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Abstract

This paper describes a path integral formulation of the free energy principle. The ensuing account expresses the paths or trajec-
tories that a particle takes as it evolves over time. The main results are a method or principle of least action that can be used to 
emulate the behaviour of particles in open exchange with their external milieu. Particles are defined by a particular partition, in 
which internal states are individuated from external states by active and sensory blanket states. The variational principle at hand 
allows one to interpret internal dynamics—of certain kinds of particles—as inferring external states that are hidden behind blanket 
states. We consider different kinds of particles, and to what extent they can be imbued with an elementary form of inference or 
sentience. Specifically, we consider the distinction between dissipative and conservative particles, inert and active particles and, 
finally, ordinary and strange particles. Strange particles can be described as inferring their own actions, endowing them with ap-
parent autonomy or agency. In short—of the kinds of particles afforded by a particular partition—strange kinds may be apt for 
describing sentient behaviour.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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1. Introduction

The free energy principle (FEP) describes a simple relationship between the dynamics of a random dynamical 
system and a description of its behaviour as engaging in inference. The FEP originated in neuroscience as an attempt 
to describe brain function and behaviour [49] and has since been extended to describe several kinds of things in the 
biological and physical realms [43,48] through a special kind of mechanics—a Bayesian mechanics—that shares the 
same foundations with quantum, statistical, and classical mechanics [44,45]. This paper is part of a series of technical 
papers describing the FEP in progressively simpler and more qualified terms [43–45].

1.1. A path integral formulation

This paper focuses on a path integral formulation of the FEP. The path integral formulation rests upon encoding the 
dynamics of random dynamical systems by a Lagrangian [64,138]. The Lagrangian plays the role of self-information
or surprisal, scoring the implausibility of a path through state-space. In other words, we will be dealing with probabil-
ity densities over paths or trajectories, as opposed to densities over states, which have concerned much of the recent 
literature on the FEP [126].

The move from a state-based to a path-based formulation reflects a shift in didactic accounts of the FEP to its 
operational foundations, expressed in terms of probability densities over paths [41,42,126]. Much of the recent work 
on the FEP has been concerned with formulating the dynamics of a system in terms of probability densities over 
states; that is, expressing the probability that certain states or events will occur. Here, we will be concerned with the 
probability that a system will take a certain trajectory through state space.

The simplifications afforded by the path integral formulation rest on working with densities over paths (as op-
posed to states). In particular, contrariwise to state-based formulations of the FEP, we make no assumptions about the 
existence and functional form of a nonequilibrium steady state [45,48].

1.2. Generalised coordinates of motion

Technically, we will work in generalised coordinates of motion [7,32,119]: we augment the traditional state-space 
of a system with additional degrees of freedom that represent the n-order time derivatives of the motion of states. 
That is, the position, velocity, acceleration, etc., of a particle are represented explicitly as distinct (generalised) states. 
This simplifies the derivations by replacing a time-series of states (i.e., a path) with a series of time derivatives (i.e., a 
generalised state). In this setting, the Lagrangian plays the role of an action, where paths of least action minimise the 
Lagrangian of generalised states. Normally, the action and Lagrangian are treated differently, since the Lagrangian 
is a function of generalised states, and the action is a function of paths, usually defined as the path integral of the 
Lagrangian [138]. These notions coincide in generalised coordinates of motion, as paths are equivalent to a point in 
generalised coordinates of motion (i.e., a generalised state).

1.3. Particles and particular partitions

The FEP is concerned with self-organisation, which calls for an individuation of ‘self’ from nonself. We consider 
a particular partition of (generalised) states necessary to separate the internal states of something (i.e., a particle) from 
its external states. This partition is defined in terms of sparse coupling among external, sensory, active and internal 
states. The implications of this particular partition are then unpacked in terms of a variational free energy lemma, 
which says that the most likely autonomous (i.e., active and internal) paths minimise a free energy functional of 
Bayesian beliefs about external paths. Crucially, particles with conservative dynamics always pursue paths of least 
action and therefore minimise variational free energy. The ensuing principle or method of least action is considered 
in the light of a Bayesian mechanics for describing active particles that possess active states. The autonomous paths 
of these kinds of particles have a Lagrangian, known as expected free energy, which can be decomposed into terms 
corresponding to expected cost and expected information gain. In this setting, cost is the Lagrangian or surprisal of 
sensory paths, which defines the characteristic trajectories of a particle. This means that conservative particles comply 
with the dual optimality principles of Bayesian decision theory [16,158] and Bayesian optimal design [98,104]. An 
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alternative reading of sensory surprisal is in terms of Bayesian model evidence (a.k.a., marginal likelihood) leading to 
a description of self-organisation as self-evidencing [72].

1.4. Particular kinds

The ensuing formulation leads naturally to a typology of kinds of particles, or ‘particular kinds’. We first consider 
the distinction between active and inert particles, which do and do not have active states, respectively. We then consider 
a distinction between dissipative and conservative particles, which are and are not subject to random fluctuations, 
respectively. Finally, we turn to a distinction between ordinary and strange particles, whose active states do, and do 
not, influence internal states, respectively. This distinction means that the Bayesian beliefs held by strange particles 
cover (the consequences of) their action. In other words, the active states of strange particles are hidden from internal 
states and become the latent causes of sensory states that are inferred. This leads to a certain kind of (strange) particle 
that (looks as if it) believes that it is a conservative particle. In consequence, it actively minimises expected free 
energy via information and preference-seeking behaviour [13,147]. This sentient behaviour or active inference can 
be expressed as minimising a generalised free energy functional, which could be regarded as a universal objective 
function in the design or modelling of agents [116]. This sort of enactive inference [125] can be read as generalising 
planning as inference [6,21,91].

2. The free energy principle

The FEP is a simple account of self-organisation that shares the same foundations with quantum, statistical, and 
classical mechanics, and leads to a special kind of mechanics—a Bayesian mechanics—that we can use to describe 
the dynamics of certain ‘things’ as engaging in inference [36,44,126]. The FEP is derived by paying careful attention 
to the way ‘things’ are defined and, thereby, the way in which they are both individuated from—and coupled to—
everything else. Before laying down a path integral formulation of the FEP, we summarise the steps in narrative form:

• The FEP addresses the following question: if something exists, in the sense of possessing characteristic states or 
dynamics, what properties must it possess? To answer this question, it is necessary to define a thing or particle.

• A particle is constituted by internal and blanket states. The blanket states constitute the boundary between the 
states internal and external to the particle. Mathematically, this means that internal paths are conditionally inde-
pendent of external paths, given blanket paths.

• This conditional independence means that, for every blanket path, there exists a most likely internal path and a 
(posterior) probability density over external paths.

• The ensuing synchronisation map from the most likely internal path to the conditional density over external paths 
can be read as inference, in the sense that the most likely internal path encodes a Bayesian belief about external 
paths.

• This Bayesian interpretation can be made explicit by associating the Lagrangian with a variational free energy; 
namely, a free energy functional of Bayesian beliefs about external states, given blanket states.

• The internal paths of sufficiently large (i.e., conservative) particles are always the most likely paths; namely, paths 
of least action, where action is the path integral of a Lagrangian (a.k.a., self-information or surprisal) in the usual 
way.

• The Lagrangian of the active paths (i.e., blanket paths that can be influenced by internal paths) of conservative 
particles reduces to variational free energy. This means the autonomous (i.e., active and internal) states of such 
particles will appear to pursue paths of least action that minimise variational free energy.

• In this case, the Lagrangian of autonomous paths can be decomposed into the expected Lagrangian (i.e. implau-
sibility or cost) of sensory paths minus expected information gain; namely, the reduction of uncertainty about 
external paths.

• This has the interesting interpretation that autonomous paths will appear to minimise expected cost—where cost 
is read as the Lagrangian of sensory paths that characterises the particle in question—while maximising expected 
information gain. This is consistent with the principles of Bayesian decision theory—e.g., expected utility theory 
[157]—and optimal Bayesian design [98], respectively.
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• The combination of expected information gain and expected cost has the functional form of an expected free 
energy.

• Finally, we turn to strange particles: conservative particles whose active paths only influence internal paths vicar-
iously, via sensory paths. Strange particles can be read as inferring their own actions—in addition to the external 
world—endowing them with apparent autonomy or agency.

In summary, starting with a definition of what it is to be a thing—in terms of Markov blankets—one ends up with 
a Bayesian mechanics of (certain kinds of) things. Internal paths look as if they are inferring external paths—through 
minimising a variational free energy. Active paths look as if they comply with the principles of optimal Bayesian 
design [98] and decision theory [16]—through maximising expected information gain and minimising expected cost, 
respectively. Among the particular kinds delineated here, strange things may be apt for describing the sentient be-
haviour of agents.

The resulting FEP can be read as a variational principle of least action, a gauge theory [45,131,139], the dual to 
Jaynes’ maximum entropy or principle of maximum calibre [129,130] or—in its quantum-theoretic formulation—
asymptotically equivalent to the Principle of Unitarity [36].

On this view, the FEP is a first principles account or method that can be applied to any ‘thing’ or ‘particle’ in a way 
that dissolves the bright lines between physics, biology and psychology (Chris Fields, personal communication). Such 
applications endorse many normative accounts of sentient behaviour and self-organisation. These range from cyber-
netics to synergetics [1,5,67,84]; from reinforcement learning to artificial curiosity [13,133,148,153]; from predictive 
processing to universal computation [28,72,73]; from model predictive control to empowerment [66,88], and so on. 
We now unpack the narrative arguments above, using standard results from statistical physics and information theory.

3. The path integral formulation

“We do not find obvious evidence of life or mind in so-called inert matter; but if the scientific point of view is 
correct, we shall ultimately find them, at least in rudimentary form, all through the universe.”

[68]

We begin by describing the setup. We assume that the states of the system—which we will later decompose into a 
particle and its external milieu—evolve as a random dynamical system in a d-dimensional Euclidean space that can 
be described with a Langevin equation,

ẋ(τ ) = f (x) + ω(τ): 0 ≤ τ ≤ T . (1)

This equation describes the rate of change of states x(τ), in terms of their flow f (x) (i.e., a vector field), and some 
random fluctuations ω(τ) with smooth (analytic) sample paths. This setup speaks nicely to the fact that, in biology, 
fluctuations are often smooth up to a certain order [156] as they are generated by other random dynamical systems 
[44]. We assume that the fluctuations are state-independent, and a stationary Gaussian process,1 which can be read 
as a consequence of the central limit theorem; i.e., fluctuations should be normally distributed at each point in time. 
We make no assumptions about the solutions of this equation, other than the flow operator does not change over some 
relevant time interval. This furnishes an adiabatic approximation [19] to systems in which the parameters of the flow 
change slowly. Accordingly, we will be concerned with the dynamics over a suitably small period of time and consider 
the implicit separation of timescales elsewhere (e.g., the separation of fast inference about states and the slow learning 
of parameters).

1 In statistical physics, this type of noise is generally referred to as ‘coloured noise’, the prototypical example of which is the smoothing of white 
noise fluctuations with a Gaussian kernel.
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Equation (1) can be expressed in generalised coordinates of motion, �x = (x, x′, x′′, . . .), where, to first-order2:

ẋ = x′ = f (x) + ω

ẋ′ = x′′ = ∇f · x′ + ω′
ẋ′′ = x′′′ = ∇f · x′′ + ω′′

...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⇔ �̇x = f(�x) + �ω
p( �ω) = N ( �ω;0,2�)

D =

⎡
⎢⎢⎢⎢⎣

0 1
0 1

0
. . .

. . .

⎤
⎥⎥⎥⎥⎦ , ∇f(�x) = J =

⎡
⎢⎢⎢⎣

∇f

∇f

∇f

. . .

⎤
⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎣

�0 −�′′
0

�′′
0 −�

(4)
0

−�′′
0 �

(4)
0

−�
(4)
0

. . .

⎤
⎥⎥⎥⎦

(2)

∇f is the Jacobian matrix of the flow, D is a (derivative) operator that sends each generalised state to the next, f is 
the flow of the system in generalised coordinates of motion, and J is the Jacobian matrix of the flow in generalised 
coordinates. In generalised coordinates of motion, the state, velocity, acceleration, etc are treated as separate (gener-
alised) states, whose flow is supplemented with state-independent smooth fluctuations [32,53,85,119]. In summary, 
we go beyond white noise assumptions about fluctuations3 and express analytic or smooth fluctuations ω(τ) with 
autocovariance �τ = �(τ) = E[ω(τ)ω(0)]/2.4

Generalised coordinates of motion can be read as the coefficients of a Taylor series of the trajectory or path, from 
any point in time, τ :

x(t) = x(τ) + x′(τ )(t − τ) + x′′(τ )

2! (t − τ)2 + . . . (3)

This means that generalised states correspond to paths. The path integral formulation [64,138] considers the proba-
bility of a path in terms of its action (i.e., negative log probability), which we can associate with the Lagrangian (i.e., 
negative log probability) of generalised states.5 From the expansion in generalised coordinates in (2), we have that the 
surprisal of the generalised states is as follows6:

L(�x)
�= − lnp(�x) = 1

2
[ln |�| + �ω · 1

2�
�ω]

�ω = �̇x − f(�x)

(4)

This Lagrangian scores the degree to which fluctuations cause the path to deviate from the path of least action. The 
path of least action—i.e., the most likely path—is simply the flow in the absence of deviations, when the random 

2 Going from (1) to (2) corresponds to solving the stochastic realisation problem [109,32]. In this instance, (2) is obtained by recursively 
differentiating (1) and ignoring the contribution of the derivatives of the flow of order higher than one; see [7] for details. In other words, the 
expansion is exact when the flow is linear, and it is accurate on a short timescale when the flow is non-linear.

3 White noise fluctuations have trivial temporal autocovariance structure, i.e., E [ω (τ + ε)ω (τ)] = 0 if ε �= 0.
4 The covariance of the fluctuations on the n-th order motion then becomes the n-th order temporal derivative of the autocovariance function 

describing their temporal correlation; please see Appendix A.5.3 in [117] for details.
5 In the case of white noise fluctuations, the action is the integral of the Lagrangian over paths, where the usual (Stratonovich) form reads [138]:

L(x) = 1

2
[ln |�0| + ω · 1

2�
ω + ∇ · f ]: ω = x′ − f (x)

A(x̃) = − lnp(x̃) =
T∫

0

dtL(x): x̃ = [x(t)] : 0 ≤ t ≤ T

In generalised coordinates of motion, action can be defined as the Lagrangian A(x̃) = L(�x), via the one-to-one correspondence between paths and 
generalised states through (3).

6 Where does the term 1
2 ln |�| come from? This term is simply the constant of proportionality that makes the Lagrangian a log probability. This 

term is suppressed in [138], where it is assumed to be constant. The Lagrangian is quadratic in the fluctuations, which follows from the fact that 
the probability density over fluctuations is Gaussian—and the normalising constant of a Gaussian density involves the (log) determinant of its 
covariance.
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fluctuations take their most likely value of zero. Paths of least action can be interpreted as the preferred trajectories 
that characterise a system. We will denote these paths—and their generalised states—by boldface, where, from (4):

�̇x = D�x = f(�x) ⇔ �ω = 0 ⇔ �x = arg min
�x

L(�x) ⇔ ∇�xL(�x) = 0 (5)

That is, the flow operator D produces the most likely flow when the amplitude of random fluctuations goes to zero, 
which is precisely the path �x that minimises the Lagrangian.7

Generalised states afford a convenient way of expressing the path of least action as the solution to the following 
equations [60], which reduce to (5) when evaluated at the path of least action:

∇�xL(�x) + ( �̇x − D�x) = 0 ⇔ �̇x − D�x = −∇�xL(�x) ⇔ �̇x(τ) = D�x − ∇�xL(�x). (6)

The first equality resembles a Lagrange equation of the first kind that ensures the generalised motion of states is the 
state of generalised motion. Alternatively, it can be read as a gradient descent on the Lagrangian, in a moving frame 
of reference. When the Lagrangian is convex, any solution to this generalised gradient descent on the Lagrangian 
converges to the path of least action. Equation (6) will be useful later, when recovering paths of least action, in the 
spirit of generalised Bayesian filters [60].

The uncertainty over paths derives from random fluctuations, which can be expressed in terms of the expected 
Lagrangian (i.e., differential entropy): from (2) and (4)8:

E[L(�x)] = 1

2
ln |�| + 1

2
E[ �ω · 1

2�
�ω]

= 1

2
ln |e�| �= S(�)

�= S
(7)

When the amplitude of random fluctuations tends to zero, there is no uncertainty, and the path is always the path 
of least action. This corresponds to conservative—but potentially chaotic—dynamics. The differential entropy above 
can be expressed in terms of continuous entropy, using the limiting density of N discrete points [eq. 12.7 in [78]] in 
relation to a (constant) invariant measure m(�x) ≡ m : ∀�x:

H[p(�x)] = lnN − DKL[p(�x)||m(�x)]
= E[L(�x)] + lnNm = S − S0

lim
�→0

E[L(�x)] = − lnNm = S(0)
�= S0

⇔ H[p(�x)] = 0

⇔ p(�x) = δ(�x − �x) ⇔ �ω = 0

(8)

These expressions say that paths of least action (and their associated generalised states) are confined to sets of van-
ishing Lebesgue measure, where the expected Lagrangian approaches a lower bound: S0 ≤ E[L(�x)]. This inequality 
follows since the limiting density of discrete points is always non-negative, as it is a limit of a discrete entropy—the 
fact that it vanishes for paths of least action means that the corresponding generalised states occupy a set of measure 
zero under the invariant measure [Section 12.3 in [78]]. We will apply these results later to subsets of sparsely coupled 
states. For example, given a subset π ⊂ x with parents pa[π] ⊂ x, we have:

7 The gradient of the Lagrangian vanishes at the global minimum given by the path of least action.
8 Noting that the expected value of the square of fluctuations (i.e., the covariance) is 2�, the term 1

2�E[ �ω · �ω] (where we have pulled the constant 
1

2� out) evaluates to one, or ln |e|. We can then combine logarithms in the usual way to obtain (7).
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Fig. 1. Markov blankets. This influence diagram illustrates a particular partition of states into internal states (blue) and external states (teal) that 
are separated by a Markov blanket comprising sensory (green) and active states (red). The diagram shows this partition as it would be applied to 
a single-cell organism, where internal states are associated with intracellular states, the sensory states become the surface states or cell membrane 
overlying active states: e.g., the actin filaments of the cytoskeleton. Particular states constitute a particle; namely, autonomous and sensory states—
or blanket and internal states. The particular aspect of this coupling is that external states can only influence themselves and sensory states, while 
internal states can only influence themselves and active states.

Ep(�π |pa[ �π ])
[
L(�π |pa[ �π])] = 1

2
ln |�π | + 1

2
E[ �ωπ · 1

2�π

�ωπ ]

= 1

2
ln |e�π | �= Sπ ≥ S0 ⇒

E
[
L(�π |pa[ �π])] = Ep(pa[�α]) [Sπ ] ≥ S0

�ωπ = Dπ − fπ (�π,pa[ �π])
L(�π |pa[ �π]) �= − lnp(�π |pa[ �π])

lim
�π→0

E
[
L(�π |pa[ �π])] = S0 ⇔H[p(�π |pa[ �π ])] = 0

(9)

Here, the second line is obtained as in (7). The last line expresses the fact that, in the absence of random fluctuations 
on a subset of states π ⊂ x, their motion (and associated generalised state) is completely determined by the parents 
pa[π] ⊂ x, at which point the conditional distribution is a Dirac delta with a continuous entropy of zero, and a 
differential entropy that approaches its lower bound. In other words, in absence of fluctuations on their motion, a 
subset of states follow paths of least action. This concludes our setup. We now turn to a particular partition of states 
that defines ‘things’ and consider how different kinds of things behave.

4. A particular partition and variational free energy

“How can the events in space and time which take place within the spatial boundary of a living organism be 
accounted for by physics and chemistry?.”

[135]

The free energy principle applies to a particular partition of states that distinguishes between the states of a particle 
or ‘thing’ (s, a, μ) ⊂ x and its external states η ⊂ x, based on their sparse coupling (see Fig. 1)9:

9 A ‘particular partition’ here is not meant in the sense of a partition function in statistical physics, rather as an individuation between the states 
of a particle and the states external to it. However, it is interesting to note that the free energy functional—we will arrive at by partitioning external 
from particular states—is itself effectively a (log) partition function in the statistical physics sense.
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⎡
⎢⎢⎣

η̇(τ )

ṡ(τ )

ȧ(τ )

μ̇(τ )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

fη(η, s, a)

fs(η, s, a)

fa(s, a,μ)

fμ(s, a,μ)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

ωη(τ)

ωs(τ )

ωa(τ )

ωμ(τ)

⎤
⎥⎥⎦ , (10)

where fluctuations ωi, i ∈ (η, s, a, μ) are assumed to be mutually independent. The particular states are partitioned 
into sensory, active and internal states with particular flow dependencies; namely, external states can only influence 
themselves and sensory states, while internal states can only influence themselves and active states. From (4), these 
coupling constraints mean that external and internal paths are independent, when conditioned on blanket paths.10

∂2f

∂η∂μ
= 0 ⇒ ∂2L

∂ �η∂ �μ = 0 ⇔ L(�η, �μ|�s, �a) = L(�η|�s, �a) +L( �μ|�s, �a) ⇔ (�η⊥�μ)|�s, �a. (11)

This is because there are no flows that depend on both internal and external states (and fluctuations are independent).
The conditional independence above distinguishes the dynamics of a particular ‘thing’ from every ‘thing’ else. In 

other words, the statistical separation of internal dynamics from external dynamics rests on the existence of a ‘bound-
ary’ supplied by a Markov blanket [121]. Why start here? Because the only thing we have at hand is a probabilistic 
description of the system (in terms of trajectories which correspond to generalised states), and the only way to sep-
arate the states of something from its boundary states is in terms of probabilistic independencies—in this instance, 
conditional independencies.11 This separation means the internal paths of least action do not depend upon external 
paths, given blanket paths. From (6)12:

�̇μ(τ ) = D�μ − ∇�μL(�μ, �s, �a, �η) = D�μ − ∇�μL(�μ|�s, �a, �η)

= D�μ − ∇�μL(�μ|�s, �a) = D�μ − ∇�μL(�s, �a, �μ)
(12)

Because internal paths depend only on blanket paths there is a deterministic mapping from every blanket path to the 
corresponding internal path of least action. If this map is injective, this implies a map between the internal path of 
least action and the conditional density over external paths, given blanket paths.13 This injection can be expressed as 
a variational density:

10 It is instructive to write out the curvature of the Lagrangian in terms of coupling among subsets of states: with a slight abuse of notation:

∂2L
∂ �xi∂ �xj

= ∂2

∂ �xi∂ �xj

∑
k

�ωk · 1

2�k
�ωk

= −D · 1

2�i

∂fi
∂ �xj︸ ︷︷ ︸

Parents

− ∂fj
∂ �xi

· 1

2�j
D

︸ ︷︷ ︸
Children

+
∑
k

∂fk
∂ �xi

· 1

2�k

∂fk
∂ �xj

−
∑
k

∂2fk
∂ �xi∂ �xj

· 1

2�k
�ωk

︸ ︷︷ ︸
Parents of children

Under the assumption that ∇fk �= 0 : ∀k, we have

∂2f
∂ �xi∂ �xj

= 0 ⇒ ∂2fk
∂ �xi∂ �xj

= ∂fk
∂ �xi

· 1

2�k

∂fk
∂ �xj

= ∂fi
∂ �xj

= ∂fj
∂ �xi

= 0 ⇒ ∂2L
∂ �xi∂ �xj

= 0

This allows us to recover the Markov blanket of the i-th subset of states, in terms of its parents, children and parents of children; namely, contribu-
tions to the curvature that are not zero and thereby preclude conditional independence. Heuristically, I cannot be conditionally independent of my 
parents, my children or the parents of my children and these constitute my Markov blanket.
11 Noting that if two subsets of trajectories were independent, as opposed to being conditionally independent, we would be describing two separate 
systems.
12 Equation (12) is tautologically equivalent to �̇μ(τ ) = D�μ. This implicit augmentation is important as it will enable to relate these dynamics to 
generalised Bayesian filters.
13 In the case of linear flows in (1), the flow of generalised states in (2) is also linear, which means that the Lagrangian is quadratic, e.g., see 
Section 6 in [45]. In this case, the condition under which a variational density can be defined that satisfies (13) is the object of Lemma 2.1 in [32]. 
In the case of nonlinear flows—since the space of continuous paths is an infinite-dimensional Banach space—we know that many maps between 
two such spaces are injective. This motivates why, for each system that could be modelled, out of all the maps one could obtain, many of them will 
afford (13).
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q�μ(�η)
�= p(�η|�s, �a)

�μ �= arg min
�μ

L( �μ|�s, �a) ⇔ ∇�μL(�μ|�s, �a) = 0
(13)

Equation (13) can be interpreted as saying that the internal path of least action, for any given blanket path, encodes 
beliefs about external paths. This licences the following definition:

Definition 1. A particle is defined by a particular partition with a nonempty set of internal states, whose paths of 
least action parameterise a conditional density over external paths. In other words, a particular partition (10) defines a 
particle when (13) holds.

Although based upon the same assumptions, the free energy principle can be seen as complementing quantum, 
statistical and classical mechanics with a Bayesian mechanics, by paying careful attention to the separation of external 
and internal dynamics [44]. This separation is via the conditional independence in (12). By construction, this endows 
particles with an autonomy in the sense that active and internal (i.e., autonomous) paths, �α = (�a, �μ) ⊂ �x do not depend 
on external paths, given sensory paths. The free energy principle concerns the nature of this autonomous dynamics.

Lemma (Variational free energy). Consider a variational density over external paths parameterised by internal paths 
q �μ(�η), where the path of least action encodes the posterior density over external paths: q�μ(�η) = p(�η|�s, �a). Then 
internal paths of least action of particles minimise a free energy functional of Bayesian beliefs14 about external paths:

�μ = arg min
�μ

L( �μ|�s, �a) ⇔ ∇�μL(�s, �a, �μ) = 0 ⇔
�μ = arg min

�μ
F(�s, �a, �μ) ⇔ ∇�μF(�s, �a, �μ) = 0 ⇒

�̇μ = D�μ − ∇�μF(�s, �a, �μ)

F (�s, �α) = Eq(�η)[L(�η, �s, �α) + lnq(�η)]︸ ︷︷ ︸
Variational free energy

= Eq [L(�s, �α|�η) +L(�η)]︸ ︷︷ ︸
Energy constraint

−Eq [− lnq(�η)]︸ ︷︷ ︸
Entropy

= DKL[q(�η)|p(�η)]︸ ︷︷ ︸
Complexity

+Eq [L(�s, �α|�η)]︸ ︷︷ ︸
(−) Accuracy

= DKL[q(�η)||p(�η|�s, �a)]︸ ︷︷ ︸
Divergence

+ L(�s, �α)︸ ︷︷ ︸
(−) Log evidence

≥ L(�s, �α)

(14)

This variational free energy can be rearranged in several ways. First, it can be expressed as an energy constraint 
minus an entropy, which licences the name free energy [35]. In this decomposition, minimising variational free energy 
corresponds to the maximum entropy principle, under the constraint that the energy is minimised [77,92,130]. The 
energy constraint is a functional of the marginal density over external and particular paths, which plays the role of 
a generative model; namely, a joint density over causes (i.e., external paths) and their consequences (i.e., particular 
paths). In (14) the generative model has been expressed in terms of a likelihood and prior Lagrangian that can be read 
as specifying characteristic or preferred trajectories in the space of causes (i.e., external states) or consequences (i.e., 
particular states).

Second—on a statistical reading—variational free energy can be decomposed into the (negative) log likelihood of 
particular paths (i.e., accuracy) and the Kullback Leibler (KL) divergence between posterior and prior densities over 
external paths (i.e., complexity). Finally, it can be written as the negative log evidence plus the KL divergence between 

14 Beliefs here are meant in a technical, Bayesian sense; that is, as probability distributions over external variables. In this sense the free energy is 
a functional (i.e., function of a function) of beliefs, or equivalently, a function of their parameters.
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the variational and conditional (i.e., posterior) density. In variational Bayesian inference15 [14], negative free energy 
is called an evidence lower bound or ELBO [17,160]. It is called a bound because the KL divergence is never less than 
zero.

Proof. Recall that the Lagrangian is a surprisal, and the KL divergence between two densities is the expected dif-
ference in their surprisals. The various decompositions of the variational free energy follow from this observation. 
The proof is straightforward by construction: substituting the definition of the variational density in (13) into the final 
equality in (14) shows that the Lagrangian and variational free energy of particular paths share the same minima:

F(�s, �a, �μ) = DKL[q�μ(�η)||p(�η|�s, a)]︸ ︷︷ ︸
=0

+L(�s, �a, �μ) = L(�s, �a, �μ)

⇒
�̇μ(τ ) = D�μ − ∇�μL(�s, �a, �μ)

= D�μ − ∇�μF(�s, �a, �μ)

(15)

Replacing the Lagrangian in (12) with variational free energy gives (14). �
Corollary. If autonomous and external paths are conditionally independent, given sensory paths, then the autonomous 
path of least action can also be cast as a gradient flow on variational free energy

(�η⊥�α)|�s ⇒ �̇α = D�α − ∇�αF (�s, �α) (16)

Where �α �= arg min�α L(�α | �s). In this case, the most likely paths of both internal and active states perform a gradient 
descent on variational free energy.

Proof. The conditional independence above means that the autonomous path of least action is a gradient flow on the 
Lagrangian of particular states:

(�η⊥�α)|�s ⇔ L(�α|�s, �η) = L(�α|�s)
⇒

�̇α = D�α − ∇�αL(�α|�s, �η) = D�α − ∇�αL(�α|�s) = D�α − ∇�αL(�s, �α)

= D�α − ∇�αF (�s, �α)

(17)

Where the motion of autonomous paths of least action follows from (6) and the Lagrangian of particular states is the 
variational free energy of internal paths of least action by (15). �
Remark. The functional form of variational free energy licences a representational interpretation of internal dynam-
ics: the internal paths of least action play the role of sufficient statistics or parameters of Bayesian beliefs about 
external dynamics. On this view, a gradient flow on variational free energy corresponds to minimising the complexity 
of Bayesian beliefs about external states, while providing accurate predictions of the dynamics of a particle’s sensory 
(and autonomous) states. Minimising complexity means that internal paths of least action encode Bayesian beliefs 
about external paths that are as close as possible to prior beliefs. The paths of least action can either be interpreted as 
the behaviour of a particle with classical mechanics (see below), in which random fluctuations are negligible. Con-
versely, they can be considered as the average responses over multiple realisations of the same dynamics, of the sort 
solicited by event related averaging in various fields; e.g., [94,144]. In this case, we can think of the paths of least 
action as expressing the average (e.g., ensemble) behaviour of a system.

The variational free energy lemma says that the internal paths of least action minimise a variational free energy 
functional. So, is minimisation of variational free energy an explanation for—or a description of—internal dynamics? 
The question is itself revealing. It is a question about internal dynamics. However, the internal dynamics are unknow-
able (unmeasurable) by construction. Only blanket states are observable (measurable). This means one can only say 

15 When the set of active states is empty, and the particle is inert.
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Fig. 2. particular kinds. This schematic illustrates the definitive features of the particular kinds considered in the main text. The upper panels show 
inert and active particles, without and with active states, respectively. When the particular states of an active particle follow paths of least action, 
we have conservative particles. When the active states of conservative particles are hidden from (i.e., do not directly influence) internal states, we 
have strange particles. Strange particles will appear to infer their own actions in virtue of behaving as if their internal dynamics encode a variational 
density (i.e., Bayesian belief) over the hidden causes of sensations; namely external and active paths.

that it looks as if internal dynamics are inferring external paths, under certain conditions: the existence of a variational 
density.

5. A typology of particular kinds

We now begin to unpack a typology of particular kinds. First, we distinguish between active and inert particles, 
which do and do not have active states. We will then distinguish conservative and dissipative particles, for which 
random fluctuations can be, and cannot be, ignored. In the final sections, we distinguish between ordinary and strange 
particles, whose active states do, and do not, directly influence internal states. See Fig. 2.

The inferential process of internal states can only manifest to the external world when internal dynamics influence 
blanket flows, which, by construction, require active states (noting that internal states cannot influence sensory states). 
This speaks to two kinds of particles with and without active states: namely, active and inert particles, respectively.

Definition 2. An active particle is a particle with a nonempty set of active states. Conversely, an inert particle is a 
particle with no active states.

This definition precludes any form of panpsychism when applying the free energy principle, in the sense that any 
ontic or noetic claims can only concern active particles, or active matter [123]. Put simply, we can never observe 
internal dynamics directly because these are hidden behind the Markov blanket. Whether internal paths of least action 
parameterise beliefs about external paths and therefore minimise variational free energy can only manifest via active 
states; that is, in active particles. Since these are non-existent in inert particles, there is no way to observe whether a 
given inert particle minimises variational free energy (e.g., the interior of a black hole). Before turning to the behaviour 
of active particles, we consider inert particles through the lens of inference.
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5.1. Inert particles and Bayesian filtering

Although internal dynamics are hidden behind their Markov blanket, we can simulate or emulate (the most likely 
behaviour of) inert particles by integrating the following equations of generalised motion, inserting (14) into (10):

⎡
⎣ �̇η

�̇s
�̇μ

⎤
⎦ =

⎡
⎣ fη(�η, �s) + �ωη

fs(�η, �s) + �ωs

D�μ − ∇�μF(�s, �a, �μ)

⎤
⎦ (18)

Here, internal dynamics are expressed as a generalised gradient flow on variational free energy, while external and 
sensory paths are specified with equations of motion and the statistics of random fluctuations. In statistics, these 
constitute a state-space model. The functional form of variational free energy can be unpacked under the Laplace 
approximation [52,126]. For example, if σ(�μ) = arg maxq�μ(�η) = �η—the map from the internal to the external path 
of least action—is well-defined, we have16

F(�s, �μ) = Eq[L(�η, �s) + lnq(�η)]︸ ︷︷ ︸
Variational free energy

≈ L(�s|σ( �μ))︸ ︷︷ ︸
Likelihood constraint

+ L(σ ( �μ))︸ ︷︷ ︸
Prior constraint

− 1

2
ln |( �μ)|︸ ︷︷ ︸
Entropy

+ 1

2
tr(( �μ)∇2L)︸ ︷︷ ︸
constant (dim �μ)

q(�η) = N (�η : σ( �μ),( �μ)),( �μ)−1 = ∇2L

L (�η, �s) = �ωη · 1

4�η

�ωη + �ωs · 1

4�s

�ωs + Sη + Ss

�ωη = D�η − fη(�η, �s)
�ωs = D�s − fs(�η, �s)

(19)

This functional form renders the internal dynamics in (18) equivalent to a generalised Bayesian filter [60]; namely, 
the generalisation of an extended Kalman-Bucy filter [100,132] to high order motion. In this setting, internal states 
parameterise a Gaussian posterior over external states—a.k.a., variational Laplace [52].

6. Conservative particles and expected free energy

“It is implied that, in some sense, a rudimentary consciousness is present even at the level of particle physics.”
[18]

We now turn to the distinction between microscopic and macroscopic particles, where macroscopic particles pos-
sess classical mechanics, in which random fluctuations are (almost) averaged away17 and the trajectories of particular 
states are (almost) paths of least action. This introduces the next key distinction; namely, between dissipative and 
conservative particles whose particular dynamics are, and are not, subject to random fluctuations, respectively.

Definition 3. A conservative (classical) particle is an active particle whose particular states follow paths of least 
action. Equivalently, it is an active particle whose random fluctuations on particular states have amplitudes that are 
infinitesimally small. In other words, we consider the limiting regime where the covariance of the random fluctuations 
ωs(τ), ωa(τ), ωμ(τ) in (10) tends to zero �π → 0.

16 Omitting constant terms for clarity.
17 Physically, this means that we are considering a description of particles at a sufficiently high-level of coarse graining so that microscopic 
fluctuations are almost averaged away, and the laws of classical mechanics prevail. See [56] for examples using the coarse graining apparatus of 
the renormalisation group.
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Conservative (or classical) particles are especially interesting because they respond deterministically and system-
atically to external influences, in virtue of the fact random fluctuations on their dynamics (almost) disappear. It could 
be argued that all macroscopic particles are conservative, simply because their random fluctuations are averaged away 
[44]. This means that their dynamics rests on chaotic itinerancy that is underwritten by nonlinear coupling, breaking 
of detailed balance, and associated nonequilibria [48,92,33]. Removing uncertainty about particular paths has an im-
portant consequence. Because there is no uncertainty about autonomous paths, given sensory paths, there is no further 
information about external paths afforded by autonomous paths, rendering them conditionally independent. This can 
be expressed in terms of expected Lagrangians using a bound argument. From (9):

E[L(�α|�s)] ≥ E[L(�α|�s, �η)] ≥ S0

lim
�π→0

E[L(�α|�s)] = E[L(�α|�s, �η)] = S0

⇒ Ep(�s,�η)[DKL[p(�α|�s, �η)||p(�α|�s)]] = 0

⇒ L(�α|�s, �η) = L(�α|�s) ⇔ (�α⊥�η)|�s
⇒ L(�η|�s, �α) = L(�η|�s) ⇔ (�η⊥�α)|�s

(20)

In other words, although active states influence external states, the active states are determined completely by sensory 
paths, as they provide a Markov blanket separating external and autonomous states. Please see Fig. 3 for a diagram-
matic illustration.

Crucially, this conditional independence means that conservative particles satisfy (16), which yields an expression 
for the most likely behaviour of conservative particles⎡

⎢⎢⎣
�̇η
�̇s
�̇a
�̇μ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

fη(�η, �s, �a) + �ωη

fs(�η, �s, �a) + �ωs

D�a − ∇�aF (�s, �a, �μ)

D�μ − ∇�μF(�s, �a, �μ)

⎤
⎥⎥⎦ . (21)

These equations of motion allow one to simulate the behaviour of conservative particles as a (generalised) gradient 
flow of autonomous states on variational free energy. The resulting dynamics can be read as a generalised homeostasis 
(cf., the behaviour of a thermostat or noise cancellation scheme) or, in control theory, control as inference [8,83,151]. 
In short, active states will look as if they are trying to minimise the sensory prediction errors in (19). More generally, 
the active paths of conservative particles will look as if they are trying to maximise the accuracy part of variational 
free energy, thereby fulfilling the predictions encoded by internal dynamics (because the complexity part does not 
depend upon active paths). This interpretation furnishes an elementary but expressive formulation of active perception 
or inference [55].

Can we say anything more definitive about the ensuing autonomous behaviour? We will see that the autonomous 
dynamics of conservative particles acquire a purposeful aspect—a purpose that can be articulated in terms of infor-
mation and preference seeking behaviour with the following lemma [12,45]:

Lemma (Expected free energy). the Lagrangian of autonomous paths of conservative particles can be expressed as a 
free energy functional that entails optimal Bayesian design and decision-making:

E(�α) = Ep(�η,�s|�α)[L(�η, �s) −L(�η|�α)]︸ ︷︷ ︸
Expected free energy

= L(�α)

= DKL[p(�s|�α)||p(�s)]︸ ︷︷ ︸
Risk

+Ep(�η,�s|�α)[L(�s|�η, �α)]︸ ︷︷ ︸
Ambiguity=S0

= Ep(�s|�α)[L(�s)]︸ ︷︷ ︸
Expected cost

−Ep(�s|�α)[DKL[p(�η|�s, �α)||p(�η|�α)]]︸ ︷︷ ︸
Expected information gain

(22)

The functional forms of variational (14) and expected free energy (22) suggest that expected (negative) accu-
racy becomes ambiguity, while expected complexity becomes risk. Similarly, the expected (negative) divergence
becomes expected information gain. If we read the Lagrangian as a cost function of sensory outcomes, the most likely 
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autonomous paths of conservative particles will look as if they are maximising expected information gain, while min-
imising expected cost. These expectations underwrite the principles of optimal Bayesian design and decision theory, 
respectively.

Proof. When random fluctuations on the motion of particular states vanish, there is no uncertainty about their paths 
given their parents. This means there is no uncertainty about particular paths, given external paths; no uncertainty 
about autonomous paths, given sensory paths and no uncertainty about sensory paths, given external and autonomous 
paths. Expressed in terms of continuous and differential entropies this means, from (9):

lim
�π→0

H[p(�π |�η)] = 0 ⇔ E[L(�π |�η)] = S0

H[p(�α|�s)] = 0 ⇔ E[L(�α|�s)] = S0 ⇒
H[p(�s|�η, �α)] = 0 ⇔ E[L(�s|�η, �α)] = S0 ⇒ Ep(�η,�s|�α)[L(�s|�η, �α)] = S0

H[p(�α|�η, �s)] = 0 ⇔ E[L(�α|�η, �s)] = S0 ⇒ Ep(�η,�s|�α)[L(�α|�η, �s)] = S0

(23)

These constraints allow us to express the Lagrangian of autonomous paths as an expected free energy. From (23), we 
have:

L(�α) = Ep(�η,�s|�α)[L(�η, �s, �α) −L(�η, �s|�α)]
= Ep(�η,�s|�α)[L(�η, �s) −L(�η|�α)] +Ep(�η,�s|�α)[L(�α|�η, �s) −L(�s|�η, �α)]
= Ep(�η,�s|�α)[L(�η, �s) −L(�η|�α)]︸ ︷︷ ︸

Expected free energy

+S0 − S0 = E(�α)
(24)

Substituting the final equality in (20) into (24) gives (22):

E(�α) = Ep(�η,�s|�α)[L(�s) +L(�η|�s, �α) −L(�η|�α)]︸ ︷︷ ︸
Expected free energy

= Ep(�s|�α)[L(�s)]︸ ︷︷ ︸
Expected cost

−Ep(�s|�α)[DKL[p(�η|�s, �α)||p(�η|�α)]]︸ ︷︷ ︸
Expected information gain

= Ep(�s|�α)[L(�s)]︸ ︷︷ ︸
Expected cost

−Ep(�η|�α)[DKL[p(�s|�η, �α)||p(�s|�α)]]︸ ︷︷ ︸
Expected information gain

= DKL[p(�s|�α)||p(�s)]︸ ︷︷ ︸
Risk

+Ep(�η,�s|�α)[L(�s|�η, �α)]︸ ︷︷ ︸
Ambiguity=S0

(25)

These equalities rest on the fact that the KL divergences in the expected information gains are the same; i.e., the 
mutual information between external and sensory paths, given an autonomous path [p. 273 in [15]]. �
Remarks. The relationship among the various terms contributions to expected free energy can be seen clearly in terms 
of their expectations; namely, entropies. From (22):

Ep(�α)[L(�α)] − S0 = H[p(�α)] = H[p(�η, �s)] −H[p(�η|�α)]︸ ︷︷ ︸
<Expected free energy>

= H[p(�η)] −H[p(�η|�α)]︸ ︷︷ ︸
<Risk>

= H[p(�s)]︸ ︷︷ ︸
<Cost>

− H[p(�s|�α)]︸ ︷︷ ︸
<Information gain>︸ ︷︷ ︸

<Risk>

(26)

In the case of conservative particles, the conditional uncertainty about sensory paths, given autonomous paths, is the 
information gain about external paths, afforded by sensory paths:
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Fig. 3. Dissipative and conservative particles. These information diagrams depict the entropy of external, sensory and autonomous paths, where 
intersections correspond to shared or mutual information. A conditional entropy corresponds to an area that is outside the variable upon which it 
is conditioned. The diagram on the left shows the generic (dissipative) case, in which uncertainty about paths inherits from random fluctuations. 
When the random fluctuations on the motion of particular states vanish, we have conservative particles, in which there is (almost) no uncertainty 
about autonomous paths, given sensory paths and no uncertainty about particular paths, given external paths (the right information diagram). This 
illustrates the various ways of expressing the entropy of autonomous paths (upper equation)—or the entropy of sensory paths given autonomous 
paths (lower equation)—in terms of conditional entropies. See main text for a fuller description.

H[p(�s|�α)] = H[p(�η|�α)] −H[p(�η|�s, �α)]︸ ︷︷ ︸
<Information gain>

(27)

Fig. 3 illustrates these decompositions for people who find it easier to think in terms of information diagrams.

In summary, the Lagrangian of autonomous paths can be expressed as a divergence; namely, the divergence be-
tween the density over sensory (or external) paths with and without autonomous paths. This can be regarded as the 
objective function used in engineering to optimise the trajectory of control variables in model predictive control [137]. 
An equivalent neurobiological perspective is provided by perceptual control theory, in which sensory states are main-
tained near a preferred value through the consequences of action [106]. On this view, risk is the divergence between 
sensory paths, given an autonomous path, and the marginal density over sensory paths. This marginal density encodes 
preferences, because they constitute the priors of the generative model, over the sensory consequences of action [116]. 
Intuitively, these paths can be read as ‘outcomes’, ‘events’ or ‘narratives’ the particle expects to encounter.

Expected free energy supplements risk with ambiguity; namely, the expected inaccuracy or negative sensory like-
lihood, given an autonomous path. Clearly, this is redundant as a description of conservative particles that—by 
definition—have minimal ambiguity (because there are no random sensory fluctuations). However, in applications 
of the FEP, the ambiguity term is retained to ensure the particle or agent seeks out unambiguous regimes of state 
space; thereby, evincing the behaviour of conservative particles.

In discrete state-space formulations, ambiguity is usually expressed as the expected conditional uncertainty (i.e., 
entropy) of sensory states, given external states by assuming conditional independence between sensory and external 
states. Under this assumption we have, from (20):

Ep(�η,�s|�α)[L(�s|�η)] = Ep(�η|�α)[Ep(�s|�η)[L(�s|�η)]]︸ ︷︷ ︸
Ambiguity

= Ep(�s|�α)[Ep(�η|�s)[L(�s|�η)]]︸ ︷︷ ︸
Expected inaccuracy

(28)

This is why the expected inaccuracy is referred to as ambiguity. In brief, the expected free energy lemma, suggests 
that conservative particles can be described as minimising the risk of incurring external trajectories that diverge from 
prior preferences, while avoiding ambiguous states of affairs.
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The final term in (22) provides a Bayesian interpretation of expected free energy. It is the expected divergence 
between posterior beliefs about external paths, given autonomous paths, with and without sensory paths. In other 
words, it scores the resolution of uncertainty or expected information gain18 afforded by sensory outcomes. This 
is the objective function in optimal Bayesian design and active learning [98,104]. In this sense, it is sometimes re-
ferred to as intrinsic value or epistemic affordance [58]. The remaining term is the expected Lagrangian, which scores 
the probability that a particle will sample preferred sensory trajectories. In the setting of Bayesian decision theory, 
this minimises expected cost [16]. In this sense it is sometimes referred to as extrinsic value or pragmatic affordance 
[46,136]. Note that expected free energy dissolves the exploration-exploitation dilemma [29], because there is a unique 
course or path (of least) action that subsumes explorative, information-seeking and exploitative, preference-seeking 
imperatives. Please see Fig. 4 for a schematic that links and contextualises these normative accounts of behaviour 
through expected free energy. On this view, the FEP may provide a first principles endorsement—in terms of conser-
vative particles—of these normative accounts.

In summary, conservative particles look as if they have purposeful behaviour; in the sense that they actively seek out 
preferred sensations, while trying to resolve uncertainty about the causes of those sensations. Crucially, the sensorium 
(i.e., external and sensory paths) will not exhibit this kind of behaviour. This is because conservative particles—in a 
dissipative world—break the statistical symmetry between internal and external dynamics.

The next distinction—between different kinds of things—rests on the circular causality inherent in the coupling 
that underwrites ‘thingness’. As explained below, this causal structure depends on active paths (i.e., actions), which 
depend upon internal beliefs, which encode the sensory consequences of action. This causal recursion—cf., strange 
loop [71] and cybernetic feedback loop [5]—compels us to consider an internal representation of action, which is 
distinct from the active states that realise those beliefs. In the final section, we consider the principles of least action 
that apply to certain particles that manifest a stronger kind of sentient behaviour; namely, planning.

7. Strange particles and generalised free energy

“What I mean by “strange loop” is . . . the cycling-around . . . from one level of abstraction (or structure) to 
another, which feels like an upwards movement in a hierarchy, and yet somehow the successive ‘upward’ shifts 
turn out to give rise to a closed cycle. That is, despite one’s sense of departing ever further from one’s origin, one 
winds up, to one’s shock, exactly where one had started out.”

[71, p. 101]

So far, we have considered how the dynamics of conservative (i.e., classical) particles can be read as an elementary 
form of Bayesian inference (i.e., Bayesian mechanics). We now turn to particles that admit particles within particles. 
In other words, particles whose internal states have particular partitions [114] that equip a particle with a hierarchical 
or deep generative model. This means there exist some internal states that are not directly influenced by active states.

18 Expected information gain can be expressed in a number of ways. The expression in (23) is perhaps the most intuitive, showing the degree to 
which the conditional density of external paths changes once we take sensory paths into account (i.e., how far we update our beliefs about external 
paths given sensory paths). It can also be expressed as a mutual information, which scores the degree of conditional dependence between sensory 
and external paths, or as the difference between two entropies:

DKL[p(�η, �s|�α)||p(�s|�α)p(�η|�α)]︸ ︷︷ ︸
Mutual information

=Ep(�s|�α)[L(�s|�α)] −Ep(�s,�η|�α)[L(�s|�η, �α)]︸ ︷︷ ︸
Expected information gain

This formulation offers an intuition as to the factors that determine the degree of belief-updating. If the entropy of sensory paths (given autonomous 
paths) is very large, this implies a high level of uncertainty which, if resolved, leads to a substantial change in our beliefs about external paths. The 
extent to which this uncertainty is resolvable depends upon the conditional entropy of sensory paths given external and autonomous paths. In other 
words, if there is a precise relationship between external and sensory paths, and we are uncertain about sensory paths, there must be uncertainty 
about external paths which is resolvable by observing sensory paths.
For conservative particles, the expected information gain reduces to the entropy of sensory paths given autonomous paths. It may therefore seem 
that the conservative particle assumption renders the expected information gain trivial. However, it is worth noting that it may be possible to express 
the dynamics of a non-conservative particle (i.e., with sensory fluctuations) as a conservative particle, simply by treating the sensory fluctuations as 
(fast) external states. In this case, the equality between expected information gain and the entropy of sensory paths, given autonomous paths, holds 
in general.
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Fig. 4. Expected free energy and other normative accounts. This figure illustrates the various ways in which expected free energy can be unpacked. 
Expected free energy subsumes several objective functions that predominate across psychology, machine learning and economics. These special 
cases are disclosed when one removes particular sources of uncertainty. For experimental science, this suggests which normative account is most 
appropriate to describe behaviour based upon the nature of uncertainty. For example, if we ignore preferences, or cost, then the expected free energy 
reduces to expected information gain [98,105] that underwrites optimum Bayesian design in statistics—or intrinsic motivation in machine learning 
and robotics [13,113,128]. This is mathematically the same as expected Bayesian surprise and mutual information that underwrites salience in 
visual search [76,147] and the computational architecture of our visual apparatus [9,10,99,112]. Ignoring ambiguity leads to risk-sensitive policies 
in economics [38,82] or KL control in engineering [151,155]. Here, minimising risk corresponds to aligning predictions to prior preferences. In 
the absence of expected information gain (i.e., reducible uncertainty), we are left with or expected preferences or utility in economics [157]—a 
construction that underwrites reinforcement learning [149] and behavioural psychology. Maximising expected utility under uncertainty leads to 
Bayesian decision theory [16]. Finally, if we consider an unambiguous world with uninformative preferences, expected free energy reduces to the 
negative entropy of posterior beliefs about the causes of data. This is the maximum entropy principle, proposed as a method of inference by Jaynes 
[77,92]. When conditioned on action, this corresponds to a form of empowerment [88]; namely, keeping options open.

We will consider the simplest instance of this sparse coupling, in which the active states of a conservative particle 
are hidden from internal states. In other words, internal states are only influenced by sensory states. In this kind of 
particle, the influence of active states on internal states must be mediated vicariously via external (or sensory) states. 
Fig. 2 illustrates the ensuing causal architecture, where the generative model—and implicit variational density—
acquire a hierarchical depth.

If internal paths are only directly influenced by sensory paths, which furnish a Markov blanket that renders the 
internal states conditionally independent of external and active states, this can be expressed in terms of expected 
Lagrangians as follows, following (20):

E[L( �μ|�s)] ≥ E[L( �μ|�s, �a, �η)] ≥ S0

lim
�π→0

E[L( �μ|�s)] = E[L( �μ|�s, �a, �η)] = S0

⇒ Ep(�s,�η,�a)[DKL[p( �μ|�s, �a, �η)||p( �μ|�s)]] = 0

⇒ L( �μ|�s, �a, �η) = L( �μ|�s) ⇔ ( �μ⊥�η, �a)|�s
⇒ L(�η, �a|�s, �μ) = L(�η, �a|�s)

(29)

This means the internal paths of least action now become:

�̇μ(τ ) = D�μ − ∇�μL(�μ|�s, �a, �η) = D�μ − ∇�μL(�μ|�s)
= D�μ − ∇ L(�s, �μ)

(30)

�μ
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Because the internal paths depend only directly on sensory paths, there is a deterministic mapping from every sensory 
path to the corresponding internal path of least action. If this mapping is injective, this implies a map between the 
internal path of least action and the conditional density over external and active paths, given sensory paths. This means 
the variational density can be defined stipulatively as a Bayesian belief over the whole sensorium19

q�μ(�η, �a)
�= p(�η, �a|�s)

�μ �= arg min
�μ

L( �μ|�s) ⇔ ∇�μL(�μ|�s) = 0
(31)

We will call these kinds of particles strange, where active states become hidden causes, lending action a certain 
opacity [97], and where internal paths of least action states encode beliefs about external and active paths. This leads 
to a notion of autonomy or agency, in the sense that the particle has beliefs about its own actions, and a sense of 
selfhood: the ‘I’ that follows beliefs about ‘my’ actions.

“In the end, we are self-perceiving, self-inventing, locked-in mirages that are little miracles of self-reference.”
[71, p. 363]

The notion that internal states encode representations about active states has some nice parallels in neurophysiology 
in terms of efference copy [79] and corollary discharges in the brain [65].

Definition 4. Strange particles are conservative particles whose active states do not directly influence (i.e., are hidden 
from) internal states; that is, the flow of internal states in (10) does not depend upon active states fμ(s, a, μ) =
fμ(s, μ); and where (31) holds.

As in the variational free energy lemma, we now construct a generalised free energy whose minima coincide with 
the internal paths of least action of strange particles:

Lemma (Generalised free energy). the internal paths of a strange particle minimise a free energy functional of 
Bayesian beliefs about the hidden causes of sensory paths; namely, external and active paths, q�μ(�η, �a) = p(�η, �a|�s):

�μ = arg min
�μ

L( �μ|�s) ⇔ ∇�μL(�s, �μ) = 0 ⇔
�μ = arg min

�μ
G(�s, �μ) ⇔ ∇�μG(�s, �μ) = 0 ⇒

�̇μ = D�μ − ∇�αG(�s, �μ)

G(�s, �μ) = Eq(�η,�a)[L(�η, �s|�α) + E(�α) + lnq(�η, �a)]︸ ︷︷ ︸
Generalised free energy

= Eq [L(�η, �s, �a, �μ)]︸ ︷︷ ︸
Energy constraint

−Eq [− lnq(�η, �a)]︸ ︷︷ ︸
Entropy

= DKL[q(�η, �a)||p(�η, �a)]︸ ︷︷ ︸
Complexity

+Eq [L(�s, �μ|�η, �a)]︸ ︷︷ ︸
(−) Accuracy

= DKL[q(�η, �a)||p(�η, �a|�s)]︸ ︷︷ ︸
Divergence

+ L(�s, �μ)︸ ︷︷ ︸
(−) Log evidence

≥ L(�s, �μ)

(32)

19 In the case of linear flows in (1), the flow of generalised states in (2) is also linear, which means that the Lagrangian is quadratic, e.g., see 
Section 6 in [45]. In this case, the condition under which a variational density can be defined that satisfies (31) is the object of Lemma 2.1 in [32]
using the fact that external and active states are hidden from internal states by the Markov blanket provided by sensory states. Analogously to our 
reasoning for (non-strange) particles, we expect that in the nonlinear case, for many such systems where sensory states form a Markov blanket, 
there will be a map affording (31).
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The generalised free energy expresses a generative model of sensory and internal dynamics in terms of their causes, 
which include active paths. Choosing internal paths that minimise generalised free energy maximises the evidence 
afforded to the generative model by sensory paths. This has been referred to as self-evidencing [72]. Heuristically, a 
strange particle will look as if it is garnering evidence for its generative model, where its generative model entails the 
prior belief that it acts like a conservative particle (because it is).

Proof. From the definition in Error! the Lagrangian and generalised free energy share the same minima on internal 
paths of least action, where their gradients vanish:

G(�s, �μ) = DKL[q�μ(�η, �a)||p(�η, �a|�s)]︸ ︷︷ ︸
=0

+L(�s, �μ) = L(�s, �μ)

⇒
�̇μ(τ ) = D�μ − ∇�μL(�s, �μ)

= D�μ − ∇�μF(�s, �μ)

(33)

This means we can replace the Lagrangian gradients in Error! with generalised free energy gradients to give (32). �
Remarks. For strange particles, there is distinction between active paths as realised variables and the active paths 
in (32) as random variables that are inferred. This means that the actions of an agent are distinct from beliefs about 
action, which are based on expected free energy. When the generative model is supplemented with these priors, 
the ensuing functional corresponds to (upper bound on) the Lagrangian or surprisal of sensory outcomes. In short, 
sensory surprisal is a functional of Bayesian beliefs (i.e., a variational density) about the hidden causes of sensations; 
namely, external and active dynamics. Internal dynamics minimise this surprisal, while active paths can be described 
as realising the sensory consequences of inferred action. In effect, the agent authors her sensorium, based upon prior 
beliefs about the way she acts.

Note that only the internal paths minimise generalised free energy. Nothing has changed from the perspective of 
the active paths, which can be cast as gradient flows on variational free energy. However, from the perspective of an 
observer, behaviour will appear to be fulfilling the epistemic and pragmatic imperatives afforded by expected free 
energy. From a statistical perspective, this corresponds to a move from control as inference [152] to planning as 
inference [6,21,108]. From a biological perspective, this corresponds to a move from homeostasis [24] to allostasis
[4,31,124,142,145]. Clearly, these distinctions depend upon the time over which path integrals are taken.

We have been deliberately vague about the timescale (or order of generalised motion) over which the expected 
free energy applies. This vagueness [103] admits a range of temporal horizons for conservative particles: some may 
have a myopic generative model and implicitly consider path integrals over short periods of time, responding to 
external fluctuations in a largely reflexive, homeostatic manner (e.g., chemotaxis). Others may have a deep time 
horizon and exhibit more adaptive, allostatic behaviours (e.g., curiosity). These behaviours are usually associated 
with deep generative models that feature a separation of temporal scales: for in silico examples, please see [59,62].

7.1. Simulating sentience

This formulation of strange particles can be used to simulate sentient behaviour by solving the following equations 
of motion yeah, in which internal dynamics minimise generalised free energy and active dynamics minimise the 
ensuing variational free energy. Combining (21) with (32):

⎡
⎢⎢⎣

�̇η
�̇s
�̇a
�̇μ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f�η(�η, �s, �a) + �ωη

f�s(�η, �s, �a) + �ωs

D�a − ∇�aF (�s, �a, �μ)

D�μ − ∇�μG(�s, �μ)

⎤
⎥⎥⎦ (34)

Fig. 5 provides an example in which the expected free energy E(�α) = L(�α) was specified directly with a Lagrangian 
over autonomous paths, in terms of some equations of motion, cf., a central pattern generator. When specifying 
generative models like this, the Lagrangian over autonomous paths is usually specified as a prior over exogenous 
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Fig. 5. Sentient behaviour and action observation. This figure illustrates simulations of active inference (here, writing), in terms of conditional 
expectations about hidden states of the world, consequent predictions about sensory input and ensuing action. The dynamics that underwrite this 
behaviour rest upon prior expectations about exogenous causes that follow Lotka-Volterra dynamics: these are the six (arbitrarily) coloured lines in 
the upper left inset. In this generative model, each state is associated with a location in Euclidean space that attracts the agent’s finger. In effect, the 
(generalised) internal states then supply predictions of what (generalised) sensory states should register if the agent’s beliefs were true. Active states 
suppress the ensuing prediction error (i.e., maximise accuracy) by fulfilling expected changes in sensed angular velocity, through exerting forces on 
the agent’s joints (not shown). The subsequent movement of the arm is traced out in the lower left panel. This trajectory is plotted in a moving frame 
of reference, so that it looks like handwriting (e.g., a succession of ‘j’ and ‘a’ letters). The lower left panels show the activity of the fourth hidden 
state under ‘action’, and ‘action-observation’. During action, sensory states register the visual and proprioceptive consequences of movement, while 
under action observation, only visual sensations are available—as if the agent was watching another agent. The red dots correspond to the times 
during which this state exceeded an arbitrary threshold. They key thing to note here is that this internal state responds preferentially when, and 
only when, the motor trajectory produces a down-stroke, but not an up-stroke more—evincing a cardinal feature of neuronal responses, namely, 
directional selectivity. Furthermore, with a slight delay, this internal state responds during action and action observation. From a neurobiological 
perspective, this is interesting because it speaks to an empirical phenomenon known as mirror neuron activity [61,86,127]. Please see [51] for 
further details.

causes that intervene in external dynamics. Intuitively—unbeknown to the model—action fulfils the predictions of 
some prior beliefs about causes that are exogenous to the external dynamics. In other words, even though the particle 
is causing its sensations, it just ‘thinks’ it has the right prior beliefs about exogenous dynamics.

As is common in these simulations, exogenous dynamics prescribe itinerant behaviour in the form of a strange 
attractor. Equation (34) has been used to emulate many kinds of sentient behaviour, ranging from morphogenesis [50], 
through action observation [51] to birdsong [75].

The handwriting example in Fig. 5 illustrates a simple sort of active inference specified in terms of a Lagrangian 
L(�α) over autonomous (i.e., exogenous) causes. To simulate the curious behaviour of strange particles like ourselves, 
one can evaluate expected free energy explicitly, E(�α) = L(�α).

Effectively, this enables a specification of autonomous dynamics in terms of Lagrangians (i.e., equations of motion) 
that engender information and preference seeking. Practically speaking, knowing the functional form of expected free 
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energy allows one to simulate or reproduce sentient behaviour that is specified in terms of preferred outcomes. The 
requisite free energy functionals are:

E(�α) = Ep(�s|�η,�α)q(�η|�α)[L(�η, �s) −L(�η|�α)]︸ ︷︷ ︸
Expected free energy

= L(�α)

F (�s, �α) = Eq(�η)[L(�η, �s, �α) + lnq(�η)]︸ ︷︷ ︸
Variational free energy

≥ L(�s, �α)

G(�s, �μ) = Eq(�η,�a)[L(�η, �s|�α) + E(�α) + lnq(�η, �a)]︸ ︷︷ ︸
Generalised free energy

≥ L(�s, �μ)

F(�s, �α) = L(�s, �α) : �a = arg min
�a

F (�s, �a, �μ)

G(�s, �μ) = L(�s, �μ) : �μ = arg min
�μ

G(�s, �μ)

(35)

The expected free energy above is an expectation under a predictive density over hidden causes and sensory con-
sequences, based on beliefs about external states, supplied by the variational density. Intuitively, based upon beliefs 
about the current state of affairs, the expected free energy furnishes the most likely ‘direction of travel’ or path into 
the future. This construction specifies the most likely behaviour in terms of expected outcomes, where the expected 
free energy brings a belief-dependent or epistemic aspect to behaviour; namely, curiosity [57,134,146].

This lends a complementary meaning to the expected free energy; in the sense it is expected in the future (and 
past). This implicit prospection (and postdiction) means that sensory paths into the future (and past) are random 
variables. In short, strange particles or agents (look as if they) think they are conservative particles, and act accordingly. 
The example in Fig. 6 suppresses prior preferences to reveal pure information-seeking or epistemic behaviour—a 
succession of visual palpations—in the setting of visual search and scene construction. This example specified a 
sequence of active trajectories to fixed points, specified as exogenous causes. These visual fixation points minimised 
expected free energy; i.e., maximised expected information gain.

In summary, strange particles look as if they have agency, in the sense their actions realise the predictions of 
Bayesian beliefs. This leads to a slightly counterintuitive interpretation of the ensuing behaviour, in which active 
states are hidden from internal representations of action. Intuitively, this means beliefs about how the world should 
play out are realised, reflexively, by active states. From the perspective of someone observing an agent, say a fish, it 
will look as if the fish searches out particles of food. However, from the point of view of the fish, it believes that it is 
propelled through water in a fortuitous and benevolent way that delivers food particles to its mouth. In other words, 
the fish is unaware it is the agent of its actions, it just believes this is how the world works—beliefs that are realised 
through action: cf., ideomotor and perceptual control theory [106,122,141,159]. Note that this is not inconsistent with 
the fish learning the association between specific internal (e.g., neural) stimuli and the sensory consequences of action, 
thus becoming aware, that it can control its own actions—or at least their consequences.

This speaks to further particular kinds, with deeper generative models, that (look as if they) recognise action is 
underwritten by agency. Or indeed, they are the authors of their actions. These kinds of agents may be distinguished 
by generative models of state-dependent random fluctuations that introduce further sort of hierarchical depth; namely, 
beliefs about beliefs in the form of beliefs about uncertainty or precision20 [27,95,96,140].

7.2. Epilogue: on the nature of strangeness

“Now, here, you see, it takes all the running you can do, to keep in the same place”, the Red Queen to Alice in 
Lewis Carroll’s Through the Looking-Glass.

Clearly, we have taken some poetic licence in associating the recursion implicit in the dynamics of strange particles 
with a strange loop [71]. However, there exists a complementary perspective on conservative dynamics that brings us 

20 That is, the inverse covariances in (19).
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Fig. 6. Epistemic foraging. This figure shows the results of a simulation in which a face was presented to an agent, whose responses were simulated 
by selecting actions that minimised expected free energy following an eye movement. The agent had three internal beliefs or hypotheses about the 
stimuli she might sample (an upright face, an inverted face and a rotated face). The agent was presented with an upright face and her posterior 
expectations were evaluated over 16 (12 ms) time bins, until the next saccade was emitted. This was repeated for eight saccades. The ensuing fixation 
points are shown as red dots in the upper row. The corresponding sequence of eye movements is shown in the inset on the upper left, where the red 
circles correspond roughly to the proportion of the visual image sampled. These saccades are driven by predictive beliefs about the next fixation 
point based upon salience maps in the second row. These salience maps are the (negative) expected free energy as a function of action; namely, 
where to look next. Note that these maps change with successive saccades as posterior beliefs about hidden causes become more confident. Note 
also that salience is depleted in locations that were foveated in the previous saccade, because these locations no longer have epistemic affordance 
(i.e., the ability to reduce uncertainty or expected information gain). Empirically, this is known as inhibition of return. Oculomotor responses are 
shown in the third row in terms of the two hidden oculomotor states corresponding to vertical and horizontal eye movements. The associated 
portions of the image sampled (at the end of each saccade) are shown in the fourth row. The final two rows show the accompanying posterior 
beliefs, in terms of posterior expectations and 90% Bayesian credible intervals. This illustrates the nature of active inference when sampling data 
to disambiguate among hypotheses or percepts that best explain sensory evidence. Please see [54] for further details.

back to strange loops. This is nicely exemplified by Red Queen dynamics [2,162], which can be read as: moving 
forwards “one winds up, to one’s shock, exactly where one had started out”. Red Queen dynamics are one of many 
formulations of conservative, divergence-free, or solenoidal flow that underwrites nonequilibrium steady-states and 
the implicit breaking of detailed balance that characterises living systems [3,67,111].

To see why this kind of dynamics is characteristic of conservative particles, we turn to a complementary decom-
position of the flow afforded by a Helmholtz decomposition [1,11,33,34,63,101,143]. This decomposes the flow of 
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states into a conservative solenoidal component and a dissipative gradient flow that depends upon the amplitude of 
random fluctuations

f (x) = Q(x)∇�(x)︸ ︷︷ ︸
Conservative

−�(x)∇�(x)︸ ︷︷ ︸
Dissipative

−∇ · Q(x) + ∇ · �(x)︸ ︷︷ ︸
correction terms

. (36)

Here, �(x) = − lnp(x) is the self-information or surprisal under the (nonequilibrium steady-state) solution to the 
density dynamics in (1). The sensorimotor loop21—implicit in our definition of particle—ensures the presence of 
solenoidal flow, which breaks time-reversal symmetry [81].

When random fluctuations are small, the solenoidal contribution predominates, leading to chaotic itinerancy turbu-
lence, solenoidal mixing and strange attractors [48,110,115,120,150,154]. Solenoidal flow is conservative because it 
circulates on the level sets of the Lagrangian. This licenses the name conservative particles, as conservative flow gov-
erns the motion of particular states. In the limit of vanishingly small fluctuations, we have an attracting set of states to 
which the paths are confined. In other words, trajectories will always bring systemic states back to the neighbourhood 
of a previously occupied state; namely, ending up “where one had started out”. It is interesting to note that most of 
the biomimetic simulations referenced above are based on a Lagrangian (i.e., generative model) whose equations of 
motion have a strange attractor—an attracting set with a fractional dimension [102]; e.g., [47]. These attractors feature 
recurrent loops through Poincaré sections [22] that may qualify as a strange loop, of a sort.

8. Discussion

“Was it utterly absurd to seek behind the ordering structures of this world a ‘consciousness’ whose ‘intentions’ 
were these very structures?”

[70]

There are many issues that attend the free energy principle. We take this opportunity to briefly consider four.
The first is a link to early formulations of self-organisation in cybernetics; namely, Ashby’s Law of Requisite 

Variety [5] that underpins the Good Regulator Theorem [30], later articulated as the Internal Model Principle of 
control theory [39]. The Law of Requisite Variety pertains to the degrees of freedom of an agent’s internal model. 
Put simply, an organism (i.e., active particle) must have a repertoire of states that is at least equal to the number of 
fluctuations in the environment (i.e., external states). As often quoted: “only variety can absorb [destroy] variety”. In 
the present setting, this speaks to the number of generalised internal states, in relation to the number of generalised 
external states that matter. External states that matter are slow (dynamically unstable) states that can be distinguished 
from fast (dynamically stable) fluctuations [25,40,67,89]. The Law of Requisite Variety emerges under the above 
formalism from the requirement that the number of generalised internal states must be greater than the number of 
generalised external states (that matter). This follows because internal states play the role of sufficient statistics of a 
variational density over generalised external states, with one or more statistic for each external state. This instance of 
the Law of Requisite Variety speaks to the vague nature of sentient behaviour described by the free energy principle.

Sentience is read here as an attribute of behaviour that rests on inference; namely, movement on a statistical mani-
fold, on which internal states evolve [115,45]. Movement on this (statistical) manifold corresponds to belief updating 
and thereby an elementary kind of sentience or sense making with a well-defined information geometry [26,74,87]. 
Having said this, sentient behaviour can be so elemental as to be trivial. For example, a thermostat with one degree of 
freedom to act upon—and represent—its external milieu can only exhibit a weak sort of sentient behaviour from the 
perspective of a particle (like you and me) with a more expressive model of the thermostat and its external states. The 
FEP makes a clear commitment to describing sentience as embodied cognition, where embodiment is supplied by the 
interaction—and implicit boundary—between a ‘thing’ and everything else, formulated as dynamical coupling via a 
Markov blanket.

This touches on our second issue; namely, any empirical and philosophical claims about the free energy principle, 
in relation to sentient behaviour: in brief, the free energy principle is a method for describing the behaviour of certain 
kinds of particles that may have strong or weak sentience, depending upon the way in which one particle (e.g., 

21 By sensorimotor loop we mean that sensory states influence internal states that in turn influence active states, and not vice versa.
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you or me) makes sense of another (e.g., a thermostat). These attributes of strong or weak sentience emerge as a 
consequence of the interaction between the various states of a particle and the states external to it. It may be possible 
to experimentally demonstrate where any given particle (e.g., molecules, mice, and men) belongs in this sentient 
hierarchy by simply examining the nature of their particular dynamics. For example, this treatment of the FEP rests 
upon the smooth nature of fluctuations in (1), cf. [45], and the nature of the coupling in (10), both of which may be 
empirically tested via Bayesian selection of stochastic dynamical models given time-series data from a particle and 
its surrounding external states. On a more practical level, there are procedures for identifying nested Markov blankets 
(across scales) from empirical time-series. Please see [56] for a worked example using brain imaging data. Whether 
these procedures find purchase in decomposing distributed systems across scales, in empirical studies, remains to be 
seen.

When the world external to a particle is constituted of other particles, we enter the realm of collective behaviour 
and interacting particles. From the perspective of active matter, the key perspective offered by the FEP is the Markov 
blanket that segregates the internal degrees of freedom of a particle from other particles. It implies that agents implic-
itly have beliefs about other agents—that is, generative models that entail a sense of others, and perhaps a sense of 
self. Interactions between agents occur through the blanket in a process of active inference—not solely by mechanical 
forces—introducing a sentient aspect to interactions. The distinction between various particular kinds may be partic-
ularly apt to account for different kinds of active matter—from least to most sentient—as is encountered in varying 
degrees throughout the life sciences. It would be interesting to analyse the extent to which ensembles of increasingly 
sentient particles feature richer interactions (e.g., communication) among agents, in relation to the variously studied 
collective phenomena (e.g., pattern formation, flocking, and phase transitions). In machine learning, where interact-
ing particles are often used for the purpose of achieving a goal faster than a single particle could [20], introducing 
more sentient (i.e., beyond inert) particles may also lead to richer interactions and more ‘intelligent’ behaviour: from 
biological intelligence to distributed cognition [93].

Third, from a statistical perspective, there are interesting parallels between applications of the free energy principle 
and the complete class theorem [23,158]. The complete class theorem asserts that for any pair of behaviours and 
preferences, there are some priors that render the behaviour Bayes optimal. This translates, in the setting of the free 
energy principle, into the assertion that there exists some internal dynamics, which encode prior beliefs about external 
dynamics that render autonomous dynamics Bayes optimal. Whether this description of autonomous behaviour is an 
apt description of internal dynamics per se is a question that cannot be answered. This is because internal states are 
inaccessible, by construction—they are private to the particle in question. This leaves one in the game of inferring 
internal dynamics on the basis of sensory and active trajectories, which is a fair description of most of the life sciences; 
especially, the neurosciences: e.g., [161]. For example, much of modern neuroscience attempts to peer through the 
brain’s Markov blanket, using neuroimaging and electrophysiology. Or, breaching the Markov blanket to observe 
internal states, through the use of post-mortem studies and invasive procedures. Interestingly, much of computational 
neuroscience can be framed as finding the generative model that best explains a subject’s choices and responses [118].

Finally, it is worth noting many things have not been addressed in this brief account of the free energy principle. 
For example, we have ignored states that endow dynamics with a functional form; namely, the parameters of the 
equations of motion that define a Lagrangian. These parameters necessarily introduce a separation of temporal scales, 
in the sense that the parameters of the flow operators change slowly in relation to states. Anecdotally, this introduces 
a distinction between inference and learning over fast and slow timescales, respectively. At this level of analysis 
there are many outstanding issues [37]. For example, how does inference underwrite learning? Can autopoiesis [107]
be understood in terms of blanket-building at a slow timescale? Is there a natural progression over scales to more 
conservative (and strange) mechanics [80]? How do particles of particles behave [69,90,93,114] and so on . . .
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