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Abstract 

In polygenic score (PGS) analysis, the coefficient of determination (𝑅2) is a key statistic to 

evaluate efficacy. 𝑅2 is the proportion of phenotypic variance explained by the PGS, 
calculated in a cohort that is independent of the genome wide association study (GWAS) 
that provided estimates of allelic effect sizes. The SNP-based heritability (ℎ𝑆𝑁𝑃

2 , the 
proportion of total phenotypic variances attributable to all common SNPs) is the theoretical 

upper limit of the out-of-sample prediction 𝑅2.  However, in real data analyses 𝑅2  has been 

reported to exceed ℎ𝑆𝑁𝑃
2

 , which occurs in parallel with the observation that ℎ𝑆𝑁𝑃
2

 estimates 
tend to decline as the number of cohorts being meta-analysed increases. Here, we quantify 
why and when these observations are expected. Using theory and simulation, we show that 
if heterogeneities in cohort-specific ℎ𝑆𝑁𝑃

2  exist, or if genetic correlations between cohorts 
are less than one, ℎ𝑆𝑁𝑃

2
 estimates can decrease as the number of cohorts being meta-

analysed increases. We derive conditions when the out-of-sample prediction 𝑅2 will be 

greater than ℎ𝑆𝑁𝑃
2  and show the validity of our derivations with real data from a binary trait 

(major depression) and a continuous trait (educational attainment). Our research calls for a 
better approach to integrating information from multiple cohorts to address issues of 
between-cohort heterogeneity. 

 
Main text 
Complex human traits (such as educational attainment) or complex diseases (such as major 
depression) are polygenic1. Trait-associated alleles can be identified in genome-wide 
association studies (GWAS). Polygenic scores (PGS), estimates of the genetic contribution to 
a trait or disease liability for individuals, are calculated as an aggregate score of associated 

variants (with weights derived from GWAS results). The coefficient of determination (𝑅2) is 

a key statistic to evaluate the efficacy of PGS. 𝑅2 is the proportion of phenotypic variance 
explained by the PGS in a “target” cohort independent of the GWAS used to identify risk 
alleles and estimate their effect sizes.  By definition, the SNP-based heritability (ℎ𝑆𝑁𝑃

2 , the 
proportion of total phenotypic variance attributable to all common SNPs2) is the upper limit 

of the out-of-sample prediction 𝑅2. The difference between ℎ𝑆𝑁𝑃
2  and 𝑅2 is attributed to 

measurement errors of SNP effects which decrease as sample sizes increase3. ℎ𝑆𝑁𝑃
2  can be 

estimated from individual-level genotype data using methods such as GREML4 implemented 
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in software such as GCTA5. Increased power for GWAS is achieved through meta-analysis of 
GWAS summary statistics from multiple cohorts, and methods to estimate ℎ𝑆𝑁𝑃

2  from 
summary statistics are available. The LD Score Regression (LDSC)6 is an example of such 
methods which is commonly used in practice owing to its computational efficiency7.  
 
In practice, a decrease in estimates of ℎ𝑆𝑁𝑃

2
 is often noted as the number of cohorts included 

in the GWAS meta-analysis increases, until the estimate reaches a plateau. For example, in 
the GWAS of major depression, the ℎ𝑆𝑁𝑃

2  of a cohort with ~18,000 samples (9,041 cases and 
9,381 controls) was 0.21 (standard error (s.e.) 0.021)8, while in a subsequent GWAS meta-
analysis of more than half million samples (135,458 cases and 344,901 controls), the ℎ𝑆𝑁𝑃

2
 

estimate declined to 0.087 (s.e., 0.004)9. Similar trends were also observed in educational 
attainment10 and Alzheimer’s disease11. At the same time, as opposed to the standard 
narrative, out-of-sample prediction R2 can sometimes approximate or even exceed the ℎ𝑆𝑁𝑃

2  
estimated from the GWAS meta-analysis. For example, in studies of educational attainment, 

ℎ𝑆𝑁𝑃
2

 of years of education was 0.122 (s.e. 0.003), but the out-of-sample prediction 𝑅2 in the 
National Longitudinal Study of Adolescent to Adult Health (Add Health) cohort was 0.158, 
with the lower limit of 95% confidence interval (C.I.) of 0.14310,12. Here, we provide the 
theory to explain these observations. 
 
Previously, de Vlaming et al.13 demonstrated that heterogeneity in genetic effects across 
cohorts attenuates the statistical power of GWAS, i.e., the empirical power from a GWAS 
meta-analysis is less than the power from a single-cohort GWAS of the same sample size. 
Their conclusions thus focussed on the reduced performance of PGS from meta-analysis 
compared to expectation from a sample of equal size constructed under idealised 
conditions of equal ℎ𝑆𝑁𝑃

2  and genetic correlations (rg) between cohorts of 1 (both conditions 
are expected if all cohorts are random samples of the same population and with phenotype 
measured in the same way). Using similar principles, we derive an equation for the expected 
value of the SNP-based heritability of the meta-analysis GWAS (ℎ𝑚𝑎

2 ) as a function of cohort-
specific SNP-based heritabilities and between-cohort genetic correlations and show this 
explains the observed decrease in ℎ𝑚𝑎

2  estimates as the number of cohorts in a GWAS meta-
analysis increases. We show the validity of our derivations using simulation and empirical 
data. Building on the work from de Vlaming et al.13, Dudbridge14 and Daetwyler et al.15, we 

derive theoretical conditions when out-of-sample prediction 𝑅2   can exceed ℎ𝑚𝑎
2 (it will only 

occur when the SNP based heritability of the target sample is greater than ℎ𝑚𝑎
2 ), and test 

our theory with major depression and educational attainment data sets (Figure 1). 
 
Our derivations require recognition of analytical approaches taken in practice and the 
assumptions of the underlying true model on which they depend, which contrast to an 
alternative model that likely operates when bringing together real data sets. An underlying 
assumption of standard GWAS meta-analyses is that each contributing GWAS cohort is a 
random sample from a homogenous idealised population, such that the “true” SNP effects 
and the “true” ℎ𝑆𝑁𝑃

2  of each cohort are the same, and that the “true” genetic correlations 
between cohorts are 1. Hence, the assumption is that differences in estimated ℎ𝑆𝑁𝑃

2  

between cohorts, and genetic correlations less than 1 simply reflect statistical sampling. 
However, with real data these assumptions may be violated. For example, genetic ancestry 
between cohorts can be different even when labelled as the same continent-based ancestry, 
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and/or there may be differences in experimental settings and/or measured phenotypes16. 
Notably, GWAS results derived from population-based databases may use ‘proxy’ 
phenotypes in place of formal clinical phenotypes. For example, genetic understanding of 
major depressive disorder has been facilitated by use of data sets that record major 
depression ‘proxy’ phenotypes (e.g. From different UK Biobank data fields, multiple major 
depression phenotypes have been derived and significant variabilities in ℎ𝑆𝑁𝑃

2  have been 
reported in these phenotypes, and genetic correlations are significantly less than 117).  
 
The expected value of the parameter ℎ𝑚𝑎

2  can be expressed as a function of cohort-specific 
SNP-based heritability (i.e., true ℎ𝑆𝑁𝑃

2  of the “population” from which the cohort is sampled) 
and between-cohorts genetic correlations (i.e., the true genetic correlations between the 
cohort populations) (Supplemental Note). Here “population” reflects genetic ancestry, 
phenotype definition and sampling frame of the phenotype: 

ℎ𝑚𝑎
2  = ∑ ∑ 𝑤𝑖

𝐶
𝑗=1 𝑤𝑗𝑟𝑔(𝑖,𝑗)ℎ𝑖ℎ𝑗

𝐶
𝑖=1   

Here, 

• 𝑤𝑖 is the meta-analysis weight applied to the i-th cohort  

• ℎ𝑖
2 is the true ℎ𝑆𝑁𝑃

2  of the i-th population from which the i-th cohort is sampled, ℎ𝑖  = 

√ℎ𝑖
2 . In practice, ℎ𝑖  is commonly replaced by ℎ̂𝑖, the ℎ𝑆𝑁𝑃

2  estimated in the i-th 

cohort 

• 𝑟𝑔(𝑖,𝑗) is the true genetic correlation between the i-th and j-th populations from 

which the i-th and j-th cohorts are sampled. Similarly, 𝑟𝑔(𝑖,𝑗) is commonly replaced by 

�̂�𝑔(𝑖,𝑗), genetic correlations estimated between i-th and j-the cohorts  

• C is the number of cohorts included in the meta-analysis 
 
Notably, for the purpose of our study we have defined ℎ𝑚𝑎

2  as parameter whose definition 
depends on the specific cohorts and their sample sizes that contributed to the GWAS meta-
analysis. 
 
In practice, the per cohort weights (𝑤𝑖) in equation (1) are derived from the fixed-effect 
inverse-variance meta-analysis (IVM) method which is commonly used in meta-analysis of 
GWAS from multiple cohorts. Under this model, the ℎ𝑚𝑎

2  can be written as: 

ℎ𝑚𝑎
2 =

1

𝑁𝑇
2 ∑ ∑ 𝑁𝑖

𝐶
𝑗=1 𝑁𝑗𝑟𝑔(𝑖,𝑗)ℎ𝑖ℎ𝑗

𝐶
𝑖=1   

where, 

• Ni is the effective sample size for the i-th cohort in the meta-analysis 

• NT is the total effective sample size  
 
The estimate of genetic correlation between the meta-analysis cohort (subscript ma) and 
the target cohort used in out-of-sample prediction (subscript t) is: 

𝑟𝑔(𝑚𝑎,𝑡) =
∑ 𝑤𝑖

𝐶
𝑖=1 𝑟𝑔(𝑖,𝑡)ℎ𝑖

√∑ ∑ 𝑤𝑖
𝐶
𝑗=1 𝑤𝑗𝑟𝑔(𝑖,𝑗)ℎ𝑖ℎ𝑗

𝐶
𝑖=1

    

Which under the fixed-effect IVM model is,  

𝑟𝑔(𝑚𝑎,𝑡) = ∑ 𝑁𝑖
𝐶
𝑖=1 𝑟𝑔(𝑖,𝑡)ℎ𝑖 /√∑ ∑ 𝑁𝑖

𝐶
𝑗=1 𝑁𝑗𝑟𝑔(𝑖,𝑗)ℎ𝑖ℎ𝑗

𝐶
𝑖=1   

 

(2) 

(3) 

(4) 

(1) 
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Building on these results, we extended work from de Vlaming et al.13, Dudbridge14 and 
Daetwyler et al.15, and derived theoretical conditions for when out-of-sample prediction R2  
can exceed the ℎ𝑆𝑁𝑃

2  estimated from the meta-analysed cohorts that provide the PGS 
weights (Supplemental Note) and found that this occurs when the product of the SNP-
based heritability of the left out sample (ℎ𝑡

2) with the squared genetic correlation of the left 

out sample and the meta-analysed sample (𝑟𝑔(𝑚𝑎,𝑡)
2 ) exceeds the sum of the estimated SNP-

based heritability of the meta-analysed sample used to generate the polygenic score 
(Equation 2) and a term associated with the error of the estimates in the meta-analysed 

sample (
𝑀𝑒

𝑁𝑇
), i.e., 

ℎ𝑡
2𝑟𝑔(𝑚𝑎,𝑡)

2  > ∑ ∑ 𝑤𝑖
𝐶
𝑗=1 𝑤𝑗𝑟𝑔(𝑖,𝑗)ℎ𝑖ℎ𝑗  + 𝑀𝑒 ∑

𝑤𝑖
2

𝑁𝑖

𝐶
𝑖=1   = ℎ𝑚𝑎

2 +  𝑀𝑒 ∑
𝑤𝑖

2

𝑁𝑖

𝐶
𝑖=1  𝐶

𝑖=1   

Note, this inequality also explains why in idealised settings (where ℎ𝑡
2 = ℎ𝑚𝑎

2   and 𝑟𝑔(𝑚𝑎,𝑡)= 

1), ℎ𝑚𝑎
2   should be the upper limit of out-of-sample prediction 𝑅2. In idealised settings, the 

inequality above will never hold (i.e., ℎ𝑚𝑎
2  is an upper limit of the out-of-sample coefficient 

of variation) because the term  ∑ 𝑤𝑖
2 𝑀𝑒

𝑁𝑖

𝐶
𝑖=1  is always greater than 0, but will approximate 0 

with decreasing standard errors (increasing large sample sizes). 
Under the fixed-effect inverse variance assumptions, the inequality can be expressed as: 

ℎ𝑡
2𝑟𝑔(𝑚𝑎,𝑡)

2   > 
1

𝑁𝑇
2 ∑ 𝑁𝑖𝑁𝑗𝑟𝑔𝑖,𝑔𝑗

ℎ𝑖ℎ𝑗𝑖,𝑗 + 
𝑀𝑒

𝑁𝑇
 

Where i and j are the i-th and j-th cohort in the meta-analysis, respectively. 𝑀𝑒   is the 
effective number of SNPs, which is defined as18: 

𝑀𝑒 =
𝑀𝑇

2

∑ ∑ 𝑟𝑗𝑘
2𝑀𝑇

𝑗=1
𝑀𝑇
𝑘=1

 

𝑀𝑇  is the total number of SNPs included in the GWAS study and 𝑟𝑗𝑘
2  is a standard 

measurement of the LD between the SNP j and SNP k in the study19. 𝑀𝑒 in European 
populations for common SNPs on a standard GWAS chip array is approximately 60,000 20.  
 

To illustrate how heterogeneities in 𝑟𝑔 and ℎ𝑖
2 will affect ℎ𝑚𝑎

2 , and to explain empirical 

observations, we use simulations (Supplemental Methods S1) to investigate the impact of 
varying 𝑟𝑔 and ℎ𝑆𝑁𝑃

2  on estimates of ℎ𝑚𝑎
2 . To reflect common practice, the meta-analysis 

weights are determined under the fixed-effect IVM model. In brief, we simulated ℎ𝑆𝑁𝑃
2  of 

100 cohorts and pairwise 𝑟𝑔  between these 100 cohorts. The underlying true ℎ𝑆𝑁𝑃
2

 is set to 

be either the same across cohorts (where differences in ℎ𝑖
2 estimates are purely attributed 

to sampling variation) or set to be different across cohorts (where differences in both the 

underlying true ℎ𝑖
2, and sampling variation contribute to variation in estimates ℎ𝑖

2). We 
simulated between-cohort 𝑟𝑔 under similar assumptions. We arbitrarily chose 0.2, 0.5 and 

0.8 as true underlying ℎ𝑆𝑁𝑃
2  and 𝑟𝑔. Cohort sample sizes were simulated under four different 

settings. For each combination of ℎ𝑆𝑁𝑃
2

, 𝑟𝑔  and sample sizes settings, the simulation was 

replicated 100 times. As shown in Figure 2 (sample sizes between 5,000 and 10,000) and 
Figures S1-S3 (other sample sizes), when 𝑟𝑔 and ℎ𝑆𝑁𝑃

2  vary, the ℎ𝑚𝑎
2  drops initially with an 

increasing number of cohorts being meta-analysed, but eventually reach a plateau. Note 
that in a single simulation, ℎ𝑚𝑎

2  can both increase and decrease with an increasing number 
of cohorts, but the average over simulations shows the clear trend to a decreased plateau 
value (Figure S4). The overall trends are consistent across different ℎ𝑆𝑁𝑃

2
, 𝑟𝑔 , and sample size 

(5) 

(6) 

(5) 



 5 

assumptions, and the main difference is the increased standard error with increased 
heterogeneity or decreased sample sizes.  
 
To show empirical validity of our derivations, we obtained GWAS summary statistics of 21 
cohorts for major depression21 (Table S1; Supplemental Method S2.1). The ℎ𝑆𝑁𝑃

2  estimates 
of these cohorts, along with genetic correlations between them, were estimated using 
LDSC6, following standard practice of the Psychiatric Genomics Consortium (PGC). We 
randomly ordered the 21 selected cohorts, and meta-analysed (using IVM and the software 
METAL22) adding one cohort at a time. With the 21 resulting meta-analysis summary 
statistics we estimated their ℎ𝑚𝑎

2  using LDSC 6 (Supplemental Method S2.2) and show good 
agreement with estimates of ℎ𝑚𝑎

2  from equation (2) (Figure 3; Supplemental Method S2.3)  
Notably, in some meta-analyses addition of a cohort generates an increase in the magnitude 
of ℎ𝑚𝑎

2 , both estimated from the data and predicted from equation (2). However, the clear 
trend is a decrease in the estimated ℎ𝑚𝑎

2  as more cohorts are added, a reflection of the 
estimated genetic correlations being less than 1.  To demonstrate consistent estimates of 
𝑟𝑔(𝑚𝑎,𝑡) estimated directly and from equation (4) we held out the last cohort being meta-

analysed, estimated genetic correlations between the meta-analysed sample and target 
samples with the LDSC6 (20 resulting 𝑟𝑔(𝑚𝑎,𝑡) estimates) (Figure 3). We repeated these 

analyses with different orders of the cohorts and show our derivations are valid regardless 
of this (Figure 3).  
 
To show that out-of-sample prediction 𝑅2 can be higher than the estimated ℎ𝑚𝑎

2  under the 
conditions outlined by the inequality in equation (6) above, we chose a binary trait (major 
depression, MD23) and a continuous trait (educational attainment, EA10) where cohort-
specific SNP-based heritabilities and between-cohort genetic correlations were available, as 
proof-of-principle examples. 
 
For MD (Supplemental method S3.1), we obtained access to results of leave-one-cohort out 
(LOO) analysis 21,24. In brief, for the 26 cohorts with individual-level genotype data, one 
cohort at a time was left out and the remaining cohorts meta-analysed, together with 9 
additional cohorts whose GWAS summary statistics (but not individual-level data) were 
available. PGS were calculated for all individuals in the left-out sample with SNP weights 
derived from the LOO meta-analysis summary statistics using the SBayesR method with 
default settings25. The ℎ𝑡

2 of the left-out sample, ℎ𝑚𝑎
2  of the LOO meta-analysis, and the 

𝑟𝑔(𝑚𝑎,𝑡)
2  between the left-out sample and the remaining cohorts were estimated using LDSC 

and HapMap3 SNPs.  For the left-out cohort, we only retained those ℎ𝑆𝑁𝑃
2  estimates that are 

greater than 0 and smaller than 1 (Figure 4) or retained all cohorts whose ℎ𝑆𝑁𝑃
2  are available 

(Figure S5). Results show that the derived inequality (equation 6) is consistent with 
empirical results. 
 
For EA, we obtained cohort-specific SNP-based heritability estimates and between cohort 
genetic correlations for all pairs of cohorts from the supplemental file of Lee et al. study10. 
We removed cohorts with heritability estimates smaller than 0 or larger than 1, or not 
available (Supplemental method S3.2). 35 out of 71 cohorts met the criteria. We conducted 
analyses as for MD, but LOO PGS results were only available for 2 cohorts. The empirical 
results again agree with our derived expectation (Figure S6).  
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In conclusion, in this report, we demonstrate that the ℎ𝑚𝑎
2  can be expressed in terms of per-

cohort ℎ𝑆𝑁𝑃
2 , between-cohort genetic correlations, and meta-analysis weights (which are a 

function of the sample sizes under the commonly used fixed effect IVM model). Under 
idealised conditions where between-cohorts genetic correlations are all equal to 1, and all 

cohorts have a common SNP-based heritability, the out-of-sample prediction 𝑅2 will always 
be smaller than SNP-based heritability (smaller because of error associated with estimates 

of SNP effect sizes). The difference between ℎ𝑆𝑁𝑃
2  and 𝑅2  will tend to be 0 with an infinitely 

large sample size. However, when ℎ𝑆𝑁𝑃
2

 and 𝑟𝑔 heterogeneities exist, ℎ𝑆𝑁𝑃
2

 estimates made 

from GWAS meta-analysis results will decrease as the numbers of meta-analysed cohorts 

increases (equation 2) until reaching a plateau, and the out-of-sample prediction 𝑅2 can be 
greater than SNP-based heritability (equation 6). Notably, a key assumption of the fixed-
effect meta-analysis is that true underlying effect sizes of SNPs are the same for each 
cohort, and the experimental settings and measured phenotype are the same16. These 
assumptions do not always hold, especially when population-based databases are used 
where phenotypes may be ‘proxy’ phenotypes. With the knowledge of how between cohort 
heterogeneity can impact SNP-based heritability estimates it may be relevant to select 
cohorts that represent the focal trait (e.g., clinically measured major depressive disorder for 
MD, or years of education (as opposed to the proxy trait of attended college yes/no) for EA), 
and treat other cohorts as genetically correlated traits (i.e., an MTAG analysis)26. 

 
The Figure Legends 
 
Figure 1. A schematic illustration of the report in a simplified scenario. In this made-up scenario, there are two large 
GWAS cohorts, each with a sample size of 500,000 and SNP-based heritability of 0.1. After meta-analysis, the results are used 
to generate genetic predictors in an independent cohort, the “target” cohort. (1) The ℎ𝑚𝑎

2  can be expressed as a function of per-

cohort ℎ𝑆𝑁𝑃
2 , the between-cohorts genetic correlations, and meta-analysis weights (equation 2) or directly estimated from the 

meta-analysis summary statistics (these two estimates should be consistent).  (2) Similarly, the genetic correlation between the 
meta-analysed cohort and the target sample (𝑟𝑔(𝑚𝑎,𝑡) ) can be calculated from equation 4 (which should be consistent with that 

estimated from summary statistics of the “target” and the meta-analysis cohort using LD Score Regression). (3) From equation 

6, ℎ𝑡
2𝑟𝑔(𝑚𝑎,𝑡)

2 > ℎ𝑚𝑎
2 +

𝑀𝑒

𝑁𝑇
. the out-of-sample prediction 𝑅2 (0.11) is greater than the SNP-based heritability in the meta-analysis 

cohort (0.085) that is used to generate genetic predictors. 

 
Figure 2. Estimates of 𝒉𝒎𝒂

𝟐  as the number of cohorts being meta-analysed increases under different 𝒓𝒈 and 𝒉𝑺𝑵𝑷
𝟐  

simulation settings. X-axes are the number of cohorts being meta-analysed, and y-axes are the estimates of ℎ𝑚𝑎
2 . Each 

cohort being meta-analysed is simulated to have a sample size between 5,000 and 10,000, and the cohort with the largest 
effective sample size was meta-analysed first. (A) True 𝑟𝑔 and ℎ𝑆𝑁𝑃

2  are the same in all cohorts so variation between simulation 

replicates represents sampling variation. (B) True 𝑟𝑔 are the same but ℎ𝑆𝑁𝑃
2  are different between cohorts (C) True ℎ𝑆𝑁𝑃

2  are the 

same but 𝑟𝑔 are different between cohorts. (D) True 𝑟𝑔 and ℎ𝑆𝑁𝑃
2  are all different in each cohort. Each scenario (depicted by 

colour) has been repeated 100 times and so the graph shows the variation across replicates. Figures S1-S3 show similar 
simulation results but for different sample sizes. 

 
Figure 3. Comparison of 𝒉𝒎𝒂

𝟐  and 𝒓𝒈(𝒎𝒂,𝒕) estimated by the derived equations with those directly estimated from the 

meta-analysis summary statistics. Left column: 21 major depression cohorts were meta-analysed, adding one cohort at a 
time, in different orders. The first meta-analysis results are simply the GWAS summary statistics of the first cohort. Right 
column: We held out the last cohort being meta-analysed and calculated genetic correlations between the left-out cohort and 
each of 20 remaining meta-analyses. X-axes are the number of cohorts included in the meta-analysis. In general, ℎ𝑚𝑎

2  (first 
column) and the 𝑟𝑔(𝑚𝑎,𝑡) (second column) estimated with the formulae are consistent with those directly estimated from the 

meta-analysis summary statistics. Notably, when the sample size of the left-out cohort is small,  𝑟𝑔(𝑚𝑎,𝑡)  estimated with two 

methods could have some insignificant differences because of large standard errors.    
 
Figure 4. Empirical investigation of equation 6 for major depression data sets. In this figure, the x-axis is the product of ℎ𝑡

2 

(estimates of SNP-based heritability on the liability scale of target cohorts being predicted into) and 𝑟𝑔(𝑚𝑎,𝑡)
2 (squared genetic 

correlations between the leave-one-cohort out meta-analysis used to generate the PGS, and the left-out target cohort where 
PGS are calculated); the y-axis is the out-of-sample prediction 𝑅2 on the liability scale calculated in the target cohort. Each dot 
represents a target cohort (only cohorts where estimated ℎ𝑡

2 is between 0 and 1 are considered, sizes of dots are in proportion 
to the effective sample size). The horizontal line denotes ℎ𝑚𝑎

2  (red dotted line) and its 95% C.I. (blue dotted line). (Although we 

left a different cohort out each time, the ℎ𝑚𝑎
2  and 95% CI remain unchanged because the sample size of the left-out cohort is 
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small when compared with the total sample size of the meta-analysis.) Our derivations show that when the ℎ𝑆𝑁𝑃
2  in the cohort 

being predicted into is higher than the predicted threshold (vertical black line), out-of-sample prediction 𝑅2 will exceed the ℎ𝑚𝑎
2  

in the meta-analysis used to generate the predictor. Small cohorts have estimates (depicted by small dots) with large standard 
errors (see Table S2). 
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