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Abstract: The BlazePose, which models human body skeletons as spatiotem-
poral graphs, has achieved fantastic performance in skeleton-based action
identification. Skeleton extraction from photos for mobile devices has been
made possible by the BlazePose system. A Spatial-Temporal Graph Con-
volutional Network (STGCN) can then forecast the actions. The Spatial-
Temporal Graph Convolutional Network (STGCN) can be improved by
simply replacing the skeleton input data with a different set of joints that
provide more information about the activity of interest. On the other hand,
existing approaches require the user to manually set the graph’s topology
and then fix it across all input layers and samples. This research shows
how to use the Statistical Fractal Search (SFS)-Guided whale optimization
algorithm (GWOA). To get the best solution for the GWOA, we adopt the SFS
diffusion algorithm, which uses the random walk with a Gaussian distribution
method common to growing systems. Continuous values are transformed
into binary to apply to the feature-selection problem in conjunction with
the BlazePose skeletal topology and stochastic fractal search to construct a
novel implementation of the BlazePose topology for action recognition. In
our experiments, we employed the Kinetics and the NTU-RGB+D datasets.
The achieved actiona accuracy in the X-View is 93.14% and in the X-Sub
is 96.74%. In addition, the proposed model performs better in numerous
statistical tests such as the Analysis of Variance (ANOVA), Wilcoxon signed-
rank test, histogram, and times analysis.

Keywords: BlazePose; metaheuristics; convolutional networks; feature
selection; action recognition

1 Introduction

BlazePose is an architecture for human posture prediction using a lightweight convolutional
neural network optimized for real-time inference on mobile devices. During the inference process,
the neural network generates 33 crucial body points for a single individual and runs at a rate of over
30 frames per second on a Pixel 2 phone [1]. This is appropriate, particularly in real-time use cases such
as measuring one’s fitness and recognizing one’s sign language. In various applications, such as health
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monitoring, sign language recognition, and gestural control, estimating the human body’s position
from photographs or video is extremely important. This activity is challenging since there are many
poses, degrees of freedom, and obstructions. In the most recent study [2], pose estimation has shown
significant progress. The standard method generates heatmaps for every joint while simultaneously
adjusting offsets for every position. Although this choice of heatmaps can be used by many people
with only a little additional work required, it makes the model for a single individual significantly
more complex than what is needed for real-time inference on mobile phones. A specific application
scenario and demonstrate considerable speedups to the model with minimal to no loss in quality [3].

In contrast to methods based on heatmaps, regression-based approaches, despite being less
computationally intensive and more scalable, attempt to forecast the mean coordinate values. Still,
they frequently cannot resolve the ambiguity at the root of the problem. It has been demonstrated in
[4] that the stacked hourglass architecture dramatically improves the prediction accuracy, even when
using a reduced number of factors. Expanding on this idea, our previous work used an encoder-decoder
network architecture to predict heatmaps for all joints, followed by an encoder that regresses straight
to the coordinates of all joints.

2 Literature Review

We divided the review into two categories, the first for action recognition and the second for feature
selection.

2.1 Convolutional Networks Action Recognition
Primitive methods for recognizing actions performed by a skeleton typically used artificially-

created features and took advantage of relative 3D joint rotations and translations. Deep learning
introduced new algorithms that can improve robustness and achieve previously unattainable levels of
performance, ushering in a new era of innovation in activity recognition [5,6]. Such schemes depend
on the skeleton data in numerous ways, including the following: Strategies utilizing RNNs.

Graph Neural Networks, in deep learning, the term “geometric deep learning” refers to all
developing techniques that generalize deep learning models to non-Euclidean domains like graphs.
The concept of a Graph Neural Network (GNN), was first described in [7]. The hunch that underpins
GNNs is that the edges of a graph indicate the links between items or concepts, while the nodes
represent the objects or concepts themselves. GNNs process the graph in an iterative manner, each
time representing nodes as the outcome of applying a transformation on the features of nodes as well
as the features of their neighbors. The author [8] is credited with the original formulation of CNNs on
graphs. He adapted convolution to signals by employing a spectral construction in his work. After the
success of convolutional neural networks, the idea of convolution was eventually modified such that
it could be applied to graph data instead of the grid as shown in Fig. 1.

Computer vision transformers First proposed in [9] as an alternative to recurrent networks, the
Transformer has quickly become the dominant neural model for NLP. It was created to solve two
major problems: the difficulty in processing very long sequences using LSTM and RNNs, and (ii) the
difficulty in processing sentences using standard RNN architectures, typically done sequentially, word
by word. The goal of its creation was to solve these problems. The transformer functions similarly to an
encoder-decoder but wholly relies on multi-head self-attention. The transformer self-attention method
has seen widespread use in recent years, finding applications in several well-established computer vision
applications as shown in Fig. 2.
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Figure 1: Action recognition process using convolutional neural network

Figure 2: The Pose values detection by the neural network

2.2 Metaheuristics Algorithms for Feature Selection
Determining the best combination of characteristics is difficult and time-consuming to compute.

Recently, metaheuristics have been helpful and dependable methods for tackling various optimization
issues [10]. Some examples of these challenges include machine learning, data mining difficulties,
engineering design, and feature selection. Metaheuristics offer superior performance compared to
precise search methods since they do not have to look through the total search space. This frees
them from this burden. These search algorithms are only partially functional [11,12]. However, exact
approaches are comprehensive and ensure the discovery of the most effective solution to a problem,
provided that sufficient time and memory are available. They are ineffective solutions for issues
requiring a high level of computing complexity. Recently, scholars, particularly those working on
hybrid metaheuristics, have shown significant interest in optimization. For example, the first proposed
technique for feature selection utilizing a hybrid metaheuristic and used local search methods in
conjunction with the Genetic Algorithm (GA) algorithm. In the research that has been done on
Particle Swarm Optimization (PSO) for continuous search space problems, it has been combined
with several different metaheuristics. For instance, the PSOGA algorithm was proposed in [13]. This
algorithm combines PSO with GA. Other comparable works include a PSO combined with Differential
Evolution (DE) (PSODE; referenced in [14]), a hybrid PSO, and Gravitational Search Algorithm
(GSA) [15].
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In addition, the PSO algorithm was hybridized with the Bacterial Foraging Optimization method
to improve the power system’s stability [16]. These hybrid strategies try to share the strengths of
both of their components to increase the capability of exploitation while simultaneously minimizing
the likelihood of falling into an optimal local state. In a similar vein, GWO has received a great
deal of attention on the subject of hybrid metaheuristics. For example, the authors in [17] and [18]
have combined GWO and DE to test scheduling and continuous optimization. The authors of [19]
combined GWO and GA to reduce the value of potential energy functions.

The authors’ goal in [20] was to improve the performance of complex systems, where they proposed
a hybridization of GWO with Artificial Bee Colony (ABC). GWOSCA, presented in [21] and combines
GWO and the Sine Cosine Algorithm, is yet another hybrid technique (SCA). According to this
research’s findings, the hybrid approaches’ performance was significantly superior to that of other
global or local search methods. On the subject of feature selection, metaheuristics have also gained a
lot of traction in recent years. For example, in [22], a hybrid filter feature selection approach has been
proposed. This approach combines SA and GA to improve the searchability of GA. The performance
of this approach was tested on eight datasets obtained from UCI, and it received satisfactory results,
taking into account the attributes chosen. GA and SA were hybridized in another investigation, and
the resulting strain was evaluated based on its ability to hand-print Farsi characters [23]. In addition, a
hybrid PSO that utilizes an innovative local search approach founded on information correlation was
suggested in [24]. A hybrid genetic algorithm with particle swarm optimization called GPSO was used
to pick wrapper features using SVM as a classifier for microarray data [25]. The authors presented a
hybrid mutation operator for an enhanced multi-objective PSO [26], published in the same journal as
unreliable data. It was proposed in [27] that a hybrid GA with PSO may be used to improve the feature
set of digital mammogram datasets. Two hybrids, one utilizing ACO and the other using GA to select
features, were proposed in [28] and [29].

Another somewhat similar method can be found in reference [30]. As a feature selector, the authors
of [31] utilized a combination of DE and ABC. The authors in [32] proposed a hybrid harmony search
method that combines a local stochastic search with their original search for the same objective.
Recently, in [33], a hybrid WOA and SA were proposed to select wrapper features. In addition, in [34],
there was a proposal for feature selection that utilized a combination of GWO and antlion optimization
(ALO). By the (No Free Lunch) theorem, there has never been, there currently is not, and there will
never be an optimization method that can handle all problems related to optimization. Despite the
excellent performance of the approaches described above, it is safe to say that none of them can handle
all of the issues associated with the feature selection process [35–38]. An algorithm’s performance may
get worse when applied to datasets comparable to the ones it was designed for or datasets of a different
sort. As a result, the solutions to problems involving feature selection can be improved by making
enhancements to the approaches that are now in use [39–46].

3 The Proposed Methodology

The BlazePose system gives more information about joints than its predecessors and makes
tracking more accurate. We think that the BlazePose system’s increase in the number of joints in the
skeleton compared to other skeleton topologies (like OpenPose) will give us more information to help
improve the ST-GCN model’s performance. The first difference between the two systems is how they
figure out the pose from an image. OpenPose works from the bottom up, while BlazePose works from
the top down. The first method identifies the body parts in the image and then maps them to the right
person. The second method determines the person’s location and then estimates the main joints. We
propose a novel skeleton topology that can help improve the performance of the ST-GCN model even
more. The goal of the Enhanced-BlazePose topology is to make an even more accurate representation
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of the actions by adding more edges to the existing BlazePose topology. By adding feature selection
layers with SFS-Guided WOA, we hope to understand how the shoulders and head move together
during the activities. For the Kinetics dataset (D1) and the NTU-RGB+D dataset (D2). Fig. 3 shows
the proposed topology definition for action recognition.

Figure 3: The architecture of the proposed approach

3.1 SFS-Guided WOA for Feature Selection
Inspired optimizers have recently been introduced for feature selection optimization, and these

optimizers have been tested for their efficacy and capacity to move optimization problems from local
to global optimization. The wrapper-based approach and the filter-based approach, two standard
methods for assessing feature quality, are utilized. Using a population-based heuristic random
intelligence algorithm, the “whale optimization algorithm” introduces a new type of algorithm. The
algorithm’s local search ability is improved through a shrinking encircling mechanism and a spiral
ascending mechanism, both of which are inspired by the predation behavior of humpback whales. In
contrast, its global search ability is improved through a random learning method. It benefits from
having few control parameters, easy calculation, and robust optimal solution searching capability.
The Guided WOA is an improved version of the original WOA. Like the global search, the early WOA
would cause whales to swim aimlessly in circles. However, this method isn’t without flaws; for instance,
a more sophisticated system can replace a random whale’s search strategy and direct the whales to the
best possible solution or prey much more quickly. To boost exploration efficiency, the Guided-WOA
algorithm lets a whale follow not just one but three random whales. This can encourage whales to
expand their range without compromising their authority. The SFS algorithm uses a diffusion method
that generates random walks to find the best solution. The answer can serve as the basis for these. This
improves the exploratory power of the Guided WOA, and the diffusion process is employed to arrive
at the best option. Diffusion around the most up-to-date position includes Gaussian random walks as
shown in Fig. 4.
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Figure 4: (Continued)
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Figure 4: The SFS Guided WOA algorithm employed in feature selection

We resized each movie till it had the proportions 340 × 256 pixels. This did not consider any
video frames in which the BlazePose system did not identify a skeleton as being present. Limiting the
number of frames in the series of skeletons to just 300. As a result of this limitation, the majority of
videos featured a limited number of frames. Because of this, if a sequence contained fewer than 300
frames, we repeated the first few until we reached the appropriate length. On the other hand, if the
sequence contained more than 300 frames, we arbitrarily removed some excess frames. Using spatial
configuration partitioning for joint label mapping, the model is trained for 80 epochs.

3.2 Fitness Function
Each solution to the hybrid SFS Guided WOA is evaluated based on how well it meets a

fitness function. The fitness function is proportional to the percentage of incorrect classifications and
chosen features. Solutions are deemed effective if they reduce the number of features selected while
maintaining or improving classification accuracy. The following equation is used to determine how
effective each solution is:

Fitness = h1E (D) + h2

|s|
|f | (1)

where E(D) is the classification error rate for each dimension, s is the number of selected features, f
is the number of features and h1 ∈ [0, 1], h2 = 1 − h1 are constants that manage the importance of
classification error rate and the number of the selected feature.

4 Results and Discussion

The results are shown in two stages: First, the performance achieved in SFS-Guided WOA with
all feature selection performance metrics. The second SFS-Guided WOA, in conjunction with the
BlazePose skeletal topology and stochastic fractal search, constructs a novel implementation of the
BlazePose topology for action recognition.

4.1 Evaluation Metrics
Classification average error shows how accurate the classifier is given the selected feature set. The

classification average error can be calculated in Eq. (2).

AvgError = 1
M

M∑
j=1

1
N

N∑
i=1

mse(Ci, Li) (2)

where M is the number of the run to the algorithm, N is the number of test points, Ci the classifier
output label for the point i, Li is the class label for data point i, and Match is the function that calculates
if two inputs are matched or not.



2774 IASC, 2023, vol.37, no.3

The Best Fitness function is the smallest fitness value for a particular optimizer throughout
all M optimization steps. As the most optimistic of the solutions found, the best can be expressed
mathematically in Eq. (3).

best = minM
i=1g

i
∗ (3)

where gi
∗ is the optimal solution resulting from a run number i.

To execute an optimization process M times, the worst solution is the one with the worst Fitness.
It is possible to express the worst-case scenario mathematically as the Eq. (4).

worst = MaxM
i=1g

i
∗ (4)

The average Fitness size is a measure of the typical proportion of selected features to all available
features. The equation for this metric is Eq. (5).

AVGSelectionSize = 1
M

M∑
i=1

size
(
gi

∗
)

D
(5)

Given a dataset of size(x), the number of features is x, where size(x) is the number of unique
elements in the vector x. The mean represents the average of all solutions obtained by an optimization
algorithm under Mean M running conditions. The mean performance of any stochastic optimizer can
be expressed as a Eq. (6).

Mean = 1
M

1∑
M

gi
∗, (6)

Standard deviation represents the variation of the best solutions found for running a stochastic
optimizer for M different runs. Std is used as an indicator for optimizer stability and robustness. In
contrast, Std is smaller, which means that the optimizer always converges to the same solution, while
larger values for Std mean many random results. Std is formulated as in Eq. (7).

Std =
√

1
M − 1

∑
(gi

1 − Mean)2, (7)

where M is the number of times to run the optimization algorithm to select the feature subset, gi
1 is the

optimal solution resulting from run number i, and the Mean is the average defined in Eq. (6).

4.2 Feature Selection Results
Table 1 displays the results-based evaluation measures that were used. There are six different

evaluation measures shown here in the table. The results of the proposed feature selection algorithm
are compared to those of six alternative feature selection methods. It is clear from this table that the
proposed strategy achieves higher recorded values than the competing methods.

Table 1: Evaluation metrics of the proposed feature selection with comparison to other methods

Average error

Dataset SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA
D1 0.27276 0.28648 0.2768 0.285465 0.27374 0.2806 0.27374
D2 0.21014 0.22314 0.25091 0.230256 0.23596 0.24151 0.23083

(Continued)
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Table 1 (continued)

Average select size
Dataset SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA
D1 0.4167 0.4807 0.6107 0.4356 0.7057 0.6157 0.5757
D2 0.21206 0.34237 0.56661 0.3897 0.40752 0.56358 0.46661

Average fitness
Dataset SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA
D1 0.30049 0.33638 0.32279 0.3367 0.3237 0.3305 0.32376
D2 0.22215 0.25712 0.28462 0.23 0.2698 0.2753 0.26473

Best fitness
Dataset SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA
D1 0.20535 0.22476 0.22476 0.28599 0.2635 0.2635 0.22476
D2 0.17039 0.18731 0.22115 0.17711 0.1957 0.1703 0.20423

Worst fitness
Dataset SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA
D1 0.39988 0.41888 0.43829 0.36064 0.4382 0.4577 0.39946
D2 0.32162 0.33115 0.33962 0.36332 0.3565 0.3734 0.38192

Standard deviation fitness
Dataset SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA
D1 0.10857 0.12759 0.13527 0.12759 0.1219 0.1262 0.12604
D2 0.10867 0.11822 0.10904 0.15034 0.1180 0.1236 0.12324

On the other hand, the time consumed in feature selection using the proposed approach and other
approaches is presented in Table 2. In this table, we can see that the time required by the proposed
approach is much lower than the time required by the other methods in selection the significant features
necessary for action classification.

Table 2: Average time of the proposed feature selection method with comparison to other methods

Method Time in seconds for D1 Time in seconds for D2 Average time

SFS-GWOA 31.194 33.612 32.403
bGWO 33.838 35.543 34.6905
bPSO 33.52 35.115 34.3175
bSFS 34.92 34.87 34.895
bWAO 33.327 34.448 33.8875
bFA 34.548 35.132 34.84
bGA 33.794 35.068 34.431

The statistical analysis of the results is presented in Tables 3–8. This analysis is presented in terms
of the basic statistical measurements, one-way analysis of variance (ANOVA) and Wilcoxon signed-
rank test. The results are compared to the other feature selection methods to confirm the superiority
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and stability of the proposed approach. The results presented in these tables confirm the expected
findings.

Table 3: Statistical analysis for D1

SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA

Number of values 14 14 14 14 14 14 14
Minimum 0.2708 0.2855 0.2768 0.2755 0.2737 0.2806 0.2737
25% Percentile 0.2728 0.2865 0.2768 0.2855 0.2737 0.2806 0.2737
Median 0.2728 0.2865 0.2768 0.2855 0.2737 0.2806 0.2737
75% Percentile 0.2728 0.2865 0.2768 0.2855 0.2737 0.2806 0.2737
Maximum 0.2728 0.2965 0.2968 0.2885 0.2937 0.2906 0.2797
Range 0.002 0.011 0.02 0.013 0.02 0.01 0.006
Mean 0.2725 0.2873 0.2789 0.285 0.2759 0.2818 0.2745
Std. Deviation 0.000578 0.0027 0.00578 0.00284 0.00578 0.00314 0.00200
Std. Error of mean 0.000154 0.0007 0.00154 0.00076 0.00154 0.00084 0.00053
Sum 3.816 4.023 3.905 3.99 3.862 3.945 3.843

Table 4: Statistical analysis for D2

SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA

Number of values 14 14 14 14 14 14 14
Minimum 0.2101 0.2201 0.2409 0.2203 0.226 0.2315 0.2208
25% Percentile 0.2101 0.2231 0.2509 0.2303 0.236 0.2415 0.2308
Median 0.2101 0.2231 0.2509 0.2303 0.236 0.2415 0.2308
75% Percentile 0.2101 0.2231 0.2509 0.2303 0.236 0.2415 0.2308
Maximum 0.2121 0.2331 0.2609 0.2403 0.246 0.2615 0.2408
Range 0.002 0.013 0.02 0.02 0.02 0.03 0.02
Mean 0.2104 0.2236 0.2509 0.2303 0.236 0.2429 0.2303
Std. Deviation 0.000578 0.00284 0.00392 0.00392 0.00392 0.00663 0.00484
Std. Error of mean 0.000154 0.00076 0.00104 0.00104 0.00104 0.00177 0.00129
Sum 2.945 3.131 3.513 3.224 3.303 3.401 3.225

Table 5: One-way analysis of variance (ANOVA) Test for D1

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.00256 6 0.00042 F (6, 91) = 30.82 P < 0.0001
Residual (within columns) 0.00126 91 1.39E-05
Total 0.00382 97
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Table 6: One-way analysis of variance (ANOVA) Test for D2

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.01452 6 0.00242 F (6, 91) = 138.8 P < 0.0001
Residual (within columns) 0.00158 91 0.0000174
Total 0.01611 97

Table 7: Wilcoxon Signed Rank Test for D1

SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA

Theoretical median 0 0 0 0 0 0 0
Actual median 0.2728 0.286 0.276 0.285 0.273 0.280 0.273
Number of values 14 14 14 14 14 14 14
Wilcoxon Signed Rank Test
Sum of signed ranks (W) 105 105 105 105 105 105 105
Sum of positive ranks 105 105 105 105 105 105 105
Sum of negative ranks 0 0 0 0 0 0 0
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Exact or estimate? Exact Exact Exact Exact Exact Exact Exact
P value summary ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.2728 0.2865 0.276 0.285 0.273 0.280 0.273

Table 8: Wilcoxon Signed Rank Test for D2

SFS-GWOA bGWO bPSO bSFS bWAO bFA bGA

Theoretical median 0 0 0 0 0 0 0
Actual median 0.2101 0.2231 0.250 0.230 0.236 0.241 0.230
Number of values 14 14 14 14 14 14 14
Wilcoxon signed rank test
Sum of signed ranks (W) 105 105 105 105 105 105 105
Sum of positive ranks 105 105 105 105 105 105 105
Sum of negative ranks 0 0 0 0 0 0 0
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Exact or estimate? Exact Exact Exact Exact Exact Exact Exact
P value summary ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.2101 0.2231 0.2509 0.2303 0.236 0.2415 0.2308
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Another way to demonstrate the effectiveness of the proposed approach is by visualizing the
achieved results. Fig. 5 shows the quartile-quartile (QQ) plot for the achieved results based on the two
datasets, D1 and D2. In this figure, it can be noted that the performance of the proposed approach is
accurate in classifying the actions.

Figure 5: QQ plots. (a) For dataset D1, (b) For Dataset D2

In addition, the plots shown in Fig. 6 depict the values of the objective function for the two datasets
using the proposed feature selection algorithm compared to the other six feature selection methods. It
can be noted in this figure that the proposed approach is more accurate than the other approaches.

Figure 6: The values of the objective function (a) For dataset D1, (b) For Dataset D2

The histogram of the achieved results is shown in Fig. 7 for the two datasets. This figure is used
to study the stability of the proposed approach. This finding is confirmed by the results shown in this
figure compared to the other methods for both datasets.

4.3 Action Recognition Results
The action recognition results achieved by the proposed approach are compared to the previous

ST-GCN, ST-GDN, and BlazePose methods. The comparison results are presented in Table 9 regard-
ing the Kinetics dataset (D1).

The proposed approach is evaluated using the Cross-Subject (X-Sub) and Cross-View (X-View)
criteria suggested by the dataset’s developers. Table 10 presents the action recognition results using
the proposed approach. In this table, 50% st and 80% st correspond to the results obtained using the
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bp-50 and bp-80 subsets (D2). The accuracy achieved by the proposed approach in the case of 50% is
91.33% for X-View and 94.56% for the X-Sub, which are higher than the other methods included in the
conducted experiments. In addition, the accuracy of action recognition using the proposed approach
is 93.13% and 96.74% for 80% st of the dataset D2. These results confirm the effectiveness of the
proposed approach in recognizing human actions.

Figure 7: Histogram results. (a) For dataset D1, (b) For Dataset D2

Table 9: Accuracy performance for ST-GCN-based models on the Kinetics dataset (D1). In the table,
50% st and 80% st correspond to the results obtained using the bp-50 and bp-80 subsets, respectively

Method Top-1 Top-5

ST-GCN 30.70% 52.80%
ST-GDN 37.30% 60.65%
BlazePose, 50% st 36.78% 61.69%
BlazePose, 80% st 37.38% 65.20%
SFS-Guided WOA : BlazePose, 50% st 51.79% 77.13%
SFS-Guided WOA : BlazePose, 80% st 56.87% 81.44%

Table 10: Action recognition accuracy results. In the table, 50% st and 80% st correspond to the results
obtained using the bp-50 and bp-80 subsets (D2), respectively

Method X-view X-sub

ST-GCN 81.50% 88.30%
ST-GDN 89.70% 95.90%
BlazePose, 50% st 87.30% 90.34%
BlazePose, 80% st 87.62% 91.75%
SFS-Guided WOA : BlazePose, 50% st 91.33% 94.56%
SFS-Guided WOA : BlazePose, 80% st 93.14% 96.74%



2780 IASC, 2023, vol.37, no.3

5 Conclusion

This study introduces a new action-recognition method by building the BlazePose skeleton
topology on top of the ST-GCN architecture and selecting features with SFS-Guided WOA. We have
chosen the Kinetics and NTU-RGB+D benchmark datasets to give a reliable basis for comparison
with the baseline model in. When the visual data has been acquired in unconstrained contexts,
we advocated using alternative skeletal detection criteria to increase the model’s performance. We
conclude with research that contrasts the suggested strategy with BlazePose, ST-GCN, and ST-GDN.
We have demonstrated that BlazePose’s topology may be improved by selecting the appropriate
features for feet and hands, resulting in more precise data about the motion being captured. In
addition, the suggested topology in this research can improve performance even more. The potential
drawback of the proposed methodology is the complexity of the proposed feature selection methods.
However, this drawback can be verified when applying the proposed methodology on different case
studies, which is planned for the future work.
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