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Abstract The aging population worldwide is facing a 
significant increase in age-related non-communicable 
diseases, including cardiovascular and brain pathologies. 
This comprehensive review paper delves into the impact 
of the exposome, which encompasses the totality of 
environmental exposures, on unhealthy aging. It explores 
how environmental factors contribute to the acceleration 
of aging processes, increase biological age, and facilitate 
the development and progression of a wide range of age-
associated diseases. The impact of environmental factors 
on cognitive health and the development of chronic 

age-related diseases affecting the cardiovascular system 
and central nervous system is discussed, with a specific 
focus on Alzheimer’s disease, Parkinson’s disease, stroke, 
small vessel disease, and vascular cognitive impairment 
(VCI). Aging is a major risk factor for these diseases. 
Their pathogenesis involves cellular and molecular 
mechanisms of aging such as increased oxidative stress, 
impaired mitochondrial function, DNA damage, and 
inflammation and is influenced by environmental factors. 
Environmental toxicants, including ambient particulate 
matter, pesticides, heavy metals, and organic solvents, 
have been identified as significant contributors to 
cardiovascular and brain aging disorders. These toxicants 
can inflict both macro- and microvascular damage and 
many of them can also cross the blood–brain barrier, 
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inducing neurotoxic effects, neuroinflammation, and 
neuronal dysfunction. In conclusion, environmental 
factors play a critical role in modulating cardiovascular 
and brain aging. A deeper understanding of how 
environmental toxicants exacerbate aging processes 
and contribute to the pathogenesis of neurodegenerative 
diseases, VCI, and dementia is crucial for the 
development of preventive strategies and interventions 
to promote cardiovascular, cerebrovascular, and brain 
health. By mitigating exposure to harmful environmental 
factors and promoting healthy aging, we can strive to 
reduce the burden of age-related cardiovascular and brain 
pathologies in the aging population.

Keywords Exposome · Aging · Environmental 
pollution · Toxicology · Accelerated aging · 
Biological age

Introduction

The global population is experiencing a signifi-
cant increase in the number and proportion of indi-
viduals aged 60  years and older. According to the 
World Health Organization (WHO), the number of 
people over 60  years old reached 1 billion in 2019 
and is projected to surpass 2.1 billion by 2050 [1]. 
This demographic shift is accompanied by a rising 
prevalence of age-related non-communicable dis-
eases (NCDs) in aging societies, particularly in the 
Western world. These NCDs include cardiovascular 
and cerebrovascular diseases (such as heart failure, 

myocardial infarction, stroke, vascular cognitive 
impairment), cancers, chronic respiratory diseases 
(like chronic obstructive pulmonary disease), chronic 
kidney disease, type-2 diabetes mellitus, musculo-
skeletal diseases, and neurodegenerative diseases. 
The impact of these chronic age-related NCDs on the 
quality of life for affected individuals spans several 
decades and carries substantial socioeconomic impli-
cations for Western societies. Deterioration of cogni-
tive health associated with age-related NCDs is espe-
cially important in that regard.

In the USA, over 90% of older individuals have at 
least one chronic NCD, with approximately three-
quarters experiencing two or more [2]. The economic 
burden associated with age-related chronic diseases has 
been estimated at a staggering $47 trillion for the period 
from 2010 to 2030 [3]. The financial strain imposed 
by the costly care required for older individuals with 
age-related NCDs affects pension systems and health-
care systems alike. Recognizing the magnitude of this 
problem, the World Health Organization emphasizes 
the importance of focusing on prevention of age-related 
NCDs and the promotion of healthy aging [4, 5].

In recent years, advances in geroscience have led 
to a paradigm shift in our understanding of the patho-
genesis of chronic age-related NCDs [6, 7]. It is now 
recognized that all age-associated diseases share 
common underlying cellular and molecular mecha-
nisms of aging. These mechanisms include increased 
oxidative stress, cellular mitochondrial and ener-
getic dysfunction, impaired cellular stress resilience, 
genetic instability and DNA damage, induction of cell 
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senescence, heightened state of inflammation, epige-
netic dysregulation, altered proteostasis, disruption 
of intercellular communication (including endocrine 
changes), stem cell dysfunction, and dysregulation 

of energy sensing pathways [6, 8–10] (Fig. 1). These 
pathways are genetically determined, but environ-
mental and lifestyle factors play a critical role in 
modulating the rate of cellular and organismal aging, 

Fig. 1  Conceptual model illustrating the contribution of envi-
ronmental drivers to unhealthy aging, characterized by acceler-
ated aging processes, increased biological age, and the devel-
opment and progression of various age-associated diseases. 
Environmental toxicants (depicted in orange) play a key role 
in promoting age-related cardiovascular, cerebrovascular, and 
brain pathologies, as well as the pathogenesis of age-associated 
diseases in other organ systems. These toxicants exacerbate 
fundamental molecular and cellular aging processes (depicted 
as roots), which serve as the underlying mechanisms. The con-
sequences of accelerated vascular aging induced by toxicants 
give rise to the genesis of micro- and macrovascular patholo-
gies, including atherosclerotic vascular diseases, cerebral small 

vessel disease, and Alzheimer’s disease. Furthermore, many of 
these toxicants have the ability to cross the blood–brain barrier, 
leading to neurotoxic effects, neuroinflammation, and neuronal 
dysfunction, promoting the genesis of neurodegenerative dis-
eases and cognitive decline. Clinical disciplines, biogerontol-
ogy, and environmental toxicology, along with public health 
research, traditionally focus on specific age-related diseases 
(depicted as leaves), mechanisms of aging (depicted as roots), 
and environmental risk factors, respectively. Geroscience, as 
an integrative scientific field, considers the interaction between 
all these levels, facilitating a comprehensive understanding of 
the complex relationship between environmental factors and 
unhealthy aging
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thereby defining the trajectories of age-related func-
tional decline (Fig. 1). It is now emerging that envi-
ronmental and lifestyle risk factors can exacerbate 
fundamental cellular and molecular aging processes, 
promoting accelerated aging phenotypes and the pre-
mature development of chronic age-related NCDs 
(Fig. 1).

The role of the environment in controlling human 
aging is increasingly being explored within an 
exposomic framework [11]. The exposome, as origi-
nally proposed by Dr. Wild in 2005 [12], encom-
passes all environmental exposures from concep-
tion that influence health outcomes. It encompasses 
internal factors (e.g., physical activity, microbiome, 
metabolism), general external factors (e.g., education, 
social status, climate, urban–rural environment), and 
specific external factors (environmental pollutants 
and chemical contaminants, lifestyle factors, occupa-
tion). It is worth noting that in our developed world, 
the majority of the population is exposed to approxi-
mately 80,000 to 100,000 artificially produced sub-
stances in their daily lives. In heavily polluted work 
environments, this number can reach up to 200,000 
substances. The estimated number of “manmade” 
xenobiotic compounds currently stands at 10 mil-
lion, highlighting the extensive exposure to synthetic 
chemicals in our modern society. These environ-
mental toxicants have the potential to disrupt physi-
ological processes and promote the pathogenesis of 
NCDs. Understanding the impact of this vast array 
of chemical exposures on aging and age-related dis-
eases is critical for public health. Studies employing 
environmental epidemiology approaches, including 
geographical data linkages, have confirmed the signif-
icant contribution of exposure to environmental pol-
lutants, including particulate matter in air pollution 
and occupational exposures, to the shared exposome, 
influencing longevity, geographic clustering, and the 
development of various age-related chronic NCDs 
such as neurodegenerative diseases, cardiovascular 
diseases, and cancer [11, 13–23].

Notably, exposure to environmental toxicants has 
been shown to associate with molecular hallmarks 
of aging [24–31]. In this review, we delve into the 
pathophysiological roles of environmental toxicants 
in modulating the fundamental cellular and molecu-
lar mechanisms of aging. Specifically, we examine 
their contributions to the pathogenesis of age-related 
NCDs, with a particular focus on cardiovascular, 

cerebrovascular and brain pathologies (Fig.  1). The 
selection of exposure factors considered in this review 
is based on an extensive literature search, encompass-
ing a wide range of environmental toxicants, includ-
ing ambient particulate matter, pesticides, heavy met-
als, and organic solvents, which have been previously 
identified as significant contributors to aging disor-
ders in both the cardiovascular system and the brain. 
By exploring the interconnectedness between poten-
tial mechanisms of cardiovascular, cerebrovascular, 
and brain aging and the pathways affected by envi-
ronmental factors, we gain insights into the complex 
relationships between environmental toxicants and 
unhealthy aging processes. Additionally, we explore 
the interaction between these cellular and molecu-
lar aging processes and disease-specific pathways. 
By examining the intricate relationships between 
environmental toxicants and cardiovascular, cerebro-
vascular, and brain aging, we can identify potential 
targets for public health interventions aimed at pro-
moting healthy aging. By implementing preventive 
measures and interventions to mitigate the detrimen-
tal effects of environmental toxicants, we can strive 
to improve the overall well-being of the aging popu-
lation. Our comprehensive review aims to provide 
valuable insights into the multifaceted role of envi-
ronmental drivers in aging and guide future research 
efforts and public health strategies for healthy aging.

Exacerbation of chronic age‑related diseases 
by environmental toxicants

From a geroscience perspective, certain “risk fac-
tors” contribute to the pathogenesis of NCDs by 
exacerbating cellular and molecular mechanisms of 
aging (Fig.  1). Among these factors, environmental 
toxicants have been found to have significant detri-
mental effects on biological aging processes [20, 23, 
24, 26–35]. Research indicates that environmental 
toxicants play a critical role in the development of 
NCDs, with the World Health Organization (WHO) 
estimating that 24% (13.7 million) of all global deaths 
per year are linked to environmental factors [36]. 
Within this number, 8.5 million deaths are attrib-
uted to NCDs, and the top three causes related to the 
environment are ischemic heart disease, chronic res-
piratory diseases, and cancer. In the following sec-
tions, we will briefly discuss the interaction between 
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environmental toxicants, aging processes, and the 
genesis of organ-specific NCDs.

Cardiovascular diseases

Vascular aging contributes to the age-dependent rise 
in a broad range of macrovascular and microvascular 
pathologies, including hypertension, atherosclerotic 
diseases (such as ischemic heart disease, peripheral 
artery disease, and stroke), aortic aneurysms, heart 
failure, cerebral small vessel disease, and age-related 
microvascular pathologies affecting other organs 
(such as glomerulosclerosis, microvascular rarefac-
tion, and retinal pathologies) [8, 37, 38]. Aging alone 
confers a significantly higher risk for these diseases 
compared to “conventional” risk factors like lipid 
levels, smoking, diabetes mellitus, and sedentary life-
style [8, 37].

The cellular and molecular mechanisms of aging 
that contribute to the pathogenesis of age-related car-
diovascular diseases have been the subject of recent 
reviews [8, 37, 39]. Increased oxidative stress plays a 
significant role in vascular aging [8, 37, 40–51]. The 
elevated production of reactive oxygen species (ROS) 
leads to endothelial dysfunction by inactivating 
endothelium-derived nitric oxide (NO) and produc-
ing peroxynitrite (ONOO-) [8, 37, 52]. Consequently, 
it results in age-related reduction in endothelium-
dependent dilation [53, 54], enhanced vasoconstric-
tion, and dysregulation of tissue perfusion [8, 37]. 
The lack of NO and increased oxidative stress also 
promotes vascular inflammation and the development 
of a proatherogenic vascular phenotype in aging [8, 
37, 50]. Increased oxidative stress can activate matrix 
metalloproteinases, which disrupt the structural integ-
rity of aged arteries, potentially contributing to large 
artery stiffening and the pathogenesis of aortic aneu-
rysms and cerebral microhemorrhages [37, 44, 49, 
55–59]. Oxidative stress is also associated with DNA 
damage and DNA damage–induced cellular senes-
cence, which are additional mechanisms of aging 
contributing to vascular pathologies [37, 60, 61].

Mitochondrial alterations, including mitochondrial 
ROS production, impaired mitochondrial biogenesis, 
impaired cellular energy production, and mitochon-
drial DNA damage, further exacerbate vascular aging 
processes [8, 37, 39, 62–69]. Additionally, the release 
of several proinflammatory molecules increases with 
aging, leading to macrovascular and microvascular 

pathologies such as atherogenesis, aneurysm forma-
tion, and microvascular dysfunction [37].

The role of Nrf2, which coordinates an adaptive 
antioxidant response, has also been emphasized in 
recent studies [70–80]. Aging causes Nrf2 dysfunc-
tion in the vasculature, impairing the oxidative stress 
resilience of aged cells and contributing to age-related 
vascular pathologies induced by pro-oxidative, DNA 
damaging stimuli [75–77]. Aging also impacts the 
proteostasis system of the vasculature by impairing 
chaperones, the ubiquitin–proteasome system, and 
the lysosome-autophagy system [8, 37]. Furthermore, 
endothelial senescence contributes to endothelial dys-
function in aging and pathophysiological conditions 
associated with accelerated vascular aging [8, 37, 46, 
73, 81–83]. Epigenetic alterations, such as changes 
in DNA methylation patterns or miRNA dysregula-
tion, also contribute to impairment of angiogenic pro-
cesses, vascular inflammation, or atherogenesis [8, 
37].

The heart and vascular system are highly vulner-
able to various environmental agents. The Global 
Burden of Diseases, Injuries, and Risk Factors Study 
(GBD) estimated that long-term exposure to ambi-
ent fine particulate matter (PM2.5) contributed to 2.9 
million deaths globally each year, with nearly 50% of 
these deaths attributable to ischemic heart disease and 
stroke [84]. Even at concentrations below current reg-
ulatory standards in the USA and European Union, 
long-term exposure to PM10 and PM2.5 within met-
ropolitan areas is associated with the progression of 
coronary calcification, indicating accelerated athero-
sclerosis [85]. Air pollution has been identified as a 
risk factor for ischemic heart disease [86] and stroke 
[87, 88]. Ambient air pollution and household air pol-
lution from cooking with polluting fuels are estimated 
to cause 13 and 17% of cardiovascular diseases, 
respectively [89–91]. Acrolein, a highly reactive 
unsaturated aldehyde, is generated during the burn-
ing of diesel fuels, gasoline, woods, plastics, cigarette 
smoking, and frying of food with fats. The Environ-
mental Protection Agency classifies acrolein as a 
high-priority air and water toxicant. Strong evidence 
suggests that acrolein can cause damage to cardiac 
myocytes and endothelial cells, promoting endothe-
lial dysfunction, vascular disease, and heart failure 
[92–95].

Smoking and exposure to secondhand smoke play 
significant roles in the pathogenesis of cardiovascular 
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diseases [96, 97]. Cigarette smoke contains numerous 
harmful substances, including carbon monoxide, nic-
otine, and a range of toxic chemicals and particulate 
matter. Smoking is a well-established risk factor for 
cardiovascular diseases, particularly ischemic heart 
disease, peripheral artery disease, stroke and vascu-
lar cognitive impairment [96, 97]. The detrimental 
effects of smoking on the cardiovascular system arise 
from multiple mechanisms [98–109]. Firstly, smoking 
promotes the development of atherosclerosis by dam-
aging the endothelial lining of blood vessels, increas-
ing inflammation, and accelerating the formation of 
fatty deposits within the arterial walls [96, 97]. Sec-
ondly, smoking leads to increased oxidative stress and 
endothelial dysfunction, impairing the production and 
bioavailability of NO and promoting nitrative stress 
[96, 97, 103, 110, 111]. Increased oxidative stress 
also contributes to lipid oxidation, induces expression 
of adhesion molecules of the endothelium and acti-
vates macrophages and platelets [96, 97, 110, 111]. 
Macrophages engulf oxidized lipids, leading to the 
formation of foam cells within the aortic wall. Sub-
sequent foam cell death triggers the release of these 
lipids, promoting the development of lipid-rich aor-
tic plaques [96]. Furthermore, cigarette smoke leads 
to an increased expression and activity of matrix 
metalloproteinases (MMPs), as well as to decreased 
expression of MMP inhibitors causing alterations 
of vascular extracellular matrix and tissue remod-
eling that play a significant role not just in athero-
genesis but in the formation of aneurysms as well 
[96]. Moreover, smoking promotes platelet aggrega-
tion and blood clot formation, increasing the risk of 
thrombotic events. Additionally, smoking causes an 
unfavorable lipid profile, with lower levels of benefi-
cial high-density lipoprotein (HDL) cholesterol and 
elevated levels of harmful low-density lipoprotein 
(LDL) cholesterol. Furthermore, smoking induces 
systemic inflammation and adversely affects the bal-
ance of various pro-inflammatory and anti-inflam-
matory molecules, contributing to the progression 
of cardiovascular diseases [98, 102, 103, 112–114]. 
Results from the Cardiovascular Health Study suggest 
that smoking-induced inflammation promotes cardio-
myocyte injury exacerbating heart failure [115]. Sec-
ondhand smoke, which is the involuntary inhalation 
of smoke emitted by smokers, also poses a significant 
risk to cardiovascular health. Exposure to second-
hand smoke has been associated with an increased 

risk of developing cardiovascular diseases, similar to 
active smoking. The toxic components in secondhand 
smoke can lead to endothelial dysfunction, inflamma-
tion, and increased oxidative stress in non-smokers, 
thereby contributing to the pathogenesis of cardiovas-
cular diseases. Overall, the avoidance of smoking and 
secondhand smoke exposure is crucial for preventing 
and reducing the burden of cardiovascular diseases.

Water pollution is a significant environmental con-
cern that can have adverse effects on cardiovascular 
health. Various pollutants and contaminants found in 
water sources can increase the risk of cardiovascu-
lar diseases [116]. For example, arsenic in drinking 
water has been identified as a potential risk factor for 
cardiovascular diseases [117]. Prolonged exposure to 
elevated levels of arsenic in drinking water has been 
associated with an increased incidence of hyperten-
sion, atherosclerosis, and cardiovascular mortality 
[117]. Similarly, exposure to lead and cadmium, often 
found in contaminated water sources, has been linked 
to an elevated risk of developing cardiovascular dis-
eases [118–126]. Other pollutants present in water 
pollution that can pose harm to the cardiovascular 
system include mercury. Mercury is a toxic heavy 
metal that can contaminate water sources, primarily 
through industrial processes and the burning of fossil 
fuels. Chronic exposure to mercury has been associ-
ated with an increased risk of cardiovascular diseases, 
including hypertension, coronary artery disease, and 
myocardial infarction [127–134]. Water pollution 
may also contain various organic pollutants, such as 
polycyclic aromatic hydrocarbons (PAHs), pesticides, 
and industrial chemicals. These substances have been 
linked to adverse cardiovascular effects, including 
endothelial dysfunction, oxidative stress, inflamma-
tion, and disruption of cardiac function [135–137]. 
Water treatment processes often involve the use of 
chlorine and other disinfectants to eliminate micro-
bial contaminants. However, the reaction between 
chlorine and organic matter in water can lead to the 
formation of disinfection by-products (DBPs), such 
as trihalomethanes (THMs) and haloacetic acids 
(HAAs) [138–140]. Long-term exposure to elevated 
levels of DBPs in drinking water has been associ-
ated with an increased risk of cardiovascular diseases, 
particularly in relation to heart disease and adverse 
cardiac remodeling [138–140]. Microplastics are 
tiny plastic particles that have become a pervasive 
environmental pollutant, including in water sources. 
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While the direct impact of microplastics on cardiovas-
cular health is still being studied, emerging evidence 
suggests that microplastic exposure may contribute 
to oxidative stress, inflammation, and endothelial 
dysfunction, all of which can increase the risk of car-
diovascular diseases [141–147]. The specific health 
effects of water pollution may vary depending on the 
concentration and duration of exposure. To safeguard 
cardiovascular health, ensuring access to clean and 
uncontaminated water sources is crucial, along with 
implementing effective water treatment and pollution 
control measures.

The pollutants mentioned, ranging from PM2.5 
and cigarette smoke to microplastics, can exacer-
bate biological mechanisms of aging through vari-
ous interconnected pathways. Firstly, these pollut-
ants contribute to increased oxidative stress within 
cells of the cardiovascular system and other organs 
[148–158]. They generate excessive reactive oxygen 
species (ROS), overwhelming the body’s antioxidant 
defense mechanisms and leading to oxidative damage 
to cellular structures, including DNA, proteins, and 
lipids. This oxidative stress contributes to the accel-
eration of aging processes, as well as the development 
of age-related diseases.

Secondly, exposure to these pollutants can induce 
increased DNA damage and cellular senescence 
[159–163]. DNA damage can occur due to direct 
interaction with the genetic material or through the 
generation of ROS. Persistent exposure to pollutants 
can lead to accumulation of DNA damage, impair-
ing the cell’s ability to repair and maintain genomic 
integrity. In turn, this initiates cellular senescence, 
a state of irreversible growth arrest characterized by 
significant phenotypic alterations, including the emer-
gence of the pro-inflammatory senescence-associated 
secretory phenotype (SASP). This senescence-driven 
inflammatory milieu contributes to tissue dysfunction 
and accelerates the aging process.

Furthermore, pollutants have been shown to 
impact stem cell function [164–174]. Pesticides, 
tobacco smoke, and heavy metals have been identi-
fied as disruptors of stem cell homeostasis, leading to 
impaired regenerative capacity and tissue repair. This 
disruption can further contribute to accelerated aging 
and compromised organ function.

Inflammation is another critical mechanism 
affected by these pollutants [10, 155, 175–186]. 
Chronic exposure to pollutants can trigger a sustained 

inflammatory response within the cardiovascular sys-
tem and other organs as well. Inflammatory molecules 
are released, leading to the activation of immune cells 
and the production of pro-inflammatory mediators. 
This chronic state of inflammation contributes to tis-
sue damage, promotes aging-related pathologies, and 
increases the risk of age-related diseases.

Additionally, pollutants can disrupt mitochon-
drial function, leading to mitochondrial dysfunction 
[24, 26, 27, 30]. These toxic substances interfere 
with mitochondrial processes, such as energy pro-
duction and oxidative phosphorylation. As a conse-
quence, mitochondrial dysfunction occurs, leading 
to decreased energy availability, increased oxidative 
stress, and compromised cellular function.

In summary, environmental pollutants exacerbate 
biological mechanisms of aging through increased 
oxidative stress, increased DNA damage and cellu-
lar senescence, stem cell dysfunction, inflammation, 
mitochondrial dysfunction, and other interconnected 
pathways. Pollutants can also alter epigenetic mecha-
nisms of aging [187]. Understanding these mecha-
nisms is crucial for developing strategies to mitigate 
the detrimental effects of pollutants and promote 
healthy aging.

Environmental drivers of unhealthy cerebrovascular 
and brain aging

Alzheimer’s disease and Parkinson’s disease are the 
two most prevalent age-related neurodegenerative dis-
eases affecting the central nervous system. These con-
ditions have a profound impact on cognitive function, 
motor control, and overall quality of life, particularly 
in the elderly population. As individuals age, the inci-
dence of both Alzheimer’s and Parkinson’s diseases 
increases, highlighting the significant burden these 
conditions pose on global health [188–190]. The 
pathogenesis of Alzheimer’s and Parkinson’s diseases 
involves a complex interplay of genetic, environmen-
tal, and lifestyle factors. While the exact causes of 
these diseases remain to be fully elucidated, several 
mechanisms have been proposed to contribute to their 
development and progression. In the case of Alzhei-
mer’s disease, important hallmarks are microvascular 
pathologies (amyloid angiopathy, microhemorrhages, 
blood–brain barrier disruption) [191–201] and accu-
mulation of amyloid-beta plaques and tau tangles in 
the brain. These abnormal protein aggregates disrupt 
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normal neuronal communication and function, lead-
ing to cognitive decline. Importantly, hypertension 
has been found to exacerbate several manifestations 
of Alzheimer’s disease [55, 202–205]. Aging itself 
plays a crucial role in the development of Alzhei-
mer’s disease by contributing to increased oxidative 
stress [148, 206, 207], impaired mitochondrial func-
tion [25], DNA damage [208–211], and inflammation 
[212]. These aging-related processes can have signifi-
cant implications for the cerebral microcirculation, 
leading to the emergence of microvascular patholo-
gies and promoting the formation and accumulation 
of amyloid-beta and tau pathology, the hallmark fea-
tures of Alzheimer’s disease. Additionally, genetic 
factors, such as mutations in genes like amyloid pre-
cursor protein (APP) and presenilin 1 and 2 (PSEN1 
and PSEN2), can further increase the risk of develop-
ing Alzheimer’s disease.

Parkinson’s disease, on the other hand, is charac-
terized by the degeneration of dopaminergic neurons 
in the substantia nigra region of the brain. This neu-
ronal loss leads to motor symptoms such as tremors, 
rigidity, and bradykinesia. Aging is a significant risk 
factor for Parkinson’s disease, as the brain undergoes 
age-related changes that contribute to the vulnerabil-
ity of dopaminergic neurons. These changes include 
mitochondrial dysfunction, impaired protein han-
dling and clearance mechanisms, oxidative stress, 
and inflammation. Additionally, genetic factors, such 
as mutations in the alpha-synuclein (SNCA) gene 
and genes involved in mitochondrial function, can 
increase the susceptibility to Parkinson’s disease.

Cognitive impairment caused by macrovascu-
lar (atherosclerosis) and microvascular pathologies 
(vascular cognitive impairment or VCI) is the second 
most common form of age-related cognitive decline 
[213–217]. Microvascular pathologies also play a 
central role in the pathogenesis of Alzheimer’s dis-
ease [55, 191, 193, 194, 198, 218, 219]. Age-related 
changes in the microvasculature [220–225], includ-
ing alterations in endothelial function [59, 226, 227], 
blood–brain barrier integrity [199, 200, 228], and cer-
ebral blood flow regulation, contribute to cognitive 
impairment and the development of neurodegenera-
tive diseases.

Environmental toxicants can adversely affect cer-
ebrovascular and brain health. Common sources of 
environmental pollutants linked to neurotoxic mani-
festations include pesticides, solvents, industrial 

waste, automobile exhaust, cigarette smoke and 
burning of terrestrial waste. Growing epidemiologi-
cal and experimental evidence suggests that expo-
sure to environmental toxicants, such as pesticides 
[229], heavy metals (e.g., lead) and organic solvents 
(e.g., trichloroethylene, n-hexane, and others) [230, 
231], exerts neurotoxic effects and may increase the 
risk of developing Alzheimer’s and Parkinson’s dis-
eases [25]. These toxicants may damage the cerebral 
microvasculature and also can cross the blood–brain 
barrier, leading to cytotoxic effects, neuroinflamma-
tion, and consequential neuronal dysfunction and 
injury. Ambient outdoor air pollution has also been 
implicated in the exacerbation of the pathogenesis 
of both Parkinson’s and Alzheimer’s diseases [148, 
208, 232–242]. Longitudinal cohort studies have 
shown associations between increased levels of 
PM2.5 (fine particulate matter) and a higher hazard 
of hospital admission for Parkinson’s disease and 
Alzheimer’s disease and related dementias [243]. 
Neurovascular damage and cerebromicrovascular 
dysfunction are increasingly recognized as impor-
tant contributors to cognitive decline and neuro-
degeneration [59, 199–201, 244–246]. Cells of the 
neurovascular unit, including cerebromicrovascular 
endothelial cells, pericytes, astrocytes, and perivas-
cular microglia, are sensitive to the harmful effects 
of environmental toxicants [29, 247, 248].

The cellular and molecular mechanisms underly-
ing the impact of environmental toxicants on neuro-
degeneration and neurovascular injury can involve 
mitochondrial dysfunction [25–31], which impairs 
cellular energy production, metabolism, alters intra-
cellular signaling, promotes increased free radical 
production, and apoptosis. Environmental toxicants 
can also exacerbate oxidative stress [208], which is 
causally linked to microglia activation and neuro-
inflammation [10], cellular senescence [249, 250], 
and protein aggregation, ultimately leading to neu-
ronal damage and death. It is likely that air pollu-
tion contributes to neuronal injury, oxidative stress, 
neuroinflammation, and cerebromicrovascular 
impairment, thereby exacerbating the pathogenesis 
of neurodegenerative diseases [148, 208, 235, 237, 
241, 242]. The complex interplay between environ-
mental toxicants and the underlying cellular and 
molecular mechanisms highlights the importance 
of understanding and mitigating the impact of these 
environmental drivers to promote brain health and 
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reduce the burden of cerebrovascular and neurode-
generative disorders.

Pulmonary diseases

Aging has a significant impact on the incidence 
and development of pulmonary diseases, particu-
larly chronic obstructive pulmonary disease (COPD 
[251–254]) and other respiratory disorders. In 2019, 
there were 212.3 million prevalent cases of COPD 
reported globally, resulting in 3.3 million deaths 
and accounting for 74.4 million DALYs (disability-
adjusted life years) [255]. The prevalence and death 
rate of COPD show an increasing tendency with age, 
peaking in the oldest age group (≥ 95  years) [255]. 
Studies have revealed that the prevalence of COPD is 
two to three times higher in individuals over the age 
of 60  years compared to younger age groups [256]. 
Furthermore, there are striking similarities between 
the mechanisms of lung aging and COPD, includ-
ing cell senescence, shortened telomeres, inflamma-
tion, and oxidative stress, suggesting that accelerated 
aging processes may be involved in the pathogenesis 
of COPD [256–259].

Ambient particulate matter, a major component 
of outdoor air pollution, is considered a significant 
risk factor for respiratory disorders such as COPD. 
While tobacco smoking was traditionally seen as the 
primary cause of COPD, it is now recognized that air 
pollution, including fine particulate matter, plays a 
substantial role in the development and progression 
of the disease. According to the World Health Organ-
ization (WHO), 18% of premature deaths related to 
outdoor air pollution are attributed to COPD, mak-
ing it the most prevalent chronic respiratory disor-
der [260]. Additionally, 25% of deaths from chronic 
COPD can be attributed to exposure to household air 
pollution, primarily in low- and middle-income coun-
tries. Certain occupational environments, such as coal 
and hard-rock mining, construction work, and various 
manufacturing industries (e.g., concrete, plastics, tex-
tiles, rubber, leather, and food products), pose a high 
risk for COPD [261–263].

The cellular and molecular mechanisms underly-
ing the impact of air pollution and other environ-
mental toxicants on the genesis of pulmonary dis-
eases involve several interconnected pathways. These 
include increased oxidative stress, DNA damage, cel-
lular senescence, inflammation, and mitochondrial 

dysfunction. Exposure to air pollution and environ-
mental toxicants leads to an imbalance between the 
production and neutralization of ROS, resulting in 
increased oxidative stress. This oxidative stress con-
tributes to cellular injury, DNA damage and induc-
tion of senescence, inflammation, and the activation 
of signaling pathways involved in the pathogenesis 
of pulmonary diseases. Chronic inflammation, trig-
gered by environmental toxicants, can perpetuate 
tissue damage and contribute to the progression of 
pulmonary diseases. Additionally, mitochondrial dys-
function, caused by exposure to pollutants, disrupts 
cellular energy production and metabolism, further 
compromising lung function.

Malignant diseases

The etiology of cancer is multifaceted, influenced 
by a wide range of factors, and varies depending on 
the specific type of cancer. Many cancers are consid-
ered quintessential diseases of aging (e.g., colorectal 
cancer, multiple myeloma [264]), as their incidence 
increases exponentially with age, and mechanisms 
associated with aging contribute to their pathogen-
esis [265, 266]. In animal models, interventions and 
genetic manipulations that delay aging and extend 
lifespan, such as caloric restriction, have been shown 
to exert significant anti-cancer effects [267–274]. 
Conversely, interventions and genetic manipulations 
that accelerate aging and shorten lifespan promote 
tumorigenesis and cancer progression [275–277].

Numerous environmental factors have been caus-
ally linked to the genesis of various cancer types. 
Outdoor air pollution, for example, has been identi-
fied as a cause of lung cancer occurrence [278, 279] 
and is increasingly being associated with other types 
of cancer, including bladder cancer and breast cancer 
[280]. Indoor air pollution resulting from the burning 
of solid fuels has been associated with oral, cervical, 
and esophageal cancer [279].

Workplace or home exposure to a wide range of 
chemicals has also been causally linked to the devel-
opment of diverse types of cancer. Asbestos, silica, 
diesel exhaust, uranium, arsenic, beryllium, cadmium, 
silica, vinyl chloride, nickel compounds, chromium 
compounds, coal products, mustard gas, and chloro-
methyl ethers are significant risk factors for lung can-
cer [281–291]. Exposure to vinyl chloride increases 
the risk of liver cancer [292–295], while limited 
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evidence suggests an increased risk with exposure to 
arsenic [296] and trichloroethylene [297, 298].

The International Agency for Research on Cancer 
(IARC) classifies asbestos as a cause of ovarian can-
cer, as well as other cancers [299]. Long-term work-
place exposure to polycyclic aromatic hydrocarbons 
(PAH) and already banned chemicals like arylamines 
is linked to bladder cancer [300, 301]. Chemicals 
used in the rubber production industry, coal and tin 
mining and metal processing increase the risk of gas-
tric cancer, and exposure to asbestos and inorganic 
lead compounds has limited evidence linking them 
to gastric cancer [302–304]. Occupational exposure 
to trichloroethylene, organochlorine and organophos-
phate pesticides increases the risk of non-Hodgkin’s 
lymphoma [305–308]. Importantly, women’s hair-
dresser and textile occupations increase non-Hodg-
kin’s lymphoma risk [308].

Laryngeal cancer risk is elevated with exposure to 
coal dust, paint fumes, diesel fumes, formaldehyde, 
nickel, isopropyl alcohol, and asbestos [309–316]. 
Furthermore, there are other environmental toxicants 
known to cause cancer that should be considered. 
Glyphosate, a commonly used herbicide, has raised 
concerns and is being investigated for its potential 
carcinogenic effects [317–321]. Benzene, a chemi-
cal found in gasoline, industrial solvents, and tobacco 
smoke, is a known carcinogen associated with vari-
ous cancers, including leukemia and multiple mye-
loma [322–329]. Ionizing radiation, such as in-house 
exposure to radon, is a risk factor for lung cancer and 
possibly ovarian cancer [330]. Exposure to ultraviolet 
(UV) radiation is a major risk factor for most melano-
mas [331].

The cellular and molecular mechanisms of aging 
that are exacerbated by the aforementioned environ-
mental factors and exposures contribute to tumo-
rigenesis. These mechanisms include increased pro-
duction of ROS, DNA damage, genetic instability, 
and various other pathways associated with aging. 
The interplay between these aging mechanisms and 
the effects of environmental toxicants contributes to 
the initiation and progression of malignant diseases. 
Importantly, there is evidence that the inflammatory 
milieu maintained by senescent cells contribute to 
the development of metastases [332–336]. Under-
standing the impact of environmental toxicants on 
accelerated aging and cancer development is crucial 
for implementing preventive measures, promoting 

environmental regulations, and reducing the burden 
of cancer in aging populations. Continued research 
and vigilance are needed to identify and mitigate the 
risks associated with exposure to environmental toxi-
cants and their role in cancer incidence.

Diseases of the musculoskeletal system

Aging of the musculoskeletal system plays a signifi-
cant role in the pathogenesis of common diseases that 
have a negative impact on the quality of life, such as 
osteoporosis, sarcopenia, rheumatoid arthritis, and 
osteoarthritis [337]. Osteoporosis, characterized by a 
dysregulation of osteoclast and osteoblast function, is 
influenced by age-related mechanisms including the 
accumulation of senescent cells, heightened inflam-
mation, mitochondrial dysfunction, and dysregu-
lated autophagy [338–341]. Mechanisms underlying 
the pathogenesis of osteoporosis involve endocrine 
changes, dysfunction of myo-satellite cells, increased 
inflammation, elevated reactive oxygen species pro-
duction, macromolecular damage, and dysregulation 
of proteostasis, cellular energetics, and mitochondrial 
function [342–357]. Sarcopenia, the gradual decline 
in muscle mass and strength, contributes to frailty and 
increases the risk of falls and life-threatening bone 
fractures in older adults, particularly when combined 
with osteoporosis. The mechanisms underlying sarco-
penia involve impaired muscle protein synthesis, dys-
regulation of anabolic and catabolic signaling path-
ways, mitochondrial dysfunction, increased oxidative 
stress, and altered muscle stem cell function, all con-
tributing to the progressive loss of muscle mass and 
strength with advancing age. Rheumatoid arthritis, a 
chronic autoimmune disease affecting the joints, also 
exhibits an increased incidence with age. The aging 
of the immune system, known as immunosenescence, 
and subsequent dysregulation of inflammatory pro-
cesses are implicated in the pathogenesis of rheuma-
toid arthritis [358].

There are several environmental toxicants that 
have been linked to the development of musculoskel-
etal diseases.

Accumulating evidence suggests that both outdoor 
and indoor air pollution have detrimental effects on 
musculoskeletal aging. Two comprehensive studies, 
involving over 9 million individuals aged 65  years 
and older over an 8-year period, have demonstrated an 
association between poor air quality and longitudinal 
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bone loss. Individuals living in areas with higher con-
centrations of PM2.5 particles were found to have a 
greater risk of osteoporotic fractures [359]. Further-
more, emerging evidence suggests a potential link 
between ambient air pollution and arthritis [360, 
361]. Household air pollution exposure may also 
play a significant role in the development of arthri-
tis, particularly in low- and middle-income coun-
tries [362]. Understanding the effects of air pollution 
on musculoskeletal aging is of great importance for 
public health. Mitigating exposure to poor air qual-
ity and implementing measures to improve air pol-
lution levels may help prevent or reduce the burden 
of musculoskeletal diseases associated with aging. 
Further research is needed to elucidate the underlying 
mechanisms linking air pollution and musculoskeletal 
disorders, as well as to explore potential interventions 
and strategies for promoting healthy musculoskeletal 
aging in an increasingly polluted environment.

Exposure to lead, commonly found in old paint, 
contaminated water, and certain occupational set-
tings, has been associated with various musculoskel-
etal disorders [363–365]. Lead exposure can impair 
bone health, leading to decreased bone mineral den-
sity, increased fracture risk, and disturbances in bone 
remodeling. Certain organophosphate pesticides used 
in agricultural practices have been implicated in mus-
culoskeletal disorders [366]. Prolonged exposure to 
these pesticides has been associated with decreased 
grip strength, muscle weakness, and altered neuro-
muscular function. Cadmium is a toxic metal present 
in certain industrial processes, batteries, and cigarette 
smoke. Prolonged exposure to cadmium has been 
linked to adverse effects on bone health, including 
decreased bone mineral density, osteoporosis, and 
an increased risk of fractures [367]. Polychlorinated 
biphenyls (PCBs) are persistent organic pollutants 
that were widely used in electrical equipment and 
industrial applications. Exposure to PCBs has been 
associated with adverse effects on the musculoskel-
etal system [368–370].

Certain toxicants have been associated with an 
increased risk or exacerbation of arthritis. For exam-
ple, occupational exposure to crystalline silica, 
commonly found in industries such as mining, con-
struction, and manufacturing, has been linked to an 
increased risk of developing rheumatoid arthritis 
[371–375]. It is also possible that prolonged exposure 
to benzene, a chemical commonly found in industrial 

settings and certain products such as gasoline, and to 
vinyl chloride, commonly found in the plastics indus-
try, may also increase the developing of autoimmune 
diseases, such as arthritis [376, 377].

The mechanisms by which environmental toxicants 
exacerbate musculoskeletal diseases are complex 
and involve multiple pathways, including impaired 
satellite cell function, dysregulation of hormonal 
signaling, mitochondrial dysfunction, disruption of 
intracellular signaling pathways involved in muscle 
protein turnover induction of oxidative stress and 
inflammation.

Perspectives

In conclusion, the impact of environmental factors 
on unhealthy cardiovascular, cerebrovascular, and 
brain aging cannot be overstated. The integration of 
geroscience, environmental health sciences, and toxi-
cology is crucial in bridging gaps and enhancing our 
understanding of the relationship between environ-
mental drivers and aging processes. This multidisci-
plinary approach promotes collaborative efforts and 
enables a comprehensive assessment of the complex 
interplay between environmental factors and aging 
outcomes.

The exposomic framework has emerged as a 
powerful tool in advancing our understanding of 
the associations between environmental factors and 
healthy aging. By capturing the totality of environ-
mental exposures throughout an individual’s life, the 
exposomic approach provides a holistic perspective 
on the cumulative effects of these exposures on aging 
processes. While capturing exposures over a lifetime 
poses challenges and requires resources, leveraging 
historical data sources such as retrospective surveys 
or longitudinal cohorts offers a practical avenue for 
conducting research in this area. By harnessing exist-
ing data, researchers can gain valuable insights into 
the long-term impact of environmental exposures on 
aging and identify potential strategies for promoting 
healthy aging in the population.

Biomarkers of biological age have emerged as 
valuable tools for assessing the effects of environ-
mental toxicants on aging. These biomarkers provide 
objective measures of an individual’s physiological 
state and reflect the cumulative impact of genetic, 
lifestyle, and environmental factors on the aging 
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process. Telomere length, epigenetic modifications, 
DNA damage markers, inflammation markers, oxida-
tive stress markers, and mitochondrial function indi-
cators are among the commonly used biomarkers of 
biological age. Assessing the effects of environmen-
tal toxicants on aging through biomarkers allows for 
a comprehensive understanding of the underlying 
mechanisms and helps identify individuals at higher 
risk of accelerated aging or age-related diseases.

Emerging methodologies for determining biologi-
cal age, such as epigenetic clocks, proteomic clocks, 
and lipidomic clocks, have brought new insights to 
the field of aging research [378–383]. Epigenetic 
clocks utilize DNA methylation patterns to predict 
biological age, while proteomic clocks assess changes 
in protein levels and modifications associated with 
aging. By integrating these clocks with physiological 
measurements, researchers can obtain a more com-
prehensive understanding of an individual’s biologi-
cal age and the factors influencing the rate of aging. 
These methodologies hold great potential for advanc-
ing our understanding of healthy aging, identifying 
individuals at higher risk of age-related diseases, and 
developing targeted interventions to promote health-
ier and more vibrant aging.

Integrating the analysis of biological age and 
biomarkers of aging with epidemiological and toxi-
cological studies allows for a more comprehensive 
assessment of the relationship between environmental 
toxicants and aging. This multidimensional approach 
provides valuable data for developing strategies to 
mitigate the adverse effects of toxicants, promoting 
healthier aging, and informing public health policies 
aimed at reducing exposure to harmful environmen-
tal factors. Longitudinal studies tracking changes in 
biomarker profiles and the subjects’ biological age 
in response to environmental exposures can provide 
valuable information on the impact of toxicants over 
time. Additionally, biomarker assessments can aid in 
evaluating the effectiveness of interventions or pre-
ventive measures aimed at mitigating the detrimental 
effects of toxicants on aging.

A geroscience approach to environmental health 
sciences will further identify potential new areas of 
interdisciplinary research. Environmental toxicants 
can exacerbate mitochondrial DNA damage and 
mutagenesis, accelerating mitochondrial aging and 
promoting dysfunction, cellular energetic dysfunc-
tion, apoptosis signaling, and increased production 

of mitochondria-derived free radicals [384]. Future 
epidemiological studies should aim to character-
ize in detail the impacts of environmental chemical 
exposures on mitochondrial DNA mutagenesis, link-
ing it to the genesis of accelerated aging phenotypes 
and the incidence of age-related non-communicable 
diseases.

Furthermore, intersecting area-level indicators 
with trends in biological aging and the incidence of 
age-related diseases in a population opens new hori-
zons in epidemiology. By employing this approach, 
longitudinal studies can lead to a deeper under-
standing of the role of the exposome in modulating 
biological aging processes and its contribution to 
health inequalities in aging. Identifying the role of 
environmental toxicants in accelerated aging and 
the increased prevalence of cognitive impairment, 
dementia, and other age-related diseases in vulnerable 
populations will advance opportunities for interven-
tion and prevention.

In summary, by advancing our knowledge of 
the environmental drivers of unhealthy aging and 
employing an integrative approach, we can develop 
effective strategies to promote healthier aging, miti-
gate the detrimental effects of environmental toxi-
cants, and improve the overall well-being of the aging 
population.
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