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Abstract

Genome-wide single nucleotide polymorphisms (SNPs) data are increasingly

used in estimating the current effective population sizes (Ne) for informing the

conservation of endangered species and guiding the management of exploited

species. Previous assessments of sibship frequency (SF) and linkage disequilib-

rium (LD) estimators of Ne focused on small populations where genetic drift is

strong and thus Ne is easy to estimate. Genomic single nucleotide polymor-

phism (SNP) data provide ample information and hold the potential for applica-

tion of these estimators to large populations where genetic drift is rather weak

and thus Ne is difficult to estimate. In this study, I simulated very large popula-

tions and sampled a widely variable number of individuals (genotyped at 10,000

SNPs) for estimating Ne by both SF and LD methods. I also considered the more

realistic situation where a population experiences a bottleneck, and where marker

data suffer from genotyping errors. The simulations show that both SF and LD

methods can yield accurate Ne estimates of very large populations when sampled

individuals are sufficiently numerous. When n is much smaller than Ne, however,

Ne estimates are in a bimodal distribution with a substantial proportion of the esti-

mates being infinitely large. For a population with a bottleneck, LD estimator

overestimates and underestimates the Ne of the parental population from samples

taken at and after the bottleneck, respectively. LD estimator also overestimates

Ne substantially when applied to data suffering from allelic dropouts and false

alleles. In contrast, SF estimator is unbiased and accurate when populations are

changing in size or markers suffer from genotyping errors.
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1 | INTRODUCTION

Effective population size (Caballero, 1994; Wright, 1931) is
a pivotal parameter in population genetics. It determines
the strength of genetic stochasticity (measured by rates of
inbreeding and genetic drift) of a population and
affects the efficacy of all systematic evolutionary forces,
such as selection and migration, acting on a population
(Crow & Kimura, 1970). As a result, it determines the
genetic diversity and the evolutionary potential of a
population. Populations of conservation concern have
a small Ne and are thus vulnerable to the loss of genetic
diversity due to drift, to the decline of fitness due to
inbreeding and inbreeding depression, to the accumu-
lation of mutational load, and to the loss of adaptabil-
ity (Frankham, 2005). Measuring and monitoring the
Ne of an endangered species is thus critically important
in assessing the risks of extinction both in the short
terms and in the long run, and in gauging the effectiveness
of conservation managements (Frankham et al., 2014).
Similarly in the management of exploited species such as
some marine fishes, monitoring Ne is helpful in assessing
the population density and in making management or har-
vest decisions (Marandel et al., 2019).

Quite a few methods have been developed and
applied to estimating Ne from data of various genetic
markers (Leberg, 2005; Luikart et al., 2010; Wang, 2005;
Wang et al., 2016), first enzyme polymorphisms, then
microsatellites and now SNPs. For the contemporary or
current Ne, which is relevant for conservation and man-
agement of populations (Luikart et al., 2010), the most
well-studied and widely applied estimators are temporal
(TM) methods (Krimbas & Tsakas, 1971; Nei &
Tajima, 1981; Wang, 2001; Waples, 1989), sibship fre-
quency (SF) methods (Wang, 2009), and linkage disequi-
librium (LD) methods (Hill, 1981; Waples, 2006).
TM methods exploit the changes in marker allele frequen-
cies between two or more temporally spaced samples as
information to estimate the genetic drift (Ne) occurred dur-
ing the sampling period (Nei & Tajima, 1981). SF methods
use the frequency of estimated full- and half-sibling pairs in
a sample of individuals taken at random from a population
as information for the Ne of the population at the sampling
point of time (Akita, 2020; Wang, 2009). LD methods esti-
mate the average LD between pairs of loci from the geno-
type data of a single sample of individuals as information
for Ne (Hill, 1981). Compared with SF and LD methods
which use a single sample, TM methods are more demand-
ing because they require at least two samples taken from
the same population separated by at least one generation.
For this reason, single sample-based methods, especially
LD methods, have gained more popularity over the recent
years (Marandel et al., 2019).

The strength of genetic drift and inbreeding in a pop-
ulation and thus the strength of signal in a sample drawn
from the population is reciprocally proportional to the
Ne of the population. This is true no matter the signal is in
the form of LD (Hill, 1981), sib frequency (Wang, 2009), or
temporal allele frequency changes (Nei & Tajima, 1981).
Therefore, while Ne can be estimated with ease (i.e., with
low sampling effort) and with reasonably high accuracy for
small populations, it becomes tremendously difficult to
estimate with satisfactory accuracy for moderately large
populations (say, Ne in the thousands) even when an
extremely high sampling intensity (i.e., sampling many
individuals and many markers) is applied (e.g., Marandel
et al., 2019). Although these Ne estimation approaches
are primarily developed for and applied to conservation
populations which are typically small, they are also
increasingly exploited for understanding the demography
of managed or harvest populations which can be large
(e.g., Delaval et al., 2022; Marandel et al., 2019;
Nadachowska-Brzyska et al., 2021). Marine fish popula-
tions are usually very large. To understand their genetic
status (e.g., population trends whether shrinking, stable,
or increasing) and thus to inform management or harvest
decisions, population Ne is increasingly measured from
marker data using the LD approach (e.g., Hoarau
et al., 2005; Laurent & Planes, 2007; Poulsen et al., 2005).
Simulation studies (Macbeth et al., 2013; Marandel
et al., 2019) confirm that large populations pose a serious
challenge to the LD approach. To reduce negative Ne esti-
mates (usually interpreted as infinitely large) to a reason-
ably low level, an untypically large sample of individuals
(in the thousands) is necessary (Marandel et al., 2019).
Unfortunately, no empirical or simulation studies are
conducted to investigate how the SF approach performs
in the challenging situation of large populations. Current
knowledge of the behavior and performance of this
approach is based on simulations (Wang, 2009, 2016;
Waples, 2021) of small populations. It is urgently needed
to know whether the SF approach is similar to
LD approach or not in both power and accuracy for esti-
mating the Ne of large populations.

The relative strength of signal of inbreeding and
genetic drift occurring in a population depends not only
on the Ne of the population, but also on the sampling
intensity in terms of the numbers of markers (and poly-
morphisms) and individuals. Under certain situations, these
two numbers could compensate each other for Ne inference
accuracy. In the genomic era, millions of SNPs can be
obtained virtually from any species by various Next Genera-
tion Sequencing (NGS) techniques. In contrast, due to logis-
tics and cost, the sample size of individuals is usually
limited to a few hundreds. Is it possible to obtain accurate
Ne estimates of very large populations (say, Ne in millions)
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by the LD and SF methods from the genomic marker data
of a few hundreds of individuals? Although some studies
investigated the possibility of applying LD methods to large
populations, they assume a much smaller number of
markers (Macbeth et al., 2013; Marandel et al., 2019). It is
unclear whether the use of genomic marker data helps or
not, and whether SF methods fare similarly to LD methods
or not in the difficult situation of large populations.

Genomic marker data contain not only ample infor-
mation, but also copious noises (errors). SNP genotypes
obtained from NGS data could suffer from a high rate
of errors caused by multiple factors, including base-
calling and alignment errors (Nielsen et al., 2011).
Furthermore, nowadays NGS studies usually apply
low-coverage sequencing to sequence a reasonably large
sample of individuals at affordable cost. However, low-
coverage sequencing results in a high probability that only
one of the two chromosomes of a diploid individual is
sampled at a specified site, producing a false homozygote
while it is a heterozygote (Nielsen et al., 2011). These SNP
genotyping errors are similar to allelic dropout errors of
microsatellites generated during polymerase chain reac-
tion, occurring often when DNA quantity and quality are
low (Pompanon et al., 2005). It is apparently too naïve and
unrealistic to ignore the abundant genotyping errors of
genomic data in evaluating the performance of any Ne esti-
mation methods. Among studies investigating the estima-
tion of current Ne from genotype data, only Wang (2016)
compared the robustness of different methods to the pres-
ence of allelic dropout errors. However, the study did not
consider genomic marker data, and did not consider geno-
typing errors other than allelic dropouts (e.g., false alleles).
It is unclear how different Ne estimation methods perform
when genomic data with typing errors are used.

In this study, I use simulations to evaluate the accuracy
of LD and SF methods coupled with genomic marker data
in estimating the current effective size of very large popula-
tions. I investigate the minimal numbers of sampled indi-
viduals required by the two methods to obtain satisfactory
Ne estimates from genomic marker data. I also compare the
performances of the two methods in the realistic situation
of the presence of allelic dropouts and other errors in
genome-wide genotype data, and in the scenario of a popu-
lation changing in effective size. The results are helpful in
understanding the prospects of estimating Ne of large popu-
lations from genomic data, in optimizing sampling designs
(or intensities) of marker-based Ne estimation studies, and
in interpreting the analysis results from such studies.

2 | METHODS

In this section, I briefly describe the two widely used
methods, LD and SF, for estimating the current Ne of a

population from the multilocus genotypes of a single sam-
ple of individuals drawn from the population. I then intro-
duce the procedures and parameter combinations used in
simulations, and describe the methods used to assess the
performance (biasness and accuracy) of the methods.

2.1 | Single-sample Ne estimators

Both LD and SF methods use the same data, the multilocus
genotypes of a single sample of individuals drawn at ran-
dom from a population, to estimate the Ne of the population
at the sampling time point. More precisely, SF methods esti-
mate the Ne of a population at the parental generation of
the sampled individuals, while LD methods estimate the
average Ne of a population at and a few generations before
the parental generation of the sampled individuals. This is
because the LD estimated from a sample of individuals
reflects the cumulative contributions of drift occurred at
the parental, grandparental, great grandparental genera-
tions, and so on. Although the estimated LD indicates
predominantly the Ne at the parental generation, it also
signifies the Ne at grandparental and more remote
ancestral generations. Therefore, Ne estimated from LD
by assuming a constant demography (e.g., Waples, 2006)
is a weighted average of the effective population sizes at
the parental and earlier generations, the exact number
of generations involved and their weights on the final
estimated Ne being unknown but dependent on the
recombination rates between the two markers of each of
many pairs of loci used for calculating LD. When Ne is
indeed constant over generations, the linkage relation-
ship among markers becomes irrelevant as the weighted
average Ne is equivalent to the parental Ne, no matter
how many generations are involved. However, when Ne

is changing over the past few generations before sam-
pling, then the LD-based Ne estimates become difficult
to interpret, even in the simple case of estimates from
unlinked markers. In all previous empirical and simula-
tion studies of LD methods using unlinked markers, Ne

was explicitly or implicitly assumed constant over time.
In this study, I use the LD-based Ne estimator derived

by Hill (1981). It is improved by Waples (2006) for the
special case of unlinked markers to reduce biasness
caused by small sample sizes, and implemented in the
software NeEstimator by Waples and Do (2008, 2010).
The improved estimator was assessed by simulations for
accuracy (e.g., Waples & Do, 2008) and for robustness to
population subdivision (Waples & England, 2011) and
overlapping generations (Waples et al., 2014). It was also
compared with the SF methods for accuracy when popu-
lations were small (Wang, 2016; Waples, 2021). The pre-
sent study investigates the biasness and accuracy of this
improved estimator when populations are large and
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changing in Ne, and when genomic markers realistically
have genotyping errors. In simulating and analyzing the
data by NeEstimator, markers are assumed unlinked and
the default parameter setting was adopted. Markers with
the minor allele frequency below 0.05 were removed as
suggest by Waples and Do (2010) to minimize sampling
bias, and negative estimates of Ne was interpreted as infi-
nitely large populations. Because of this filtering, the num-
ber of markers actually used by the LD estimator is slightly
smaller than that used by the SF estimator which uses all
markers without filtering out those with rare alleles.

The SF estimator, as derived by Wang (2009), uses the
frequency of sibling dyads inferred from a sample of indi-
viduals drawn at random from a population as informa-
tion for estimating the Ne of the population. In the simple
case of a random mating population, the estimator
(eq. 10 of Wang, 2009) simplifies to

Ne ¼ 2n n�1ð Þ
nHSþ2nFS

, ð1Þ

where nHS and nFS are the number of half-sib pairs and
the number of full-sib pairs found in a sample of n indi-
viduals. The SF estimator is essentially analogous to the
mark–recapture (MR) method used in estimating popula-
tion census size (Luikart et al., 2010; Wang, 2016;
Waples & Feutry, 2022). The SF approach captures and
recaptures nuclear families represented by siblings who share
a single or a pair of parents, and the recapture rate
(estimated by sibling frequency) informs the effective num-
ber of families or Ne of the population. Like the MR method
for estimating census size, a low recapture rate means a pop-
ulation with many families or a large Ne, and a high recap-
ture rate signifies a population with few families or a small
Ne. The accuracy of SF method is determined by the sample
size of individuals collected for genotyping, and by the sam-
ple size of markers (i.e., number of loci) genotyped for each
sampled individual. The latter sample size affects sibship esti-
mation errors (SEEs), with more markers yielding more
accurate sibling inferences (Wang, 2004). With the use of
genomic markers as is the case of this study, marker data are
so informative that virtually a sibship analysis would be
100% accurate (as shown in this study). The former sample
size determines the sibship sampling errors (SSEs), the errors
of sample SF as an estimate of population SF. The larger is
the number of sampled individuals, the smaller is the
expected deviation of sample SF from the population SF.

SEEs are affected by the sample sizes of both individ-
uals and markers, as well as by quite a few other factors
such as mating system and data quality (i.e., genotyping
error rates and data missing rates) (Wang, 2004). How-
ever, with the use of an increasing number of markers,
SEEs should always decrease to zero, regardless of the
other factors. SSEs are predominantly determined by

the number of sampled individuals, n. Suppose the pop-
ulation sibling frequency is p, the number of sibling
dyads included in a sample of n individuals, x, follows
roughly a binomial distribution with parameters
n n�1ð Þ=2 and p. The variance of the relative sample sib-
ling frequency estimate, bp=p¼ x= pn n�1ð Þ=2ð Þ, is thus
1=p�1ð Þ= n n�1ð Þ=2ð Þ, which means this sampling vari-
ance decreases roughly quadratically with sample size
n and increases with an increasing Ne (a correspondingly
decreasing p). This means SSEs are highly sensitive to the
sampling intensity of individuals, and large Ne (i.e., small p)
is difficult to estimate accurately. A much larger sample size
n is required for an accurate estimate of the Ne of a large
population.

I use the SF method (Wang, 2009) implemented in
the software package COLONY (Jones & Wang, 2010) to
assign sibship and thus to estimate Ne from the simulated
data (see below). There are many alternative parameter
options built in the software for a fine-tuned sibship anal-
ysis, such as different sibship size priors. However, when
marker information is sufficient, such as that of genomic
SNPs as is the case of the present study, these alternative
parameter options become irrelevant and sibship is
always accurately assigned irrespective of the parameter
settings. In this simulation study, I use the default param-
eter setting of the software.

2.2 | Simulation procedure

I simulated an ideal Wright–Fisher population
(Fisher, 1930; Wright, 1931) with a constant size of
N individuals at each discrete generation, of a monoe-
cious diploid species, with random mating including self-
ing at the rate of 1/N, with no selection (i.e., all parents
have an equal chance of producing offspring such that
the number of gametes contributed by a parent follows a
binomial distribution B(2N, 1/N)) and with no mutations.
For such an ideal population, we have Ne = N
(Wright, 1931). In most simulations, N is assumed con-
stant over generations, but a bottleneck at which N is
drastically reduced is also considered (below).

Individuals in the founder generation were taken from
an infinitely large base population such that they are non-
inbred and unrelated. The genotype of a founder individual
at each of L unlinked loci was drawn independently
(i.e., no LD) from the base population, which is assumed to
be in Hardy–Weinberg equilibrium at a diallelic locus with
allele frequencies following a uniform Dirichlet distribution.
Throughout this study, I assume L = 10,000 unlinked SNP
markers are genotyped for estimating Ne. Of course, some
of the L = 10,000 markers must be linked for any real
species. However, sibship analysis and thus Ne estimation by
SF method is barely affected by linkage and LD (Wang &
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Santure, 2009), and unlinked marker pairs (say, loci on
different chromosomes) can be selected for LD-based Ne esti-
mation when the linkage groups of the markers are known.

Starting from the founder generation, a number of
T = 10 generations were simulated before a sample of
n offspring was taken at random from the population at
generation T + 1 for genotype analysis and Ne estima-
tion. At each generation t, a zygote (individual) is formed
by combining a male gamete and a female gamete taken
at random from a father and a mother at generation
t � 1, respectively. The individual is thus from self-
reproduction and outbreeding when the uniting gametes
come from the same parent and different parents, respec-
tively. The genotype of a gamete is generated from the
parental genotype following Mendel's laws of segregation
and independent assortment.

The simulation procedure described above was
checked to ensure it works as expected. In a preliminary
study, I also considered more than T = 100 burn-in gen-
erations and found that larger T value did not change the
results. This is expected as both SF and LD methods do
not rely on the equilibrium between mutations and drift
which requires many generations, on the order of N or
1/u (where u is mutation rate) whichever is larger, to
attain. I also recorded the simulated pedigrees and used
them to calculate the realized pedigree-based estimate
of Ne. As expected, the estimated Ne is equivalent to the
theoretical value of Ne = N. I also calculated the FST from
the multilocus genotype data at generations 0 and T, and
found it is equal to the expected value of
FST ¼ 1� 1�1= 2Nð Þð ÞT . All of these diagnostics verify
that the simulation program works properly as expected.

2.3 | Simulation parameter
combinations

Five simulations were designed, by choosing proper
parameter combinations, and conducted to investigate
the performances of SF and LD methods in using geno-
mic marker data for estimating the current Ne under
some neglected situations.

Simulation 1 considers a wide range of Ne (10,000,
20,000, 40,000, 60,000, 80,000, 100,000) and a wide range
of sample size n (number of individuals) (20, 40, 80, …,
1280; ¼ 20�2m for m= 0, 1, 2,…, 6) to understand the
biasness and accuracy of SF and LD methods. In particu-
lar, the simulation is used to investigate the performances
of the two methods when populations are extremely large
and sample sizes are also large (but not deviating far from
the reality).

Simulation 2 considers a relatively large Ne (1000)
and a wide range of sample sizes n (50, 100, 200, …, 3200;

¼ 50�2m for m= 0, 1, 2,…, 6) to investigate the perfor-
mance of SF and LD estimators when sample sizes are
larger than Ne. Previous simulation studies have not dealt
with the situation in which Ne is large and n is larger than
Ne. The incomplete parameter space considered in previous
studies produced incomplete conclusions (see below)
regarding the relative accuracies of SF and LD methods.

Simulation 3 checks the performances of SF and LD
methods when a population experiences a bottleneck.
The population has a Ne of 1000 at generations 1 to T�2,
then it crashes to Ne= 500 at generation T�1, and
recovers to the pre-bottleneck value of Ne= 1000 at gen-
eration T. A sample of n= 100, 200, 400, 800, 1600 indi-
viduals is sampled at generation T�1 when the
population is crashed and at generation T when the pop-
ulation has recovered. The sampled individuals are geno-
typed at 10,000 SNP loci for the estimation of Ne by
SF and LD methods.

Simulation 4 investigates the impact of allelic drop-
outs, a common problem for SNP data derived from low-
coverage NGS, on the LD and SF estimators of Ne. A wide
range of allelic dropout rates (0, 0.01, 0.02, …, 0.32) at
each SNP locus is considered for its effects on the bias-
ness and accuracy of SF and LD methods, when sample
size n is fixed at 320 and Ne fixed at 10,000.

Simulation 5 examines the impact of false alleles,
which may plague SNP genotypes from NGS due to low
coverage or other causes such as low DNA quality and
quantity, on the LD and SF estimators of Ne. Like allelic
dropouts, I consider the effects of a wide range of false
allele rates (0, 0.01, 0.02, …, 0.32) at each SNP locus on
the biasness and accuracy of SF and LD methods, when
sample size n is fixed at 320 and Ne fixed at 10,000.

For each simulation, a number of 160 replicate data-
sets were generated and analyzed by SF and LD methods
in parallel by 160 cores on a linux cluster, as both
methods require substantial computational time for ana-
lyzing genomic data (L = 10,000). The use of paralleliza-
tion and a large linux cluster makes this large-scale
simulation study possible.

2.4 | Accuracy assessment

While SF estimates of Ne are always positive numbers,
LD estimates of Ne can be negative. This happens most
often with large populations where the actual Ne value is
large and the signal of genetic drift is weak. In such a sit-
uation, the observed LD is so small that it can be
accounted for by sampling alone and no drift needs to
be incurred. Therefore, negative estimates of Ne by
LD methods are converted to infinitely large values
before being assessed for accuracy.
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For a given simulated value of Ne, m = 160 replicate
datasets were generated and analyzed by SF and LD
methods to obtain m estimates of Ne, bNe, by each estima-
tor. Ideally, these bNe values should be identical to the
simulated Ne value. Realistically, however, bNe values
deviate from the simulated Ne value due to sampling and
estimation errors. The quality of an Ne estimator can be
assessed by its bias, B, and variance, V, of 1=bNe rather
than bNe (Wang & Whitlock, 2003). I calculate B and V by

B¼ 1bNH
e

� 1
Ne

,

V ¼ 1
m

Xm
i¼1

1bNH

e

� 1bNei

 !2

,

respectively, where bNei is the Ne estimate for the ith
(i= 1, 2, …, m) replicate dataset, Ne is the simulated

parameter value, bNH
e ¼ 1

m

Pm
i¼1

1á

Nei

� ��1
is the harmonic

mean of bNei. Hereafter, the “mean” estimate of Ne always
refers to this harmonic mean.

The overall performance (accuracy) of an estimator
can be measured by the deviations of estimated values
from the true (simulated) value of 1/Ne, calculated by
root mean squared error (RMSE),

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

1bNei

� 1
Ne

� �2
s

:

It is determined by both the bias, B, and the variance,
V, of an estimator, as it can be shown that

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þV

p
. Hereafter, “accuracy” refers to the

level of agreements between estimated, 1bNei

, and true (sim-
ulated), 1

Ne
, parameter values, quantified by RMSE. The

smaller is the value of RMSE, the more accurate is an
estimator. The maximal accuracy occurs when the
estimator is unbiased, B= 0, and highly precise such
that V= 0, and therefore RMSE= 0. In this simulation
study, I report bNH

e (in comparison with simulated
parameter value Ne) and RMSE to measure the bias and
accuracy of each estimator for each simulated parameter
combination with m= 160 replicates.

3 | RESULTS

3.1 | Simulation 1: Large populations

Both SF and LD estimates of Ne are biased when sample
size n is smaller than 320, but become almost unbiased as
n increases above 320 (Figure 1b). This pattern is consis-
tent across the range of simulated Ne from 10,000 to
100,000. Overall, SF is less biased than LD. While SF
always underestimates Ne when it is biased at a small n,
LD may make both underestimates and overestimates of
Ne depending on sample sizes. It underestimates Ne when
n is below 40 and overestimates Ne when n is in the range
of 40–320. This bias pattern is consistent for all simulated
Ne values.

A close examination of Ne estimates shows that, when
n is small and thus both LD and SF estimators are biased,
the estimates are in a bimodal distribution (Figure 2).
These estimates are either infinitely large or much smal-
ler than the simulated value of Ne. For the case of
Ne = 40,000 and n = 80 as an example, the LD and SF

(a) (b)

10,000

20,000

40,000

80,000

10,000

20,000
40,000
80,000
60,000

FIGURE 1 RMSE (a) and bNH
e (b) of estimators SF and LD for populations with Ne= 10,000, 20,000, 40,000, 60,000, 80,000, and 100,000

using a sample with n= 10, 20, 40, 80, 160, 320, 640, and 1280 individuals. Each individual is genotyped at 10,000 diallelic loci. RMSE or bNH
e

of each estimator for each simulated Ne is represented by a line (dotted line in red color for LD and dashed line in blue color for SF). While

these lines are identifiable for each simulated Ne for the plot of bNH
e (shown on the right vertical frame line), they are unidentifiable for the

plot of RMSE. [Color figure can be viewed at wileyonlinelibrary.com]
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estimators yield 105 and 90 infinitely large estimates of
Ne (out of a total number of 160 replicate estimates),
respectively. For all of the 90 replicate datasets where SF

estimator gives an infinite Ne estimate, the LD estimator
also produced infinite Ne estimates. LD estimator also
generated infinite Ne estimates in an additionally 15 repli-
cate datasets. Part of the reason that SF yields on average
a lower bNH

e than LD when n is small is because SF pro-
duces fewer infinite estimates than LD. As n increases,
the frequency of infinite Ne estimates declines rapidly for
both SF and LD estimators (Figure 2). When n= 320, no
infinite Ne estimates are observed for both estimators.

When n is small (i.e., n < 160) and thus both LD and
SF estimators are biased, LD estimator is more accurate
than SF estimator (Figure 1a) because it gives less dis-
persed estimates of Ne (Figure 2). With an increasing
n such that both estimators are rapidly becoming unbi-
ased, they tend to have similar overall accuracy as mea-
sured by RMSE. Numerically the RMSE of LD estimator
is still slightly smaller than that of SF estimator at the
largest sample size of n = 1280, but the difference is
hardly detectable (Figure 1a).

3.2 | Simulation 2: Large sample sizes

Simulation 2 considered a much larger range of sample
sizes, n, with the lower bound of n much smaller than Ne

and the upper bound of n much larger than Ne, which is
assumed to be 1000. Similar to the results shown in
Figure 1b, LD estimator is more biased than SF estimator
when sample size n is small (Figure 3b). LD estimator
becomes almost unbiased when n > 200, while SF esti-
mator is unbiased even with n as small as 50.

When n is small, LD estimator is more accurate than
SF estimator (Figure 3a). The difference in RMSE
between the two estimators decreases with an increasing

(a)

(b)

25,600

FIGURE 2 Frequency distribution of effective population size

(bNe) estimated by (a) the LD method and (b) the SF method from

160 replicate datasets simulated with true Ne= 106. The sample size

(number of sampled individuals, n) is 10 (red color), 40 (green

color), 160 (blue color), or 640 (orange color), and each sampled

individual is genotyped at 10,000 diallelic SNP loci. [Color figure

can be viewed at wileyonlinelibrary.com]

(a) (b)

FIGURE 3 RMSE (a) and bNH
e (b) of estimators SF and LD for a population with Ne= 1000 using a sample with n= 50, 100, 200,

400, 800, 1600, and 3200 individuals. Each individual is genotyped at 10000 diallelic loci. RMSE or bNH
e is represented by a red dotted line for

LD and by a blue dashed line for SF. [Color figure can be viewed at wileyonlinelibrary.com]
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sample size n. When n > 2500, SF estimator becomes
more accurate than LD estimator.

3.3 | Simulation 3: Population bottleneck

LD estimator overestimates Ne at a population
bottleneck and underestimates Ne after a population bot-
tleneck (Figure 4b), as expected. In both cases, the bias is
substantial and is consistent across different sample sizes.
In contrast, SF estimator yields unbiased Ne estimates for
the parental population both at the bottleneck and after
the bottleneck.

For a population with a nonconstant and varying Ne,
the SF estimator gives an unbiased and accurate estimate
of Ne at any generation. The accuracy advantage of SF
over LD estimator increases with an increasing sample
size n (Figure 4a). While the accuracy of SF estimator

increases log linearly with n, the accuracy of LD estimator
asymptotes at about n = 400. Above n = 400, the accuracy
of LD estimator no longer increases with n. This is because
the LD estimator's RMSE is mainly determined by the bias
rather than the sampling variance when n is above 400.
While a larger n leads to a smaller sampling variance, it has
no effects on bias when n > 400.

3.4 | Simulation 4: Allelic dropouts

SF estimator is almost unbiased in the whole range of
allelic dropout rate, from 0.01 to 0.32 (Figure 5b). In
contrast, LD estimator tends to overestimate Ne sub-
stantially when dropout rate is not small (i.e., >0.04).
Similarly, the accuracy as measured by RMSE of SF
estimator is nearly constant with an increasing allelic
dropout rate (Figure 5a), but the accuracy of LD

(a) (b)

FIGURE 4 RMSE (a) and bNH
e (b) of estimators SF and LD using a sample with n= 100, 200, 400, 800, 1600 individuals taken from a

population at a bottleneck (at generation T� 1, Ne= 500) and immediately after the bottleneck (at generation T, Ne= 1000). Each individual

is genotyped at 10,000 diallelic loci. RMSE and bNH
e are represented by red dotted lines (at bottleneck, Ne= 500) or red solid lines (after

bottleneck, Ne= 1000) for LD, and by blue short-dashed lines (at bottleneck, Ne= 500) or blue long-dashed lines (after bottleneck, Ne= 1000)

for SF. [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

10,000

12,000

14,000

16,000

18,000

20,000

FIGURE 5 RMSE (a) and bNH
e (b) of estimators SF and LD as a function of allelic dropout rate at each of 10,000 SNP loci. A number of

n= 320 individuals were taken from a population with a constant effective size of Ne= 10,000, and each individual was genotyped at 10,000

diallelic loci. RMSE and bNH
e are represented by red dotted lines for LD, and by blue dashed lines for SF. The simulated Ne= 10,000 is

represented by a thin green line. [Color figure can be viewed at wileyonlinelibrary.com]
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estimator decreases consistently with an increasing
allelic dropout rate.

3.5 | Simulation 5: False alleles

When applied to data with false alleles, the SF and LD
estimators show behaviors (Figure 6) similar to those
observed with data having allelic dropouts (Figure 5).
However, at the same rate, false alleles have a larger
impact than dropouts on both the bias (Figure 6b) and
the accuracy (Figure 6a) of LD estimator. In the whole
range of false allele rate from 0.01 to 0.32, the SF estima-
tor remains unbiased and has a RMSE almost constant,
showing that SF is highly robust to the prevalence of false
alleles.

4 | DISCUSSION

Large populations experience, by definition, very weak
genetic drift. As signals and measurements of genetic
drift, the squared correlation of allele frequencies at two
diallelic loci is expected to be in the order 1/(2Ne)
(Hill, 1981), and the frequency of sibling pairs is also in
this order (Wang, 2009). It is easy to understand that it
becomes very difficult to capture such weak signals by
any marker-based Ne estimator. The current effective
sizes of large populations are therefore challenging to
estimate accurately even with genomic data, no matter
which method is adopted. Picking up the weak drift sig-
nal and thus obtaining high-quality estimates of
Ne requires large samples sizes of both loci (markers) and
individuals. In this study, I showed by simulations that
both SF and LD methods can be used to estimate the
effective sizes of large populations (with Ne up to 105)

unbiasedly and accurately using genomic marker data
(10,000 SNPs), provided the sample sizes of individuals
are sufficiently large (n > 320). However, when the num-
ber of sampled and genotyped individuals is not large
(i.e., n < 320), both SF and LD estimators are biased and
have a poor accuracy (Figure 1). The LD estimators looks
more biased but seems to have a lower variance than SF
estimator when sample size is small (relative to the Ne of
the population). Both estimators show a bimodal distri-
bution (Figure 2), with a substantial proportion of the
estimates being infinitely large while the remaining pro-
portion of estimates being in general much smaller than
Ne. The same bimodal distribution was also observed for
the LD estimator in the simulation studies of Marandel
et al. (2019) and Waples et al. (2016) when much fewer
markers (100 or 200 SNPs) were used in the estimation.
In such a situation of bimodal distribution, pursuing the
unbiasedness of an estimator is meaningless as any single
one estimate will depart from the truth substantially.

Why does an estimator produce a bimodal distribu-
tion of Ne estimates when n is much smaller than the true
Ne? This is easily understood by considering the SF esti-
mator in a numerical example. For a monogamous spe-
cies (i.e., no half-siblings) with Ne = 10,000 and a number
of n = 5 sampled individuals, for example, there are two
possibilities of the sibship configuration in the five sampled
individuals. With a high probability, p1, is the possibility
that the n = 5 individuals contain no individuals sharing a
pair of parents (i.e., nFS ¼ 0). In such a case, the estimated
Ne (Equation 1) is bNe ¼ 2�5�4

0þ2�0¼∞, bNe1 ¼∞. With a small
probability, p2= 1� p1, is the possibility that the n= 5
individuals contain a single pair of full siblings (i.e.,
nFS ¼ 1) which results in bNe ¼ 2�5�4

0þ2�1¼ 20 calculated by
Equation (1), bNe2 ¼ 20. In this example with extremely
small n relative to Ne, the bimodal distribution reduces to
2 possible estimates, one estimate is bNe1 ¼∞ with a

(a) (b)
60,000

40,000

20,000

10,000

FIGURE 6 RMSE (a) and bNH
e (b) of estimators SF and LD as a function of false allele rate at each of 10,000 SNP loci. A number of

n= 320 individuals were taken from a population with a constant effective size of Ne= 10,000, and each individual was genotyped at 10,000

diallelic loci. RMSE and bNH
e are represented by red dotted lines for LD, and by blue dashed lines for SF. The simulated Ne= 10,000 is

represented by a thin green line. [Color figure can be viewed at wileyonlinelibrary.com]

WANG 9

 1438390x, 0, D
ow

nloaded from
 https://esj-journals.onlinelibrary.w

iley.com
/doi/10.1002/1438-390X

.12167 by U
niversity C

ollege L
ondon U

C
L

 L
ibrary Services, W

iley O
nline L

ibrary on [07/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


frequency of p1 and the other estimate is bNe2 ¼ 20 with a
frequency of p2= 1- p1. When the estimator is unbiased,
we have p1

∞þ 1�p1
20 ¼ 1

10000, which leads to p1 ¼ 499=500 and
p2 ¼ 1=500 which mean 499 and 1 out of 500 estimates
are expected to be infinitely large and 20, respectively.

I considered a maximal Ne = 100,000 in the simula-
tions. Is it large enough to represent the real large marine
species? In a review of 26 studies, published between
years 2000 and 2017, on estimating the effective sizes of
marine species by Marandel et al. (2019), they found the
census sizes of the species range from a few thousands in
zebra shark in southern Queensland Australia
(Dudgeon & Ovenden, 2015) to several billions in
European anchovy in the Bay of Biscay (Montes
et al., 2016). Considering the now well recognized small
Ne/N ratio, on the order of 10�2 � 10�6, in high fecund
marine fish species (e.g., Frankham, 1995; Hauser &
Carvalho, 2008) caused perhaps by the high variance in
reproductive success (Hedgecock, 1994; Hedrick, 2005),
this simulated Ne may not deviate far from that of large
populations in marine fishes. The review by Marandel
et al. (2019) also showed that sample sizes vary widely in
these studies, from 19 to 4063. Although in most studies
sample sizes are small (less than 500), there do exist a
few studies with sample sizes larger than 1000. My simu-
lations indicate that large samples of individuals and loci
are required for satisfactory estimates of Ne when popula-
tions are large.

A few simulation studies (e.g., Wang, 2016;
Waples, 2021) have compared the biasedness and accu-
racy of SF and LD estimators in somewhat ideal situa-
tions (constant Ne, no mistypings, no missing data, no
linkage, …), and have reached inconclusive conclusions.
Wang (2016) showed that SF is more accurate than LD
when genotype data at a few microsatellites are used to
estimate the Ne of small populations. In that study, a suit-
able sibship size prior was used by the SF estimator to
reduce SEEs and thus to improve Ne estimates when
marker information is not ample. Waples (2021) com-
pared the maximal accuracy of SF (when sibship can be
estimated without errors) with the accuracy of LD. He
found that, compared with LD, SF is more accurate when
Ne is small (say, Ne < 100) and less accurate when other-
wise. In this study, however, the sample size n relative to
the true Ne decreases rapidly with an increasing Ne. In
the situation of a small population with Ne = 50, n varies
between 20 and 35 (i.e., n = 40% or 70% of Ne), while in
the situation of a large population with Ne = 1000,
n varies between 50 and 150 (i.e., n = 5% or 15% of Ne).
My simulations (Figure 3) showed that, indeed SF is less
accurate than LD when Ne = 1000 and n < 2000. How-
ever, with a large enough sample size (n > 2000), SF
becomes more accurate than LD. In general, the relative

accuracies of the two estimators for any given true Ne

depend on, among many other factors, n. SF estimator
relies on a larger sample size of individuals than the LD
estimator to yield a precise and accurate estimate of Ne.
SF performs better than LD for small populations even
when n is small. However, it becomes more accurate than
LD for large populations only when n is very large, at
least larger than Ne.

A population in the real world rarely keeps a constant
Ne as assumed by the LD estimator (but not by the SF
estimator). Most often it is exactly because a population
is changing in demography that we are interested in
knowing its Ne and the temporal changes in Ne (Schwartz
et al., 2007) to inform the management for conservation
or harvest. The LD information extractable from a sample
of multilocus genotypes comes from (and thus signals)
the cumulative contribution of genetic drift occurred in
the parental and more remote ancestral generations, and
thus indicates a complicated average of the effective pop-
ulation sizes at these generations. This is true no matter
the markers used in estimating LD are linked or
unlinked. Therefore, when a population is changing in
size over generations, the LD estimator assuming a con-
stant Ne would be difficult to interpret. If it is taken as
the estimated Ne for the parental generation, it would be
highly biased. This is confirmed in my simulations
(Figure 4b) which shows that the Ne at and after a bottle-
neck is substantially overestimated and underestimated,
respectively. When using the LD estimator for monitor-
ing population demographic changes, therefore, caution
must be exercised in interpretating the analysis results
because any drastic changes in Ne would be largely
“smoothed” by the estimator. In contrast, the sibling fre-
quency in individuals sampled at random from a popula-
tion is affected by the parental Ne only, and has nothing
to do with the grand parental and more remote ancestral
generations. Therefore, the SF estimator always infers the
parental Ne, regardless of the demographic changes
occurred in any generations.

With the rapid development of next generation
sequencing (NGS) technology, genome-wide SNP data
can be generated virtually for any species with or without
a reference genome. This is great for evidence-based con-
servation and management of populations, as such SNP
data provide ample information about, among others, the
current and historical demography. However, NGS-based
SNP data could also contain a lot of noises which, if not
adequately dealt with, may ruin an analysis. Genotyping
errors can be copious in SNP data especially when DNA
quantity and quality are low (when, e.g., DNA is
extracted from noninvasive samples such as feces or
ancient samples) or when low-depth sequencing is
applied due to reasons such as cost control. In a sibship
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reconstruction analysis, genotyping errors such as allelic
dropouts and false alleles can be accounted for by adopt-
ing proper error models (Wang, 2004) with rough esti-
mates of the error rates. Loosely speaking, the likelihood
of a set of individuals being siblings is calculated under
these error models such that it is still sufficiently high to
approve the relationship when the genotype data at only
a few loci reject (due to mistyping) but the genotype data
at many more loci support the relationship. Using these
error models, sibship can be inferred accurately from
genotype data at many loci even when each locus has a
high mistyping rate (Wang, 2019), as shown in the pre-
sent simulation study (Figures 5 and 6). The LD estima-
tor, on the other hand, assumes perfect data without
genotyping errors. When such errors do exist, they would
ruin the LD and cause a reduced estimate of LD and thus
a biased estimate of Ne, as observed in this study
(Figures 5 and 6). Unlike the strict parentage or sibship
exclusion analysis which does not tolerate mistyping
because true parentage or sibship would be excluded
even when mismatched genotypes (due to mistyping) are
observed at a single locus, the LD estimator of Ne could
tolerate low levels of false alleles and allelic dropouts.
When the mistyping rates are substantial, say >5%, then
LD estimator yields highly inaccurate and overestimated
Ne values. In practice, only high-quality SNP data with
few mistyping errors should be analyzed by LD estimator.
Sved et al. (2013) introduced a permutation correction to
the LD estimator of Ne to remove the bias caused by the
presence of null alleles. The correction is not yet imple-
mented in software available for LD based Ne estimation.
Furthermore, whether the same or a similar permutation
correction can be applied to data with allelic dropouts
and false alleles warrants further study.

In this study, I assume the markers are physically
unlinked even though they are numerous. This assump-
tion of no linkage is unnecessary for the SF estimator,
because sibship inference is hardly affected at all by the
linkage of markers (Wang & Santure, 2009) sampled at
random from a genome of a typical genetic map length
(say, 20 Morgans). In contrast, the extent of linkage (mea-
sured by the recombination rate, c) for a pair of markers
has a functional relationship with the extent of LD
between the markers (Hill, 1981). As a measurement of
LD, the squared correlation of allele frequencies, r2, at a
pair of loci with recombination rate c is expected to be
roughly inversely proportional to Nec (Weir & Hill, 1980).
Therefore, a pair of loci with tighter linkage (smaller c)
are expected to have a larger r2. If linked markers are
assumed unlinked, the LD based estimator would under-
estimate Ne, as observed in a simulation study (Waples
et al., 2016) and in an empirical study of Chinook salmon
(Larson et al., 2014). The use of unlinked pairs of markers

required by the LD estimator of Ne (Waples, 2006;
Waples & Do, 2008) can be achieved when the linkage
structure (chromosomal locations) of the markers is known
and only pairs of markers from different linkage groups
(chromosomes) are chosen for Ne estimation. For many
nonmodel species where reference genome is unavailable,
some SNPs from NGS must be linked but such linked pairs
of loci cannot be reliably identified and removed from a
LD based Ne analysis. In such a situation, some empirically
derived rough corrections can be made to reduce the esti-
mation bias, using information of the number of chromo-
somes or the size of the genome (Waples et al., 2016).
When marker locations in the genetic map are known, the
linkage relationships of the markers, together with the
genotype information, can be used to infer the trajectory of
Ne in the recent past (Santiago et al., 2020).

Similar to the issue of physical linkage of markers,
some SNPs generated from NGS might be under direc-
tional or balancing selection and thus produce distorted
LD and biased estimates of Ne. Again, the SF estimator
should be robust to the presence of selection on some of
the SNPs, as sibship is an individual level quantity while
LD is a finer locus-level quantity. One might naively use
some methods to identify and remove the markers under
selection before conducting a LD based Ne analysis. How-
ever, while this approach might be effective for markers
under strong selection, it becomes powerless for
markers under weak selection. Some simulations show
that LD based Ne estimates are robust to the presence of
selection on linked markers (Novo et al., 2022). Whether
the conclusion is extrapolatable to LD based Ne analysis
of unlinked marker data by LDNe methods (Waples &
Do, 2008) deserves further analysis in the future.
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