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Tuning the phase diagram of a Rosenzweig-Porter model with fractal disorder
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The Rosenzweig-Porter (RP) model has garnered much attention in the last decade, as it is a simple analytically
tractable model showing both ergodic-nonergodic extended and Anderson localization transitions. Thus, it is a
good toy model to understand the Hilbert-space structure of many-body localization phenomenon. In our Letter,
we present analytical evidence, supported by exact numerics, that demonstrates the controllable tuning of the
phase diagram in the RP model by employing on-site potentials with a nontrivial fractal dimension instead of
the conventional random disorder. We demonstrate that such disorder extends the fractal phase and creates an
unusual dependence of fractal dimensions of the eigenfunctions. Furthermore, we study the fate of level statistics
in such a system to understand how these changes are reflected in the eigenvalue statistics.
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Introduction. The disorder-induced breakdown [1–4] of
quantum ergodicity [5,6], referred to as many-body localiza-
tion (MBL), is a generic phenomenon in many-body (MB)
systems. Being a localized phase in real space, MBL pro-
vides only ergodicity breaking in its Hilbert counterpart [7–9].
This fact as well as the discovery of nonergodic extended
phases in MB systems [10–21] as an intermediate regime
between ergodic and localized phases [1,22–27] necessitated
the search for analytically tractable toy models to understand
this phenomenon. One direction of this search is based on
the random-matrix ensembles that mimic the Hilbert-space
properties of such MB systems in a controlled fashion. The
Rosenzweig-Porter (RP) random-matrix model [28] provides
such an example which has been studied extensively in recent
years as it allows almost a complete analytical understanding
of the phase diagram [29–34], and a perturbative (exact in the
thermodynamic limit) description [35] of the eigenspectrum
for a wide range of parameter values.

The RP model is given by the Gaussian random-matrix
ensemble of size L, where each element is random number
obtained from a normal distribution, and the off-diagonal
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elements are rescaled by a factor of L−γ /2,

Hmn = hnδmn + MmnL−γ /2, (1)

where hn = Mmn = 0, h2
n = M2

mn = 1. It has been shown that
[29,30], with increasing γ from 0 to large values, this model
first exhibits ergodicity, and then undergoes a transition to a
nonergodic extended (fractal) phase at γ = 1. In the fractal
phase the eigenfunction support sets contain an extensive
number, but measure zero of all the lattice sites, scaling as
LD, where D = 2 − γ denotes the second fractal dimension
of the eigenfunction (the precise definition of D is provided
in the next section). As is immediately apparent, D = 1 corre-
sponds to the ergodic phase. Furthermore, at γ = 2, D goes
linearly to 0, marking the onset of the Anderson localized
phase. Although this version of the model lacks the gen-
uine multifractality in its eigenfunctions, recent developments
[32,36–40] show that some modified versions of this model
may exhibit multifractality. Further studies [41] demonstrated
the instability of the nonergodic extended phase in a non-
Hermitian version of the model. Unlike the latter case, in this
Letter we show how to extend the range and stability of the
fractal phase of the RP model by employing a “fractal” on-site
disorder. We also include the possibility of obtaining a nonlin-
ear dependence of the fractal dimension on the parameter, γ .

Summary of results. In our study, we selectively employ
a random normal distribution solely for the off-diagonal ele-
ments of H , while the diagonal elements (Hmm) are sourced
from a “fractal” disorder distribution with a Hausdorff di-
mension of d . This implies that there are typically L1−d×b

random diagonal elements, present in an energy window of
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FIG. 1. Fractal dimension D vs γ and the Hausdorff dimension
d , showing good agreement with the analytical predictions of er-
godic, γET � 1, and Anderson, γAT � 2/d , transitions (black dotted
lines) [Eq. (10)]. Numerically, in Figs. 1–4, D has been obtained by
fitting the inverse participation ratio (IPR) [Eq. (2)] of the eigenvec-
tors for system sizes L = 2p, 7 � p � 12.

width L−b, if the total bandwidth is taken to be O(1). One of
the well-known examples of such a distribution is the Cantor
set with a Hausdorff dimension [42] d = ln 2/ ln 3.

The main result of our work is shown in Fig. 1, where
we represent the extended phase diagram of the RP model in
terms of the second fractal dimension obtained from numeri-
cal fits of the generalized IPR,

IPR(q)
j =

L∑
i

|〈i|χ j〉|2q, (2)

for q = 2, where |i〉 denotes computational basis states and
|χ j〉 denotes an eigenvector with index j. Then IPR(2) ∼ L−D2 ,
where D2 is the second fractal dimension, and one obtains D2

from averages over numerical fits from a band of eigenvectors.
D2 can then be used to distinguish between the ergodic (=1),
nonergodic extended, i.e., fractal (0 < D2 < 1), and Anderson
localized phase (=0). We refer to D2 as D since the higher
moments show the same value, i.e., Dq = D2, q > 1/2, thus
indicating that the eigenfunctions are fractal and not multi-
fractal. In Fig. 1, we plot the γ and d dependence of D. We
note the following from the plot:

(1) d = 1 represents the case for the generic RP model
and the ergodic-fractal transition occurs at γ = γET = 1 and
the Anderson transition occurs at γ = γAT = 2 replicating the
known results [29].

(2) As the Hausdorff dimension of the diagonal elements
decreases, γET is intact, but γAT monotonically increases,
extending the fractal phase in γ .

(3) Both the transitions can be very well approximated by
perturbative analytical expressions, which become exact in the
thermodynamic limit, denoted by black dashed lines in the
plot.

It is also worth mentioning that, for d > 1, the phase di-
agram shows similar behavior as for d = 1. This is because
beyond the physical dimension of the diagonal disorder [one
dimension (1D) in our Hermitian case], any increase in fractal
dimension cannot have an effect [43].

In what follows, we first analytically calculate the fractal
dimension for eigenfunctions of the fractal RP model with
changing γ and d . Then we compare the obtained expressions
with exact numerics performed for (i) the commonly studied
Cantor set fractal distribution, and then (ii) for a distribution
with arbitrary Hausdorff dimensions d , suggested in Ref. [42].
For completeness, we also discuss the level spacing statistics
in such a model, and in the Supplemental Material [44] discuss
the time-dependent survival probability of a wave packet,
initially localized at a single site.

Analytical phase-diagram calculations. As mentioned be-
fore, we consider the hn’s to be distributed in a fractal (and
later multifractal) manner [45]. This implies that the hn’s
are distributed such that, the number (N) of hn’s in a given
energy interval |E − hn| ∈ [L−b−db, L−b], parametrized by b
(db � 1/ ln L), vary as

N{|E − hn| ∈ [L−b−db, L−b]} ≡ L1− f (b)db, (3)

with a certain f (b) � 1, characterizing the above fractal (note
db here denotes small changes in b and d is not to be confused
with Hausdorff dimension d). We also assume that the overall
bandwidth of the hn is ∼O(1) = L0. Thus, f (0) = 0. For any
generic fractal with the Hausdorff dimension d we will have

f (b) = d · b , (4)

For the special case of the Cantor set, d = ln 2/ ln 3. Note
that, in general, f (b) can depend on E , but for the case of
the Cantor set E dependence arises only in 1/ ln L corrections
to f (b) beyond the saddle-point expression (3). In contrast, in
the case of uniform disorder distribution, the number of hn’s is
proportional to the width of the energy interval, i.e., f (b) = b.
Thus the usual Hermitian case [29] corresponds to d = 1,
while the non-Hermitian complex one [41] gives d = 2.

The above saddle-point consideration in Eq. (3) is valid
as soon as the number L1− f (b) � 1 is large. As we will see
below, this corresponds to delocalized phases, where all the
energy intervals are much larger than the typical level spacing
δtyp, i.e., the energy interval where one typically finds a single
energy level. Indeed, the typical level spacing of the disorder
δtyp is given by

N = L1− f (btyp ) = 1 ⇔ f (btyp) = 1

⇔ btyp = 1/d ⇔ δtyp = L−btyp = L−1/d . (5)

In this work, we focus only on real entries and thus work in the
scenario 0 < d < 1. The generalization to the non-Hermitian
matrices to cover 0 � d � 2 is straightforward. In what fol-
lows, we provide a short description of computation of the
fractal dimension of a typical eigenstate of this model and thus
compute γAT and γET .

Using the standard cavity Green’s function method, we can
find a self-consistency equation for the level broadening (the
imaginary part of the self energy) �m as (see Supplemental

L060203-2



TUNING THE PHASE DIAGRAM OF A … PHYSICAL REVIEW B 108, L060203 (2023)

(a)

(b)

FIG. 2. (a) Energy-resolved fractal dimension D vs γ and eigen-
state index m (sorted in increasing order of IPR) for Cantor set
disorder. (b) Spectral-averaged fractal dimension (blue dots) vs γ ,
averaged over all eigenstates. The black dashed line indicates the
analytical prediction [Eq. (10)] for D at 1 < γ < γAT , with d =
ln 2
ln 3 ∼ 0.63. The red (green) vertical line indicates the theoretical
predictions of the γET = 1 [γAT , Eq. (11)].

Material [44] and Refs. [30,32,33]),

�̄ = 1

L

∑
n

�n =
∑

n

L−γ (�̄ − η)

(E − hn)2 + (�̄ − η)2
, (6)

where E is the eigenenergy of the corresponding eigenvector
and η is a small regularizer. The parametrization �̄ = L−a in
the limit η → 0 gives the following result from Eq. (6) within
the saddle-point approximation (see Supplemental Material
[44])

1 ∼ L1−γ+2a− f (a) ⇔ γ = 1 + 2a − f (a). (7)

This determines � ∼ L−a via the parameter γ and works for
� � δtyp.

The corresponding fractal dimension Dq ≡ D is deter-
mined via the number of levels located in the interval � ∼
L−a. This number is related to the fractal dimension as LD.
From Eq. (3), we know that this is given by L1− f (a). Thus,

D = 1 − f (a). (8)

This definition of D is the fractality in the “space” of hn, but
for the RP-like fractal phases it is equal to the spatial fractal
dimension due to the Lorentzian structure of the eigenstates
[32,33,41,46,47]:

〈|ψE (n)|2〉Hm �=n ∼ 1

(E − hn)2 + �2
. (9)

As by fixing either E or hn, one has the Lorentzian, the frac-
tality over the energy E and over the “space” hn is equivalent
to each other. In space n, the above Lorentzian forms a fractal
miniband [42] of width �, with the underlying fractal structure
hn, living in that miniband, |hn − E | � �.

In the fractal case of Eq. (4), we obtain for γ > 1 using
Eqs. (7) and (8),

D = max

(
1 − d

γ − 1

2 − d
, 0

)
, � ∼ L− γ−1

2−d . (10)

The Anderson transition point corresponds to � � δtyp, i.e.,
D = 0, since in the localized phase the number of energy
levels within the Lorentzian bandwidth becomes an intensive
quantity. Hence, a = btyp = 1/d and

γAT = 2/d. (11)

The ergodic transition occurs at � ∼ O(1), γET = 1. Note that
both γET and γAT are continuous transitions, unlike the fat-
tailed distributed RP models [36–38].

Cantor set diagonal elements. The first example we con-
sider is when the diagonal elements are represented by the
Cantor set C. The Cantor set is a set of points lying in a
line segment normalized to the interval [0,1], obtained by
removing the middle third of the continuous line segments in a
recursive manner. The set generated by the first few iterations
of this are

C0 = [0, 1],

C1 =
[

0,
1

3

]
∪

[
2

3
, 1

]
,

C2 =
[

0,
1

9

]
∪

[
2

9
,

1

3

]
∪

[
2

3
,

7

9

]
∪

[
8

9
, 1

]
,

. . . . (12)

We generate the diagonal elements by choosing the bound-
ary value of each subset at the n = log2 L iteration. The
self-similar nature of the Cantor set is evident from the con-
struction and the Hausdorff dimension is calculated to be
d = ln 2

ln 3 [48]. In Fig. 2(a) we plot the second fractal dimension
D2 = D calculated from the numerical fitting in system size
2p, p = 7 . . . 12, for all the eigenvectors arranged in increas-
ing order of IPR. In Fig. 2(b) we plot the same quantity, but
averaged over 60 midspectrum states. From Fig. 2(a) it can be
clearly seen that there is no mobility edge in the spectrum, and
all the eigenstates show similar fractal dimensions D, hence
one can average over them, which is plotted in Fig. 2(b). The
point where the system ceases to be ergodic is clearly visi-
ble at γ = γET = 1. Furthermore, the variation of the fractal
dimension of the eigenfunctions D matches sufficiently well
with the analytically obtained black dashed line [Eq. (10)]
in the γET < γ < γAT regime, thus accurately predicting the
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(a) (b)

FIG. 3. Fractal dimension D vs γ , averaged over all eigenstates,
for generic fractal diagonal disorder with Hausdorff dimension
(a) d = 0.6 and (b) d = 0.8. The lines are the same as in Fig. 2.

γAT point as well. Finite-size effects, given by 1/ ln L terms in
D(L), are maximal close to γAT and of the magnitude ∼0.1.

Generic fractal diagonal elements. Next, we consider the
case of generic fractal diagonal elements. The generation of
diagonal elements distributed in a generic fractal dimension
was introduced recently in Ref. [42], so this section also serves
as a demonstration of applicability of the technique. Below,
we give a short summary of the method.

A random fractal spectrum of Hausdorff dimension d can
be generated using independent and identically distributed
non-negative level spacings of ordered hn � hn+1,

sn ≡ hn+1 − hn ⇔ hn = h0 +
n−1∑
k=0

sk, (13)

which are distributed as a Pareto distribution [49]

P(s) = dδd
typ

sd+1
θ (s − δtyp), (14)

where δtyp ∼ L−1/d is the typical level spacing of the model
and we omit the subscript n for brevity. Indeed, one can count

that for the usual Cantor set with d = ln 2/ ln 3, and at the nth
step one keeps L · P(s) ∼ 2n levels with the spacings s ∼ 3−n,
leading to the above expression. Due to the formal divergence
of the mean level spacing for all d < 1 at large s, for any finite
L one should put an upper cutoff smax O(1), given by the entire
bandwidth,

δ = 〈s〉 ∼
∫ smax

δtyp

sP(s)ds ∼ δd
typ ∼ L−1, (15)

and consider a typical realization where there is only one
sn � smax � O(1), determining the bandwidth. In Figs. 3(a)
and 3(b) we demonstrate how our theoretical predictions of
D match with numerical results for d = 0.6 and d = 0.8. We
see that even for generic dimensions our analytical predictions
match very well with numerics.

Multifractal disorder. As a final example, we consider the
more general case of multifractal disorder. Unlike the fractal
case, where the scaling behavior of all the moments of the
distribution are the same, in a multifractal they are a nontrivial
function of the moment order. Thus, one needs to define the
probability distribution of level spacings in an energy window
appropriately scaling with system size. In this case the proba-
bility distribution of level spacings is given by [44]

P(s ∼ L−ν )ds =
√

|g′′(ν0)| ln L

2π
Lg(ν)−1dν, (16)

where g(ν) is a nonlinear function of ν. As an example we
consider a particular case of the log-normal distribution where
g(ν) = 1 − (ν−ν0 )2

4(ν0−1) .
Then we can compute the fractal dimension D (see Supple-

mental Material [44]) as

D(γ ) =

⎧⎪⎪⎨
⎪⎪⎩

1 , γ < 1,

2 − γ , 1 < γ < 3 − ν0,

γ + 6ν0 − 8 − 4
√

(ν0 − 1)(γ + 2ν0 − 4) , 3 − ν0 < γ < 2ν0,

0 γ > 2ν0,

(17)

where the Anderson transition happens at D = 0, i.e., at b =
ν0 and γ = 2ν0. The above formula works for 1 < ν0 < 2.
Note that unlike the fractal case, here there are four regimes:
(i) the ergodic phase, � � O(1); (ii) the usual fractal case,
δ � � � O(1); (ii) the new fractal case, δtyp � � � δ; and
(iv) the localized phase, � � δtyp. Here, the unusual fractal
phase (iii) appears only when the mean level spacing δ con-
verges and differs from the typical one, δtyp � δ � O(1).

The results are plotted in Fig. 4 where the predicted frac-
tal dimensions from our saddle-point approximation match
well with exact numerical results. We clearly see a curva-
ture in D vs γ , a feature absent in the fractal case, which
increases with increasing ν0. However, it seems that finite-size
effects are stronger in this case than for fractal disorder, due
to the logarithmic dependence of the prefactors in Eq. (16)
(see similar effects in Refs. [36,37,39]). Indeed, here finite-
size effects to D(L) are given by ln ln L/ ln L, that for available
system sizes give 2.5 times larger deviations.

Level statistics. Until now, our focus has been exclusively
on the properties of the eigenfunctions. To provide a complete
analysis, we shall now study the behavior of a signature of
the phase transition in the energy levels, the consecutive level
spacing ratio r defined by

r = min(δn, δn+1)

max(δn, δn+1)
, (18)

where δn = En − En+1, and En is the nth eigenvalue when
they are sorted in increasing order. In the ergodic phase, it is
well known that for the Gaussian orthogonal ensemble (GOE)
〈r〉 ∼ 0.53 [50,51], where p(r) = 27

4
r+r2

(1+r+r2 )5/2 . Deep in the
localized phase we analytically derive that

p(r) = d

r1−d
, which gives 〈r〉 = d

d + 1
. (19)
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FIG. 4. D(γ ) vs γ for the log-normal disorder [Eq. (16)] with
ν0 = 1.01 (blue), ν0 = 1.5 (red), ν0 = 1.8 (green). The dotted lines
are the analytical predictions of D(γ ) from Eq. (17).

In Fig. 5 we plot the variation of 〈r〉 with γ for different d .
As expected from our analysis for γ < γET = 1, it admits a
value close to 0.53, while at large γ > γAT = 2/d , it settles at
∼ d

d+1 [Eq. (19)]. It admits intermediate values in the fractal
regime, and the span in γ where such values are observed
increases with smaller d , consistent with our previous results.
As the smaller d values correspond to the fatter distribution
tail [Eq. (14)], the finite-size effects are stronger.

According to Eq. (9), γ dependence of 〈r〉 goes to a kink
at γ = γAT in the thermodynamic limit. It is interesting to
note here that the fractal value r = d/(d + 1) covers the
range from 0 (well below the Poisson value at d = 0) to 0.5
(rather close to the GOE one at d → 1). This means that if
in some other models the fractal spectrum emerges, it can
be mistakenly associated with the Poisson, Wigner-Dyson,
or any other statistics, based solely on r statistics. Another
interesting aspect is another “kink,” observed in the plots for
d � 0.9. While the first kink is due to a breakdown of level
repulsion, the second kink occurs due to the fat tail of P(r)
in the localized phase for d ∼ 1. When the weight of large r
values for nonhybridized eigenstates deep inside the localized
phase become significantly larger than what it was in the
ergodic or fractal phase, it shows up as a slight increase in
〈r〉. (Also see Supplemental Material [44].)

Discussion. In this Letter, we have demonstrated that mak-
ing the distribution of the diagonal elements to be fractal in the
RP model allows one to adjust the phase diagram and change
the location of the Anderson localization transition γAT . We
have derived an analytical expression Eq. (10) that relates the
Hausdorff dimension of the disorder to the fractal dimension
of the eigenstates in the RP Hamiltonian, and have confirmed
our findings through exact numerical computations. Further-
more, we have shown that one can manipulate the disorder

(a) (b)

(c)
(d)

FIG. 5. 〈r〉 statistics vs γ , averaged over the entire spectrum for
fractal disorder with (a) d = 0.4, (b) d = 0.6, (c) d = 0.8, (d) d =
0.9, and different system sizes L. The black dashed lines denote the
expected values of 〈r〉 for GOE statistics and the localized phase
[Eq. (19)].

dependence of the fractal dimension by utilizing a multifractal
disorder. Finally, we have evaluated the implications of our
modification on the eigenspectrum through level spacing ratio.

This work provides a step in the direction of usage of the
fractal disorder for the controllable tunability of the phase
diagrams of various disordered models.

In particular, this work opens the way to study whether
such fractal diagonal disorder enhances the fractality of wave
functions in other long-range models, such as the power-law
banded models [52], Burin-Maksimov model [53–56], some
Bethe-ansatz integrable ones [57–59], on the random graphs
[60,61], or even in the interacting disordered models [4]. In all
these cases (especially in the latter two), the fractal disorder
may give a way for a nonergodic spatially extended phase of
matter, intensively discussed and highly relevant for quantum
algorithms [62] and machine learning [63]. The analysis of
spectral statistics for d ∼ 1 using a spectral form factor can
also show interesting behavior at different timescales near
γAT , which can help to identify more clearly the origin of the
sudden dip in the 〈r〉 statistics and shed light on the spectral
distribution in the critical (fractal) regime of ergodic-localized
phase transitions and the structure of fractal minibands [42].
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