning Support Science with Urban Informatics in Environ‑
ment and Planning B: Urban Analytics and City Science 
(Pan et al. 2020). The theories, technologies, and applica-
tions in this field have been systematically expounded in 
the recent book Urban Informatics (Shi et al. 2021) where 
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five dimensions were defined: urban science, systems and 
applications, sensing, big data infrastructure, and com-
puting. The epilogue of the book probed into multiple 
alternative visions for urban informatics, cautioning for 
possible unintended consequences and calling for a con-
tinued exploration of the broader impacts of urban infor-
matics (Goodchild 2021a).

In this first issue of the international journal Urban 
Informatics which is dedicated to sketching the outline 
of the field, it would be meaningful to again catch up 
on the accelerated evolution of this field, to probe into 
its research initiatives which could serve as reference 
to the development of not only this field, but the future 
cities as a whole. The research initiatives concern three 
closely intercorrelated aspects, namely future urban sci-
ence, backbone technologies, and urban applications. 
Deeper understanding of cities and more powerful appli-
cations of urban design, management, and services are 
enabled by cutting-edge technologies in urban sensing, 
computing, and big data infrastructure. These technolo-
gies include, for example, geospatial artificial intelligence 
(GeoAI), high-definition (HD) map, quantum comput-
ing, AI and the IoT (artificial intelligence and the inter-
net of things, abbreviated to AIoT), digital twins, and 
approaches involving deep learning and machine learn-
ing in distributed, explicable, and privacy-preserving 
approaches to the acquisition and analysis of big data. In 
turn, urban science and applications not only motivate 
technological progress, but also reveal the wider impacts 
of these technologies and their subsequent applications, 
resulting in thinking about the most appropriate guid-
ance in technological developments that hopefully will 
realize the greater good.

In the rest of this article, Sect. 2 will briefly review the 
evolving definitions of urban informatics, how it has 
emerged as a disciplinary focus, as well as the state of the 
art of this field. Sect. 3 will discuss the research initiatives 
of urban informatics at three levels, from new advances 
in urban science and a selection of forward-looking 
core technologies, to core application fields involving 
future cities and citizen lives and precautions facing the 
inevitable advent of an algorithmic and data-driven era. 
Sect. 4 will present our concluding remarks, pointing out 
what is not covered by the journal at least so far and our 
hopes for the future development of the field of urban 
informatics.

2 � The state of the art of urban informatics
2.1 � The rise of urban informatics
As early as 1987, under the term “urban informat-
ics planning”, Hepworth (1987) discussed the research 
and policies for promoting and managing the develop-
ment of metropolitan area which were undergoing the 

transformations posed by the “information revolution”. 
This envisioning discussion may be also seen as an out-
look on the comprehensive integration of informat-
ics with urban planning and development. Townsend 
(2008) offered two definitions of urban informatics in the 
book devoted to this topic (Foth 2008). He defined it as: 
“the collection, classification, storage, retrieval, and dis-
semination of recorded knowledge of, relating to, char-
acteristic of, or constituting a city” and “the collection, 
classification, storage, retrieval, and dissemination of 
recorded knowledge in a city” (p. xxiii). The book empha-
sizes the role of urban informatics in the real-time exami-
nation of the real-time urban systems, and substantially 
involved related location-sensitive technologies, such as 
navigation, wireless communications, and mobile appli-
cations. At that stage, geomatics seemed mainly utilized 
as the enabling technologies under the “informatics” 
aspect of urban informatics. Batty (2013) stressed the 
importance of “big data” obtained by densely embedded 
sensors in cities and geospatial modelling for urban infor-
matics. This drew more attention to the spatial aspects 
and geomatics in urban informatics, the latter concern-
ing the measurement of urban objects and management 
of the resultant data.

Different urban sectors have been more specialized 
together with their underlying scientific disciplines, 
making it more frequently necessary to solve ever more 
complex urban issues by synergizing the possibly con-
tradictory perspectives from multiple sectors. Shi et  al. 
(2021) thus gave more attention to the interdisciplinary 
nature of urban informatics and defined this field as “an 
interdisciplinary approach to understanding, manag-
ing, and designing the city using systematic theories and 
methods based on new information technologies” (p. 2). 
They proposed urban science, informatics, and geomat-
ics as three pillars of urban informatics, among which 
urban science studies urban activities, places, and flows; 
geomatics focusses on the sensing of urban objects and 
management of the massive and complex urban-sensing 
data; and informatics enables information handling and 
computation to develop more capable and intelligent 
urban applications.

Compared with the fields associated with individual 
urban sectors, such as demography, economy, transporta-
tion, land use, retail, and energy sources, urban informat-
ics is distinctive in that it takes computational methods 
and models as a core to understand urban phenomena 
and subsequently to work out solutions to corresponding 
urban issues (Shi et al. 2021). By capturing and learning 
from multisource and heterogeneous urban-sensing data, 
sophisticated models and powerful computation tools 
may decompose complex urban phenomena to the ones 
that are easier to be understood and reasoned by domain 
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human experts. On the other hand, dynamics and inter-
ests of multiple sectors may be fused in high-dimensional 
models and multi-objective optimizations working on 
the urban-sensing data to reach better compromised 
solutions between different urban sectors and stakehold-
ers. In this way, urban informatics can both advance the 
theoretical development of other urban-related disci-
plines and generate better solutions to many urban issues 
than the disciplines focusing on individual urban sec-
tors. Cutting-edge science and technologies for capturing 
urban-sensing data are the bases to get the materials for 
computation in urban informatics. Such importance of 
geomatics for urban informatics may explain the differ-
ence between urban informatics and urban science or its 
integration with computer science. Meanwhile, geomat-
ics or geoinformatics in the urban context, which may 
be referred to as urban geomatics or geoinformatics, do 
not necessarily rely on new information and computing 
technologies.

2.2 � Urban science
Urban science first emerged hard on the heels of the 
Newtonian revolution in mechanics at the beginning of 
the industrial revolution in Europe. Several commenta-
tors suggests that classic physical concepts such as gravi-
tational force and potential might be used to understand 
social forces particularly those associated with distance 
whose effects were radically changing through the devel-
opments of new modes of rapid travel such as the rail-
ways. But it was not until the middle of the lasmeizhout 
century that a sustained development of formal models 
of cities emerged, building on developments in urban 
economics and location theory (Isard 1956). At the same 
time, land use and transportation modelling provided the 
rapid momentum for applications in practice which were 
the earliest examples of computer models of cities. After 
this first wave of what we now loosely call ‘urban science’, 
another began focusing more theoretically on dynamics 
(Wilson  1981) and in the last 20  years this has evolved 
an economic basis for urban size and shape, particularly 
with respect to fractal morphologies, urban agglomera-
tion and allometry (Bettencourt 2021).

We need to note however that urban science and 
its analog in the form of a science of cities represent 
a recent shorthand for many movements developing 
systematic and computable urban theories of how cit-
ies form and evolve (Batty  2023). An important quali-
fication which is important to our arguments here is 
that urban science is a science of complexity revolting 
around geometry and relationships between popula-
tions and the built environment; we do not use the term 
to cover the science of urban ecology, building physics, 

pollution and so on which lie on the edge of the science 
that urban informatics relates to.

In recent years, urban science has progressed from 
looking into questions where place, space, and location 
define the structure of the city to various networks that 
link locations together through the critical flows that 
determine how the city glues itself together as various 
kinds of energy (Batty 2021). Under the perennial core 
topics in urban science such as the urban morphology 
and scaling, theoretical developments have evolved 
along trends in the development of cities and human 
society. For example, new ideas extending urban scal-
ing laws to the third dimension, and analysis of criti-
cal densities above which cities shift to vertical growth 
have been identified (Molinero & Thurner 2021), while 
human-centered perspectives incorporating people’s 
subjective perceptions in environmental and socioeco-
nomic contexts reflected in human dynamics (Shaw & 
Sui 2020) have been stressed.

Models which build on ideas about the key signa-
tures defining the structure of cities in terms of scale, 
size and density (Batty  2008) link more traditional 
approaches in urban economics to models of land use 
and transportation behavior. This new urban science 
attempts a more synoptic view of how urban phenom-
ena can be treated in aggregate and disaggregate terms 
as well as in static and dynamic equilibria. These form 
key elements in defining an urban science, a science of 
cities that is focused on integrating many of the physi-
cal, economic, and social foci that define a much wider 
range of approaches in urban studies.

Massive high-frequency data streams, captured 
through lightweight sensors embedded in every corner 
of the city, are enabling us to capture more and more 
features of the city which are leading to many new 
urban theories and the development of many new tools 
and models. The smart city is at the forefront of these 
developments that can be seen in the studies of the 
spatial structure and function of the city, urban human 
dynamics, urban cognition, urban metabolism, spatial 
economy, and many other topics under urban science 
(Batty  2021). Meanwhile, the availability of “big data” 
appears to be pushing us to demand even more data 
with our thirst for data stimulating new hypotheses and 
generating a new understanding of city systems where 
our need for new theory is beginning to outstrip our 
demand for new data. On the other hand, as we will 
elaborate in Sect.  3.1, new data and the accelerating 
development of cities pose new challenges to the usa-
bility of classical theories and analytical methods and 
this drives the momentum we seek to capture in this 
new journal.
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2.3 � Urban sensing
Bridging the urban environment and urban analytics are 
urban sensing technologies for collecting data about both 
the physical environment and activities in the city. Apart 
from serving as a basis for urban analytics, the result of 
urban sensing can also directly contribute to decision-
making or service delivery, with representative applica-
tion fields such as environmental assessment, natural 
resource management, transportation, and disaster miti-
gation (Avtar et al. 2020).

Leveraging the latest sensing technologies, nowadays 
urban objects can be sensed from space and the sky, on 
the ground, and even underground and underwater, by 
using a wide range of sensors such as optical cameras and 
panorama cameras, synthetic aperture radar (SAR) and 
interferometric synthetic aperture radar (InSAR), laser 
scanner via light detection and ranging (LiDAR), ground-
penetrating radar (GPR), and various sensors embedded 
in urban facilities which form an important aspect of the 
IoT (Shi 2021). Under the increasingly notable concepts 
and tools of social sensing, data sources such as massive 
cellphone tracking records and social media content have 
been also widely used in the analysis of urban function 
and activities. The collection of data such as cellphone 
tracking records can be seen as implicit crowdsourcing, 
which means that users may be unaware that they are 
crowdsourced. Explicit crowdsourcing, in which users 
voluntarily contribute content, is another important way 
of urban sensing. Those contributions related to loca-
tions or places are usually referred to as volunteered 
geographic information (Goodchild  2007), for example, 
crowdsourced maps (e.g., OpenStreetMap), geotagged 
photos (e.g., on Flickr), and online user reviews for loca-
tions and places (e.g., on Foursquare and TripAdvisor).

Besides the use of new data sources, other major trends 
in urban sensing include processing methods for data 
with very fine spatial and temporal resolution, as well 
as the use of AI and deep learning. While deep learning 
tends to outperform traditional methods of data process-
ing for urban sensing, realizing such performance also 
tends to demand more labelled training samples, that 
is, more prior knowledge about the ground truth being 
sensed. Facing this challenge, unsupervised or weakly 
supervised AI models (e.g., by using crowdsourced train-
ing samples) have been studied to obtain more data-
driven decisions (Shi et al. 2020).

2.4 � Urban big data infrastructure
Urban big data infrastructure includes not only urban 
big data and data platforms, but also the software and 
sometimes the dedicated hardware for realizing the 
infrastructure, and, further, the users of big-data prod-
ucts (Goodchild  2021b). Currently, shifting to the third 

dimension is one of the major responses of urban big 
data infrastructure to the growing complexity of the 
urban environment. The three-dimensional (3D) digital 
modeling techniques range from semantic 3D city mode-
ling such as CityGML and building information modeling 
(BIM), to rule-based modeling such as CityEngine, and 
3D management of property ownership. City-scale appli-
cations of CityGML and other 3D city modeling tech-
niques have been realized in the areas such as business 
information service (Berlin Partner  2021), energy and 
climate (City of Helsinki 2022), and utility management 
(Zhang  2022). For transportation, the high-definition 
(HD) map is the key 3D data infrastructure for autono-
mous driving. HD maps not only enable self-navigation 
of the vehicles, but also provide detailed information in 
the vehicle’s surroundings which supports their decisions 
in self-driving, such as adjustment to cornering speeds.

A further response to such growing complexity is the 
integration of infrastructures, much in line with the 
transdisciplinary nature of urban informatics. The inte-
gration between BIM and geographical information sys-
tem (GIS) is essential for the applications which require 
detailed data of both facilities such as buildings and their 
environmental context (Ma & Ren 2017). The latest ver-
sion 3.0 of CityGML standard enables better incorpora-
tion of real-time IoT devices and more direct mapping 
of BIM to CityGML, paving the way for digital twins 
being employed for real-time urban management and 
applications in a seamless indoor-outdoor environment 
(Kutzner et al. 2020).

2.5 � Urban computing
The objectives of urban computing may be loosely 
divided into two types: one is to enhance the ability of 
computation, and the other is to obtain new or better 
results from methods, models, and tools for urban data, 
or what are called urban analytics. Both dimensions are 
indispensable for the data to create value for decision-
making and services.

As a shared approach to computation capacity, cloud 
computing provides on-demand services at the software, 
platform, infrastructure, and other levels, enabling users 
to access high-quality computation resources at a lower 
price. Edge computing distributes the computation to the 
sensor network, which enables many previously unrealiz-
able applications relying on both fast sensor response and 
computation power (Shi & Zhang 2021). Cloud and edge 
computing are also the backbones of AIoT which will be 
dealt with later in Sect. 3.

The proliferation of urban analytics includes meth-
ods for geographically rich data analysis and mining, 
of which some common aims are knowledge discovery 
or recommendation, as well as a great variety of urban 
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simulation models, such as microsimulation, cellu-
lar automata, and agent-based models. Many AI and 
deep-learning approaches originally designed for non-
spatial data have been adopted to the urban spatial 
context. For example, many studies have used trans-
fer learning to recognize human activities from smart 
sensing data in different built environments (Cook 
et  al.  2013). Generative adversarial networks (GAN) 
have been used to generate realistic movement tra-
jectories and traffic flows, to help autonomous mov-
ing platforms to predict pedestrian motions (Gupta 
et  al. 2018) or to predict traffic conditions (Zhang 
et al. 2019). The problem of opaque parameters, or the 
lack of interpretability of the AI methods, also stimu-
lates research on explainable artificial intelligence 
(XAI) for urban computing tasks, such as for process-
ing remotely sensed urban imagery.

2.6 � Urban applications
Available space–time data and corresponding tools and 
methods have enabled a vast variety of applications for 
planning and management of all kinds of subsystems 
in cities (Kwan  2021). Some subsystems emphasize 
improving the efficiency of the city and decision-mak-
ing. Cities have implemented numerous platforms 
to optimize complex urban transportation systems, 
improve trip planning by citizens, and reduce conges-
tion. Based on users’ trip and current locations, their 
likely interested places and activities may be inferred, 
so that customized recommendations and advertise-
ments can be sent. Some other systems pay more atten-
tion to resilience and sustainability, such as to use 
advanced sensing and computing technologies to better 
respond to urban disasters, to prevent crime, to moni-
tor pollution, and to reduce energy usage. Numerous 
studies on the relationship between human mobility 
and COVID-19 transmission (Zhang et  al.  2022) pro-
vide other examples showing how public health may 
benefit from urban informatics.

As people increasingly rely on computational 
methods for the operation and management of urban 
systems, algorithms have become more important 
for decision-making. Algorithmic decision-making 
can take the form of augmenting human expertise 
with algorithms, using automatic systems in place 
of human decision makers, or using sophisticated 
optimizations which cannot be achieved easily by 
human brains. Algorithms can greatly save labor and 
improve system performance in terms of specified 
objectives, and they can potentially reduce individual 
biases. Yet at the same time, algorithmic decision-
making can also enforce or even create new biases 
(Singleton & Spielman 2021).

3 � Research initiatives for urban informatics
3.1 � Developing a robust urban science
There are many theories about how cities are structured, 
how they evolve, and how they function. Many of these 
theories come from the mainstream social sciences but 
in parallel there is an emergent theory of physical evolu-
tion of cities in terms of their buildings, natural environ-
ments, and ecologies. In fact, it has been exceptionally 
difficult to develop integration between these many theo-
ries and they remain rather separate perspectives on the 
way we might understand cities and the ways in which we 
might plan and design their futures to meet sustainable 
development goals. Urban science as we have indicated 
above attempts to establish key features which can be 
generalized and pertain to many cities. Although in our 
domain it is not possible to establish laws of cities in any 
sense, there are well-defined long-term regularities which 
can be and are being captured using simple relationships 
such as power laws. Together with a long history of social 
physics, these developments suggest that urban science 
might lead to a more general theory of how cities func-
tion. That is the quest.

It will take an enormous effort to progress these ideas 
but urban informatics does establish a focus that could 
be critical in making progress in this kind of science. 
Currently new ways of looking at cities as economies, 
new views of mobility in the city from migration to local 
movement across many scales, new ways of thinking 
about the ecological structure of cities and the ways in 
which energy is mobilized, all of these suggest that urban 
science might begin to provide key insights into what we 
are able to do in realizing more sustainable cities in the 
future through ever-more-relevant interventions and 
planning. Because so much in urban science depends on 
flows between locations and over time, this perspective 
has great promise for developing an integrated approach 
to the many relationships that define the form and func-
tion of cities, and more particularly how the deep tran-
sition from a material to a digital world, from energy to 
information, might be embraced in developments of new 
urban theory. To date, most of our science deals with 
material and people flows; in the future it is information 
flows that will dominate if they do not do so already. In 
this sense, urban science opens a window into the virtual 
as well as the physical and social worlds.

During this current century, it is very likely that world 
population will stabilize and that many cultures will pass 
through the demographic transition. At the same time, 
the world is becoming digital and many activities such 
as retailing, education, parts of health care, and much 
manufacturing is moving online or becoming informed 
by new information technologies which themselves are 
online. This suggests that the basic relationships in urban 
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science in terms of flows are also changing and evolv-
ing. Thus a robust urban science is critical to make sense 
of this emergent world, a science that will fashion plans 
for future cities that take all these kinds of changes into 
account. What cities will look like by the year 2100 is 
quite uncertain, for technologies are likely to change not 
only the way we move but why we move. There is the 
prospect of much more AI being used to build our cities 
and this could change what, where, and how we build for 
the new urban future. The sort of relationships that urban 
science is already working with will themselves evolve as 
cities are getting ever more complex and thus a robust set 
of ideas is sorely needed. We hope the journal will offer a 
platform for those working with this science to dissemi-
nate their ideas.

3.2 � Backbone technologies
3.2.1 � GeoAI for fine‑resolution remote sensing and urban 

social computation
Integrating geospatial science and AI, GeoAI (Janow-
icz et al. 2020) has been greatly enhancing the dynamic 
perception and knowledge discovery for geographical 
phenomena and earth science processes. Traditional 
machine learning relies on manual feature design which 
is limited by the domain knowledge of humans. Instead, 
deep learning has extraordinary ability in high-dimen-
sional data processing and automatic feature extraction, 
which enables its full use of the increasingly available 
multisource and fine-resolution urban-sensing data to 
learn the complex natural and social processes and reach 
more intelligent decisions beyond humans’ previous 
knowledge.

GeoAI for fine‑resolution remote sensing  In recent years, 
the development of smart cities has great benefited from 
the progress of remote sensing in spectral resolution, spa-
tial resolution, temporal resolution, and the achievement 
of full-time and full-weather earth observation capabil-
ity. With the assistance of high-performance computer 
hardware, the application of AI to fine-resolution urban 
remote sensing data has been fruitful in 3D reconstruc-
tion, data fusion, image classification, image retrieval, 
image understanding, object recognition, and change 
detection (Lian et al. 2020; Ma et al. 2019; Shi et al. 2020; 
Yuan et  al.  2021). However, because of the continuous 
improvement in the temporal resolution of remote sens-
ing data, even to real-time, and the increase in spatial 
dimensions from 2 to 3D, it becomes more difficult for 
AI models to learn robust and discriminative representa-
tions from the multi-temporal, multi-sensor, and multi-
angle remote sensing data. The diversity of AI models and 
the lack of training samples are also challenges in practi-
cal applications. Massive training samples with accurate 

annotation are usually generated by human interpreta-
tion and field surveys, which are time-consuming and 
labor-intensive processes. To solve this problem, numer-
ous attempts have been made at unsupervised and weakly 
supervised AI techniques, and impressive results have 
been generated over the past few years (Haut et al. 2018; 
Romero et  al.  2015; Zhan et  al.  2020). Although these 
new AI techniques alleviate the lack of samples to a cer-
tain extent, there is still large room for improvement. The 
volume, variety, and complexity of urban-sensing data 
will increase rapidly, especially with more available IoT 
data. This puts forward more demanding requirements 
for self-learning AI techniques.

GeoAI for urban social computation  What make a typi-
cal urban area are the intensive economic activities and 
social interactions within or generated by it, as distinct 
from rest areas on the planet. Therefore, most urban 
studies deal with social aspects which make urban infor-
matics more challenging than natural science, due to the 
involvement of various human issues. Another related 
strand is computational social science, while urban infor-
matics emphases more on urban and spatial context.

Many urban fields are attempting to use AI technolo-
gies to solve urban problems, such as traffic and trans-
portation, land use planning, environmental protection, 
urban management, and public health (Cai  2021; Grek-
ousis  2019). As discussed above, some work has been 
carried out based on remote-sensing data benefiting 
from AI image processing framework, models and algo-
rithms. However, most of urban data are not imagery 
data. Statistical data, location-based sensor data includ-
ing both point data and trajectory data, are other major 
components of urban data. To take advantage of AI 
technologies, one of the most basic research initiatives 
is releasing one or more urban datasets for the establish-
ment of urban informatics, whose role is similar to that 
of ImageNet to computer vision research. The challenge 
is, however, that the dataset should include as many rela-
tions as possible to describe urban phenomena in a sys-
tematic manner. Although knowledge graph has been 
recognized as a pathway, addressing privacy issues and 
representing uncertainty and unpredictability related to 
human interactions make this task especially challenging. 
Consequently, exploring knowledge representation learn-
ing (KRL) for entities and high-dimensional relations 
among urban data is another critical task. The embedded 
representation of social-economic-environment knowl-
edge could serve as an infrastructure to support the 
design of spatially- or urban- explicit AI models and algo-
rithms, to gain deeper understanding of urban phenom-
ena and processes. Establishing such datasets and their 
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representation learning could contribute to both urban 
informatics and GeoAI.

3.2.2 � Spatial data infrastructure and the HD map
The concept of a national spatial data infrastructure was 
originally promoted in the early 1990s (National Research 
Council 1993) as a solution to fundamental disruptions 
in the production of geospatial data, which until then had 
been dominated by agencies in higher levels of govern-
ment. One of the most popular and important compo-
nents of that infrastructure was the transportation map, 
including the network of streets and roads, canals and 
waterways, and railroads. Applications were emerging at 
that time that allowed users to plan routes through the 
network using wayfinding early versions of the tools that 
today are an essential part of modern life. These appli-
cations require a representation of the network that is 
navigable – that is, it includes details of permitted turns 
at intersections, overpasses and underpasses, one-way 
streets, and any other information that is essential for 
route planning.

The development of autonomous vehicles has added 
new requirements to the transportation layer. These 
vehicles will need much more information than is 
currently provided by the traditional databases: for 
example, to find, enter, and utilize parking structures, 
to find refueling facilities, to understand and respond 
to street signage, to maintain lane discipline, and to 
respect pedestrian crossings. Major investments are 
consequently being made in what have become known 
as high-definition (HD) maps, and in research into 
how best to acquire and represent the necessary infor-
mation. These maps will need positional accuracies 
that are significantly better than that of current map-
ping, and spatial resolutions in the decimeter range or 
finer. Moreover updating presents a major challenge 
given the tendency for many of these feature types to 
change through time, and the poor state of tools for 
integrating geospatial data.

However an even more challenging problem concerns 
the relationship between centralized storage of geospa-
tial data, which has been very much the model for spa-
tial data infrastructure, and the advanced sensors that 
are essential features of autonomous vehicles: radar 
and LiDAR imaging and GPS. How should information 
available from central storage be integrated with the 
information being collected by the vehicle’s sensors? 
Here the analogy to the senses of the driver seems rel-
evant: drivers navigate parking structures using their 
own sensors, so why should an intelligent autonomous 
vehicle not do the same? In effect the autonomous vehi-
cle is a field robot, capable of using centralized data 

when needed but otherwise as fully functional as a 
human driver. Moreover sensed information is always 
up to date.

3.2.3 � Quantum computing and quantum machine learning 
(QML)

Quantum computing is computation using laws of quan-
tum mechanics (e.g., superposition and entanglement). 
By utilizing quantum behaviors, quantum computing can 
create very-high-dimensional spaces to solve many com-
plex problems, especially simulation and optimization, 
many times faster than using classical means.

Real quantum computers typically comprise supercon-
ducting quantum processors, together with huge cool-
ing systems to keep the hardware superconductive at a 
temperature barely above absolute zero. Although many 
quantum computing studies are conducted on real quan-
tum hardware, the use of quantum circuit simulators on 
classical computers is also a common alternative.

Based on algorithms utilizing quantum phenomena 
and logic, QML has been proven to be dramatically faster 
and to achieve higher performance (e.g., accuracy) than 
its classical counterparts (Mishra et  al.  2021). QML has 
covered supervised and unsupervised learning, and 
moreover, quantum neural networks have stimulated the 
field of quantum AI which is “still a much more debat-
able concept (Mishra et  al.  2021, p. 126)”. A few large 
companies have lately launched cloud-based quantum 
computing resources: for example, Google’s Tensorflow 
Quantum machine learning framework, Microsoft Azure 
Quantum Preview, and IBM Quantum and Qiskit, mak-
ing quantum computing and QML widely accessible to 
researchers and developers.

Since quantum algorithms have become widely evalu-
able on available hardware only for the last few years, the 
latest QML research still focuses on the development of 
theories and algorithms for fundamental machine learn-
ing tasks (e.g., general classification and image process-
ing). Industrial applications of QML concentrate on 
fields such as materials science, physics, and finance 
(IBM  2022). Although the suitability for quantum com-
puting to solve large-scale transportation problems has 
been figured out, real-world QML applications to mod-
eling and optimization of transportation or other urban 
systems are very rare. Yet like other machine-learning 
technologies, the fundamental QML algorithms may be 
extended to urban and geospatial studies soon. More 
excitingly, in view of the physical principles utilized in 
the research of complex urban systems, more specialized 
QML for these systems may emerge, where the basic ele-
ments in the systems might be modeled by means similar 
to quantum molecular simulations for physical sciences.
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3.2.4 � AIoT and city digital twins
As an integration of AI and IoT, AIoT allows each device 
in the IoT (i.e., the edge device) to have its own AI which 
can realize smart applications and communicate with 
other AIs in the network. AIoT is currently one of the 
most versatile technologies in urban informatics. It ena-
bles AI tasks that were previously computational expen-
sive, from image and video analytics, text and voice 
recognition, to biometric recognition and human pose 
estimation (Zhang & Tao 2021), to become available on 
mobile devices and smart sensors. As a result, a lot of 
latency-sensitive and intelligence-demanding applica-
tions, such as autonomous driving, self-navigation of 
robots and UAVs, elderly fall detection, and smart secu-
rity systems, are either enabled or greatly enhanced. 
While centralized computing alone could be power-
ful for urban management and service delivery, AIoT 
would provide a foundation for an urban environment 
with “complete ambient intelligence”, resulting in greatly 
improved efficiency and convenience.

A major challenge in AIoT is to design lightweight and 
efficient deep-learning models which work well on edge 
devices with limited computation capacity. To obtain 
such models involves multiple techniques under intensive 
research, including network pruning, compression, and 
quantization. Some other difficulties are the scarcity of 
labeled samples and the requirement that deep-learning 
models be adaptable to the diverse urban contexts that 
edge devices are facing, and the wear and tear on the edge 
devices themselves. To solve these difficulties, machine-
learning strategies such as self-supervised learning, zero-
shot learning, transfer learning, and domain adaptation 
have been recently studied in the AIoT context (Zhang 
& Tao 2021). Also, AIoT devices have access to a lot of 
private data at the individual level. The technologies for 
AIoT to perform AI while protecting the users’ privacy 
and data security will be discussed in Sect. 3.2.7.

A digital twin  is a virtual digital representation which 
serves as a mirror of a physical system. In the ideal case, 
by conducting detailed sensing and computing, the sta-
tus and changes of the physical system can be accurately 
copied in real time in the digital twin. Digital twins can 
be used for visualization, monitoring, diagnostics, oper-
ation, and simulation of systems, and they have been 
applied to manufacturing, construction, healthcare, 
the automotive industry, and also fields more pertain-
ing to urban systems, such as urban planning and traffic 
optimization.

AIoT can serve as a core technology of digital twins and 
greatly improve their function: densely embedded sen-
sors can obtain real-time data from the physical system, 
and efficient AI models running on both edge devices 
and the cloud can achieve real-time representation and 

decision-making. To date, the integration of AIoT and 
digital twins has mainly focused on smart industry and 
manufacturing (Jin et al. 2020; Yu et al. 2021). Fine-reso-
lution digital twins at the city level, or “city digital twins”, 
especially those leveraging AIoT, are still in their infancy. 
The common current form of the city digital twin is the 
city information model (CIM) which fuses GIS and BIM 
(Cureton & Dunn 2021). The latest digital twins may be 
able to predict the physical state of the city, but social 
phenomena and human behaviors which influence the 
prediction remain very challenging to be precisely incor-
porated. Thus, some scholars regard the comprehensive 
city digital twins, especially in the social perspective, as 
unlikely to be realizable in the near future (Cureton & 
Dunn 2021).

Nevertheless, some latest AIoT technologies are capa-
ble of capturing human behaviors, including analyzing 
human emotion and mental status from facial expres-
sion and eye movement, obtaining detailed human physi-
cal status by using all-around wearable electronics based 
on triboelectric nanogenerators (TENGs), and AI-based 
extraction of individual activities from mobile device 
tracking data. While the objectives of these sensing tasks 
are still much simpler than people’s social behaviors, the 
above technologies may pave the way to better simulation 
and prediction of social behaviors in future city digital 
twins.

3.2.5 � Explainable artificial intelligence (XAI)
Data-driven AI models, represented by deep learning, 
enable automatic and intelligent processing of urban-
sensing data and urban analytics. But the highly complex 
deep-learning models usually have low transparency, 
which brings difficulties to interpret the decisions of such 
models, resulting in a reduction of trustworthiness that 
severely limits their further applications. Also, data por-
tions or automatically extracted features that actually 
represent biases or discrimination (e.g., implying a cer-
tain ethnical group or disadvantaged group) may make 
significant contributions to the AI-based decision-mak-
ing without the knowledge of human users.

XAI aims to discover the decision-making processes 
of specific AI models and provide interpretable predic-
tion for human users. Following years of development of 
XAI in classical machine-learning tasks such as image, 
video, and natural-language processing, a few studies 
have started to deal with XAI for remote sensing (Arun 
& Karnieli 2021; Dikshit & Pradhan 2021). There is even 
less research on XAI for urban analytics which are fur-
ther away from the classical machine-learning tasks, 
especially for the tasks that heavily involve the less pre-
dictable human social behaviors. However, XAI for urban 
analytics is likely to develop rapidly in the near future. 
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XAI has a high potential to promote a new generation 
of urban analytics with high intelligence and interpret-
ability, thus the diagnoses can be done to improve the 
model reliability, the risks associated with the uncer-
tainty of model predictions can be reduced, and poten-
tial biases and discrimination may be better spotted and 
removed to increase the equity and fairness of algorith-
mic decision-making.

3.2.6 � Privacy‑preserving deep learning and distributed 
machine learning

Concern for data security and personal privacy has been 
increasing together with the fast-growing capacity of 
urban sensing and the fine spatiotemporal resolution of 
the resultant data. For example, IoT devices can obtain 
individuals’ biometric data, movement trajectories, and 
information about their living environments, and indi-
viduals’ activities can be recognized from fine-resolution 
remote sensing. For this issue, urban computing technol-
ogies, especially AI, have been developed to learn in a pri-
vacy-preserving way. As a current mainstream solution 
for privacy-preserving deep learning, federated learning 
(FL) is a distributed machine-learning framework that 
enables joint modeling by using data from several parties 
without the need for them to disclose their own raw data. 
An alternative is split learning  (Gupta & Raskar  2018), 
which splits the deep neural network into the parts (lay-
ers) on the side of multiple data sources and the part on 
the server side, thus realizing the training without pass-
ing data to the server. Apart from many applications of 
FL in AIoT, specific FL architectures have also been built 
for remote-sensing data processing (Tam et al. 2021) and 
location-based services (Huang et al. 2021).

FL and other distributed machine-learning frame-
works, whether privacy-preserving or not, have mul-
tiple other benefits for processing urban-sensing data. 
From the perspective of AI algorithm implementation, 
urban-sensing applications usually face challenges of 
large data volume, multiple data formats, and complex 
scenarios, which make the algorithms complex, difficult 
to understand, and computationally expensive. Complex 
tasks which make it difficult for a single AI algorithm to 
achieve good performance can be decomposed into mul-
tiple simpler and easy-to-understand tasks, and their 
modular processing can be realized by using distributed 
computing. This decoupling implementation may not 
only improve the execution efficiency and reduce the cost 
of massive data transmission, but also help to enhance 
the interpretability and reliability of the algorithms.

While existing FL studies have achieved admirable 
training results, a number of implementation challenges 
remain to be solved. In particular, FL can suffer from 
lengthened latency due to slow devices participating 

in the training and communication instability (Lim 
et  al.  2020). More research is needed to improve large-
scale implementations of FL in highly latency-sensitive 
applications, such as autonomous driving.

3.3 � Towards future cities and citizen lives
3.3.1 � Urban design and planning: issues, the science, 

and transdisciplinary perspective
In  the  years  ahead, existing contemporary urban issues 
may remain central topics in urban design and planning, 
particularly those related to continuous urbanization, 
such as job-housing balance, congestion reduction, urban 
renewal and relocation of the usually vulnerable original 
residents, planning of urban agglomerations and vertical 
cities, and to promote the livability of the continuously 
aging population. Understanding of these issues will 
likely be deepened, and their computational solutions 
sharpened, by the latest technologies and tools in urban 
informatics. Meanwhile, new changes to cities and urban 
people behaviors, such as those discussed in Sect.  3.1, 
will undoubtedly augment the set of essential issues for 
urban design and planning. More sensing and computing 
technologies and tools specialized for these new issues 
are likely to emerge in an accelerated manner, and the 
decision-making process will likely be more data-driven.

As the sectors in cities become more specialized, it 
is increasingly necessary and complex for city design 
and planning to coordinate contradicting perspectives 
from different sectors. A simple example is that dur-
ing COVID-19, many cities promote cycling as well as 
outdoor dining to reduce close contacts and infections. 
Contradiction occurs when the extended outdoor dining 
areas get very close to or even take over the bike lanes, 
causing traffic accidents and unavailability of bike lines 
for the growing number of cyclers. Worse still, the nar-
rowed walkable space due to outdoor dining and some-
times also cycling can greatly increases the difficulty for 
the elderly and disabled to move around, aggravating the 
social exclusion problem (Bou Akar, 2021). As explained 
in Sect.  2.1, urban informatics provides the chance to 
tackle such complexity with rich urban-sensing data, 
high-dimensional models, and multi-objective optimi-
zations, to reach a better compromise between different 
urban sectors and stakeholders.

3.3.2 � Transport: connected, autonomous, sustainable, 
and shared

Supported by AIoT and many other urban sensing and 
computing technologies, the future transport envisioned 
by many people will achieve full connection among 
vehicles, infrastructure, pedestrians, and the network 
via Cellular-V2X. Sustainable transport, such as higher-
performance electric vehicles and improvement of urban 
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walkability, as well as shared passenger transport and 
logistics, are already on the agenda. The interest in high-
speed transportation will likely continue, as exemplified 
by hyperloop, a form of mass transit within near-vacuum 
tubes by using magnetic or aerodynamic propulsion 
which can achieve double the speed of airliners (Motwani 
& Gupta 2021).

New transportation technologies will profoundly influ-
ence the city’s morphology and logic of function organi-
zation (Wang  2021), since the distribution of urban 
activities strongly depends on the means, speed, and cost 
of the travel between and during these activities. Similar 
to planning, future transportation systems would greatly 
benefit from transdisciplinary perspectives. Such per-
spectives will integrate new land use and urban activ-
ity patterns due to the digital transformation and newly 
involved urban systems (e.g., AIoT and renewable energy 
sources), to promote the efficiency of cities and, hope-
fully, also equity in the mobility and accessibility of differ-
ent social groups.

3.3.3 � Location‑based services (LBSs) and geoprivacy
Thanks to positioning and sensing technologies, together 
with powerful algorithms, LBSs are bound to become 
more efficient and powerful. Door-to-door navigation 
will be available on regular smart phones, guiding users 
to travel seamlessly in a mixed indoor and outdoor envi-
ronment. Mobile devices supporting extended real-
ity (XR) technology will provide people with metaverse 
experiences, which will be further envisioned in the next 
subsection. The services will be more customized and 
better fulfill the needs of special groups. Location-based 
advertising will become more accurate and profitable. 
More navigation applications or other LBSs tailored to 
people with limited mobility or cognitive abilities will 
emerge, helping them to more easily access the resources 
needed to sustain their quality of life and reduce their dis-
advantages compared with the “standard users”. People’s 
health and safety may be better protected by affordable 
wearable devices with more accurate positioning, posture 
estimation, and health monitoring in different scenarios 
such as construction and health care. The devices will 
help more people with chronic illness get rapid treatment 
during attacks, and more children may be forestalled 
from falling from high buildings or be quickly located 
once kidnapped.

The higher utility of LBSs is usually accompanied by the 
finer spatiotemporal resolution of location information 
and rising level of privacy intrusion (Keßler & McKen-
zie  2018). The intrusion can be more threatening when 
combined with other user data collected by the multi-
functional LBSs, such as biometric data, personal finan-
cial data, and social relationships. The morality of many 

LBSs is still under debate, and even for the accepted ones, 
there can be considerable risks for the service providers 
to abuse the collected data, and for users to abuse the 
services. For example, controlling parents may moni-
tor every move of children when they are out of sight 
through kid’s smart watches. There are pressing needs for 
laws and standards regarding geoprivacy and protection 
of the potential affected groups to match the fast-rising 
capacity of LBSs.

3.3.4 � Metaverse and prospective MetaSocieties
“Metaverse” is usually the term for the gigantic, decen-
tralized, and shared immersive Internet environment 
fusing the physical and digital worlds that covers all 
aspects in people’s lives (Lee et al. 2021). The metaverse 
has attracted many investigations and technical propos-
als for over a decade, in fields such as retailing (Bourlakis 
and Papagiannidis 2006), education (Kemp & Living-
stone  2006), and collaborative research (Forte & Kuri-
llo 2010). The topic has become significant again since its 
enabling technologies, including XR, AIoT, edge comput-
ing, and blockchain, became widely available.

The growth of the metaverse has been expedited by the 
demand for being contactless during COVID-19, through 
the prevalence of online meeting, virtual tourism, virtual 
fitness classes in which one can learn together with real-
time holographs of the instructor and classmates, and 
likewise activities. Some scholars predict that the expan-
sion of human activity space by the metaverse will lead 
to “MetaSocieties” in parallel with physical societies, in 
which humans, enterprises, and even cities will all have 
their virtual counterparts. The changes of the MetaSo-
cieties and physical ones will affect each other (Wang 
et al. 2022).

The enabling technologies of the metaverse need to be 
further developed, particularly to become more accessi-
ble and affordable, to implement the metaverse on a wide 
scale. This is the chance to advance the technological 
base of urban informatics, since these enabling technolo-
gies are to a large degree about urban sensing, comput-
ing, and big data infrastructure. Moreover, the metaverse 
and overall trend of digitalization will undoubtedly ele-
vate the importance of the principles in the virtual society 
and physical-virtual interactions in future urban science, 
planning, and analytics. Geo-social studies will also face 
the complexity introduced by the metaverse counterparts 
of many geo-social issues, such as (geo)privacy, equity to 
diverse users, and cyberbullying (Lee et al. 2021). These 
would be arduous research tasks, considering that the 
technological revolutions in the last decades have been 
usually ahead of the social progress needed to rein in the 
new social problems generated.
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3.3.5 � Algorithmic and data‑driven approaches: 
representativeness, equity, and uncertainty

Urban decision-making and services in various sec-
tors of cities will be inevitably more algorithmic (i.e., 
based on computational algorithms) and data-driven. 
While enjoying the higher efficiency, cost-saving, and 
stronger functionality of the algorithmic and data-driven 
approaches, being aware of the unintended consequences 
becomes newly important. Algorithmic and data-driven 
approaches may potentially reduce human subjective-
ness and biases, but they can also enforce or even cre-
ate new ones. As explained in Sect.  3.2.5, AI can learn 
implicit biases or discrimination in data and replicate 
them in subsequent decision-making. XAI helps discover 
the biases or discrimination, but to correct for them is far 
from straightforward.

One difficulty is that completely unbiased datasets 
appear to be unreachable, especially for the user-gener-
ated ones which nevertheless have growing importance. 
Online user-generated content has been recognized as 
representative of such difficulty, but lately they seem to 
be joined by AIoT. For example, FL on IoT data tends 
to select participating devices with higher computation 
capacity to ensure the overall learning performance. 
Thus, users with better devices will be overrepresented 
and more likely well served by the learning results. For-
tunately, scholars have started to tackle this fairness issue 
(Lim et  al.  2020). The quality and bias assessments of 
user-generated urban big data have been advocated for 
years (Antoniou & Skopeliti 2015; Senaratne et al. 2017). 
Of similar importance is to develop the methods to rec-
tify the analysis results despite data biases. Due to the 
complexity and involvement of social behaviors of such 
data, current developments of their bias assessments or 
rectifications are far from meeting people’s eagerness to 
become more algorithmic and data-driven.

Another urgent need is to evaluate the (un)predict-
ability within the models and establish the accountabil-
ity for the predictions, especially for the urban sectors 
that significantly involve humans. Models in such sectors 
usually need to either explicitly consider human behav-
iors or make assumptions about them. For example, for 
facility allocation planning, the preference of different 
population groups for different facilities may need to be 
involved. For traffic optimization, the drivers’ tendency 
to choose the predicted fastest routes, leading to a shift 
of congestions to those routes, will need to be consid-
ered. While more aspects in the city can be sensed and 
predictively modeled in great detail by using powerful 
technologies including AIoT-facilitated city digital twins 
and even the metaverse, human social behaviors that are 
critical to the actual outcome concerned by the predic-
tions remain “less predictable than assumed” (Cureton & 

Dunn 2021, p. 269). When the predictions on the coun-
terpart of an individual in a powerful simulation, a digi-
tal twin, or the metaverse are so detailed that they look 
very much persuasive, what will be the consequences if 
the predictions are inappropriate? Decisions made by the 
predictions may increase the physical and mental diffi-
culty for the person to make other choices, and thus the 
person is actually driven to the prediction results. If the 
consequence of such a situation is harmful but not imme-
diate, who will be responsible for it? Let alone that people 
underrepresented by the models and consequently suf-
fering from inappropriate predictions will continue to be 
more likely those disadvantaged groups, such as people 
with low income, less access to the Internet, or limited 
mobility. Disastrous consequences due to people’s exces-
sive faith in technology are no longer fictional.

4 � Concluding remarks
This article has introduced the motivation behind the 
launching of the Urban Informatics journal, briefly 
reviewed the development of urban informatics, and pre-
sented a collection of research initiatives which comprise 
the field. These initiatives first covered the new urban 
sciences, followed by the development of core technolo-
gies such as GeoAI, HD map, quantum computing and 
QML, AIoT, city digital twin, XAI, and privacy-preserv-
ing deep learning in the urban informatics context. Then 
the initiatives were proposed in terms of the applicational 
demands and broader effects on cities and citizen lives, 
including the perspectives of urban design and planning, 
transport, LBSs, and metaverse, and finally some discus-
sion of algorithmic and data-driven approaches.

Due to the immense scope of urban informatics, the 
initiatives proposed and listed in this short introduc-
tion are bound to address only a very limited part of the 
whole. The authors were unable to cover many of the 
enabling technologies for the applications-based devel-
opments mentioned in Sect. 3.3. For example, the tech-
nologies underpinning each new mobility mode listed in 
Sect. 3.3.2 would require extensive reviews and propos-
als for research initiatives. Sustainability and resilience 
are other major topics: for instance, how to realize car-
bon neutrality more smartly and with less economic cost, 
how GeoAI can enable more effective disaster mitigation, 
and how future cities may be more resilient to pandemics 
which are expected to become more frequent in the com-
ing century (Marani et  al.  2021). As the urban popula-
tion becomes more reliant on information technologies, 
the cost of failures or malicious uses of the technologies 
will grow in proportion. For this issue, data and network 
security also deserve much more discussion.

The technologies and issues dealt with in this intro-
ductory paper are so interrelated that it is somewhat 
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difficult to distribute them into clearly different subsec-
tions. This exactly exhibits the interdisciplinary nature 
of urban informatics. Many reviews on specific tech-
nologies or issues related to this field, such as those 
cited in this article, also mention such interrelations 
between the objectives of the reviews and other tech-
nologies and issues. However, this young field needs 
more transdisciplinary viewpoints on the macroscopic 
technological transformation and broader implications. 
The authors look forward to more reviews and com-
ments addressing this topic.

Those concerns aside, it will have become clear to the 
reader of this introduction that urban informatics pre-
sents a useful and important basis for scholarship, and 
an important framework for research into the future of 
cities. As with all such discussions at the intersection 
between technology and society, it raises an important 
concern: how should the push towards ever-increasing 
reliance on technology be balanced with societal con-
cerns about ethics, equity, and inclusion? How can we 
ensure that future developments in urban informatics 
address issues of importance not only to the physical 
structure and design of the city and its efficiencies, but 
also to the needs and concerns of the city’s population? 
The authors believe that the future of this journal will 
depend very much on achieving the right balance.
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