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. !Nדערצייל צו גוט איז צורות איבערגעקומענע

It is good to tell past troubles. (Yiddish proverb)
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Abstract

This thesis consists of three independent chapters.

1. A decision-maker must accept or reject a privately informed agent. The agent always wants to be ac-

cepted, while the decision-maker wants to accept only a subset of types. The decision-maker has access

to a set of feasible tests and, prior to making a decision, requires the agent to choose a test from a menu. I

show that the DM does not benefit from commitment in this context. I then show in various environments

when the DM benefits from offering a menu. When the domain of feasible tests contains a most infor-

mative test, I characterise when only the dominant test is offered and when a dominated test is part of the

optimal menu. I also consider settings where types are multidimensional or where tests vary in difficulty.

2. I consider a model of monopoly pricing where a firm makes a price offer to a buyer with reference-

dependent preferences. The reference point is the ex-ante probability of trade and the buyer exhibits

an attachment effect: the higher his expectations to buy, the higher his willingness-to-pay. When the

buyer’s valuation is private information, a unique equilibrium exists where the firm plays a mixed strategy

and its profits are the same as in the reference-independent benchmark. The equilibrium always entails

inefficiencies: the probability of no trade is greater than zero. Finally, I show that when the firm can

design a test about the buyer’s valuation, it is better off using a noisy test.

3. I provide a sufficient condition under which a principal does not benefit from commitment in economic sit-

uations described by a constrained maximisation problem. Commitment has no value when the marginal

contribution of the constraints is null in the problem with commitment. I use this result to extend multiple

results in mechanism design.



Impact Statement

I summarise here how my PhD thesis is most likely to have impact inside and outside of academia. Given the

nature of my thesis, I give the impact of each chapter separately.

1. The first chapter is concerned with the design of admission procedure and in particular whether giving

a choice of test can be useful for the designer. An important application of this chapter is the design of

admission procedure where the possibility of making some tests optional is debated in academia and the

general public. For example, some argue that standardised test used in US university admissions like the

SAT should be optional (see e.g., Hubler, 2020). This chapter provides arguments under which making

some tests optional reveals more information and under which making some tests optional is suboptimal.

2. The second chapter explores theoretically a monopoly pricing model with the following buying behaviour:

the more a buyer expects to own a good, the more he is willing to pay for it. I show that the extent to which

a monopolist can take advantage depends on the informational environment. This could be important for

the regulation of markets where this behaviour is believed to be prevalent.

3. The last chapter develops a theoretical tool to show when commitment has value in economic problems.

I apply this tool to a specific mechanism design setting and generalise existing results. It could also be

used in other settings where commitment is an important issue other areas of economic theory.
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Introduction

This thesis is made of three independent chapters in different areas of microeconomic theory. Each chapter

contains a separate introduction that summarises and highlights important aspects of the chapter.

The first chapter asks whether a decision-maker designing an admission procedure can benefit from leaving the

choice of test that is conducted to the candidate. The motivation is to understand how a decision-maker limited

in his testing technology optimally can improve the admission procedure. One way is to offer a menu of tests to

the agent instead of a unique test. By doing so, the decision-maker can use the information from the choice itself

to learn about the candidate. I provide technical results regarding the optimal menu of tests and characterise

when the decision-maker benefits from giving a choice of tests.

The second chapter is in the field of Behavioural Industrial Organisation. I consider a monopolist selling a

good to an agent exhibiting an attachment effect: the agent values the good more if he expects to own it. This

type of behaviour is a typical prediction of expectation-based reference-dependent preferences (Kőszegi and

Rabin, 2006). Whereas the existing literature explored a setting where the monopolist can commit to a random

price distribution, I characterise the equilibrium strategies when the monopolist cannot commit. I show that

assumptions on the informational environment play a key role for whether the monopolist benefits from facing

this type of buyers.

The last chapter provides a tool to test whether commitment has a value in economic problems described by

constrained maximisation. The idea is to use the envelope theorem for saddle-point problems to understand how

a marginal change in the value function relates to a marginal change in the objective function. I use this tool to

generalise several results in the literature on mechanism design with evidence.

While these three chapters are independent, some themes are recurring. In all three chapters the notion of

commitment, and the possibility to commit or not, are important concerns. In both the first and the second

chapter, I consider how to optimally test an agent and how the test designer can benefit from less precise tests.

In both cases, strategic considerations play a key role when choosing which test to conduct or to allow.
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Chapter 1

Designing the Optimal Menu of Tests

1.1 Introduction

In many economic settings, decision-makers (DMs) rely on tests to guide their actions. Universities use stan-

dardised tests as part of their admission process, firms interview job candidates before they hire them and

regulators test products prior to authorisation. In these examples, the DM is deciding whether to accept an

agent and his preferences depend on some private information held by the agent: the ability of the student, the

productivity of the candidate or the quality of the product. Ideally, the DM would want to use a fully revealing

test, but this is often not feasible and thus the ability to learn from the test outcome alone is limited. However,

there is an additional channel the DM can learn from: he can offer a menu of tests and let the agent choose

which test to take. The DM can then use the agent’s choice as an additional source of information.

Depending on the setting, constraints on the testing ability can take many different forms. For instance, a

hiring firm is constrained by the amount of time and resources it can allocate to the selection process; most

universities have to use externally provided tests like the SAT or the GRE for their admission procedures; and

medicine regulatory agencies face both technological and ethical constraints when authorising new drugs.

In this paper, I study the DM’s optimal design of a menu of tests and provide conditions under which the DM

learns from both the test choice and outcome. I first show that the DM does not benefit from committing to a

strategy for any arbitrary domains of feasible tests. I then apply this result to natural economic applications and

determine which tests are part of the optimal menu and how it depends on their properties. I provide conditions

under which it is optimal to include a strictly less informative test in the optimal menu and when it is not. I

also characterise the optimal menu when tests vary in their difficulty and when each test can identify only one
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dimension of the agent’s private information.

I study a DM who has to accept or reject a privately informed agent. While the DM wants to accept a subset

of types (the A-types) and reject the others (the R-types), the agent always wants to be accepted. The domain

of feasible tests is an exogenously given set of Blackwell experiments. The DM designs a menu of tests, a

subset of the feasible tests, from which the agent chooses one. For example, a university can let a student decide

whether he takes a standardised test in its admission procedure. A regulator can let a pharmaceutical company

design the clinical trials when authorising a new drug. After observing, the choice of test and its result, the DM

decides whether or not to accept.

I first show there is no value to commitment: regardless of whether the DM is able commit ex-ante to an

acceptance rule, the optimal menu and strategies remain the same. This result holds for arbitrary type structures

and domain of feasible tests. Moreover, I find that it is without loss to consider menus with as many tests as

A-types. This implies that if there is only one type the DM wants to accept, it is sufficient to consider menus

with a single test and the only information used is the test outcome. The result on the value of commitment

comes from a max-min representation of the DM’s problem where the maximiser chooses the DM and A-types’

strategy and the minimiser the R-types’ strategy.

In Section 1.4, I use Theorem 1 to determine which tests are part of the optimal menu in three natural economic

applications. In Section 1.4.1, I consider a domain of feasible tests containing a dominant one, in the sense of

Blackwell’s (1953) informativeness order. One example of this environment is a university considering whether

to allow students to opt out of a test like a standardised test or an interview when applying. This is effectively

offering a menu containing the standardised or the interview and an uninformative test.

In Lemma 1, I show that the most informative test is always part of an optimal menu. I then provide conditions

under which a dominated test is part of the optimal menu when tests are binary, i.e., pass-fail tests. In this case,

types can be ordered by how likely they are to generate the pass signal in the most informative test. I show that

the optimal menu always includes a strictly less informative test if, and only if, the DM’s payoff is enclosed.

This corresponds to the DM wanting to accept at least the worst and the best performer on the test. On the

other hand, for any prior an optimal menu contains only the most informative test if, and only if, the DM’s

payoff is single-peaked with respect to that order. This corresponds to the DM willing to accept either only

high types, only low types or only intermediate types, as measured by their performance on the test. Failure of

single-peakness can occur for example when the most informative test does not test all relevant dimensions or

only tests a proxy of the relevant dimension.

In the case where the domain of feasible tests contains a dominant tests and they generate more than two signals,

the results extend as follows. If there exists a subset of signals where single-peakness is violated, there exists

a less informative test that is part of the optimal menu for some prior. On the other hand, if the environment is
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one-dimensional, in the sense that all the tests satisfy the monotone likelihood ratio property and the DM wants

to accept any type above a threshold, only the most informative test is offered.

In the first application, I considered a domain of feasible tests where tests can be ordered by their informa-

tiveness. In Section 1.4.2, I consider one-dimensional environments where feasible tests are ordered by their

difficulty. For example, the DM could be a regulator deciding how hard a compliance test is before authorising

a product. The testing technology is a set of pass-fail tests and varying the difficulty of a test changes which

types it identifies better. A more difficult test is informative when it is passed, as only high types are likely to

produce a high grade but it is less informative when it is failed. In this case, I show again that a singleton menu

is optimal.

In previous sections, I show that for natural specifications of one-dimensional environments, a singleton menu

is optimal. I then turn to multidimensional environments. For example, a hiring firm could be guided by two

considerations, the candidate’s technical and managerial skills and specialise the interview on either dimension.

More generally, I assume that the agent’s type has two components and each test is informative about only one

of them.1 Offering tests for both dimensions allows A-types that perform badly in one dimension to select the

test where they perform best. I show that the optimal menu contains both tests for any prior if and only if the

DM wants to accept any type that performs well in at least one dimension. This would be the case if the hiring

firm would want to hire a candidate with high technical skills but no managerial skills and vice-versa. On the

other hand, if the firm cares about both dimension simultaneously, then, for some priors, it uses only one test.

Finally, I consider two extensions to the baseline model. The first one is to allow for cheap-talk communication

on top of the test choice. I can show that in this case, each A-type announces his type deterministically and

each R-type pretends to be an A-type. I also consider the possibility of going beyond menus and allow for a

mechanism where a mechanism can randomly allocate a type to a test. I show that the DM benefits from having

access to a randomisation device and provide a characterisation of the optimal mechanism in terms of another

max-min problem (Theorem 3). I also show that in this context, the DM does not benefit from committing to a

strategy.

Relation to the literature

This paper relates to both the literature on strategic disclosure and mechanism design with evidence and the

literature on information design without commitment. The strategic disclosure literature studies information

provision by privately informed players. In these papers, information provision is usually modelled with hard

evidence (e.g., Grossman, 1981; Milgrom, 1981; Dye, 1985; Milgrom, 2008). Hard evidence is a particular

1The results extend easily to more than two dimensions.
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kind of test that takes a deterministic form: the agent can provide evidence that he belongs to a certain subset

of types. Another difference with modelling information with evidence is that, in my language, not all types

can participate in all tests. Instead, I allow arbitrary stochastic tests and all types can participate in any test. I

discuss the relation between these two modelling approaches in more details in Section 1.2.2.

Formally, my model is most closely related to Glazer and Rubinstein (2006). They also study a problem where

an agent wants to persuade a DM to accept him but in their model, the agent can only present deterministic

evidence about his type. They characterise the optimal mechanism that maps evidence to a decision and show

that the outcome can be implemented without commitment (see also Hart et al., 2017, for similar results with

other payoff structures; Sher, 2011). They also show that with deterministic evidence, the optimal decision rule

is deterministic. I extend their analysis in two ways. First, Theorem 1 generalises their result on commitment to

arbitrary testing technology and my characterisation result also applies in their setup. I also show that that the

optimal decision rule is no longer deterministic when tests are stochastic. Second, I use the characterisation to

prove general results on which test is included in the optimal menu depending on the properties of the feasible

tests. Glazer and Rubinstein (2004) study a related problem where the agent communicates with the DM who,

based on the communication, verifies one dimension of a multidimensional type.

More generally, this paper relates to the mechanism design with evidence literature (e.g., Green and Laffont,

1986; Bull and Watson, 2007; Deneckere and Severinov, 2008; Koessler and Perez-Richet, 2019; Forges and

Koessler, 2005; Kartik and Tercieux, 2012; Strausz, 2017). In Section 1.7, I characterise the optimal mechanism

and unlike most of that literature, I allow for arbitrary domain of feasible tests that include non-deterministic

tests.2 The payoff structure assumed in this paper is commonly used in this literature, e.g., in Glazer and

Rubinstein (2004); Glazer and Rubinstein (2006) and special cases of Ben-Porath et al. (2019); Ben-Porath

et al. (2021). Ben-Porath et al. (2021) show a similar result on the no value of commitment.

An important focus of the literature on strategic disclosure is finding conditions under which all information is

revealed in equilibrium, see e.g., Grossman (1981), Milgrom (1981), Lipman and Seppi (1995), Giovannoni and

Seidmann (2007), Hagenbach et al. (2014) or Carroll and Egorov (2019). In my model, if full information is

possible, it is optimal, but I also characterise the optimal choice of test when full information is not attainable. In

Proposition 8, I provide the necessary and sufficient conditions for full payoff-relevant information revelation.

The other branch of literature my paper relates to is information design without sender commitment. In these

papers, the agent and the DM correspond to the sender and the receiver. In particular, this paper is closer to

models characterising receiver-optimal tests where the sender can choose which test to take. Rosar (2017) and

Harbaugh and Rasmusen (2018) the receiver designs a test where a privately informed agent can either take the

test, possibly at a cost, or take an uninformative test. In these papers, the receiver flexibly designs a test given

2For an example of mechanism design paper with non-deterministic tests, see Ball and Kattwinkel (2022), Ben-Porath et al. (2021).
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that the sender has a choice. In my paper, the receiver designs the choice, i.e., the menu, given the restrictions

on the feasible tests.

Other papers consider the receiver-optimal design of tests where the sender’s action is partially observed or

unobserved, e.g., DeMarzo et al. (2019), Deb and Stewart (2018), Perez-Richet and Skreta (2022) or Ball (2021)

(note that Perez-Richet and Skreta (2022) also consider observable action). The design of the optimal test also

has to take into account the strategy of the sender, however unobservable actions fundamentally changes the

sender’s incentives and thus how information is revealed. I discuss in Section 1.2.2 which results would still

apply if the outcome of the tests depends on the agent’s unobserved effort.3

Finally, this paper is related to Ely et al. (2021). They study the optimal allocation of tests from a restricted

set to agents with observable characteristics. My paper can be interpreted as a problem of optimal allocation of

tests with asymmetric information, thus the allocation must also respect incentive constraints.

1.2 Model

There is a decision-maker (DM) and an agent. The agent has a type θ ∈ Θ, |Θ| < ∞, with a common prior

µ ∈ ∆(Θ). The set of types is partitioned in two: Θ = A ∪ R, A ∩ R = ∅. The type is private information of

the agent. The DM must take an action a ∈ {0, 1}, accept or reject. The utilities of the DM and the agent are

v(a, θ) = a
(
1[ θ ∈ A] − 1[θ ∈ R]

)
and u(a, θ) = a. That is, the DM wants to accept agents in A and reject

agents in R. The agent always wants to be accepted. The analysis is virtually unchanged by allowing for DM’s

utility functions of the form v(a, θ) = aν(θ) for some ν : Θ → R.

There is a finite exogenous set of test T ⊆ Π ≡ {π : Θ → ∆X}, where X is some finite signal space. The

conditional probabilities of test t are πt(·|θ). The set T captures the restriction on the DM’s testing capacity.

He can only perform one test from that set. For simplicity, I assume that for any θ ̸= θ′, πt(·|θ) ̸= πt(·|θ′). A

menu of test is a subset of the feasible tests, M ⊆ T .

The timing of the game is as follows. For a menu M ⊆ T ,

1. The agent learns his type θ.

2. The agent chooses a test from the menu, denoted by σ : Θ → ∆M.

3. A signal x is drawn according to πt(·|θ).
3There are also papers studying sender-optimal tests when the sender cannot fully commit to reporting the test correctly, e.g., Nguyen

and Tan (2021), Lipnowski et al. (2022) or Koessler and Skreta (2022). In Boleslavsky and Kim (2018) and Perez-Richet et al. (2020), the
sender can commit but there is a third agent whose effort determines respectively the state of the world or the Blackwell experiment actually
performed.
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4. The DM chooses an action based on the realised test choice and outcome, the acceptance probability

denoted by α : M×X → [0, 1].

Beliefs of the DM are µ̃ : M × X → ∆Θ, a probability distribution over types given an observed test and

signal realisation.

The solution concept is DM-preferred weak Perfect Bayesian Equilibrium.

I write (α, σ) ∈ wPBE(M) if there is a belief µ̃ where (α, σ, µ̃) is a weak PBE when the menu is M.

The optimal design of menu solves

V = max
M⊆T

max
σ,α

∑
θ∈A

µ(θ)
∑
t∈M

σ(t|θ)
∑
x

α(t, x)πt(x|θ)−
∑
θ∈R

µ(θ)
∑
t∈M

σ(t|θ)
∑
x

α(t, x)πt(x|θ)

s.t. (α, σ) ∈ wPBE(M)

The inner maximisation problem selects, for a fixed menu, the DM and agent strategy to maximise the DM’s

payoff for a fixed menu, under the constraint that they are equilibrium strategies. The outer maximisation

problem selects the best possible menu for the DM.

Notation: For any α, denote the probability of type θ to be accepted in test t by pt(α; θ) ≡
∑

x α(t, x)πt(x|θ).

Off-path beliefs: The results would exactly the same if I would take DM-preferred Sequential Equilibrium

(Kreps and Wilson, 1982) as my solution concept. I comment on this in more detail in the discussion of

Theorem 3.

Test restriction: The exogenous set of tests T can capture different constraints on DM’s testing capacity. It

could be a purely technological constraint, e.g., when choosing amongst standardised test, universities can only

choose from an exogenously given set of tests (SAT, ACT, GRE, etc.). The constraint can also be on some

properties of the tests that can be used, e.g., T ⊂ {π : π has the MLRP}. Finally, it could come from a capacity

constraint in the information processing/acquisition abilities of the DM, e.g., a limited number of sample sizes

a researcher can collect or there could be a cost function associated with each experiment C : Π → R and a

maximum cost the DM can pay c ∈ R, T ⊂ {π : c ≥ C(π)}.

1.2.1 Example: Opting out of an admission test

Suppose a university uses some test for university admission and that there are three types of students: A =

{A1, A2} and R = {R1}. Consider the testing set T = {t, ∅} where ∅ is an uninformative test. The test t is
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described by X = {x0, x1} and

πt(x|A1) =

1/2 if x = x0

1/2 if x = x1

πt(x|R1) =

1/3 if x = x0

2/3 if x = x1

πt(x|A2) =

0 if x = x0

1 if x = x1

Furthermore, suppose that µ(A1) < 2
3µ(R1) < µ(A2).

This example can be interpreted as follows. The test t is a test a university uses to get information about students,

like an interview or the SAT or GRE. The signal x1 represents a high grade and x0 a low grade. A common

concern about these tests is that they can be too easily gamed or fail to identify good students in some categories

of the population (see e.g., Hubler, 2020). The parametrisation of the test t captures this phenomenon. WhileA2

and R1 are naturally ordered, in the sense that A2 is more likely to have a good grade than R1, A1 corresponds

to a type of student that the university wants to accept but generates a lower grade than R1. Adding ∅ to the

menu allows the student to opt out from the standardised test.

When only t is offered: The information structure and prior deliver the following best response when only t is

offered,

α(x, t) =

0 if x = x0

1 if x = x1

The acceptance probabilities of each types are then

pt(α;R1) = 2/3 pt(α;A1) = 1/2 pt(α;A2) = 1

When both t and ∅ are offered: Consider the equilibrium with the following strategies of the agent:

σ(∅|R1) = µ(A1)

µ(R1)
σ(∅|A1) = 1 σ(t|A2) = 1

The studentR1 mixes between the two tests, t and ∅, whereasA1 chooses ∅ with probability one andA2 chooses

t with probability one. Note that if all types play a pure strategy, it is not possible to maintain an equilibrium

where both tests are chosen. If it is the case, there is a test that is only chosen by an A-type and in equilibrium

the DM must accept with probability one after any signal in that test. Thus R1 mixes in equilibrium to make the

menu {t, ∅} credible.
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Given the agent’s strategy, the DM’s strategy after t remains the same as before. When the DM observes ∅, he

is indifferent between accepting and rejecting. He then mixes in a way that makes R1 indifferent between ∅ and

t: α(x, ∅) = 2/3. The resulting acceptance probabilities are

E[p(α;R1)] = 2/3 p∅(α;A1) = 2/3 pt(α;A2) = 1

Types R1 and A2 have the same acceptance probabilities as before but A1 is accepted with strictly higher

probability. Therefore, allowing to opt out strictly increases the DM’s payoffs.

1.2.2 Discussion

Effort: The outcome of the test is independent of the agent’s action. The model would go unchanged if effort

is costless and observable as it could be deterred with off-path beliefs. If the effort is costless but unobservable

the results would generally change. However, if signals are ordered and the DM uses a cutoff strategy, as in

many natural applications, a reasonable assumption on effort would be that the higher the effort, the likelier a

high signal. In this case, the agent would always have an incentive to provide high effort. See Deb and Stewart

(2018) and Ball and Kattwinkel (2022) for models that takes into account both asymmetric information and

moral hazard in a model of testing.

Relation to models with evidence: The model can be interpreted as a generalisation of models with evidence.

The idea of these models is that each type is endowed with a set of messages that only a subset of types can

send. Formally, an evidence structure is a correspondence E : Θ ⇒ M for some finite set of messages M .

Thus type θ can only send messages in E(θ). We can capture these models in the following way. The set of

feasible test has X = {x1, x0} and for all m ∈ M , πm(x1|θ) = 1 ⇔ θ ∈ E−1(m). Thus a test m perfectly

reveals whether θ is in E−1(m) or in Θ \E−1(m). In a model with evidence, a type θ can never reveal he is in

Θ\E−1(m) for a messagem /∈ E(θ). However, in the testing model, we can always incentivise any type to not

choose such a test by setting α(x0,m) = 0 for all m. This strategy could be justified because (x0,m) would

always be off-path. Alternatively, we can set this restriction on α directly and Theorem 3 would still hold.

1.3 Characterisation of the optimal menu

An important step in the characterisation of the optimal menu is to show that commitment to a strategy does not

have value for the DM. I also show that in the DM-preferred equilibrium, the A-types play a pure strategy.
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Abusing notation, denote by σΘ′
: Θ′ → ∆T for any Θ′ ⊆ Θ the strategies of a subset of types Θ′ and by

v(α, σA, σR) ≡
∑
θ∈A

µ(θ)
∑
t∈T

σ(t|θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)
∑
t∈T

σ(t|θ)pt(α; θ′)

the DM’s payoffs.

Theorem 1. The value of the optimal menu is

V = max
α,σA

min
σR

v(α, σA, σR). (1.1)

For any (α, σA) ∈ argmaxα̃,σ̃A minσ̃R v(α̃, σ̃A, σ̃R) and σR ∈ argminσ̃R maxα̃ v(α̃, σ
A, σ̃R), (α, σA, σR)

are the equilibrium strategies in a DM-preferred equilibrium.

Moreover,

• the DM does not benefit from commitment,

• There exists a DM-preferred equilibrium where σA is in pure strategies and therefore |M| ≤ |A|.

All proofs are relegated to Section 1.9.

To understand Theorem 1 better first note that we can rewrite (1.1) as

max
α

[
max
σA

∑
θ∈A

µ(θ)
∑
t∈T

σ(t|θ)pt(α; θ)−max
σR

∑
θ′∈R

µ(θ′)
∑
t∈T

σ(t|θ)pt(α; θ′)
]
.

That is, it corresponds to the problem of finding the best strategy α when the agent chooses a test to maximise

his payoffs given α. Because the interest of the A-types is fully aligned with the DM’s, they try to maximise

his payoffs whereas the R-types have opposite interests and thus try to minimise the DM’s payoffs. Unlike the

original DM problem, the DM can commit to α and thus it does not need to be a best-reply. Theorem 1 shows

that the optimal α under commitment actually is a best-reply to the strategy chosen by the agent.

Theorem 1 provides two important tools to characterise the optimal menu. The first one is to establish that the

DM does not benefit from commitment. This is is a powerful tool to test equilibria. Indeed, it is not necessary

to compare equilibria across menus to establish that an equilibrium (α, σ) is not optimal. It is enough to find an

alternative DM strategy α̃ such that

max
σA

min
σR

v(α, σA, σR) < max
σA

min
σR

v(α̃, σ̃A, σR)

to show that (α, σ) does not constitute an optimal menu without having to worry whether α̃ is part of an
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equilibrium strategy.

I interpret this result as a hierarchy over sources of learning. The DM has two sources of information, the “hard

information” from the test results and the endogenously created information from the choice of test. When the

DM can commit to a strategy, he can “sacrifice” payoffs from the test result by not best replying, in order to

create separation of types through the test choice. By showing that the DM always best replies, even when he

can commit, I show that he should always prioritise the hard information over creating endogenous information

through the test choice.

That commitment has no value in this game comes from the zero-sum structure of the characterisation. Because

a minimax theorem holds, this implies that the order of moves do not matter in this game: the DM has the same

payoffs if he moves first or last.

The second tool is to establish that the size of the menu is bounded by the number of A-types. This limits the

number of tests we need to consider. An immediate corollary is also that if there is only one type the DM would

like to accept an optimal menu is to use only one test. In particular, this results shows that in a binary state

environment, the optimal mechanism uses only one test, no matter what the available set of test is.

Corollary 1. Suppose |A| = 1. Then for any T , there is an optimal menu that uses only one test.

Sequential Equilibrium. Note that if the solution concept is DM-preferred Sequential Equilibrium (SE)

(Kreps and Wilson, 1982), Theorem 1 would also hold. If all tests have full support, then all signals are on-path

and the PBE and SE coincide. If some tests do not have full support, then I can always assume that the trembling

of R-types is more likely than the trembling of A-types. Then, the DM’s off-path beliefs after the pair (t, x)

are that the type is an A-type if the support of A- and R-types do not coincide and that the type is an R-type

otherwise. This guarantees that if an A-type finds it profitable to deviate the problem without commitment then

he would also find it profitable in the problem with commitment.

1.4 Applications

1.4.1 Optimal menu with Blackwell dominant test

It is common in applications that the DM has access to a most informative test. This can be because the choice

is simply between a test and opting out of the test like in the admission test example. It can also come from the

structure of the constraints. For example, the DM could have a time budget to conduct an interview. The more

time the interview takes, the more informative it is. Another possibility is that the DM can easily make a test
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less informative by simply not conducting part of the test. If a test is composed of a series of questions, the DM

can ignore some of them.

I will use Blackwell (1953)’s notion of informativeness.

Definition 1 (Blackwell (1953)). A test t is more informative than t′, t ⪰ t′, if there is function β : X ×

X → [0, 1] such that for all x′ ∈ X ,
∑

x β(x, x
′)πt(x|θ) = πt′(x

′|θ) for all θ ∈ Θ and for all x ∈ X ,∑
x′ β(x, x′) = 1.

I call a test t a dominant test if t ⪰ t′ for all t′ ∈ T . If a test is more informative than another then in any decision

problem, i.e., a pair of utility function and a prior, using the more informative test yields higher expected utility.

A first important fact we will record here is that if there is a most informative test, then it is part of an optimal

menu.

Lemma 1. If there is t ∈ T such that t ⪰ t′ for all t′ ∈ T , then there is an optimal menu that includes t.

This lemma follows from the commitment result of Theorem 1 and the properties of dominant tests. Indeed,

if we find a menu where the dominant test t is not included, we can modify the DM’s strategy such that one

A-type is accepted with higher probability than the test he is choosing, say t′, and all R-types are accepted with

lower probability than in t′. Then this A-type has a profitable deviation to t.

As we have seen in the admission test example in Section 1.2.1, it can be optimal to add a strictly less informative

in the optimal menu. I first focus on binary signals environment, X = {x0, x1}. Let t be the most informative

test in T . When signals are binary, we can order the types by their likelihood of generating signal x1: θ ≥t

θ′ ⇔ πt(x1|θ) ≥ πt(x1|θ′).4 I characterise the optimal menu for different payoff function of the DM.

Definition 2. The DM’s preferences are single-peaked given the order ≥ on Θ if there is θ1, θ2 ∈ A such that

A = {θ : θ1 ≤ θ ≤ θ2}.

Preferences are single-peaked if the DM only wants to either only accept high types, only low types or only

intermediate types, where the order is determined by the performance of types on the test. Preferences are not

single-peaked whenever it is possible to find A1, A2 ∈ A and R1 ∈ R such that A1 <t R1 <t A2. This was for

example the case in the admission test example in Section 1.2.1.

We get the following characterisation.

Proposition 1. Let X = {x0, x1}. Suppose there is t ∈ T such that t ⪰ t′ for all t′ ∈ T and let ≥t on Θ be

the order implied by t.

The singleton menu {t} is optimal for any µ⇔ the DM’s preferences are single-peaked given ≥t.

4Note that given that tests are binary, this is equivalent to ordering type by the likelihood ratio, π(x1|θ)
π(x0|θ)

.
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From Lemma 1, the most informative test is part of the optimal menu. Whenever the DM’s preferences are

single-peaked, if the most informative test is included in the menu, the unique resulting equilibrium is one where

all types choose the most informative test. The key argument in the analysis is noting that pt(α; θ) − pt′(α; θ)

is single-crossing in θ with respect to the order ≥t, for any α. When preferences are single-peaked, we can use

the single-crossing condition and properties of tests satisfying the monotone likelihood ratio property to show

that there is a unique equilibrium where only t is chosen.

On the other hand, if the preferences are not single-peaked, there is a prior where offering even a completely

uninformative test with the most informative test is strictly better for the DM. To illustrate, consider three types

A1, A2 ∈ A and R1 ∈ R such that A1 <t R1 <t A2. Suppose the prior is such that if only t is offered, the

DM accepts after x1 and rejects after x0. The DM can then offer an uninformative test where the probability of

being accepted makes R1 indifferent but is strictly preferred by A1. This constitutes a deviation in the problem

with commitment. This reasoning can be used to show that including a less informative test is always beneficial

whenever the DM’s payoff is enclosed given ≥: there is θ1, θ2 ∈ A such that θ1 < θ < θ2 for any θ ̸= θ1, θ2.

Proposition 2. Let X = {x0, x1}. Suppose there is t ∈ T such that t ⪰ t′ for all t′ ∈ T and let ≥t on Θ be

the order implied by t.

The DM’s preferences are enclosed given ≥t ⇔ the DM’s payoffs are higher in the menu {t, t′} than in {t} for

any µ and t′ ∈ T .

The ideas of Proposition 1 and Proposition 2 can be partially extended to more than two signals. First, if all

tests satisfy the monotone likelihood ratio property and the DM only wants to accept types above a threshold,

the optimal menu is to only offer the most informative test.

Proposition 3. Suppose Θ, X ⊂ R, A = {θ : θ > θ} for some θ and all tests in T have full-support and the

monotone likelihood ratio property: for θ > θ′,

πt(x|θ)
πt(x|θ′)

is increasing in x.

If there is t ⪰ t′ for all t′ ∈ T , then, the menu {t} is optimal.

Again this result holds by showing a single-crossing difference property on the acceptance probability. Intu-

itively, the reason is that more informative tests send relatively higher signals for higher types. So if a low type

chooses the most informative test, the higher types must also choose that one. This prevents any pooling of

A-types and R-types on two different tests. Combined with Lemma 1 that guarantees the inclusion of the dom-

inant test, we get our result. Note also that this result would hold using weaker information order like Lehmann

(1988) or some weakening of it. The key property delivering the result is the single-crossing condition described
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above.

If it is possible to find two signals, x, x′, two A-types A1, A2 and one R-type, R1 such that πt(x|A1)
πt(x′|A1)

<

πt(x|R1)
πt(x′|R1)

< πt(x|A2)
πt(x′|A2)

, then there is a test t′ strictly less informative than t and a prior such that offering {t, t′}

is better for the DM than just offering {t}.

Proposition 4. Let t be a test. Suppose there are two signals x, x′ ∈ X , types A1, A2 ∈ A and R1 ∈ R such

that
πt(x|A1)

πt(x′|A1)
<

πt(x|R1)

πt(x′|R1)
<

πt(x|A2)

πt(x′|A2)
.

There is a prior µ and a test t′ ≺ t such that the DM’s payoffs are higher in the menu {t, t′} than in {t}.

Intuitively, if we interpret x as a high signal, the A-type A1 sends relatively low signals. Suppose that the

prior is such that, if only t is offered, x is accepted and x′ is not. In a sense, it means that in the test t, type

R1 performing better than A1 on the signals x, x′. It is then beneficial for the DM to include a test that pools

signals x, x′ together. In that new test, type A1 can choose the coarsened test where the superior performance

of type R1 is less important than in the original test.

1.4.2 Optimal menu with tests ordered by their difficulty

In many economic environments, the DM does not necessarily have access to a most informative test but can

vary the difficulty to pass a test. This is for example the case for a regulator that can decide how demanding a

certification test is. Like in Proposition 1 and Proposition 3, I show that the optimal menu is a singleton.

I first formalise the notion of more difficult test as follows.

Definition 3 (Difficulty environment). An environment is a Difficulty environment if Θ ∈ R, A = {θ : θ > θ}

for some θ, X = {x0, x1}, T ⊂ R, all tests have full-support, satisfy the monotone likelihood ratio property

and for all t > t′, and θ > θ′,

πt(x1|θ)
πt(x1|θ′)

≥ πt′(x1|θ)
πt′(x1|θ′)

and
πt(x0|θ)
πt(x0|θ′)

≥ πt′(x0|θ)
πt′(x0|θ′)

If t > t′, I will say that t is harder than t′. To understand the last condition better, let µ(·|x, t) be a posterior belief

after observing signal x in test t. The monotone likelihood ratio property implies µ(·|t, x1) ⪰FOSD µ(·|t, x0), a

higher signal is “good news” about the type (Milgrom, 1981). The last property in the definition further implies

µ(·|t, x) ⪰FOSD µ(·|t′, x). That means that a pass grade shifts beliefs more towards higher type in a harder test

and a fail grade shifts more beliefs towards lower types in an easy test. Or put differently, the harder a test the

more informative it is about a high type when there is a pass-grade whereas an easier test is informative about
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the low types when the test is failed. As an example, if Θ ⊂ (0, 1) and πt(x1|θ) = θt we are in a Difficulty

environment.

Proposition 5. In a Difficulty environment, a singleton menu is optimal.

Like Proposition 1 and Proposition 3, Proposition 5 illustrates how incentive constraints shape the size of the

optimal menu. In the case of the single-peaked preferences with dominant test, the equilibrium when the most

informative test is offered is unique and only that test is chosen. Here, it is possible to construct an equilibrium

where more than one test is chosen in equilibrium. However, the DM strategy needed to sustain that equilibrium

is such that he is better off offering only one test.

The proof proceeds in two steps. First, I show that there are at most two tests in the optimal menu and if there

are two tests, the harder test must be more lenient that the easy test. In particular, I show that after the hard test,

the DM must accept with some probability after a fail signal and in the easy test, reject with positive probability

after a pass grade.

This means that to maintain incentives to select both tests, the DM only reacts to the least informative signal

from the test: in the hard test after a fail grade, in the easy test after a pass grade. This in turn implies that it

would be better for the DM to use only one test and reject after a fail grade and accept after a pass grade.

1.4.3 Bidimensional environment

In this subsection, I apply the tools of Theorem 1 to study environments with bidimensional types. The analysis

here can be easily extended to more than two dimensions. I assume that the DM has access to tests that is only

informative about one dimension and the preference of the DM have some monotonicity along each dimension.

Definition 4. An environment is bidimensional if Θ = Θ1 ×Θ2 ⊂ R2, X ⊂ R and T = {t1, t2} such that for

i = 1, 2,

• if θ ∈ A, then for all θ′ ≥ θ, θ′ ∈ A

• ti has full support and for all θi > θ′i,

πti(x|θi, θj)
πti(x|θ′i, θj)

is strictly increasing in x for any θj ∈ Θj

• πti(x|θi, θj) = πti(x|θi, θ′j) for all θj , θ′j ∈ Θj and x ∈ X

The first condition captures the idea that a higher type is always better for the DM. The second and third
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(a) Full menu always optimal. (b) Full menu not always optimal.

Figure 1.1: Illustration of DM’s preferences for Proposition 6.

condition captures the idea that each test is only informative about one dimension and that a higher signal

corresponds to a higher type in that dimension.

In this environment, whether the DM wants to offer a menu depends crucially on his preferences. In particular,

I give a necessary and sufficient condition on the preferences such that a menu is optimal for any prior. Let

θi = maxΘi.

Proposition 6. Suppose we are in a bidimensional environment. Offering a menu {t1, t2} is strictly optimal for

any prior if and only if

for i = 1, 2, (θi, θj) ∈ A, for all θj ∈ Θj . (1.2)

The proof of Proposition 6 works by showing that a deviation from a single test menu is always profitable

when condition (1.2) is satisfied and constructs a prior under which there are no profitable deviations when the

condition is not satisfied.

Figure 1.1 illustrates the condition of Proposition 6 with Θ ⊂ [0, 1]2. In Figure 1.1a, the DM wants the agent’s

type to be high enough in at least one dimension. Then the DM always prefers to offer a full menu to the agent.

On the other hand, in Figure 1.1b, the DM does not want to accept a type that is high in only one dimension. In

this case, for some prior, the DM only wants to offer one test. This happens when after any deviation from the

singleton menu any A-type is mimicked by too many R-types that cannot be distinguished from him.
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1.5 Sufficient conditions for test inclusion

In this section, I study in more details the notion of efficient allocation of tests to the agent’s types. I show that

a sufficient condition to include a test in the optimal menu is if it is good at differentiating one A-type from all

the R-types. This captures a notion of a test tailored for the A-type.

Definition 5. Fix θ ∈ A. Test t θ-dominates t′, t ⪰θ t
′, if there is β : X ×X → [0, 1] such that for all x′ ∈ X

∑
x

β(x, x′)πt(x|θ) ≤ πt′(x
′|θ)

for all θ′ ∈ R,
∑
x

β(x, x′)πt(x|θ′) ≥ πt′(x
′|θ′)

for all x ∈ X,
∑
x′

β(x, x′) ≤ 1

To understand this definition better, compare it to Blackwell (1953)’s informativeness order. It requires the

existence of a function β such that for all x′ ∈ X ,
∑

x β(x, x
′)πt(x|θ) = πt′(x

′|θ) for all θ ∈ Θ and for all

x ∈ X ,
∑

x′ β(x, x′) = 1. The key difference is that we restrict attention to one A-type and all the R-types.

This captures the idea the test θ-dominant test is tailored to differentiate θ from each R-type. The second

difference is that it requires only inequalities whereas the Blackwell order requires equalities. This is because

we are fixing the utility function we are interested in, unlike in Blackwell (1953).

If a type θ ∈ A has a ⪰θ-dominant test, then this test is used in an optimal menu. This shows that an im-

portant property of tests is not so much how good they are at differentiating types, but how good they are at

differentiating one type the DM wants to accept from all the types he wants to reject.

Proposition 7. Suppose there is t ∈ T and θ ∈ A such that t ⪰θ t
′ for all t′ ∈ T , then t is part of an optimal

menu.

The stronger notion of a test able to differentiate some θ ∈ A from all R-types is if suppπt(·|θ) ∩
(

∪θ′∈R

suppπt(·|θ′)
)

= ∅. If each type in A has such a test, then the principal never makes a mistake. This condition

is also necessary.

Proposition 8. The principal’s expected payoff is
∑

θ∈A µ(θ) if and only if for all θ ∈ A, there exists t ∈ T

such that

suppπt(·|θ) ∩
(
∪θ′∈R suppπt(·|θ′)

)
= ∅

Here, the principal just needs for each type he wants to accept a test where he can discriminate between that type

and theR-types. Then he can offer a menu of tests where eachA-type self selects into the test that discriminates
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him from theR-types. The actual learning only happens by observing the test selected and the testing technology

serves as a detriment to deviations from R-types. The argument is then similar to an unravelling argument à

la Milgrom (1981) and Grossman (1981). These are not fully revealing tests but tests that allow to perfectly

discriminate one A-type from all the R-types. But it could be a very noisy tests for the other A-types.

1.6 Extension: Communication

I consider here the possibility of adding a communication channel on top of the test choice. There is now a finite

set C of output messages with |C| ≥ |A| and a strategy is a mapping σ : Θ → ∆(T × C). Note that all the

results from the previous sections go through as from any finite set T one can create another T ′ that duplicate

each test |C| times. I call this variant of the model the menu game with communication.

In line with Theorem 1, each A-type chooses a message-test pair deterministically and each R-type mixes

over some A-types message-test pair. Moreover, I show that when communication is added, each type in A

announces his type, thus maximally differentiating himself, and each R-type pretends to be an A-type.

Theorem 2. If communication is allowed, the same construction as Theorem 1 holds. Moreover, there is a

DM-preferred equilibrium where each A-type reports his own type.

Theorem 2 shows that the results extend naturally to an environment where communication is allowed. Because

the DM could commit to a strategy, he can always guarantee each A-type at least as much as he would have if

he would pool with another A-type. This guarantees that there is an a solution to the problem with commitment

where he separates from the other A-types.

Communication can play an important economic role. For example, if the set of feasible tests contains a Black-

well dominant test and communication is allowed, the DM only use the dominant test.

Proposition 9. Suppose there is t ∈ T such that t ⪰ t′ for all t′ ∈ T and communication is allowed. Then an

optimal menu is {t}.

Example from Section 1.2.1 revisited: Suppose that we allow for communication in the admission test example

(Section 1.2.1). In this case, all types choose test t, type A1 and A2 communicate their type and R1 mixed over

the two messages:

σ(A1, t|R1) = 3µ(A1)

4µ(R1)
σ(A1, t|A1) = 1 σ(A2, t|A2) = 1

The DM accepts only after the signal x1 after the message test pair (A2, t) and mixes after x1 and accepts after
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x1 in the message test pair (A1, t):

α(x,A1, t) =

1 if x = x0

1/2 if x = x1

α(x,A1, t) =

0 if x = x0

1 if x = x1

The probability of acceptance of each type is now:

E[p(α;R1)] = 2/3 pA1,t(α;A1) = 3/4 pA2,t(α;A2) = 1

Note that the DM must now use a different decision rule for the same test. In particular, the meaning of the test

is different: a “high grade” after message A1 is x0 whereas a “high grade” after message A2 is x1.

1.7 Mechanism and randomisation

So far we have restricted attention to menus of tests. But the DM could potentially use a more elaborate

mechanism to allocate tests to agents. I define a mechanism τ : Θ → ∆T , a possibly random mapping from

type report to distribution over tests. A strategy for the DM remains a mapping from test allocation and signal

realisation to an acceptance decision, α : T × X → [0, 1], and the agent’s strategy is a mapping from type to

type report. I assume that the DM cannot observe the type report but we can naturally extend the mechanism τ

to allow for output messages in the spirit of Section 1.6. Standard revelation principle arguments show that it is

without loss of generality to restrict attention to type reports.

The DM’s problem is now to maximise his expected payoff subject to incentive-compatibility constraints.

In the baseline model, the DM cannot commit to its strategy α. Let BR(τ) := {α : Eα,τ [v(a, θ)] ≥

Eα′,τ [v(a, θ)], for all α′}, the set of best-reply when the mechanism is τ . The DM’s problem is

max
τ,α

∑
θ∈A

µ(θ)
∑
t

τ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t

τ(t|θ)pt(α; θ)

s.t.
∑
t

(τ(t|θ)− τ(t|θ′))pt(α; θ) ≥ 0 for all θ, θ′

α ∈ BR(τ)

The first constraint is the incentive compatibility constraint of type θ deviating to θ′ and the second constraint

ensures that the DM best replies to the information revealed by the output of the mechanism.5

5This definition does not put constraints on off-path optimality but because any strategy is best-reply to some beliefs, this guarantees
that satisfying BR(τ) will lead to a weak PBE.
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By using a mechanism, the agent can be randomly allocated to different tests without being indifferent between

them. On the other, when restricting attention to menus, the agent has to be indifferent between tests if he

randomises over tests. In the following example (inspired by Glazer and Rubinstein, 2004), I show that access

to a mechanism can strictly improve the DM payoffs.

Example 1 (Randomised allocation). Suppose there are six types Θ = {(θ1, θ2, θ3) : θi = 0, 1, 1 ≤ θ1 + θ2 +

θ3 ≤ 2} and A = {(θ1, θ2, θ3) : θ1 + θ2 + θ3 = 2}. The DM has access to three tests, each perfectly revealing

one dimension: T = {1, 2, 3} with πt(x = θt|θ) = 1. The prior µ is uniform. At the optimum, the DM accepts

when the signal is equal to 1. The optimal mechanism τ allocates each A-type with probability 1/2 to each test

where their dimension is equal to 1. Each R-type is allocated with probability 1/2 to the dimension where it

has value 1 and 1/4 in the other dimensions.

This mechanism accepts A-types with probability one and accepts R-types with probability 1/2. In particular,

the mechanism randomises the allocation ofR-types over tests they are not indifferent between. If the DM could

only use a menu, the R-types would always choose the test that reveals their dimension equal to one. Thus any

menu and strategy that accepts R-types with probability 1/2 must also accept A-types with probability 1/2.

I now show that the optimal mechanism can also be characterised by a max-min problem and the DM does not

benefit from commitment.

To set up the characterisation of the optimal mechanism, let s : A → ∆T and m : R → ∆A and abusing

notation, let α : T ×X → [0, 1] and

v(α, s,m) ≡
∑
θ∈A

∑
t∈T

s(t|θ)
[
µ(θ)pt(α; θ)−

∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′)
]

(1.3)

=
∑
θ∈A

∑
t∈T

µ(θ)s(t|θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)
∑
θ∈A

m(θ|θ′)
∑
t∈T

s(t|θ)pt(α; θ′)

The function s can be interpreted as A-types choosing a test, m as R-types choosing an A-type to mimic, α as

the DM accepting the agent after a test and signal realisation. The function v is then the DM’s expected payoffs

from a distribution over tests induced by the pair (s,m). I explain these objects in more detail in the discussion

of Theorem 3.

Theorem 3. The value of an optimal mechanism is

V = max
α,s

min
m

v(α, s,m) (1.4)

For any (α, s) ∈ argmaxα̃,s̃ minm̃ v(α̃, s̃, m̃) and m ∈ argminm̃ maxα̃ v(α̃, s, m̃), an optimal mechanism is
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• for θ ∈ A : τ(t|θ) = s(t|θ)

• for θ′ ∈ R : τ(t|θ′) =
∑

θ∈Am(θ|θ′)τ(t|θ)

• the DM’s strategy is α

Moreover, the DM does not benefit from committing to α.

Theorem 3 provides another characterisation of the optimal mechanism in terms of a max-min problem. As

in Theorem 1, the no value of commitment follows from the max-min structure of the characterisation. To

understand the structure of this max-min problem better, consider the objective function v for a fixed α. This

can be interpreted as a zero-sum game where where the maximiser, the A-types, chooses s : A → ∆T and the

minimiser, the R-types, chooses m : R → ∆A. The payoffs of a given A-type θ choosing test t and a given

R-type, θ′, choosing an A-type θ̃ can be expressed as:

for θ ∈ A choosing t, µ(θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′)

for θ′ ∈ R choosing θ̃, µ(θ′)
∑
t

s(t|θ̃)pt(α; θ′)−
∑
θ∈A,t

µ(θ)s(t|θ)pt(α; θ)

Note that in the payoffs of the R-type, his strategy, the choice of θ̃, only affects the first part of the payoffs. So

the R-type is effectively trying to maximise his probability of being accepted. On the other hand, the A-type

maximise a modified version of their utility where they maximise their probability of being accepted while

being penalised every time a R-type mimics them and is accepted. The A-types’ utility is thus modified to align

it with the DM’s payoffs. The induced distribution over tests determines the optimal mechanism when strategy

α is used.

1.8 Conclusion

I study the design of optimal menus of tests. Menus allow the DM to have an additional dimension for infor-

mation revelation as well as allow for a more efficient allocation of tests to the agent’s types. I show that for

arbitrary structures on types or tests available, the DM does not benefit from committing to a strategy and the

size of the optimal menu is bounded by the number of types the DM wants to accept. In applications, I show

that using a menu can be a powerful tool, and even a dominated test, in the Blackwell sense, can be part of the

optimal menu. However, this channel also has limits and I show that in some natural economic environments the

optimal menu is a singleton. All the results also hold when the DM can commit to an action. I interpreted this

result as a hierarchy over information sources: even when the DM can use a suboptimal strategy to “artificially”
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incentivise the agent to choose different tests, he is better off using a menu only when he can best reply to the

information revealed.

An important technical observation throughout the paper is that single-crossing conditions on the acceptance

probability play a key role to have a singleton menu. While single-crossing conditions are usually used to

maintain separation in signalling and screening models, in this case separation reveals too much information

through the choice. This in turn makes it impossible to maintain the incentives to separate in the first place.

Finally, adding the communication highlights the role of tests when there is no communication. Without com-

munication, the tests also serve as a communication channel. When communication is allowed, the test choice

does not add any information beyond the test results. This leads to the result that only dominant tests are used

when the agent can communicate but a dominant test can be useful when there is no additional communication.
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1.9 Omitted proofs of Chapter 1

1.9.1 Proof of Theorem 1

The problem the DM needs to solve when committing to α is

max
α

∑
θ∈A

µ(θ)
∑
t∈T

σ̃(t|θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)
∑
t∈T

σ̃(t|θ′)pt(α; θ′)

s.t. σ̃(·|θ) ∈ argmax
∑
t∈T

σ(t|θ)pt(α; θ), for all θ ∈ Θ

Therefore,
∑

t∈T σ̃(t|θ)pt(α; θ) = maxσ(·|θ) σ(t|θ)pt(α; θ) for all θ. Abusing notation, denote by σΘ′
: Θ′ →

∆T . We can plug this is in the DM’s maximisation problem to obtain

max
α

max
σA

min
σR

∑
θ∈A

µ(θ)
∑
t∈T

σ(t|θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)
∑
t∈T

σ(t|θ′)pt(α; θ′)

where the min is obtained because of the minus sign. Define

v(α, σA, σR) ≡
∑
θ∈A

µ(θ)
∑
t∈T

σ(t|θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)
∑
t∈T

σ(t|θ′)pt(α; θ′)

Let (α, σA) ∈ argmaxα̃,σ̃A minσ̃R v(α̃, σ̃A, σ̃R) and σR ∈ argminσ̃R maxα̃ v(α̃, σ
A, σ̃R). I will now show

that these strategies are equilibrium strategies.

Because the order of maximisation does not matter, σA ∈ argmaxmin v(α, σ̃A, σ̃R). Moreover, σA ∈

argmax v(α, σ̃A, σR
1 ) ⇔

∑
t∈T σ(t|θ)pt(α; θ) ≥

∑
t∈T σ̃(t|θ)pt(α; θ) for all θ ∈ A and σ̃A. This last expres-

sion does not depend σR. Therefore, σA ∈ argmax v(α, σ̃A, σR).

Similarly, α ∈ argmaxmin v(α̃, σA, σ̃R). Because v is linear in both α and σR, (α, σR) is a saddle-point

of v(·, σA, ·) by the minimax theorem. As for σA, σR ∈ argmin v(α, σA, σ̃R) ⇔
∑

t∈T σ(t|θ)pt(α; θ) ≥∑
t∈T σ̃(t|θ)pt(α; θ) for all θ ∈ R and σ̃R. Therefore all strategies are best-reply.

Beliefs on-path are formed using Bayes’ rule and off-path beliefs are chosen to justify the off-path actions of α

(this is always possible to find as any action is best-reply to some beliefs).

Note also that we can without loss of generality take σA to be in pure strategy as it is maximises a linear

function.
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1.9.2 Proof of Lemma 1

Because t ⪰ t′ implies t ⪰θ t
′ for some θ ∈ A, Lemma 1 is a corollary of Proposition 7 proven below.

1.9.3 Proof of Proposition 1 and Proposition 2

Suppose the DM’s preferences are single-peaked given ≥t. Suppose there is a menu with both t, t′. Take

A1, A2 ∈ A with A1 < A2 and without loss of generality, suppose A1 chooses t′ and A2 chooses t in some

equilibrium. Let α denote the DM equilibrium strategy in this equilibrium.

Because t ⪰ t′, there is β : X × X → [0, 1] such that pt′(x̃|θ) = β(x, x̃)πt(x|θ) + β(x′, x̃)πt(x
′|θ) and∑

x β(x̃, x) = 1 for x̃ = x, x′. Type θ ∈ Θ prefers test t′ over t if

α(x1, t
′)
(
β(x1, x1)πt(x1|θ) + β(x0, x1)πt(x0|θ)

)
+ α(x0, t

′)
(
β(x1, x0)πt(x1|θ) + β(x0, x0)πt(x0|θ)

)
− α(x1, t)πt(x1|θ)− α(x0, t)πt(x0|θ) ≥ 0

Note that this expression is monotonic in θ. Indeed, if πt(x0|θ) > 0, then dividing by πt(x0|θ) gives

α(x1, t
′)
(
β(x1, x1)

πt(x1|θ)
πt(x0|θ)

+ β(x0, x1)
)
+ α(x0, t

′)
(
β(x1, x0)

πt(x1|θ)
πt(x0|θ)

+ β(x0, x0)
)

− α(x1, t)
πt(x1|θ)
πt(x0|θ)

− α(x0, t)

which is linear in πt(x1|θ)
πt(x0|θ) , an increasing function of θ. If πt(x0|θ) = 0, then πt(x0|θ′) = 0 for all θ′ >t θ and

the expression is constant.

To have A1 choose t′ and A2 choose t, it must be strictly decreasing6 in θ, i.e.,

α(x1, t
′)β(x1, x1) + α(x0, t

′)β(x1, x0)− α(x1, t) < 0 (1.5)

A necessary condition for (1.5) to hold is that α(x1, t) > 0. Note the strict monotonicity also implies that

there is θ ∈ A such that any θ > θ prefers t and any θ ≤ θ prefers t′. Let A+ = {θ ∈ A : θ >t θ} and

R+ = {θ ∈ R : θ >t θ
′, for all θ′ ∈ A}. But because only types in A+ ∪ R+ choose t, the likelihood ratios

πt(x1|θ)
πt(x1|θ′) <

πt(x0|θ)
πt(x0|θ′) for any θ ∈ A+, θ′ ∈ R+ and α(x1, t) > 0 imply that α(x0, t) = 1 (Milgrom, 1981).

6If all types are indifferent between t and t′ then it is also an equilibrium to offer only t and the DM’s payoffs are the same.
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But then no type ever prefer t′ over t. Indeed, the condition to prefer t′ over t,

(
α(x1, t

′)β(x1, x1) + α(x0, t
′)β(x1, x0)− α(x1, t)

)
πt(x1|θ)

≥
(
1− α(x1, t

′)β(x0, x1)− α(x0, t
′)β(x0, x0)

)
πt(x0|θ)

is never satisfied as the LHS is strictly negative because (1.5) must hold and the RHS is positive because

β(x0, x1) + β(x0, x0) = 1 and α(x̃, t′) ≤ 1, x̃ = x1, x0.

Thus there cannot be an equilibrium where another test than t is chosen.

Suppose the DM’s preferences are enclosed given ≥t.

Suppose (α̃, σ̃A) ∈ argmaxminσR v(α, σA, σR) with σ̃(t|θ) = 1 for all θ ∈ A.

Suppose the prior is such that when only t is offered, x0 is rejected and x1 is accepted. Let θ = min{θ ∈ R}

where the min is taken with respect to ≥t.

Then consider the following deviation: take some t′ ̸= t and let α(x, t′) = πt(x1|θ) for all x ∈ X and α = α̃

otherwise. Because preferences are enclosed, there is θ ∈ A such that πt(x1|θ) < πt(x1|θ) and for all θ′ ∈ R,

πt(x1|θ′) ≥ πt(x1|θ). Let σ(t′|θ) = 1 for that type and σ = σ̃ otherwise. This deviation is strictly profitable,

i.e., minσR v(α̃, σ̃A, σR) < minσR v(α, σA, σR).

Suppose the prior is such that α̃(x1, t) = α̃(x0, t) ∈ {0, 1} when only t is offered. This means that the DM

does not react to information. Let α(x, t′) = α̃(x, t) for some t′ ̸= t and σ(t′|θ) = 1 for some θ ∈ A and

σ = σ̃ otherwise. We get minσR v(α̃, σ̃A, σR) = minσR v(α, σA, σR), so it is also a solution.

Suppose that the DM’s preferences are not single-peaked given ≥t.

In this case, it is possible to find A1, A2 ∈ A and R1 ∈ R such that A1 <t R1 <t A2. Let µ(θ) ≈ 0

for θ ̸= A1, A2, R1 and be such that x0 is rejected and and x1 is accepted when only t is offered. Because

t is informative, there is always such prior. Then from the reasoning above the menu {t, t′} is strictly better

for the DM than {t} when only focusing on A1, A2, R1 have positive probability. But because µ(θ) ≈ 0 for

θ ̸= A1, A2, R1, then the menu {t, t′} remains strictly better than {t} whatever the behaviour of the other types.

Suppose that the DM’s preferences are not enclosed given ≥t.

If the DM’s preferences are not enclosed, then suppose without loss of generality that there is R1 ∈ R such that

R1 ≤t θ for any θ ∈ Θ (otherwise, simply change the roles of x1 and x0).

Suppose it is not the case and take some A1 ∈ A such that A1 >t R1. (We have a strict inequality because we

assumed that all types generate different distribution over signals.) Suppose that for θ ̸= A1, R1, µ(θ) ≈ 0. An
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argument analogue to the proof that single-peakness implies that only t is chosen in equilibrium holds.

1.9.4 Proof of Proposition 3

Proof. Note that in an MLRP environment, the strategy of the DM takes the form of a cutoff strategy. For each

test t, there is xt ∈ X such that α(x, t) = 0 for x < xt, α(x, t) = 1 for x > xt and α(xt, t) ∈ [0, 1]. From

Lemma 1, we know that there is an optimal menu containing the Blackwell most informative test. Because all

tests are MLRP and the DM’s payoffs satisfy single-crossing condition, the Lehmann order is well-defined and

the Blackwell order implies the Lehmann order (Lehmann, 1988; Persico, 2000). Let ⪰a denote the Lehmann

order.

The Lehmann order is defined on continuous information structure. But as outlined in Lehmann (1988), we

can always make our conditional probabilities continuous by adding independent uniform between each signal.

Let’s assume, without loss of generality, that X = {1, ..., n}. The new distribution over signal is ỹ|θ = x̃|θ− u

where u ∼U[0, 1]. Denote by Ft the cdf associated with the new information structure.

We have that t ⪰a t′ if y∗(θ, y) ≡ Ft(y
∗|θ) = Ft′(y|θ) is nondecreasing in θ for all y (Lehmann, 1988). In

particular, this condition implies that if Ft(y|θ′) ≤ (<)Ft′(y
′|θ′) then Ft(y|θ) ≤ (<)Ft′(y

′|θ) for all θ > θ′.

Let α be the optimal strategy and xt be the cutoff signal associated to each test. To each
(
α(·, t), xt

)
we can

associate a yt ≡ xt − α(xt, t).

If t is part of an optimal menu, it must be that there is some θ′ ∈ R such that pt(α; θ′) ≥ pt′(α; θ
′) for all t′.

Or put differently, Ft(yt|θ′) ≤ Ft′(yt′ |θ′) for all t′. But then Ft(yt|θ) ≤ Ft′(yt′ |θ) for all t′ and all θ > θ′,

in particular all θ ∈ A. Therefore all type in A prefer test t as well and there is an solution of the max-min

problem where all types in θ ∈ A choose t. (If there is an A-type that is indifferent between t and t′ then all

types in R must be indifferent or prefer t′ so choosing t is an equilibrium strategy for such A-type.)

1.9.5 Proof of Proposition 4

Suppose that t is the only test used in the optimal menu. Define a test t′ such that for all θ ∈ Θ,

πt′(x|θ) =
∑

x̃=x,x′

πt(x̃|θ)

πt′(x̃|θ) = πt(x̃|θ), for all x̃ ̸= x, x′

The test t′ pools signals x and x′ together and is otherwise identical to t. We have t ≻ t′ as any strategy under
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t′ can be replicated under t.

Let µ be such that for all θ ̸= A1, A2, R1, µ(θ) ≈ 0 and such that when only t is chosen, the DM’s best-reply

is α(x, t) = 1 and α(x′, t) = 0.

In the problem with commitment, consider the deviation α̃ such that α̃(x, t′) = πt(x|A1)
πt(x|A1)+πt(x′|A1)

+ ϵ for some

small ϵ > 0 and α̃ = α otherwise.

This implies that pt(α;A1) < pt′(α̃;A1) but for ϵ small enough pt(α; θ) > pt′(α̃; θ) for θ = R1, A2. Therefore

A1 is accepted with strictly higher probability and the other types with the same probability as they choose the

same test. If the prior on other types is sufficiently small, the deviation is still strictly profitable for the DM.

1.9.6 Proof of Proposition 5

I first show that if t > t′, then µ(·|t, x) ⪰FOSD µ(·|t′, x) where ⪰FOSD denotes first-order stochastic domi-

nance.

Proof. The proof is similar to the one in Milgrom (1981). Denote by Gt(·|x) the cdf of posterior beliefs after

signal x in test t. For all θ > θ′,

µ(θ)
πt(x|θ)
πt(x|θ′)

≥ µ(θ)
πt′(x|θ)
πt′(x|θ′)

Take some θ∗ ≥ θ′. Summing over θ, we get

∑
θ>θ∗

µ(θ)
πt(x|θ)
πt(x|θ′)

≥
∑
θ>θ∗

µ(θ)
πt′(x|θ)
πt′(x|θ′)

Inverting and summing over θ′, we get∑
θ∗≥θ′ µ(θ′)πt(x|θ′)∑
θ>θ∗ µ(θ)πt(x|θ)

≤
∑

θ∗≥θ′ µ(θ′)πt′(x|θ′)∑
θ>θ∗ µ(θ)πt′(x|θ)

which implies
Gt(θ

∗|x)
1−Gt(θ∗|x)

≤ Gt′(θ
∗|x)

1−Gt′(θ∗|x)
⇒ Gt(θ

∗|x) ≤ Gt′(θ
∗|x)

The way this proof proceeds is by fixing a menu and dividing tests in two categories: (1) those for which

α(x0, t̃) ∈ (0, 1) and α(x1, t̃) = 1 and (2) α(x0, t̃) = 0 and α(x1, t̃) ∈ (0, 1]. I exclude the possibility that the

DM always accepts or rejects after any signal as it would either be the only test chosen in equilibrium or never
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chosen. Then, I show that within each category, it is without loss of optimality to have at most one test. It is

thus optimal to have at most two tests in the menu. The last part of the proof shows that the resulting menu is

dominated by having only one test.

If there are two tests, t > t′ such that α(x0, t̃) = 0 and α(x1, t̃) ∈ (0, 1], I will show that,

pt(α; θ
′) ≥ pt′(α; θ

′) ⇒ pt(α; θ) ≥ pt′(α; θ) for all θ > θ′

Take two tests such that α(x0, t̃) = 0, t > t′. Let α, α′ denote their respective probability of accepting after x1.

Define α(θ) ≡ α(θ)πt(x1|θ) − α′πt′(x1|θ) = 0. Rearranging, α(θ) = α′ πt′ (x1|θ)
πt(x1|θ) . From our assumption on

the difficulty environment, α(θ) is decreasing in θ. If pt(α; θ′) ≥ pt′(α; θ
′) for some θ′ then α ≥ α(θ′). Then

α ≥ α(θ) for all θ > θ′.

In equilibrium, we must have that there is one θ′ ∈ R that chooses t and thus for all θ ∈ A, pt(α; θ) ≥ pt′(α; θ).

Then there is an solution of the max-min problem where t′ is never chosen.

A similar argument can be made for all tests where α(x0, t̃) > 0.

Thus we conclude that it is without loss of optimality that the optimal menu has at most two tests.

Suppose the optimal menu uses two tests, t > t′. I will now show that it must be that α(x0, t) ∈ (0, 1) and

α(x1, t
′) ∈ (0, 1), i.e., the DM must accept in the hard test when there is a fail grade and only accept in

the easy test if there is a pass grade. Suppose it is not the case and denote by α, α′ their respective mixing

probabilities. Define α(θ) ≡ α(θ)πt(x1|θ) − α′πt′(x0|θ) − πt′(x1|θ) = 0, which is equivalent to α(θ) =

α′ 1
πt(x1|θ) + (1 − α′)πt′ (x1|θ)

πt(x1|θ) . Again from our assumptions, this is decreasing in θ. A type θ chooses t if

α ≥ α(θ). Thus if one θ ∈ A chooses t all θ ∈ R choose t and there is no pooling of A and R-types on t′, or it

is payoff equivalent to just offering t. Therefore, α(x0, t) ∈ (0, 1) and α(x1, t′) ∈ (0, 1) for t > t′.

If the DM mixes, he must be indifferent and thus we have

∑
θ∈A

µ(θ)σ(t|θ)πt(x0|θ)−
∑
θ′∈R

µ(θ′)σ(t|θ′)πt(x0|θ′) = 0

∑
θ∈A

µ(θ)σ(t′|θ)πt′(x1|θ)−
∑
θ′∈R

µ(θ′)σ(t′|θ′)πt′(x1|θ′) = 0

In the easy test, because the DM rejects with positive probability after x1 and rejects for sure after x0 (as he

uses a cutoff strategy), his payoffs from t′ is 0, i.e., he does as well as rejecting for sure.
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In the hard test, he accepts with some probability after x0 and thus his payoffs are

∑
θ∈A

µ(θ)σ(t|θ)−
∑
θ′∈R

µ(θ′)σ(t|θ′)

that is the payoffs he would get from accepting all types choosing t. Thus the overall payoffs from the menu is∑
θ∈A µ(θ)σ(t|θ)−

∑
θ′∈R µ(θ

′)σ(t|θ′). Offering a menu is better than a singleton menu if this value is strictly

greater than offering t and following the signal

∑
θ∈A

µ(θ)σ(t|θ)−
∑
θ′∈R

µ(θ′)σ(t|θ′) >
∑
θ∈A

µ(θ)πt(x1|θ)−
∑
θ′∈R

µ(θ′)πt(x1|θ′)

=
∑
θ∈A

σ(t|θ)µ(θ)πt(x1|θ) +
∑
θ∈A

σ(t′|θ)µ(θ)πt(x1|θ)

−
∑
θ′∈R

σ(t|θ′)µ(θ′)πt(x1|θ′)−
∑
θ′∈R

σ(t′|θ′)µ(θ)πt(x1|θ′)

We can rearrange and use the indifference condition at (x0, t) to get

0 >
∑
θ∈A

σ(t′|θ)µ(θ)πt(x1|θ)−
∑
θ′∈R

σ(t′|θ′)µ(θ)πt(x1|θ′)

Using the indifference condition at (x1, t′), we can replace 0 on the LHS and get

∑
θ∈A

µ(θ)σ(t′|θ)πt′(x1|θ)−
∑
θ′∈R

µ(θ′)σ(t′|θ′)πt′(x1|θ′)

>
∑
θ∈A

σ(t′|θ)µ(θ)πt(x1|θ)−
∑
θ′∈R

σ(t′|θ′)µ(θ)πt(x1|θ′)

But from the definition of the environment, for all θ > θ′,

πt(x1|θ)
πt(x1|θ′)

≥ πt′(x1|θ)
πt′(x1|θ′)

which implies that µ(θ|x1, t) ⪰FOSD µ(θ|x1, t′). Thus we get a contradiction.

1.9.7 Proof of Proposition 6

Suppose condition (1.2) holds.

Suppose that all types choose the same test testing dimension j. Take (θ̃i, θ̃j) ∈ argminθ∈A ptj (α; θ). Because

ptj (α; θi, θj) is constant in θi, we have (θi, θ̃j) ∈ argminθ∈Θ ptj (α; θ) as well and from condition (1.2),

(θi, θ̃j) ∈ A. Consider the deviation in the problem with commitment to (α̃, s̃) such that for ti,
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• α̃(·, ti) is set so that it has a cutoff structure and pti(α̃|θi, θ̃j) = ptj (α; θi, θ̃j) + ϵ and α̃(·, tj) = α(·, tj)

otherwise.

• σ̃(ti|θi, θ̃j) = 1 and σ̃(·|θ) = σ(·|θ) otherwise.

Because the test ti has the strict MLRP when restricting attention to dimension i, for all θi < θi, minθ∈Θ ptj (α; θ) ≥

pti(α̃|θi, θj) > pti(α̃|θi, θj) if ϵ is small enough. This means that no other type has an incentive to choose test

i but (θi, θ̃j) ∈ A is accepted with strictly higher probability. Thus the menu with only test j cannot be the

optimal menu.

Suppose condition (1.2) does not hold.

If condition (1.2) is not satisfied, then there a dimension, say 1, and θ̃2 ∈ Θ2 such that (θ1, θ̃2) ∈ R. By

the monotonicity of payoffs in the bidimensional environment, this implies that (θ1, θ̃2) ∈ R for all θ1 ∈ Θ1.

Moreover, for all θ2 < θ̃2 and all θ1 ∈ Θ1, (θ1, θ2) ∈ R.

Now suppose µ is such that µ(θ1, θ̃2) >
∑

θ′
2 ̸=θ2

µ(θ1, θ
′
2) for all θ1 ∈ Θ1. And that µ(θ1, θ2) ≈ 0 for all

(θ1, θ2) ∈ R such that θ2 > θ̃2.

I am going to show that {t2} is optimal when t1 fully reveals dimension 1. Because this test can replicate the

strategies of any t1, it is enough to prove our claim.

Suppose there is an optimal menu {t1, t2}. From our assumptions on µ, the DM follows a cutoff strategy after

t2. That’s because his payoff is monotone along that dimension, ignoring (θ1, θ2) ∈ R such that θ2 > θ̃2 whose

prior probability is close to zero. So it does not upset the cutoff structure of the best-response. This implies that

pt2(α; θ1, θ2) > pt2(α; θ1, θ̃2) for all θ2 > θ̃2 because the likelihood ratio is strictly increasing.

Suppose that some (θ1, θ̃2) chooses t1 with probability 1 in equilibrium. Because µ(θ1, θ̃2) >
∑

θ′
2 ̸=θ2

µ(θ1, θ
′
2)

for all θ1 ∈ Θ1, it must be that the best-response is α(x = θ1, t1) = 0 (recall that t1 fully reveals θ1). Thus

pt2(α; θ1, θ2) = 0 for all θ2 ∈ Θ2, otherwise there is a profitable deviation. Either this contradicts the fact that

the DM best replies or in equilibrium the DM rejects after all signals in every test. But then he is weakly better

off only offering t2.

Thus to have {t1, t2} strictly better, it must be that all (θ1, θ̃2) choosing t1 mix in equilibrium. This means that

pt1(α; θ1, θ̃2) = pt2(α; θ1, θ̃2). But by the cutoff structure of α(·, t2) and the strict MLRP assumption, we have

pt2(α; θ1, θ2) > pt2(α; θ1, θ̃2) for all θ2 > θ̃2 and pt2(α; θ1, θ2) < pt2(α; θ1, θ̃2) for all θ2 < θ̃2. Thus t2 is

strictly preferred for all (θ1, θ2) ∈ A. Thus choosing only {t2} is an optimal menu.
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1.9.8 Proof of Proposition 7

Proof. I will first prove the following lemma. This result already exists in the literature and I provide a proof

for completeness.

Lemma 2. For any t ⪰ t′ and α(·, t′), there is α(·, t) such that

∑
x

α(x, t)πt(x|θ) ≥
∑
x

α(x, t′)πt′(x|θ)

for all θ′ ∈ R,
∑
x

α(x, t)πt(x|θ′) ≤
∑
x

α(x, t′)πt′(x|θ′)

Proof. We can prove this lemma by using a theorem of the alternative (see e.g., Rockafellar (2015) Section 22).

Only one of the following statement is true:

• There exists α(·, t) such that

∑
x

α(x, t)πt(x|θ) ≥
∑
x

α(x, t′)πt′(x|θ)

for all θ′ ∈ R,
∑
x

α(x, t)πt(x|θ′) ≤
∑
x

α(x, t′)πt′(x|θ′)

for all x ∈ X, α(x, t) ≤ 1

for all x ∈ X, α(x, t) ≥ 0

• There exists z, y ≥ 0 such that

for all x ∈ X, − zθπt(x|θ) +
∑
θ′∈R

zθ′πt(x|θ′) + yx ≥ 0 (1.6)

− zθ
∑
x′

α(x′, t′)πt′(x
′|θ) +

∑
θ′∈R

zθ′

∑
x′

α(x′, t′)πt′(x
′|θ′) +

∑
x′

yx′ < 0 (1.7)

Take inequality (1.6) from the second alternative and multiply by β(x, x′) as described in Definition 5 and sum

over x ∈ X:

−zθ
∑
x

β(x, x′)πt(x|θ) +
∑
θ′∈R

zθ′

∑
x

β(x, x′)πt(x|θ′) +
∑
x

β(x, x′)yx ≥ 0
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Because t ⪰θ t
′, we get for all x′ ∈ X ,

−zθπt′(x′|θ) +
∑
θ′∈R

zθ′πt′(x
′|θ′) +

∑
x

β(x, x′)yx ≥ 0

We can then multiply by α(x′, t′) and sum over x′ ∈ X:

−zθ
∑
x′

α(x′, t′)πt(x
′|θ) +

∑
θ′∈R

zθ′

∑
x′

α(x′, t′)πt′(x
′|θ′) +

∑
x,x′

α(x′, t′)β(x, x′)yx ≥ 0 (1.8)

Because
∑

x′ β(x, x′) ≤ 1 and α(x′, t′) ≤ 1 for all x′ ∈ X , we have
∑

x,x′ α(x′, t′)β(x, x′)yx ≤
∑

x yx.

Therefore, the inequality (1.7) cannot hold and the first alternative holds.

With this result in hand, we can now prove our result. Suppose that t is not part of the optimal menu. Thus we

can find an solution of the problem with commitment, (α, σ) with σ(t|θ) = 0 for all θ. Take a test t′ used in the

solution by some θ ∈ A. Then from Lemma 2, we can construct a (α̃, σ̃) such that

• pt(α̃; θ) ≥ pt′(α; θ)

• pt(α̃; θ′) ≤ pt′(α; θ
′) for all θ′ ∈ R

• σ̃(t|θ) = 1

• σ̃ = σ otherwise

This constitutes a solution to the problem with commitment.

1.9.9 Proof of Proposition 8

Proof. (⇐) For each θ ∈ A, let tθ such that

suppπt(·|θ) ∩
(
∪θ′∈R suppπt(·|θ′)

)
= ∅

Then posting a menu (tθ)θ∈A is optimal (eliminating duplicates if there are some). Each θ ∈ A chooses tθ. For

any strategy of θ′ ∈ R, the DM accepts after any (x, t) ∈ ∪θ:σ(t|θ)=1 suppπt(·|θ) and rejects otherwise. This

gives the DM and the A-types maximal payoffs and the R-types get rejected for any strategy they follow.

(⇒) Suppose the DM’s payoffs are maximal and there is θ ∈ A and for all t ∈ T there is θ′ ∈ R and x ∈ X

such that πt(x|θ), πt(x|θ′) > 0. Then when θ chooses t out of the menu of tests, if θ′ chooses t as well, at x,
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either the DM accepts θ′ or rejects θ. Therefore, payoffs cannot be maximal.

1.9.10 Proof of Theorem 2

The only thing we need prove is that it is optimal to have a different message for each type θ ∈ A, the rest

follows from Theorem 1. Suppose it is not the case and take a solution (α, σ) of the problem with commitment

where the A-types play a pure strategy.

There is θ1, θ2 ∈ A and (t, c) ∈ T ×C such that σ(t, c|θ1) = σ(t, c|θ2) = 1 (if they use a different test then we

can also change the message and nothing is changed). Then consider the alternative strategy α′ where, for some

unused (t, c′) in the original mechanism, α′(t, c′, x) = α(t, c, x) for all x ∈ X and α′(t′′, c′′, x) = α′(t′′, c′′, x)

for all other (t′′, c′′) ∈ T × C and all x ∈ X otherwise. The new strategy α′ is thus the same as α but makes

sure that if the pair (t, c′) is chosen, it uses the same actions as (t, c). Now consider the following strategy σ̃(·|θ)

for θ ∈ A in the auxiliary max-min problem, σ̃(·|θ) = σ(·|θ) for θ ̸= θ1 and σ̃(t, c′|θ1) = 1. In the problem

with commitment under the strategy α′, the payoffs are the same than under (α, σ). Moreover, any deviations

under α′ gives the same payoff than under α. Therefore, (α′, σ̃) is an solution to problem with commitment.

1.9.11 Proof of Proposition 9

This follows from Lemma 1. If a Blackwell dominated test is chosen by an A-type, then we can introduce a

message test pair (c, t) in the problem with commitment that will make the A-type better off without making

any R-type better off. This will thus improve the DM’s payoffs.

1.9.12 Proof of Theorem 3

The designer’s problem is

max
τ,α

∑
θ∈A

µ(θ)
∑
t

τ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t

τ(t|θ)pt(α; θ)

s.t.
∑
t

(τ(t|θ)− τ(t|θ′))pt(α; θ) ≥ 0 for all θ, θ′

α ∈ BR(τ)
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If the DM could commit over a strategy α, his problem would be

Ṽ (α) = max
τ

∑
θ∈A

µ(θ)
∑
t

τ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t

τ(t|θ)pt(α; θ)

s.t.
∑
t

(τ(t|θ)− τ(t|θ′))pt(α; θ) ≥ 0 for all θ, θ′

Step 1: Show that Ṽ (α) = maxs minm v(α, s,m) where v is defined in (1.3).

To show this claim, I am going to relax the mechanism design problem by restricting attention to the IC con-

straints of R-types deviating to reporting an A-type:

Ṽ (α) = max
τ

∑
θ∈A

µ(θ)
∑
t

τ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t

τ(t|θ)pt(α; θ)

s.t.
∑
t

τ(t|θ)pt(α; θ) ≥ max
m(·|θ)

∑
θ′∈A

m(θ′|θ)
∑
t

τ(t|θ′)pt(α; θ), for all θ ∈ R

The IC constraints are written to express that reporting type θ for θ ∈ R is better than any other reporting

strategy over the A-types.

Now note that if an IC constraint is slack at the optimum, we could improve the DM’s payoff by setting τ(·|θ) =

maxm(·|θ)
∑

θ′∈Am(θ′|θ)
∑

t τ(t|θ′)pt(α; θ). As that would reduce the probability of type θ ∈ R of being

accepted and would not change any other constraints in the relaxed problem. Thus at the optimum, τ(·|θ) =

maxm(·|θ)
∑

θ′∈Am(θ′|θ)
∑

t τ(t|θ′)pt(α; θ). We can plug this expression in the payoffs to get

Ṽ (α) = max
τ

∑
θ∈A

µ(θ)
∑
t

τ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ) max
m(·|θ)

∑
θ′∈A

m(θ′|θ)
∑
t

τ(t|θ′)pt(α; θ)

= max
τ

min
m

∑
θ∈A

µ(θ)
∑
t

τ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
θ′∈A

m(θ′|θ)
∑
t

τ(t|θ′)pt(α; θ)

Note that we can take out the max of the summation by the linearity of the expression in m and it becomes a

min because of the minus sign. This expression also corresponds to v as defined in (1.3).

It remains to show that the solution of this relaxed mechanism is indeed optimal. Take s ∈ argmaxminm̃ v(α, s̃, m̃)

and m ∈ argmin v(α, s, m̃) and define the optimal mechanism by

• τ(t|θ) = s(t|θ) for θ ∈ A

• τ(t|θ′) =
∑

θ∈Am(θ|θ′)s(t|θ) for θ′ ∈ R

Note that an outcome of this mechanism gives payoff weakly higher than maxs̃ minm̃ v(α, s̃, m̃) as v(α, s,m) ≥
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minm̃ v(α, s, m̃). Thus if it is incentive-compatible, it must be actually equal to the upper bound maxs̃ minm̃ v(α, s̃, m̃).

Note that all allocations are either allocations of A-types or convex combinations of the A-types’ allocations

thus it is enough to check that no type has any incentive to report any A-type in the mechanism.

By definition of m,

v(α, s,m) ≥ v(α, s,m′), for all m′

Therefore, for each R-type, θ′,

∑
θ∈A

m(θ|θ′)
∑
t

τ(t|θ)pt(α; θ′) ≥
∑
t

τ(t|θ̃)pt(α; θ′), for any θ̃ ∈ A

For an A-type θ, consider the choice of choosing s̃ such as s̃(·|θ) = s(·|θ̃) for some θ̃ ∈ A and the same

otherwise. By definition of s,

v(α, s,m) = min
m̃

v(α, s, m̃) ≥ min
m̃

v(α, s̃, m̃)

Rearranging,

µ(θ)
∑
t

(
s(t|θ)− s(t|θ̃)

)
pt(α; θ) ≥ max

m̃

∑
θ′∈R

µ(θ′)
∑
θ′′∈A

m̃(θ′′|θ′)
∑
t

s(t|θ)pt(α; θ′)

−max
m̃

∑
θ′∈R

µ(θ′)
∑
θ′′∈A

m̃(θ′′|θ′)
∑
t

s̃(t|θ)pt(α; θ′)

where the min is transformed in max because of the negative sign. Note that the LHS is the IC constrain of

type θ deviating to type θ̃. The RHS is the difference payoff is the probability of the R-types of being accepted

when they choose a mimicking strategy m̃. Note that the only difference between s and s̃, from their point of

view is that there is weakly less choice of allocations to mimic as we have θ choosing the same allocation as θ̃.

Therefore it must be that the RHS is positive which implies that the LHS is as well.

Step 2: Show that the DM does not benefit from commitment in the optimal mechanism.

Take (α, s) ∈ argmaxα̃,s̃ minm̃ v(α̃, s̃, m̃) and m ∈ argminm̃ maxα̃ v(α̃, s, m̃). The α selected would be the

optimal strategy when the DM can commit.

Note that because the order of maximisation does not matter, we also have α ∈ argmaxα̃ minm̃ v(α̃, s, m̃).
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Note that v is linear in α̃ and m̃ and thus by the minimax theorem,

v(α, s,m) ≥ v(α′, s,m), for all α′

v(α, s,m) ≤ v(α, s,m′), for all m′

Thus α best-replies to the optimal mechanism when the DM can commit and m is also a best reply to (α, s),

thus satisfying the condition for characterising the equilibrium in Step 1.
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Chapter 2

Managing the expectations of buyers with

reference-dependent preferences

2.1 Introduction

The purpose of this paper is to study a monopoly pricing model where the buyer exhibits a specific type of

reference-dependent preferences. I consider a buyer that values a good more when he expects to own it. For

instance, a buyer expecting to own a specific car or house can get emotionally attached to it and finds it then

harder to walk away from an offer. A job applicant, expecting to be employed, can build expectations about

the prospects of a different lifestyle or social status, which can reduce his willingness to refuse an offer. More

generally, this attachment effect is an “expectation-based endowment effect” and is a prediction of expectation-

based reference-dependent preferences (Kőszegi and Rabin, 2006).

When can a firm benefit from facing a buyer with an attachment effect and what is its consequence on a firm’s

pricing strategy? To study this question, I adapt the monopoly model of Heidhues and Kőszegi (2014). In their

model, a firm sells an indivisible good to a buyer by making a take-it-or-leave-it offer. To capture the attachment

effect, the buyer’s willingness-to-pay (WTP) increases linearly in the ex-ante probability of trading. Following

the literature on expectation-based reference-dependent preferences, the buyer plays a Preferred Personal Equi-

librium: when setting expectations, he correctly anticipates the firm’s strategy and his own action and selects

the most favourable plan of action.1

1See for example Heidhues and Kőszegi (2014), Kőszegi and Rabin (2009), Herweg and Mierendorff (2013), Rosato (2016) or Macera
(2018) for papers using this selection.
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Importantly, in Heidhues and Kőszegi (2014), the firm can commit to a possibly random price offer distribution.

They show that the optimal strategy is to randomise over prices. The low prices in the support ensure that the

buyer expects to buy with positive probability. This increases the WTP through the attachment effect. The

higher prices in the support exploit this higher WTP to increase profits. However, this strategy is not consistent

with equilibrium behaviour when the firm cannot commit to a random price strategy.

In this paper, I characterise the firm’s pricing strategy when it cannot commit to it. This model has two main

features. First, the demand is endogenous: the probability of buying and hence the buyer’s WTP depends on

the firm’s strategy. Second, the firm has a commitment problem. There is a tension between offering low prices

to induce expectations to buy and high prices to take advantage of a higher WTP. I characterise the equilibrium

strategy under three different information environments: (1) the valuation is the buyer’s private information, (2)

the buyer’s valuation is common knowledge, and (3) the firm can learn about the valuation.

Proposition 2 characterises the unique equilibrium of the game when valuations are private information. In

equilibrium, the firm chooses the mixed strategy such that the resulting demand is unit-elastic on the support.

That is, it creates the demand that makes it indifferent between any price on the support. This preserves the

incentives for the mixed strategy and solves the firm’s commitment problem. However, to induce this endoge-

nous unit-elastic demand, different types must trade with different probability. This means that the equilibrium

entails inefficiencies: the probability of no trade is always strictly greater than zero.

Moreover, the firm does not benefit from the attachment effect and equilibrium profits are independent of its

strength. Indeed, types below the support of the mixed strategy only face prices above their valuation in equilib-

rium. By the PPE requirement, they cannot expect to buy and behave as if they have no attachment effect. This

implies that the profits from the lowest price on the support must be the same as in the reference-independent

benchmark2, pinning down equilibrium profits. The commitment problem created by the attachment effect has

thus two effects here: the firm must use random prices to overcome it and it does not benefit from having buyers

with reference-dependent preferences.

In Section 2.3.1, I characterise the firm’s pricing strategy when it knows the buyer’s valuation in two different

ways, and get contrasting results. First, I use the incomplete information characterisation to study convergence

to complete information. As the distribution over types concentrates on a singleton, the equilibrium strategy

converges to a mixed strategy on a non-vanishing support and the limit probability of no trade is bounded away

from zero. This follows from the incomplete information characterisation. In order to create a unit-elastic

demand, the firm induces a large variation in the trading probability of almost identical types. This results in a

positive probability of no trade. This problem is more severe for a stronger attachment effect: the probability of

2Throughout the paper, the reference-independent model refers to an equivalent model with no attachment effect, i.e., the WTP is the
same as the valuation.
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trading converges to zero as the attachment effect grows large.

However, there is a discontinuity at the limit: when the valuation is common knowledge, no equilibrium exists.

Indeed, it is impossible for the firm to overcome its commitment problem. Any pricing strategy where the buyer

is willing to accept increases his WTP above the price played in equilibrium.3

In Heidhues and Kőszegi (2014), the firm can commit to a price distribution and the valuation is common

knowledge. In contrast, I consider a firm that cannot commit to a price distribution and the buyer’s valuation

is private information. I show that inefficiencies are a general feature of this model and that the firm does

not benefit from facing a buyer with an attachment effect. Moreover, an equilibrium does not exist when the

valuation is common knowledge. This shows that the commitment assumption is key to both existence and

benefiting from the attachment effect. On the other hand, my model also predicts random prices like Heidhues

and Kőszegi (2014).

The first two sets of results looked at extreme information structures: either incomplete information, where

the firm does not benefit from the attachment effect or complete information, where no equilibrium exists.

In Section 2.4, I look at intermediate case where the firm is partially informed about the buyer’s valuation.

Specifically, I allow the firm to design a test to learn about the buyer’s valuation. The idea behind this section is

to explore whether the firm can use the buyer’s expectations about his performance on the test to take advantage

of the attachment effect. For example, suppose that a firm designs a screening process before making a wage

offer to a candidate.4 The candidate will use his performance during the screening process to assess what are

his chances of getting a high wage. If the candidate believes he did well on the test designed by the firm, he

will expect high wages and thus a high probability of accepting the job. If the candidate exhibits an attachment

effect, this would weaken his bargaining position: he would be willing to accept lower wage offers to avoid the

disappointment of not being employed. This could then be used by the firm to offer lower wages.

In this new environment, the firm first designs a publicly observed test, privately observes a signal realisation

then makes an offer. In Proposition 6, I show that the firm can be better off with a noisy test. Intuitively, when

the test is noisy, the firm can create random price offers like in Heidhues and Kőszegi (2014). At the same time,

given the uncertainty generated by the test, the firm can credibly offer low prices after a low signal and high

prices after a high signal. This last section shows that in the presence of an attachment effect, a monopolist has

an incentive to design imperfect tests. This allows the buyer to credibly entertain the idea that he will get a low

price. The firm can then use these expectations to make higher profits. In Proposition 7, I characterise the firm’s

optimal testing strategy.

3Existence issues with PPE in strategic settings were already pointed out by Dato et al. (2017).
4The model is set up as a buyer-seller interaction. It can be easily rewritten as firm making a wage offer to a candidate with unknown

outside option.
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Relation to the literature

This paper is part of the literature that studies the implication of rational expectations as the reference point in

reference-dependent preferences, following Kőszegi and Rabin (2006). The two closest papers in this literature

are Heidhues and Kőszegi (2014) and Eliaz and Spiegler (2015).

Eliaz and Spiegler (2015) look at a more abstract model that nests the complete information environment with

commitment of this paper as a special case. They show that uniqueness of the PE can be guaranteed through

a first-order stochastic dominance property that is useful in this paper. This paper differs from the existing

literature by not allowing the firm to commit to a price distribution. I show how to characterise the equilibrium

pricing strategy by adapting the result of Eliaz and Spiegler (2015). I also show that an imperfect learning strat-

egy can provide a foundation for the stochastic pricing strategy without commitment. Rosato (2016) also studies

a monopoly pricing model where the uncertainty is used to exploit expectation-based reference-dependent pref-

erences. There, the monopolist commits to the limited availability of substitutes to induce the expectations of

buying.

The last section is related to the literature on optimal disclosure with a behavioural audiences as it is concerned

with the design of the information environment with non-standard preferences, see e.g., Lipnowski and Mathevet

(2018); Lipnowski et al. (2020); Levy et al. (2020). In particular, Karle and Schumacher (2017) study a model

where a monopolist posts a public price as well as discloses a signal of the valuation of an initially uninformed

buyer with expectation-based reference-dependent preferences. The firm benefits from imperfect disclosure

when a low valuation is pooled with a high valuation. The buyer then expects to buy at the price posted and thus

develops an attachment towards the good. In contrast, I consider a perfectly informed buyer and it is the firm

that learns about the valuation. This has two implications. First, the price offered depend on the signal observed,

so there is variation in price. Second, inducing expectations to buy is not enough for the firm to benefit from

the attachment effect as this happens when prices are relatively low. So the firm must induce both high and low

prices to benefit from it.5

Finally, there are links to the literature on optimal learning and price discrimination. Bergemann et al. (2015)

characterise all the combination of consumers’ surplus and monopoly profit after some learning of the firm. I

depart from their framework by introducing reference-dependent preferences. Where in their model the optimal

learning strategy is to perfectly learn the valuation, introducing reference-dependent preferences incentivises the

firm to create a stochastic environment. Roesler and Szentes (2017) and Condorelli and Szentes (2020) look at

environments where an agent designs an optimal learning strategy taking into account the effect of information

acquisition on the other agent’s strategy. Here, the firm designs its optimal learning strategy taking into account

5Karle and Schumacher (2017) also show that the monopolist does not benefit from committing to its pricing strategy, unlike this paper.
The type of commitment is however different: they consider a setting where the firm can commit to not change the price after the buyer has
set expectations but they do not allow commitment to a random price strategy.
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its effect on the buyer’s preferences.

2.2 The model

There is one firm and one buyer. The firm makes a take-it-or-leave-it offer p ∈ R for an indivisible good that the

buyer can either accept, a = 1, or reject, a = 0. The buyer has a reference-point r ∈ {0, 1} and an exogenous

valuation v. His payoffs are

u(p, v, a|r) = a(v − p)− λ · v · r(1− a),

where r = 1 stands for “expecting to accept”, and r = 0 for “expecting to reject”. Here, the buyer “pays” a

penalty λv whenever he rejects an offer he was expecting to accept. Like in Kőszegi and Rabin (2006), I allow

the reference point to be stochastic. The reference point is then q ∈ [0, 1] which stands for the probability of

accepting. The utility of buyer v is written as

u(p, v, a|q) = q ·
(
a(v − p)− λv · (1− a)

)
+ (1− q) · a(v − p).

The firm’s payoff is

π(p, a) = a · p.

The buyer knows v. The firm only knows that v ∼ G, where G denotes a cdf. It admits a strictly positive

density g on the support V = [v, v], v ≥ 0. I use γ to denote the probability measure associated with G: for any

measurable set A, Pr[v ∈ A] = γ(A). I will often refer to a valuation v as the buyer’s type. I assume that there

is a positive surplus with any type and so the assumption that the firm has no cost is a normalisation.

Buyer’s behaviour Given his valuation v and his reference point q, the buyer’s payoffs from accepting and

refusing at price p are

u(p, v, a = 1|q) = v − p,

u(p, v, a = 0|q) = 0− λv · q.

Therefore, he optimally plays a cutoff strategy: he accepts an offer p if and only if p ≤ v + λvq.6 I denote the

buyer’s optimal strategy by a∗(p, v|q) = 1[p ≤ v + λvq].

6Here, I assume that, when indifferent, the buyer accepts the price offer. Allowing for different strategies when indifferent could
change the PPE outcome. However, one can show that it would not change the equilibrium strategies in this paper. Therefore, to simplify
the exposition, I omit this possibility.
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Following Kőszegi and Rabin (2006), the buyer forms his reference point based on the correct expectations of

trading. I assume that the buyer first learns his type, then forms his expectations based on the price distribution

F . The reference point is thus formed after learning his own type but before the price realisation. Therefore,

different types can have different expectations of trading. A Personal Equilibrium (PE) is a reference point q

such that the probability of trading is consistent with the optimal strategy given the reference point.

Definition 1. Given a price distribution F , (Qv)v is a profile of Personal Equilibria if for each v ∈ V , Qv

satisfies

Qv =

∫
R
a∗(p, v|Qv)dF (p)

and a∗(p, v|Qv) = 1[p ≤ v + λvQv] ∈ argmaxu(p, v, a|Qv).

In a PE, the buyer with valuation v correctly anticipates how his expectations change his strategy and how his

strategy changes his expectations. The PE Qv depends on the type but also on the distribution over prices.

Therefore, the buyer’s behaviour will depend directly on the firm’s strategy.

The expected utility of type v, for a given PE Qv and price distribution F (p) is

W (v|F,Qv) =

∫ v+λvQv

−∞
(v − p)dF (p) +

∫ +∞

v+λvQv

−λvQv dF (p).

For any prices in (−∞, v + λvQv], the buyer accepts the offer and gets a utility v − p. For prices larger than

v + λvQv , the buyer rejects the offer and gets a loss of −λvQv .

Because there can be multiple PEs, I assume the buyer plays his Preferred Personal Equilibrium (PPE). The

PPE is the Personal Equilibrium that gives the highest expected utility (Kőszegi and Rabin, 2006, 2007).

Definition 2. Given a price distribution F , (Q∗
v)v is a profile of Preferred Personal Equilibria if for each v ∈ V ,

Q∗
v ∈ argmaxQv∈PE W (v|F,Qv).

This (Personal) equilibrium selection is common in the literature using Personal Equilibria.7 Its motivation is

based on an introspection interpretation of the PE. The buyer can entertain multiple expectations of trading but

cannot fool himself: his reference point must be correct given his optimal behaviour. Then, if he can “choose”

amongst multiple reference points, he would choose the one with the highest expected utility.

It will be useful to think of the PE or PPE as the cutoff price it generates.

Definition 3. Given F a distribution over prices and PE Qv , the PE cutoff price of type v ∈ V is p̂(v) =

v + λvQv . Given PPE Q∗
v , the PPE cutoff price is p∗(v) = v + λvQ∗

v .

7See e.g., Heidhues and Kőszegi (2014), Herweg and Mierendorff (2013), Rosato (2016) or Macera (2018).
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The PPE cutoff price determines buyer v’s willingness-to-pay (WTP). Note also that we have Q∗
v = F (p∗(v)),

as buyer v accepts any price below p∗(v). In the rest of the paper, the valuation refers to a buyer’s type v and

his willingness-to-pay to his PPE cutoff price, p∗(v).

Given a profile of PPE (Q∗
v)v , let V ∗(p) = {v ∈ V : p ≤ p∗(v)} be the set of types accepting price p. Define

v∗(p) = inf{v : v ∈ V ∗(p)}, the lowest type in V ∗(p).

Equilibrium The firm’s expected profits given the profile of PPE (Q∗
v)v are E[π(p)|(Q∗

v)v] = p γ(V ∗(p)). I

can now define an equilibrium in this model.

Definition 4. A profile of strategy and reference points
(
F (p), (Q∗

v)v
)

is an equilibrium if for each v ∈ V , Q∗
v

is type v’s PPE given F and for each p ∈ suppF , p ∈ argmaxp̃ E[π(p̃)|(Q∗
v)v].

In equilibrium, each buyer v forms his expectations based on on the firm’s equilibrium strategy and his type and

the firm’s strategy is a best response to the buyers’ PPEs.

2.2.1 Comments

Utility function The utility function I use allows me to capture an attachment effect in the simplest possible

way. With this utility function, the agent with valuation v pays a penalty λv weighted by the probability of

accepting q when he does not accept the offer. The original specification of Kőszegi and Rabin (2006) allows

for a reference point that depends both on the distribution over consumption and price paid. Here, the utility

function is similar to ones used in the literature with loss-aversion in one dimension only.8 Having loss-aversion

in one dimension only allows to cleanly isolate an effect of the reference-dependent preferences, for example

aversion to price increases or in this case, the attachment effect.

The commitment assumption Whether commitment to a random pricing strategy is a reasonable assumption

depends on the situation considered. When a patient firm post publicly observed price, the commitment as-

sumption can be justified by the incentives of a firm to develop a certain reputation for some price distribution.

On the other hand, in many settings, prices are not directly observed. This is the case for example for goods or

services that are the outcome of some bargaining or not often traded such as houses, cars or jobs. In this case,

the take-it-or-leave-it bargaining structure captures a bargaining process where the firm has all the bargaining

power.

8For example, section 4.1 in Heidhues and Kőszegi (2014), Herweg and Mierendorff (2013), Carbajal and Ely (2016), Rosato (2020)
or Spiegler (2012).
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2.2.2 Characterisation of the PPE

Proposition 1 establishes two properties of the PPE. First, the PPE cutoff is the smallest of the PE cutoffs.

Second, it establishes that if p∗(v) is the PPE cutoff then F (p) must lie strictly above p−v
λv on (−∞, p∗(v)). The

proof of Proposition 1 also establishes existence of the PPE.

Proposition 1. For a fixed type v and distribution F , these three statements are equivalent:

• p∗(v) is PPE cutoff price

• p∗(v) = min{p : F (p) = p−v
λv }

• v − p∗(v) = −λvF
(
p∗(v)

)
and for all p < p∗(v), F (p) > p−v

λv

Moreover a PPE exists.

Proof. Fix a type v. First, I show that the PPE cutoff is the lowest PE cutoff. Fix two PE, Q1, Q2 and their

respective PE cutoffs, p1, p2. Then,

v − p1 = −λvF (p1)

and v − p2 = −λvF (p2).

Note that we have F (p1) ̸= F (p2), for otherwise p1 = p2. The expected utility at PE Qi is

W (v|Qi) =

∫ pi

−∞
(v − p)dF (p) +

∫ +∞

pi

−λvF (pi)dF (p).

Using the equality defining the cutoff, p1 is preferred to p2 if and only if

∫ p1

−∞
(v − p)dF (p) + (1− F (p1))(v − p1) ≥

∫ p2

−∞
(v − p)dF (p) + (1− F (p2))(v − p2)

⇔
∫ p2

p1

p dF (p) ≥ (1− F (p1))p1 − (1− F (p2))p2

⇔ p2F (p2)− p1F (p1)−
∫ p2

p1

F (p)dp ≥ (1− F (p1))p1 − (1− F (p2))p2

⇔ p2 − p1 ≥
∫ p2

p1

F (p)dp,

where I obtain the third line by integrating by part. Because F (p1) ̸= F (p2), this is satisfied if and only if

p1 < p2.

Now let p̃ = inf{p : F (p) ≤ p−v
λv }. If F is continuous at p̃, then inf{p : F (p) ≤ p−v

λv } = min{p :
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v p∗ v + λv

1

p

F (p) F (p)
p−v
λv

Figure 2.1: Each intersection of the blue and red curve is a PE. The lowest intersection, p∗, is the PPE.

F (p) ≤ p−v
λv }. If F is not continuous at p̃, then because it is non-decreasing, limp↗p̃ F (p) < F (p̃), which then

contradicts that p̃ = inf{p : F (p) ≤ p−v
λv }.

Therefore, F is continuous at p̃ and min{p : F (p) ≤ p−v
λv } exists. Because F is continuous at p̃, it also implies

that min{p : F (p) ≤ p−v
λv } = min{p : F (p) = p−v

λv } which establishes existence of the PPE and the first

equivalence.

We can now show p∗(v) = min{p : v − p = −λvF (p)} ⇔ F (p) > p−v
λv for all p < p∗(v) and F (p∗(v)) =

p∗(v)−v
λv .

(⇒) Suppose p∗(v) is a PPE and we have some p̂ < p∗(v) with F (p̂) ≤ p̂−v
λ . Because we have established that

min{p : F (p) ≤ p−v
λv } = min{p : F (p) = p−v

λv }, we get a contradiction.

(⇐) If for all p < p∗(v), F (p) > p−v
λv , then there are no other PE smaller p∗(v).

The PPE cutoff price is the smallest of the PE cutoff prices because for any distribution, this cutoff is weakly

above the valuation v. Therefore, the lowest PE cutoff minimises trade when p > v, i.e., when the buyer has a

negative utility. The condition that F (p) > p−v
λv when p < p∗(v) was introduced by Eliaz and Spiegler (2015).

This property is similar to the characterisation of first-order stochastic dominance albeit on only part of the

support. In particular, it implies that for any F implementing PPE cutoff p∗(v),

∫ p∗(v)

−∞
x dF (x) <

∫ p∗(v)

v

x · 1

λv
dx.

This observation will be useful in Section 2.4 when we will design the firm’s optimal testing strategy. Figure 1

illustrates graphically how to determine the PPE cutoff using Proposition 1.
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2.3 Incomplete information

In this section, I first characterise the equilibrium when the valuation is private information. In Section 2.3.1,

I study the equilibrium when the set of types converges to a singleton and when the valuation is common

knowledge.

To simplify the analysis in this section, I restrict attention to strictly concave reference-independent profits.

Assumption 1. The function p(1−G(p)) is strictly concave.

Assumption 1 is made to simplify the exposition of the paper. The results of this section extend qualitatively to

more general distributions but the exact characterisation of the equilibrium differs.

Proposition 2 characterises the unique equilibrium of the game. It shows that the firm plays a mixed strategy,

the equilibrium demand is unit-elastic and the equilibrium profits are the same as in a reference-independent

model.

Denote by π∗ = maxp p(1 − G(p)) and pind = argmaxp p(1 − G(p)), the equilibrium profits and prices of

the reference-independent benchmark.

Proposition 2. There is a unique equilibrium
(
F, (Q∗

v)v
)
. In equilibrium,

• The firm plays the mixed strategy

F (p) =
p−G−1

(
p−π∗

p

)
λG−1

(
p−π∗

p

) ,

with suppF = [pind, p], p := F (p) = 1.

• If p ∈ suppF , then γ(V ∗(p)) = π∗

p , i.e., the demand is unit-elastic on the support.

• The equilibrium profits are π∗ = maxp p(1−G(p)).

The proof is in Section 2.6.1.

Proposition 2 illustrates how the firm’s commitment problem constrains its behaviour and how it can solve it.

First, any pure strategy is not credible. To see why, suppose the firm plays a pure strategy p. Then by the PPE

requirement, all the types v ≥ p accept the offer and all types v < p refuse it. This means that their WTPs are

p∗(v) = v + λv for v ≥ p and p∗(v) = v for v < p. The firm has then a profitable deviation to a higher price

as all types that accept p are willing to pay strictly more than p.

The firm can play a mixed strategy only if it is indifferent between any price on the support, i.e., the demand

is unit-elastic on the support. Therefore, the firm’s mixed strategy induces expectations of trading such that the

resulting distribution over WTP is unit-elastic.
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Moreover, the firm does not benefit from facing buyers with reference-dependent preferences. The buyers whose

valuation is below the support know they will only face prices higher than their valuation. Because they play a

PPE, they cannot expect to trade and their WTP is equal to their valuation. Therefore, they behave like players

with no attachment effect. When offering the lowest price on the support, only buyers with valuation above that

price accept, exactly like in a reference-independent model. By the indifference condition, these must be the

equilibrium profits. However, some types do end up buying the good at a price above their valuations with some

probability. The exploitation of the buyers’ attachment effect is compensated by higher probability of no trade

when offering high prices.

2.3.1 (Almost) Complete information

In this subsection, I look at the behaviour of equilibrium objects when the distribution over valuations converges

to a singleton and when the valuation is common knowledge.

In what follows, I look at a sequence of games where the only varying primitive is the prior distribution G.

Therefore, abusing notation, I will identify a sequence of games with a sequence of prior distributions. Denote

by D−→ convergence in distribution and δv the Dirac measure on v.

Proposition 3. Let v > 0. Take a sequence of games {Gi}∞i=0 such that Gi
D−→ δv . All other primitives of the

model are fixed.

Then, equilibrium profits converge to v and the firm’s equilibrium strategy converges in distribution to F∞(p) =

p−v
λv with suppF∞ = [v, v + λv].

Moreover, the limit probability of trade is
1

λ
log

v + λv

v
.

Proof. Limit distribution and profits:

Let Fi be the equilibrium strategy given Gi, pi = min suppFi, pi = max suppFi and π∗
i = p

i
(1 − Gi(pi)).

From Proposition 2, Fi(p) =
p−G−1

i

(
p−π∗

i
p

)
λG−1

i

(
p−π∗

i
p

) for all p ∈ [p
i
, pi]. Using that G−1

i (x) → v for each x ∈ (0, 1),

for each p ∈ R,

Fi(p) →


0 if p < v

p−v
λv if p ∈ [v, v + λv]

1 if p > v + λv

,

and thus Fi
D−→ F∞.

Profits converge to v as maxp p(1−Gi(p)) → v.
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Probability of trade: Denote the probability of trading at price p by ϕ(p). This probability is pinned down by

the indifference condition:

π∗
i = pϕi(p).

The probability of trading is thus
∫
R ϕi(p)fi(p) dp where fi is the density of Fi. It is easy to verify that

fi(p) → 1
λv for all p ∈ [v, v + λv] and ϕi(p)fi(p) is uniformly bounded. Using the dominated convergence

theorem, we get that

∫
R
ϕi(p)fi(p) dp→

∫ v+λv

v

v

p
· 1

λv
dp =

1

λ
log

v + λv

v
.

As the distribution of types converges to the singleton v, the firm’s strategy converges to a uniform distribution

on [v, v + λv]. The profits, on the other hand, are always equal to the reference-independent benchmark,

π∗ = v in the limit. As the mass of types accumulate on v, the support does not converge to a singleton. Even

though the interval of valuations could become arbitrarily small, the interval of potential WTP stays large: any

p ∈ [v, v + λv] can be a PPE cutoff. The firm still needs to mix to create the endogenous demand that makes

it indifferent on the support. This means that even as we converge to complete information, a large amount of

uncertainty is needed to guarantee an equilibrium. This variation leads to a strictly positive probability of no

trade in the limit.

Moreover, 1
λ log v+λv

v , the probability of trade, decreases in the attachment effect λ and converges to 0 as

λ → ∞. Intuitively, a higher λ makes the buyer more vulnerable to exploitation but also increases the firm’s

commitment problem. The firm must lower the probability of trading to compensate for the higher demand

induced by a higher λ. This can also be seen from the indifference condition: as profits converge to v for any λ,

the higher prices must be compensated for by a higher probability of rejection.

Finally, I note that the limit strategy is arbitrarily close to the one the firm would use if it could commit to a

price distribution.

Proposition 4 (Heidhues and Kőszegi, 2014). The solution to the commitment problem:

sup
F∈∆R

∫ p∗

−∞
p dF (p)

subject to p∗ is PPE, is
λ+ 2

2
· v.

The distribution that attains this profit converges to F (p) = p−v
λv .
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Figure 2.2: Almost optimal distribution over prices.

Proof. See Heidhues and Kőszegi (2014), section 4.1 or Eliaz and Spiegler (2015).

The firm chooses a price distribution that maximises its profits amongst all the distribution that implement trade

with probability one. By FOSD interpretation of the PPE (Proposition 1), this is done by choosing a price

distribution as close as possible to p−v
λv , see Figure 2.2 for an illustration.

In contrast, if the value of v is common knowledge and there is no commitment, no equilibrium exists.

Proposition 5. When v is common knowledge and v > 0, no equilibrium exists.

Proof. For any p∗(v), there is a unique best-response of the firm, which is to offer p∗(v). Let p be the equilib-

rium price, i.e., the equilibrium strategy is F (p̃) = 1[p̃ ≥ p].

If p ≤ v, then there is a unique PE cutoff p∗(v) = v+ λvF (v+ λ) = v+ λv. There is a profitable deviation to

p′ = v + λv.

If p > v, then p∗(v) = v+λvF (v) = v is a PE cutoff and also the smallest PE cutoff. By Proposition 1, it is the

PPE cutoff and thus there is no trade in equilibrium. Then, there is a profitable deviation to any p′ ∈ (0, v].

The key tension is that the firm wants to take advantage of the attachment effect. However, given the PPE

requirement and a deterministic price, the buyer’s WTP is only higher than his valuation if the price offered is

below his valuation. An equilibrium with no trade is also impossible because any price below the valuation will

be accepted for any PPE.

We obtain the non-existence result for the same reason there cannot be a pure strategy equilibrium in the incom-

plete information environment. Playing a pure strategy shifts the demand if the offer is accepted. Unlike the
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incomplete information environment, the firm cannot play a mixed strategy because it is facing only one type.

Thus, it cannot solve its commitment problem.

Relation to other non-existence results: Dato et al. (2017) have already observed that in games where players

are constrained to play a PPE, an equilibrium does not always exist. They note that with binary actions, a PPE

strategy never entails mixing. Therefore, if the equilibrium requires mixed strategies, these strategies can never

be the players’ PPE, even though they could be PEs. Here, the mechanism for non-existence is different as the

equilibrium relaxing the PPE constraint would not be in mixed strategies. Instead, it occurs because the buyer’s

PPE price cutoff is always bounded away from the price offered.

Azevedo and Gottlieb (2012) show that games with prospect theory preferences can suffer from equilibrium

existence issues in a game where a risk-neutral firm offers a gamble to an agent. In their case, they observe that

for an exogenous reference point and some conditions on the value and probability weighting functions, there

always exists a bet with arbitrarily low expected value that an agent with prospect theory preferences is willing

to accept. Our analysis differ both in the choice of reference-point as well as the choice of payoff function – they

allow for probability weighting as well as restrict attention to gain-loss value function. In the model considered

here, the payoffs are always bounded so the mechanism for non-existence is also different.

2.4 Intermediate case: Testing the valuation

We have so far looked at “extreme” information structures, either complete information or complete lack of

information. In this section, I allow the firm to collect additional information on the buyer’s valuation before

setting a price. In Proposition 6, I first establish that having only partial information about the buyer’s valuation

can be beneficial for the firm. In Proposition 7, I characterise the firm’s preferred testing strategy and its profits.

In many bilateral trade settings, one party can gather information about the other before making an offer. A

leading example is job applications where an employer designs a screening process before making an offer

to a candidate.9 In the process, he collects information about the candidate’s productivity and outside option.

These can be explicit tests through an assessment centre or asking to submit certain documents like a CV or

recommendation letters. The question being asked in this section is whether a firm can use a combination of the

screening process and a candidate’s attachment effect to offer lower wages.

This section would also be relevant to settings where a seller can gather information about the buyer’s valuation.

For example, a car dealer could ask questions to the consumer about his valuation.

9The model is cast as a buyer-seller interaction but it can be rewritten as an firm-candidate interaction where the candidate has private
information regarding his outside option and the firm makes take-it-or-leave-it wage offer.
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I focus on G ∼ U [v, v]. This is with loss of generality and I explain after the discussion of Proposition 7 why

we need to restrict attention to these distributions. All functions and sets are assumed to be measurable.

Test: Let S be a set of signals and F : V → ∆(S) a mapping from types to distributions over signals. A test

is a pair (F, S). Denote by F (s|v) the distribution of s conditional on v. Abusing notation, F (v, s) is the joint

distribution of (v, s) induced by F (s|v) and G(v).

Players’ information: The test is common knowledge but only the firm observes the signal realisation. The

valuation v is still privately known.

Players’ strategy: A strategy for the firm is P : S → ∆(R), a mapping from signals to distributions over

prices.

The assumption regarding the players’ information and strategies correspond to a setting where the seller can

commit to a test or where the test is publicly observable. This would be the case in a job application setting

where the candidate can observe the selection process he goes through. An important assumption is also that

the candidate does not observe the signal realisation, e.g., he does not know the result of the test, does not

observe his recommendation letters or an interview is made opaque to make it hard to interpret. Alternatively,

this information could be revealed to him as long as his reference-point is set before learning the outcome of

the test. The case of public signals is discussed at the end of the section.

The PE and PPE are defined in the same way as before. I assume that the buyer forms expectations after having

observed his type and the test. Given the test (F, S) and strategy P , a reference point Qv is type v’s PE if

Qv =

∫
S

∫
R
1[p ≤ v + λvQv] dP (p|s)dF (s|v),

and the expected utility of type v given (F, S), P and Qv is

W (v|Qv) =

∫
S

∫
R

(
1[p ≤ v + λvQv](v − p) + 1[p > v + λvQv](−λvQv)

)
dP (p|s)dF (s|v).

Then, Q∗
v is a PPE if Q∗

v ∈ argmaxQv∈PE W (v|Qv).

The firm’s ex-ante payoffs are

E[π(P )|(Q∗
v)v] =

∫
V

∫
S

∫
R
1[v ∈ V ∗(p)] p dP (p|s)dF (s|v)dG(v).

Definition 5. Fix a test (F, S). An equilibrium is a profile (P, (Q∗
v)v) such that
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• P ∈ argmaxE[π(·)|(Q∗
v)v],

• and for all v ∈ [v, v], Q∗
v is type v’s PPE.

In equilibrium, the buyer plays according to his PPE based on the test and the firm’s strategy. The firm best

replies to the buyers’ PPE based on its information.

In the reference-independent model, the firm would perfectly learn the buyer’s valuation and offer the valuation.

This would also be the limit profits of the firm if the test would be arbitrarily close to fully revealing the valuation

(Proposition 3).10 The profits in this case would be
∫
V
v dG. A test is completely noisy if for almost all s and

v, PrF [s|v] < 1 and there is no unique v such that s ∈ suppF (·|v). That is, a test is completely noisy if no

type sends a signal deterministically and any signal realisation does not reveal any type.

Proposition 6. There is a completely noisy test (F, S) and an equilibrium (P, (Q∗
v)v) such that firm’s profits

are strictly greater than
∫
V
v dG.

The proof is in Section 2.6.3.

Proposition 6 shows that the firm benefits from not fully learning the buyer’s type. Coming back to the case

of screening processes for job candidates, Proposition 6 suggests that firms could benefit from designing noisy

or opaque screening procedures. This would let candidates entertain the idea that they would get a good wage

offer and thus weaken their bargaining position. However, not all completely noisy tests achieve higher profits.

In Proposition 7, I characterise this test and show that it is optimal amongst all tests.

A completely noisy test uses the two types of uncertainty it generates to credibly exploit the buyer’s attachment

effect. First, the buyer is uncertain about which signal he generated and therefore which types he is pooled with.

At low signals, the firm offers low prices, inducing expectations to buy. Then, at higher signals, the firm offers

higher prices, taking advantage of the higher WTP. From the buyer’s perspective, he is facing random prices

like in Heidhues and Kőszegi (2014). Second, the firm uses the uncertainty it has about the type to credibly

offer low prices after a low signal, despite facing some buyers willing to accept higher prices.

The next step is to characterise the firm’s preferred test. Like in Bergemann and Morris (2016), we can focus

on tests that generate action recommendations compatible with the PPE requirement. The distribution δs(p)

denotes the Dirac measure.

Lemma 3. Consider a test (F, S) and an equilibrium
(
P, (Q∗

v)v
)

in (F, S). Then, there exists a test (F̃,∪s∈S suppP (·|s))

and an equilibrium
(
δs, (Q

∗
v)v
)

in that test such that each player gets the same payoffs as in the original equi-

librium.
10Remember that if the firm perfectly learns the valuation, then there is no equilibrium in the resulting game.
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Proof. See Section 2.6.2

Lemma 3 holds because the only thing that matters for the buyer’s PPE is the distribution over prices given his

type. Therefore, a standard revelation principle argument holds. If after two different signals, the firm offers

the same price, we can modify the test to “merge” these two signals. This will not change the distribution over

actions and thus all PPEs are preserved.

The firm’s problem is to find the supremum profits and the test that attains it:

sup
(F,S)

∫
V×S

1[v ∈ V ∗(s)] s dF (v, s) (2.1)

s.t. p∗(v) = min{p : v − p = −λv F (p|v)}, (2.2)

for all S′ ⊆ S,∫
V×S′

1[v ∈ V ∗(x)]x dF (v, x) ≥
∫
V×S′

1[v ∈ V ∗(P̃ (x))] P̃ (x)dF (v, x) (2.3)

for all P̃ : S → R

We need to solve for the supremum because the set of constraints is not closed. In particular, a sequence of dis-

tributions Fi(·|v) → F (·|v) that induce p∗(v) = p′ for each i can have p′ ̸= min{p : v − p = −λv F (p|v)}.11

The firm chooses distribution over prices that will determine its profits and the WTP of each type. The con-

straint (2.2) pins down the WTP of each buyer. The obedience constraint (2.3) ensures that the firm is willing to

follow almost all price recommendations. I say that a test is admissible if it satisfies the constraints (2.3) where

the WTP are pinned down by (2.2). Obedience constraints are required to hold for any subset S′ to take into

account that some signal realisations might be zero probability events and have no well-defined density.

To fix ideas, I first characterise the firm’s first-best solution, i.e., ignoring the obedience constraints. It is

equivalent to allow the firm to commit to a distribution over prices, like in Heidhues and Kőszegi (2014).

Proposition 4 in the previous section has thus already characterised the first-best solution.

Claim 1. The first-best solution is to take a sequence {(Fi, Si)} such that

• Fi(s|v) → s−v
λv with suppFi → [v, v + λv] for all v and Si → [v, v(1 + λ)].

• For each i, for each v, p∗(v) = v + λv and there is trade with probability one.

I call the distribution s−v
λv on [v, v + λv] the commitment distribution. The commitment distribution and its

modification defined below will be important for the characterisation of the optimal test.

11For example, the distribution F (s|v) = 1
2
+

s−v−λv
2

λv+ϵ
induces a PPE cutoff p∗(v) = v + λv/2 for all ϵ > 0 but a PPE cutoff

p∗(v) = v for ϵ = 0.
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Definition 6 (Censored commitment distribution). F is the cdf of a censored commitment distribution if there

exists a p̃ ∈ [v, v + λv] and F̃ (s|v) < s−v
λv such that

F (s|v) =


0 if s < v

s−v
λv if s ∈ [v, p̃]

F̃ (s|v) if s > p̃

.

The censored commitment distribution behaves like the commitment distribution for prices below p̃ but stays

below s−v
λv for higher prices. The commitment distribution is a censored commitment distribution with p̃ =

v + λv.

Proposition 7. Assume v ∼ U [v, v] and let v̂(s) = min{v, s}. The firm’s supremum profits are

π∗ =

∫ v(1+λ)

v

min
{
v̂(s)− v, s log (1+λ)v̂(s)

s

}
λ∆v

ds,

and there exists a sequence of admissible tests {(Fi, S)} that approximate the firm’s supremum profits such that

• For each v, Fi(·|v) converges to a censored commitment distribution.

• The sequence Fi converges to a completely noisy test.

• There is downward distortion: the probability of trading is increasing v.

In the limit, we have v∗(s) = max{v̂(s) exp
(−v̂(s)+v

s

)
,

s

1 + λ
} and p∗(·) is the inverse of v∗(·).

The proof is in Section 2.6.3.

Proposition 7 characterises the firm’s preferred test and supremum profits. As in Proposition 6, the preferred

test is a completely noisy test. Moreover, higher types are more likely to trade and also face, and accept, higher

prices compared to their valuation. In our job screening example, it means that less productive candidates (the

equivalent of high valuation buyers) are more likely to suffer from their attachment towards the job as they are

more likely to receive relatively better offers compared to their outside option.

The firm can credibly follow the equilibrium strategy because it uncertain about which type it is facing. How-

ever, there are limits to the uncertainty the firm can generate. For example, the firm cannot pool the lowest

type in the support with even lower types. Therefore, this type always expects prices higher than his WTP. By

the PPE requirement, he must have a WTP equal to his valuation. In turn, this means that he must trade with

probability 0. This logic can be extended to more types: relatively low valuations can be pooled with fewer
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lower types. The firm can take advantage of their attachment effect but not fully. Their probability of trade is

then smaller than one.

This argument can also be seen from the action recommendation approach. In the first-best solution, each type

trades with probability one and therefore p∗(v) = v + λv. In particular, p∗(v) ≥ v + λv for all v. Moreover,

the signal space is S = [v, v(1 + λ)]. This solution does not respect the obedience constraints because for any

signal in [v, v(1 + λ)), there would be a profitable deviation to v(1 + λ). To satisfy the obedience constraints,

the firm decreases the WTP of low types to reduce the incentives to increase the price at low signals. But this

means that the probability of trading of low types must be less than one. Hence, the firm generates inefficiencies

in the form of downward distortion. The optimal way the firm generates the downward distortion is by using

censored commitment distributions. These are the distribution over signals that generate the largest profit for a

given WTP.

As in the incomplete information environment, the firm generates inefficiencies to maintain the credibility of its

own strategy. In both cases, the firm must manage the buyers’ expectations to ensure that it is willing to follow

its strategy. Unlike the incomplete information environment, the firm can now make more profits than in the

reference-independent benchmark. In Proposition 2, the firm can only make the reference-independent profits

because types below the support are always expecting prices higher than their valuation. Here, the support of

types conditional on the signal is not common knowledge anymore. Therefore, only the lowest type in the prior

distribution expects to face prices higher than his valuation.

The case of non-uniform priors The results derived in this section do not hold for all prior distributions over

valuations. The proof of Proposition 7 relies on solving for local obedience constraints and then check that

global constraints hold as well. This approach works for some distributions, including uniform distributions,

but not all.

Public signals Consider a model where the signal realisation is public and the buyer’s reference point is set

after having observed the signal realisation. In this different environment, the firm’s information is common

knowledge. Thus, after each signal realisation, we are back to the environment of Section 2.3. The optimal test

for the firm is then to take an arbitrarily fine partition of the type space and play the equilibrium of Proposition 2

in each element of the partition.

The profits are the same as in the reference-independent benchmark but like in Section 2.3, there is a positive

probability of no-trade despite the near-complete information. Another difference is that the WTP is no longer

monotonic in the valuation: in each element of the partition [v, v + ϵ), the support of the mixed strategy is

≈ [v, v + λv] and the WTP vary on an interval ≈ [v, v + λv). Therefore, some types might be on higher
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elements of the partition, but have a lower WTP.

2.5 Conclusion

In this paper, I study a model of monopoly pricing where the buyer has expectation-based reference-dependent

preferences, focusing on an attachment effect. The model has two main features. The expectation-based refer-

ence point renders the demand an endogenous object. The PPE requirement creates a commitment problem for

the firm.

On a theoretical level, this model offers two main lessons. First, uncertainty can help overcome the firm’s com-

mitment problem. In all the environments studied, the firm must manage the buyers’ expectations, and thus

the demand, to maintain a credible strategy. In the incomplete information environment, the firm needs the

uncertainty to induce a unit-elastic demand. For its optimal testing strategy, the firm uses the uncertainty to

create obedient distributions over prices. While it can deliver equilibrium existence or credible price distribu-

tions, using uncertainty necessarily entails inefficiencies. Furthermore, a higher λ, associated with a stronger

commitment problem, implies a higher probability of no trade.

The other recurring theme is the impossibility for the firm to exploit the low types. This follows from the buyers’

rational expectations as a low type always anticipate prices above his valuation and therefore cannot expect to

buy in a PPE. The consequence was particularly stark in the incomplete information model where it made

the profits the same as in the reference-independent model. In the optimal testing environment, it generated

downward distortions.

One issue put aside in this paper is the possibility for the buyer to experience gain-loss utility in the money

dimension as well. This modification would change the characterisation of the PPE. For example, a PE price

cutoff would not be determined by the probability of reaching the cutoff but also on the expected loss in price

and thus a result like Proposition 1 would not hold.
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2.6 Omitted proofs of Chapter 2

2.6.1 Proof of Proposition 2

Proof. Preliminary lemmas:

The first lemmas guarantee the good behaviour of two equilibrium objects, F , the firm’s strategy, and p∗(v) the

WTP of each buyer as a function of his type.

Lemma 4. In any equilibrium, p∗(v) is strictly increasing.

Proof. Take v1 < v2. Let p∗(v1) = p1 and p∗(v2) = p2 be their PPE cutoffs. Assume that p1 ≥ p2. Because

p1, p2 are PE cutoffs,

v1 − p1 = −λv1F (p1), (2.4)

v2 − p2 = −λv2F (p2). (2.5)

Clearly, p1 = p2 cannot hold. We either have v1 − p2 ≥ −λv2F (p2) or v1 − p2 < −λv2F (p2). In the first

case, we have

v2 − p2 > v1 − p2 ≥ −λv2F (p2),

contradicting equation (2.5). In the second case, F (p2) < p2−v1
λv2

and p1 > p2 contradict Proposition 1.

Lemma 5. Let F be an equilibrium strategy. If p ∈ suppF , then there exists v ∈ V such that p∗(v) = p.

Proof. Assume not: there is a p ∈ suppF and no v such that p∗(v) = p. First, if p ∈ suppF , then p∗(v) ≥ p

for some v, for otherwise the firm makes zero profits. The firm can always make strictly positive profits by

offering a price p < v. This would be accepted by all types v ∈ [p, v] because p∗(v) ≥ v in any PPE.

Because p∗(·) is strictly increasing, this implies that there is a v such that p∗(·) is not continuous at v and

p ∈ [limx↘v p
∗(x), limx↗v p

∗(x)]. By continuity of G, γ(V ∗(p)) = γ(V ∗(p∗(v))). But then both p∗(v), p ∈

suppF but they give different profits, a contradiction.

Lemma 6. Any equilibrium strategy F is continuous.

Proof. Assume not. Let p̃ be a point of discontinuity of F . If p̃ is a PE cutoff for some v, then F (p̃) = p̃−v
λv .

Using the upper semicontinuity of F and continuity of p−v
λv , there exists p′ < p̃ such that F (p′) < p′−v

λv . By

Proposition 1, p̃ cannot be a PPE cutoff of v. This contradicts Lemma 5.

Lemma 7. In any equilibrium, p∗(v) is continuous.
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Proof. Assume there exists a point of discontinuity ṽ, i.e., p1 ≡ limv↗ṽ p
∗(v) < limv↘ṽ p

∗(v) ≡ p2. We have

that F (p∗(v)) = p∗(v)−v
λv and F is continuous, therefore,

F (p1) = lim
v↗ṽ

p∗(v)− v

λv
< lim

v↘ṽ

p∗(v)− v

λv
= F (p2).

We can then find p̃ ∈ (p1, p2) such that p̃ ∈ suppF and there exist no v such that p∗(v) = p̃. This contradicts

Lemma 5.

Lemma 6 rules out pure strategies for the firm. It shows that if the firm puts strictly positive mass at one point

of the support, it creates a discontinuity in the demand exactly at that point. Then, it wants to take advantage of

it.

Lemma 4 and Lemma 7 also imply that we can think of v∗(p) = inf{v : p∗(v) ≥ p} as the inverse of p∗(v):

for any p in the support, p∗(v∗(p)) = p. Furthermore, V ∗(p) = {v : p∗(v) ≥ p} = [v∗(p), v] and the demand

at any price γ(V ∗(p)) = 1−G(v∗(p)).

Let p = min suppF and p = max suppF .

Profits from p

The profits from p are p(1−G(v∗(p)). Indeed, for any v ≤ p, F (v) = 0. Therefore, p∗(v) = v+λF (v|v) = v

is a PE cutoff. This being the smallest PE cutoff possible, it is the PPE cutoff by Proposition 1. Moreover, for

any v, p∗(v) ≥ v. Therefore, all types above p accepts it and all types below reject it, i.e., v∗(p) = p. Profits

when offering p are then p (1−G(p)). These must be the equilibrium profits.

Finding the equilibrium strategy

For any p ∈ suppF , by indifference on the support,

π∗ ≡ p(1−G(p)) = p(1−G(v∗(p))).

Therefore,

v∗(p) = G−1

(
p− π∗

p

)
,

for all p ∈ suppF . Since p−π∗

p ∈ [0, 1) for all p ≥ p, the expression above is well-defined. The equilibrium

strategy F must guarantee that a PE cutoff of v∗(p) is p∗(v∗(p)) = p:

v∗(p)− p = −λv∗(p)F (p) ⇒ F (p) =
p−G−1

(
p−π∗

p

)
λG−1

(
p−π∗

p

) , (2.6)
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using that p∗(v∗(p)) = p. Note that this discussion also implies that in equilibrium, p∗(v) = π∗

1−G(v) .

Pinning down p. For any p < p, F (p) = 0. Therefore, v∗(p) = p− λv∗(p)F (p) = p. In equilibrium, we must

have

π∗ ≥ p(1−G(p)).

For any p > p, we have:

F (p) =
p−G−1

(
p−π∗

p

)
λG−1

(
p−π∗

p

) ⇒ G−1(
p− π∗

p
) = p− λG−1

(p− π∗

p

)
F (p) < p

⇔ p(1−G(p)) < π∗,

using that F (p) > 0 for p > p. Therefore, we have p = argmaxp p(1−G(p)).12

F is well-defined on the support

I check here that
p−G−1

(
p−π∗

p

)
λG−1

(
p−π∗

p

) is a strictly increasing and positive function. For all p ≥ p,

p−G−1
(p− π∗

p

)
≥ 0 ⇔ G(p) ≥ p− π∗

p
⇔ π∗ ≥ p(1−G(p))

This is satisfied because π∗ = max p(1−G(p)).

I now show that for all p > p, the derivative of F is strictly positive. This follows from the following fact

1. For p > p, 1−G(p)
p < g(p): by strict concavity of the profit function, the derivative is negative after the

maximum.

Taking the derivative of F ,

F ′(p) ∝
G−1

(
p−π∗

p

)
− pπ∗

p2
1

g
(
G−1
(

p−π∗
p

))(
G−1

(
p−π∗

p

))2 >

G−1
(
p−π∗

p

)
− π∗

p

G−1
(

p−π∗
p

)
1−G

(
G−1
(

p−π∗
p

))(
G−1

(
p−π∗

p

))2 = 0,

using fact 1 to get the inequality and rearranging to get the equality.

Pinning down p. We have to check that there exists a p, such that F (p) = 1. To do that, we will check that

there exists p such that F (p) = 1. Note that F (p) = 0 and F (v+ λv) =
v+λv−G−1

(
v+λ−π∗

v+λv

)
λG−1

(
v+λv−π∗

v+λv

) > 1 (rearranging

and using that G(v) = 1). Therefore, by continuity of F , there exists, p < p < v + λv such that F (p) = 1.

12p is well-defined by the strict concavity of p(1−G(p)).
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Then, p := F (p) = 1.13

Preferred Personal Equilibrium The last step is to check that the PE cutoffs pinned down by equation (2.6)

are PPE cutoffs. This follows from the fact that the PE pinned down by equation (2.6) is unique:

p−G−1
(
p−π∗

p

)
λG−1

(
p−π∗

p

) ≥ p− v

λv

⇔ G(v) ≥ p− π∗

p

⇔ p ≤ π∗

1−G(v)
= p∗(v).

Hence, it is also a PPE cutoff.

2.6.2 Proof of Lemma 3

The firm’s strategy and test as defined are Markov kernels. For simplicity, for any measurable space (X,X ), I

simply write X . A mapping Q : X×Y → [0, 1] is a Markov kernel if (i) for any measurable A ⊆ Y , Q(A|·) is

measurable and (ii) for any x ∈ X , Q(·|x) is a probability measure. I will make repeated use of composition of

Markov kernels. LetQ : X×Y → [0, 1] and P : Y ×Z → [0, 1] be two Markov kernels. Then the composition

of P ◦Q : X × Z → [0, 1] defined as

(P ◦Q)(A|x) =
∫
Y

P (A|y)dQ(y|x) for all measurable A ⊆ Z and x ∈ X

is a Markov kernel. Furthermore, for all bounded measurable f : Z → R,

∫
f(z)d(P ◦Q)(z|x) =

∫ ∫
f(z)dP (z|y)dQ(y|x)

See e.g., Bauer (1996), chapter VIII, §36.

Proof. Start with a test (F, S) and an equilibrium
(
P, (Q∗

v)v
)
. We are going to construct a new test (F̃, S̃)

and an equilibrium
(
δs, (Q

∗
v)v
)

such that all players get the same payoffs. We can construct the Markov kernel

F̃ : V × S̃ → [0, 1], where S̃ = ∪s∈S suppP (s) ⊆ R as F̃ = P ◦ F .

Let’s first verify that the PPE do not change. Fix a v.

13Because F is strictly increasing, p is well-defined.
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Qv =

∫
S

∫
R

1[p ≤ v + λvQv]dP (p|s)dF (s|v)

=

∫
S̃

1[p ≤ v + λvQv]dF̃ (p|v)

=

∫
S̃

∫
R

1[p ≤ v + λvQv]dδs̃(p)dF̃ (s̃|v),

and W(F,S)(v|Qv) =

∫
S

∫
R

(
1[p ≤ v + λvQv](v − p) + 1[p > v + λvQv](−λvQv)

)
dP (p|s)dF (s|v)

=

∫
S̃

(
1[p ≤ v + λvQv](v − p) + 1[p > v + λvQv](−λvQv)

)
dF̃ (p|v)

=

∫
S̃

∫
R

(
1[p ≤ v + λvQv](v − p) + 1[p > v + λQv](−λvQv)

)
dδs̃(p)dF̃ (s̃|v)

=W(F̃,S̃)(v|Qv).

This shows that the set of PE and the payoff from each of them does not change under the new test and equilib-

rium. Moving to the firm to the firm’s payoffs, we get similarly

E(F,S)[π(P )|(Q∗
v)v] =

∫
V

∫
S

∫
R
1[v ∈ V ∗(p)] p dP (p|s)dF (s|v)dG

=

∫
V

∫
S̃

∫
R
1[v ∈ V ∗(p)] p dδs̃(p)dF̃ (s̃|v)dG

= E(F̃,S̃)[π(δs̃)|(Q
∗
v)v].

Note that the integrand is bounded because 1[v ∈ V ∗(p)] = 0 for p > v(1 + λ) and offering a negative is a

strictly dominated action. The last step is to check that any deviation from δs̃(p) is suboptimal in the new test.

I show that from any strategy in (F̃, S̃), we can construct a strategy in (F, S) that yields the same payoff. Let
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P̃ : S̃ ×R→ [0, 1] a strategy in (F̃, S̃). Define the Markov kernel P ′ : S × S̃ → [0, 1] as P ′ = P̃ ◦ P . Then,

E(F̃,S̃)[π(P̃ )|(Q
∗
v)v] =

∫
V

∫
S̃

∫
R
1[v ∈ V ∗(p)] p dP̃ (p|s̃)dF̃ (s̃|v)dG(v)

=

∫
V

∫
S

∫
S̃

∫
R
1[v ∈ V ∗(p)] p dP̃ (p|s̃)dP (s̃|s)dF (s|v)dG(v)

=

∫
V

∫
S

∫
R
1[v ∈ V ∗(p)] p dP ′(p|s)dF (s|v)dG(v)

≤ E(F,S)[π(P )|(Q∗
v)v] = E(F̃,S̃)[π(δs̃)|(Q

∗
v)v].

2.6.3 Proof of Proposition 6 and Proposition 7

Plan of the proof:

1. Relax the problem by requiring that obedience constraint holds on intervals of signals [s, s] for all s and

only upward deviation, P̃ (x) = x+ ϵ for all ϵ > 0.

2. Use that F (s|v) > s−v
λv for all s < p∗(v) to relax the obedience constraints and make them only depend

on a new object h(x) :=
∫
V ∗(x)

1
vdG. If the obedience constraints depend only h, then it is optimal to

choose a censored commitment distribution, using the FOSD interpretation of the PPE (Proposition 1).

We are left with optimising over h.

3. Look only at local deviations, i.e., ϵ→ 0, to get an integral inequality that pins down h.

(a) Because h is not necessarily Lipschitz continuous, which is needed for the operation described

above, I construct a sequence of relaxed problems with a smaller set of relaxed obedience constraints

where deviations are bounded away from 0. For each problem, I show that it is without loss to focus

on Lipschitz continuous h.

(b) Then, I look at the limit of these problems with Lipschitz continuous h and focusing on the smallest

possible deviation in each element of the sequence to derive a condition on h.

4. The resulting supremum problem with the condition from local relaxed obedience constraints gives an

upper bound on profits.

5. I show that there exists a sequence of tests respecting the obedience constraints converging to the upper

bound.

6. Proof of Proposition 6: Compare the characterised payoffs to the full information benchmark to show that

it strictly dominates it.
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Proof. Let s = minS and s = maxS.

Lemma 8. For any F , V ∗(s) = [s, v].

Proof. By definition of PPE and s, for all v < s, p∗(v) = v − λvF (v|v) = v < s, using that F (v|v) = 0.

On the other hand, p∗(v) ≥ v, therefore, p∗(v) ≥ s for all v ≥ s. Thus, V ∗(s) = [v, v].

Define h(s) :=
∫
V ∗(s)

1
vdG. The following lemma states that there exists a relaxation of the original problem

where the constraints only depend on h, not on the test.

Lemma 9. The following problem is a relaxation of the firm’s problem:

sup
S, h∈L1(S)

∫
S

x
h(x)− 1

∆v log
max{v,x}

x

λ
dx

s.t. for all s ∈ S and ϵ > 0,

(h(s)− h(s+ ϵ))s ϵ+

∫ s

s

x(h(x)− h(x+ ϵ))dx ≥
∫ s

s

ϵ (h(x+ ϵ)− logG(x)

∆v
)dx (2.7)

h(s) ∈ [
1

∆v
log

max{v, s}
s

,
1

∆v
log
( v

max{v, s
1+λ}

)
] for all s ∈ S (2.8)

h(s) =
1

∆v
log

max{v, s}
s

; h non-increasing. (2.9)

Proof. First, focus on the following subset of obedience constraints: for all s ∈ S,

∫
V×[s,s]

1[v ∈ V ∗(x)]x dF (v, x) ≥
∫
V×[s,s]

1[v ∈ V ∗(x+ ϵ)] (x+ ϵ) dF (v, x) for all ϵ > 0

Noting that V ∗(x+ ϵ) ⊆ V ∗(x), we can rearrange the relaxed obedience constraint as

∫
V×[s,s]

1[v ∈ V ∗(x) \ V ∗(x+ ϵ)]x dF (v, x) ≥
∫
V×[s,s]

1[v ∈ V ∗(x+ ϵ)] ϵ dF (v, x)

This is equivalent to (see Figure 2.3 for an illustration)

∫
V ∗(s)\V ∗(s+ϵ)

∫ s

p∗(v)−ϵ

x dF (x|v)dG+

∫
V \V ∗(s)

∫ p∗(v)

p∗(v)−ϵ

x dF (x|v)dG

≥
∫
V ∗(s+ϵ)

∫ s

s

ϵ dF (x|v)dG+

∫
V \V ∗(s+ϵ)

∫ p∗(v)−ϵ

s

ϵ dF (x|v)dG

I will now use repeatedly the FOSD interpretation of the PPE (Proposition 1): F (x|v) > x−v
λv for x < p∗(v)

and F (p∗(v)|v) = p∗(v)−v
λv .
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s 1

s

s

V

S p∗(v)

p∗(v)− ϵ

Figure 2.3: Area of integration with V ∗(x) = {v : p∗(v) ≥ x} and V ∗(x+ ϵ) = {v : p∗(v)− ϵ ≥ x}

Take the RHS first.

∫
V ∗(s+ϵ)

∫ s

s

ϵ dF (x|v)dG+

∫
V \V ∗(s+ϵ)

∫ p∗(v)−ϵ

s

ϵ dF (x|v)dG

≥
∫
V ∗(s+ϵ)

∫ s

s

ϵ1[x ≥ v]
1

λv
dx dG+

∫
V \V ∗(s+ϵ)

∫ p∗(v)−ϵ

s

1[x ≥ v]ϵ
1

λv
dx dG

=

∫ s

s

∫
V ∗(x+ϵ)

1[x ≥ v]ϵ
1

λv
dGdx

≥
∫ s

s

ϵ

λ

[ ∫
V ∗(x+ϵ)

1

v
dG−

∫
[x,max{x,v}]

1

v
dG
]
dx

using the FOSD property on the second line, changing the order of integration in the third and using that

1 ≥ γ(V ∗(x+ ϵ)) + γ([0, x])− γ
(
V ∗(x+ ϵ) ∩ [0, x]

)
on the last.

Now focusing on the LHS,
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∫
V ∗(s)\V ∗(s+ϵ)

∫ s

p∗(v)−ϵ

x dF (x|v)dG+

∫
V \V ∗(s)

∫ p∗(v)

p∗(v)−ϵ

x dF (x|v)dG

≤
∫
V ∗(s)\V ∗(s+ϵ)

∫ s

p∗(v)−ϵ

x dF (x|v)dG︸ ︷︷ ︸
I

+

∫
V ∗(s)\V ∗(s+ϵ)

∫ s

p∗(v)−ϵ

1[x ≥ v]x
1

λv
dx dG+

∫
V \V ∗(s)

∫ p∗(v)

p∗(v)−ϵ

x dF (x|v)dG︸ ︷︷ ︸
II

where the inequality simply follows from adding a positive term on the second line.

I ≤
∫
V ∗(s)\V ∗(s+ϵ)

s
(
F (s|v)− F (p∗(v)− ϵ|v)

)
dG

≤
∫
V ∗(s)\V ∗(s+ϵ)

s
(p∗(v)− v

λv
− p∗(v)− ϵ− v

λv

)
dG =

sϵ

λ

∫
V ∗(s)\V ∗(s+ϵ)

1

v
dG

using that s ≥ x and the FOSD property.

II ≤
∫
V ∗(s)\V ∗(s+ϵ)

∫ s

p∗(v)−ϵ

1[x ≥ v]x
1

λv
dx dG+

∫
V \V ∗(s)

∫ p∗(v)

p∗(v)−ϵ

1[x ≥ v]x
1

λv
dx dG

=

∫ s

s

∫
V ∗(x)\V ∗(x+ϵ)

1[x ≥ v]x
1

λv
dGdx

≤
∫ s

s

∫
V ∗(x)\V ∗(x+ϵ)

x
1

λv
dGdx

where I use the FOSD property on the first line, change the order of integration on the second and ignore that

we must have 1[x ≥ v] on the third.

Using that h(x) =
∫
V ∗(x)

1
vdG, he resulting, relaxed constraint is

(h(s)− h(s+ ϵ))s ϵ+

∫ s

s

x(h(x)− h(x+ ϵ))dx ≥
∫ s

s

ϵ (h(x+ ϵ)−
log max{v,x}

x

∆v
)dx

Then, remember that the constraint p∗(v) = min{p : v − p = −λvF (p|v)} is equivalent to v − p∗(v) =

−λvF (p∗(v)|v) and for all p < p∗(v), F (p|v) > p−v
λv (Proposition 1). Relax it by only requiring v − p∗(v) =

−λvF (p∗(v)|v) and for all p < p∗(v), F (p|v) ≥ p−v
λv .

It is now optimal to set F (s|v) = s−v
λv for all s ≤ p∗(v), i.e., we choose a censored commitment distribution.

This operation does not modify the relaxed PPE requirement nor the relaxed obedience constraints but improves
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profits. The firm’s problem becomes

sup
S, h∈L1(S)

∫
S

x
h(x)− 1

∆v log
max{v,x}

x

λ
dx

s.t. for all s ∈ S and ϵ > 0,

(h(s)− h(s+ ϵ))s ϵ+

∫ s

s

x(h(x)− h(x+ ϵ))dx ≥
∫ s

s

ϵ (h(x+ ϵ)−
log max{v,x}

x

∆v
)dx

h(s) ∈ [
1

∆v
log

max{v, s}
s

,
1

∆v
log
( v

max{v, s
1+λ}

)
] for all s ∈ S

h(s) =
1

∆v
log

max{v, s}
s

; h non-increasing.

where h(s) ∈ [ 1
∆v log

max{v,s}
s , 1

∆v log
(

v
max{v, s

1+λ

)
] comes from p∗(v) ∈ [v, v+λv], h(s) = 1

∆v log
max{v,s}

s

follows from Lemma 8 and h non-increasing follows from the definition of V ∗(s), i.e., increasing the price

necessarily decreases the mass of types willing to accept.

I am going to do a little detour now and focus on a set of obedience constraints and deviations that are bounded

away from zero. Specifically, obedience constraints only need to hold for all s ∈ Si = [s+ 1
i , s] and ϵ ∈ Ei =

[ 1i , v(1 + λ)] for some i ∈ N0. Note that s /∈ Si and 0 /∈ Ei. Furthermore Si ⊆ Si+1 and Ei ⊆ Ei+1.

Let Ki be the set of functions satisfying the constraints (2.7), (2.8) and (2.9) for any s ∈ Si, ϵ ∈ Ei and K be

the set of functions satisfying these constraints for any s ∈ S and ϵ > 0. Similarly, define OBi as the set of

functions satisfying the relaxed obedience constraints (2.7) for any s ∈ Si and ϵ ∈ Ei and define OB for any

s ∈ S and ϵ ∈ E = [0, v(1 + λ)]. Define

Γ = {ϕ ∈ L1(S) : satisfying (2.8) and (2.9)}

where L1(S) is the set of measurable function from S to R. Note thatKi = OBi∩Γ. Finally, let Lip be the set

of Lipschitz continuous functions (not necessarily with the same Lipschitz constant). Endow the spaces defined

above with the L1-norm.

Lemma 10. Let π(h) =
∫
S
x

h(x)− 1
∆v log

max{v,x}
x

λ dx. Then,

sup
h∈K

π(h) ≤ lim
i→∞

sup
h∈Ki

π(h) = lim
i→∞

sup
h∈Ki∩Lip

π(h)

Proof. 1. limi→∞ suph∈Ki π(h) exists. This follows fromKi+1 ⊆ Ki, therefore suph∈Ki+1 π(h) ≤ suph∈Ki π(h).

Moreover, suph∈Ki π(h) ≥ 0 as choosing h(x) = 1
∆v log

max{v,x}
x is always possible for any i. Thus, the limit

exists.
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2. limi→∞ suph∈Ki π(h) ≥ suph∈K π(h). For each i, K ⊆ Ki, therefore, suph∈Ki π(h) ≥ suph∈K π(h) for

each i.

3. limi→∞ suph∈Ki π(h) = limi→∞ suph∈Ki∩Lip π(h)

To prove this identity, I will show that Ki ∩Lip is a dense subset of Ki. Because π(h) is continuous in h in the

L1-norm, then suph∈Ki π(h) = suph∈Ki∩Lip π(h).

This part is in three steps. Step 1: show that Γ ∩ Lip is dense in Γ. Step 2: show that int(Ki) is non-empty in

Γ. Step 3: Using that Lipschitz continuous functions are dense in int(Ki) because it is open and int(Ki) ⊆ Γ,

and convexity of Ki, show that any function in Ki can be approximated by a function in Ki ∩ Lip.

Step 1: Γ ∩ Lip is dense in Γ

Take ϕ ∈ Γ. Define

ϕn(x) =

 1
∆v log

max{v,s}
s +

ϕn(s+1/n)− 1
∆v log

max{v,s}
s

1/n (x− s) if x ∈ [s, s+ 1/n)

n
∫ x

x−1/n
ϕ(z)dz if x ≥ s+ 1/n

ϕn is differentiable everywhere but at one point, s+1/n, and its derivative is bounded by n therefore Lipschitz

continuous and ϕn ∈ Γ.

We have to show that

lim
n→∞

∫ s

s

|ϕn(x)− ϕ(x)|dx = 0

Focusing on x ≥ s+ 1/n14.

∫ s

s+1/n

|n
∫ x

x−1/n

ϕ(z)dz − ϕ(x)|dx

≤
∫ s

s+1/n

n

∫ x

x−1/n

|ϕ(z)− ϕ(x)|dzdx

=

∫ s

s+1/n

n

∫ 0

−1/n

|ϕ(x+ y)− ϕ(x)|dydx

=

∫ 0

−1/n

n

∫ s

s+1/n

|ϕ(x+ y)− ϕ(x)|dxdy

≤ sup{
∫ s

s+1/n

|ϕ(x+ y)− ϕ(x)|dx : y ∈ [−1/n, 0]}

For simplicity, extend the domain to the real line and set ϕ(x) = 0 when x /∈ [s, s]. Let ψm ∈ Cc(R), the set

of continuous function in R with compact support, with ψm →L1 ϕ. By the Heine-Cantor theorem, any ψm is

14I would like to thank user fourierwho of StackExchange for this proof.
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uniformly continuous. We have for all m,

lim
y→0

∫
R
|ϕ(x+ y)− ϕ(x)|dx

≤ lim
y→0

∫
R
|ϕ(x+ y)− ψm(x+ y)|dx+

∫
R
|ψm(x+ y)− ψm(x)|dx+

∫
R
|ψm(x)− ϕ(x)|dx

≤ 2

∫
R
|ψm(x)− ϕ(x)|dx

where limy→0

∫
R |ψm(x + y) − ψm(x)|dx = 0 holds because ψm is uniformly continuous. Therefore, taking

m → ∞, limy→0

∫
R |ϕ(x+ y)− ϕ(x)|dx = 0. In turn, it means that sup{

∫ s

s+1/n
|ϕ(x+ y)− ϕ(x)|dx : y ∈

[−1/n, 0]} → 0 as n→ ∞.

Now for x ∈ [s, s + 1/n), because |ϕn(x)| and |ϕ(x)| are bounded as n → ∞, limn→∞
∫ s+1/n

s
|ϕn(x) −

ϕ(x)|dx = 0.

Therefore, Γ ∩ Lip is dense in Γ.

Step 2: Non-empty interior of Γ ∩OBi in Γ

Take h(x) = 1
∆v log

max{v,x}
x . It is easy to check that h ∈ Ki = Γ∩OBi. Define z(s, ϵ) =

∫ s

s
(x+ ϵ)(h(x)−

h(x + ϵ))dx and z = mins,ϵ z(s, ϵ). Note that we have z > 0 because h is strictly increasing on parts of its

domain and s /∈ Si and 0 /∈ Ei.

Now take ϕ(x) ∈ Γ with
∫
S
|ϕ(x)− h(x)|dx ≤ η, η > 0. I will show that

(ϕ(s)− ϕ(s+ ϵ))sϵ+

∫ s

s

x(ϕ(x)− 1

∆v
log

max{v, x}
x

)dx ≥
∫ s

s

(x+ ϵ)(ϕ(x+ ϵ)− 1

∆v
log

max{v, x}
x

)dx

for all ϵ ∈ Ei, s ∈ Si for η sufficiently small. Rearranging the obedience constraint,

(ϕ(s)− ϕ(s+ ϵ))sϵ+

∫ s

s

x(ϕ(x)− 1

∆v
log

max{v, x}
x

)dx+

∫ s

s

(x+ ϵ)(h(x)− h(x+ ϵ))

≥
∫ s

s

(x+ ϵ)(ϕ(x+ ϵ)− h(x+ ϵ))dx

Take the LHS, we have

z(s, ϵ) + (ϕ(s)− ϕ(s+ ϵ)sϵ+

∫ s

s

x(ϕ(x)− h(x))dx ≥ z − ηs
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using that ϕ is non-increasing. The RHS gives

∫ s

s

(x+ ϵ)(ϕ(x+ ϵ)− h(x+ ϵ))dx ≤ η(s+ ϵ)

Therefore, we need

z − ηs ≥ η(s+ ϵ)

z ≥ (2s+ ϵ)η

which holds for all s ∈ Si and ϵ ∈ Ei for η small enough.

Step 3: Ki ∩ Lip is dense in Ki

First observe that int(Ki) is an open set in Γ in the metric space (Γ, L1-norm). Therefore, int(Ki) ∩ Lip is

dense in int(Ki).

Note that the set Ki is convex. This can be verified by simply summing over the relaxed obedience constraints.

The properties of Γ are also maintained when taking convex combinations.

Take some h ∈ int(Ki). Any function ϕ ∈ Ki can be approximated by a sequence of αnh + (1 − αn)ϕ with

the appropriate sequence of αn. Moreover, any point in the sequence is in the interior of Γ.15

Take any ϕ ∈ Ki and ϵ > 0. Let ϕn = αnϕ + (1 − αn)h, such that |ϕ − ϕn| < ϵ/2 for all n ≥ N for some

N ∈ N. Define also ψn ∈ Ki ∩ Lip such that |ψn − ϕn| < ϵ/2 for all n, using that ϕn ∈ int Ki. Therefore,

|ϕ− ψn| ≤ |ϕ− ϕn|+ |ϕn − ψn| < ϵ/2 + ϵ/2 = ϵ

for n ≥ N .

Now, given that π(h) =
∫
S
x
h(x)−

log
max{v,x}

x
∆v

λ dx is continuous in the L1-norm, we have established that

suph∈Ki π(h) = suph∈Lip∩Ki π(h).

This lemma shows that taking the restricted set of constraints provides another upper bound to our problem.

Furthermore, in the restricted problem, it is without loss to restrict attention to Lipschitz continuous functions.

Now, let’s focus on limi→∞ suph∈Ki∩Lip π(h) = π(h∗) (for some h∗). This implies that there exist a sequence

{hi} with hi ∈ Ki ∩ Lip such that hi →L1 h∗. Let ϵi = min Ei.

15To see this note that there exists η > 0 such that any Bη(h) ⊆ Ki. Take ψ = αh+ (1−α)ϕ. I will show that any w ∈ Bηα(ψ) is
in Ki. First, define z = h+ w−ψ

α
. Then, |z − h| = |h+ w−ψ

α
− h| < α η

α
= η. Therefore z ∈ Ki. Then, choosing β = α, we have

w = βz + (1− β)ϕ and thus w ∈ Ki.
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Because each hi is bounded and of bounded total variation, by Helly’s selection theorem, there exists a sub-

sequence {hik} such that hik(s) → h∗(s) for all s ∈ int S. Let’s focus on that subsequence and rename its

elements: {hk}∞k=0. This implies that for each s ∈ int S, for all η > 0, there exists P (s, η) ∈ N such that

|h∗(s)− hk(s)| < η for all k ≥ P (s, η) and there exists M(η) ∈ N such that
∫
S
|h∗(s)− hk(s)|ds < η for all

k ≥M(η). Note also that
∫
S
|hi(x)− hk(x)|dx < η for all k, i ≥M(η/2).

Finally, h∗ being the limit of monotone function, it is monotone and thus continuous almost everywhere. There-

fore, wherever h∗ is continuous, there existsN(s, η) ∈ N such that |h∗(s)−h∗(s+ϵi)| < η for all i ≥ N(s, η).

Fix η > 0 and s > s where h∗ is continuous. Define i = max{ 1
s , N(s, η/3)}. Then, for all k > k∗(s, η) ≡

max{i, P (s, η/3), P (s+ ϵi, η/3)}, we have

|hk(s)− hk(s+ ϵk)| ≤ |hk(s)− hk(s+ ϵi)|

≤ |hk(s)− h∗(s)|+ |h∗(s)− h∗(s+ ϵi)|+ |h∗(s+ ϵi)− hk(s+ ϵi)|

< η/3 + η/3 + η/3 = η

using that ϵi > ϵk on the first line. Therefore, for all k > max{k∗(s, η),M(η/2)},

(hk(s)− hk(s+ ϵk)s+

∫ s

s

x(hk(x)− 1

∆v
log

max{v, x}
x

)dx

≥
∫ s

s

(x+ ϵk)(h
k(x+ ϵk)−

1

∆v
log

max{v, x}
x

)dx

⇒ sη +

∫ s

s

x(hi(x)− 1

∆v
log

max{v, x}
x

)dx+ sη

≥
∫ s

s

(x+ ϵk)(h
i(x+ ϵk)−

1

∆v
log

max{v, x}
x

)dx− (s+ ϵk)η

We can rearrange the constraint and let k → ∞ (which implies ϵk → 0),

(3s+ ϵk)η +

∫ s

s

x
hi(x)− hi(x+ ϵk)

ϵk
dx ≥

∫ s

s

hi(x+ ϵk)−
1

∆v
log

max{v, x}
x

dx

letting k → ∞, 3sη +

∫ s

s

−x∂h
i

∂x
dx ≥

∫ s

s

hi(x)− 1

∆v
log

max{v, x}
x

dx

where we used the dominated convergence theorem, using that |hi| is bounded and hi(x)−hi(x+ϵk)
ϵk

is bounded
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by Lipschitz continuity. Integrating by part, we get

3sη − [hi(x)x]ss +

∫ s

s

hi(x)dx ≥
∫ s

s

hi(x)dx−
∫ s

s

1

∆v
log

max{v, x}
x

dx

hi(s) ≤

∫ s

s
1
∆v log

max{v,x}
x dx+ ( 1

∆v log
max{v,s}

s )s

s
+ 3η

Using that hi(s) = 1
∆v log

max{v,s}
s .

Then, we can take a sequence of η → 0, and thus i→ ∞, and we get for each s where h∗ is continuous

h∗(s) = lim
η→0

hi(s) ≤ lim
η→0

∫ s

s
1
∆v log

max{v,x}
x dx+ ( 1

∆v log
max{v,s}

s )s

s
+ 3η

=

∫ s

s
1
∆v log

max{v,x}
x dx+ ( 1

∆v log
max{v,s}

s )s

s

This holds for any s where h∗(s) is continuous.

Therefore, we get another upper bound on the firm’s problem.

sup
h∈Lip

∫ s

s

x
h(x)− 1

∆v log
max{v,x}

x

λ
dx

s.t. for all s ∈ S′ : h(s) ≤

∫ s

s
1
∆v log

max{v,x}
x dx+ ( 1

∆v log
max{v,s}

s )s

s

h(s) ∈ [
1

∆v
log

max{v, s}
s

,
1

∆v
log
( v

max{v, s
1+λ}

)
]

h(s) =
1

∆v
log

max{v, s}
s

for some S′ ⊆ S such that µ(S′) = µ(S), where µ(·) is the Lebesgue measure. This is solved by setting s = v,

s = v(1+λ) and h(s) = min{
∫ s
v
log

max{v,x}
x dx+v log v

v

s∆v , 1
∆v log

(
v

max{v, s
1+λ}

)
}. Calculating the integral shows

that if v ≥ s
1+λ , then

∫ s
v
log

max{v,x}
x dx+v log v

v

s∆v ≤ 1
∆v log

(
v
v

)
. We can thus simplify this expression further

h(s) = min{

∫ s

v
log max{v,x}

x dx+ v log v
v

s∆v
,

1

∆v
log
(v(1 + λ)

s

)
}

Showing the upper bound is achievable

I will now show that there exists a sequence of tests satisfying the constraints and such that the profits converge

to the upper bound.
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Lemma 11. There exists a test Fϵ that satisfy the obedience constraints for ϵ > 0 small enough and such that

the profits converge to the upper bound as ϵ→ 0.

Proof. Construct the test Let Λ = {p : V → [v, v(1 + λ)] : p(v) ≥ v, p(v) = v, K-Lipschitz continuous and

non-decreasing} for some K > 1. Endow that space with the L1-norm. Construct the mapping Φ : Λ → Λ as

follows. Take p ∈ Λ and define p(v) as

1

(λ+ ϵ
p(v)−v

v )v
=

p(v)−v
λv

p(v)− p(v)
⇔ p(v) = v

λv + ϵ(p(v)− v)

λv + ϵ(p(v)− v)

Note that if ϵ is small enough then p(v) is strictly increasing and it is continuous for any ϵ. Let v̂(s) =

min{p−1(s), v} and ṽ(s) = v̂(s) exp −v̂(s)+v
s . One can check that ṽ is continuous with ṽ(v) = v and has

its derivative uniformly bounded away from zero for any p. We can now define Φ : p(v) → min{v(1 +

λ), ṽ−1(v)} ∈ Λ.

We know want to apply Schauder fixed point theorem: Every continuous self-map on a nonempty compact and

convex subset of a normed linear space has a fixed point. (Ok, 2007, p. 469)

The function Φ is a composition of mappings that are continuous in the L1-norm and is thus continuous. The set

Λ is compact by applying Helly’s selection theorem. Because Λ is of bounded variation, bounded and closed,

by Helly’s selection theorem any sequence in Λ admits a convergent subsequence that converges in Λ because

it is closed. It is also convex. Finally, L1([0, 1]) is a normed linear space.

Let p∗(v) be a fixed point of Φ. Abusing notation, let ϵ(s) = ϵ s−v
v . The test is

Fϵ(s|v) =


0 if s < p(v)
s−p(v)

(λ+ϵ(s))v if s ∈ [p(v), p∗(v)]

s−v∗(s)
λv∗(s) if s > p∗(v)

Note that p(v) ∈ [ v(1+ϵ)
1+ϵv/v , v] because p(v) ∈ [v, v(1 + λ)] and thus v̂(s) ∈ [min{s, v},min{ sv

v(1+ϵ)−sϵ , v}].

Finally, v∗ is simply the inverse of p∗.

Show it respects the obedience constraints Let π(s, s′) =
∫ v(s)

v∗(s′)
s′fϵ(s|v)dv. To satisfy the obedience con-

straints, we must have

s ∈ argmax
s′

π(s, s′)

Let’s examine upward and downward deviations separately. First, upward deviation. We can write the prof-

its from offering price s′ at signal s as π(s, s′) = 1
∆v

∫ v̂(s)

v∗(s′)
s′fϵ(s|v)dv. The derivative with respect s′ is
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proportional to

log
v̂(s)

v∗(s′)
− s′

(v∗(s′)′

v∗(s′)

Setting the derivative equal to 0 when s′ = s, we get log v̂(s)
v∗(s) − s (v

∗(s)′

v∗(s) = 0. This is always satisfied when

v∗(s) = v̂(s) exp −v̂(s)+v
s . When, v∗(s) = s

1+λ , we need

log
v̂(s)(1 + λ)

s
− s

1/(1 + λ)

s/(1 + λ)
≤ 0

Note that v∗(s) = s
1+λ when s

1+λ ≥ v̂(s) exp −v̂(s)+v
s . Using that v̂(s) ≤ sv

v(1+ϵ)−sϵ , we get

log
v̂(s)(1 + λ)

s
≤ v̂(s)− v

s
≤

sv
v(1+ϵ)−sϵ − v

s
≤ 1, for ϵ > 0.

Then observe that for s′ > s,

log
v̂(s)

v∗(s′)
− s′

(v∗(s′)′

v∗(s′)
≤ log

v̂(s′)

v∗(s′)
− s′

(v∗(s′)′

v∗(s′)
≤ 0

because v̂(·) is increasing. Therefore, there is no profitable upward deviation.

Now, for downward deviations, assuming v∗(s) > s/(1 + λ), the payoffs are proportional to

∫ v̂(s)

v∗(s)

s′

(λ+ ϵ(s))v
dv +

∫ v∗(s)

v∗(s′)

s′
(s− v∗(s)

λv∗(s)

)′
dv

Note that
(

s−v∗(s)
λv∗(s)

)′
= v∗(s)−(v∗(s))′s

λv∗(s)2 . Note also that λ+ϵ(s)
λ · v∗(s)−(v∗(s))′s

v∗(s) ≤ 1 for ϵ small enough for all s

as

λ+ ϵ(s)

λ
· v

∗(s)− (v∗(s))′s

v∗(s)
=
λ+ ϵ(s)

λ
· (1− (v∗(s))′s

v∗(s)
)

=
λ+ ϵ(s)

λ
· (1− log v̂(s)/v∗(s))

=
λ+ ϵ(s)

λ
· (1− v̂(s)− v

s
)

≤
λ+ ϵ s−v

v

λ
· (1− min{s, v} − v

s
) ≤ 1

where I have use that v̂(s) ≥ min{s, v}. The last inequality is satisfied for all s for ϵ small enough. Taking the
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derivative and evaluating it at s′ = s, we have

1

λ+ ϵ(s)
log

v̂(s)

v∗(s)
− (v∗(s))′s

v∗(s)− (v∗(s))′s

λv∗(s)2
≥ 0

⇔ log
v̂(s)

v∗(s)
− λ+ ϵ(s)

λ
· v

∗(s)− (v∗(s))′s

v∗(s)
· (v

∗(s))′s

v∗(s)
≥ log

v̂(s)

v∗(s)
− (v∗(s))′s

v∗(s)
= 0

using that λ+ϵ(s)
λ · v∗(s)−(v∗(s))′s

v∗(s) ≤ 1 for ϵ small enough for all s.

We are then left to check that the profit function is concave when s′ < s. Take the derivative with respect to s′

twice, we need to show that

−f(s|v) (v∗(s′))′ − f(s|v) (v∗(s′))′ − f(s|v)(v∗(s′))′′ s′ ≤ 0

⇔ −2(v∗(s′))′ − (v∗(s′))′′ s′ ≤ 0

To see this is verified, note that h(s)s =
∫ s

v
log v

v̂(t)dt + h(v)v. Taking the derivative twice on both sides, we

get, 2h′(s) + sh′′(s) = − v̂′(s)
v̂(s) ≤ 0. Given that h(s) ∝

∫ v

v∗(s)
1
vdv, this means that

−2
(v∗(s))′

v∗(s)
+ s

−(v∗(s))′′v∗(s) + (v∗(s))′2

v∗(s)2
≤ 0

Rearranging, we get

−2(v∗(s′))′ − (v∗(s′))′′ s′ ≤ −s(v
∗(s))′2

v∗(s)
≤ 0

If v∗(s) = s/(1 + λ), there are no profitable downward deviation as f(s|v) = 0 for all v ≤ v∗(s).

As ϵ → 0, profits converge to the upper bound derived in the previous section. In the limit, we also have

v̂(s) = min{s, v}.

Simple calculation shows that if h(s) = min{
∫ s
v
log

max{v,x}
x dx+v log v

v

s∆v , 1
∆v log

v(1+λ)
s }, the upper bound is the

profits stated in Proposition 7:

∫ v(1+λ)

v

s
h(s)− 1

∆v log
max{v,s}

s

λ
ds =

∫ v(1+λ)

v

min
{
v̂(s)− v, s log (1+λ)v̂(s)

s

}
λ∆v

ds.

Showing that the profits are strictly greater than full information:
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The profits for the limit of fully revealing tests is

∫ v

v

v

∆v
dv =

∫ v

v

∫ v(1+λ)

v

1

λ∆v
dv

=

∫ v(1+λ)

v

∫ v̂(s)

max{v, s
1+λ}

1

λ∆v
dv ds

=

∫ v(1+λ)

v

v̂(s)−max{v, s
1+λ}

λ∆v
ds.

Clearly, v̂(s)−max{v, s
1+λ} ≤ v̂(s)− v and observe that for s < v(1 + λ),

s log
(1 + λ)v̂(s)

s
=

∫ v̂(s)

s
1+λ

s

v
dv

>

∫ v̂(s)

s
1+λ

dv ≥ v̂(s)−max{v, s

1 + λ
},

where the first inequality follows from s
v > 1 when v ∈ [ s

1+λ , v̂(s)). Note that there must be a strictly positive

measure of signals such that min
{
v̂(s) − v, s log (1+λ)v̂(s)

s

}
= s log (1+λ)v̂(s)

s as v̂(v(1 + λ)) − v > 0 and

v(1 + λ) log (1+λ)v̂(v(1+λ))
v(1+λ) = 0 and all functions are continuous.

Therefore, ∫ v(1+λ)

v

min
{
v̂(s)− v, s log (1+λ)v̂(s)

s

}
λ∆v

ds >

∫ v

v

v

∆v
dv.
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Chapter 3

The (No) Value of Commitment

3.1 Introduction

Commitment plays an important role in many economic models. The general insight of economic theory is that

the value of commitment is positive: if a principal has commitment, he can replicate any action he would play

without commitment. Moreover, commitment plays a key role in many standard tools used in economic theory

such as the revelation principle (Myerson, 1982; Bester and Strausz, 2000; Doval and Skreta, 2022). However,

commitment is usually a strong assumption and is sometimes hard to justify. Even when it is possible to justify

the commitment assumption, it might be an undesirable feature of the model. For example, even if a regulator

could commit to a rule, there might be reasons outside the model that require the government to maintain agency

over this rule at any point in time.

In this paper, I provide a condition under which commitment has no value for a principal that faces a maximisa-

tion problem under constraints. That is I provide a condition under which, even when the principal can commit,

he is better off best-replying to the information revealed in the economic problem. The usefulness of this result

is twofold. First, as argued above, commitment can be an undesirable feature of economic models. Knowing

that the condition provided is satisfied facilitates solving the model. Indeed, models assuming commitment are

usually easier to solve as the number of constraints in the problem is smaller. When assuming commitment, the

modeller does not need to make sure that the principal best-replies at the optimum. But if the condition holds,

we are guaranteed that the omitted best-replies constraints of the principal will hold. Second, in the case com-

mitment is actually assumed, it restricts the set of strategies the modeller has to look at. Even though assuming

commitment can simplify the problem, the set of solutions the modeller needs to consider remain quite large.

Knowing that the value of commitment is zero restricts the set of potential solutions.
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Consider the following maximisation problem. Let α describe the strategy of the principal and σ the strategy of

other agents in the economic problem.

V = max
α,σ

v(α, σ)

s.t. Constraint(α, σ)

α is a best-response to σ

where v denotes the payoffs of the principal. The problem above can represent many economic models. For ex-

ample, the constraints can be incentive compatibility constraints of some agents in a mechanism design problem.

Without commitment, there is an additional constraint guaranteeing that the principal’s strategy is a best-reply

to the information revealed in the economic interaction. With commitment, the principal can commit to in-

formation in an arbitrary way. My approach is to fix the principal’s strategy and treat it as a parameter in the

maximisation problem.

V (α) =max
σ

v(α, σ)

s.t. Constraint(α, σ)

The problem V (α) is the principal’s problem when he commits to the strategy α. One can solve the problem

above by finding a saddle-point of a Lagrangian:

L(σ, λ;α) = v(α, σ) + λ · Constraint(α, σ),

where λ is the Lagrangian multiplier associated with the constraints. For a solution (σ∗, λ∗), we can apply an

envelope theorem (Milgrom and Segal, 2002) on the Lagrangian to get that, omitting technical details,

dV (α)

dα
=
∂L(σ∗, λ∗;α)

∂α
=
∂v(α, σ∗)

∂α
+ λ∗ · ∂ Constraint(α, σ∗)

∂α

Now note that if the last term λ∗ · ∂ Constraint(α,σ∗)
∂α = 0, then the total derivative of the value function is equal to

its partial derivative:
dV (α)

dα
=
∂v(α, σ∗)

∂α
.

This is exactly the condition needed to show that commitment does not have any value. Indeed, when the first-

order condition is satisfied in the commitment problem, i.e., when taking into account the change it is going to

induce in the constraint, it is also satisfied when the principal does not have commitment, i.e., does not take into

account the change it induces in the constraints.
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Note that if the constraints are slack at the optimum, this condition holds. But it can also hold when they are

not. The key condition is not whether the constraints matter, i.e., they are slack, but whether the marginal

contribution of the constraints to the Lagrangian is null. It is worth noting that to check whether the condition

is satisfied, it is not needed to check explicitly whether the principal best-replies to the information revealed in

the economic problem.

I apply this result to a mechanism design setting where the principal cannot commit to a mapping from report

to an allocation. In Proposition 10, I show that if the allocation is a real number, the agent’s payoff is strictly

monotonic and the principal’s utility is Lipschitz continuous, then he does not benefit from being able to contract

over these actions. This result generalises the results of Glazer and Rubinstein (2006), Sher (2011) and Hart

et al. (2017) that show under different assumptions on preferences and evidence available that commitment

has no value. I discuss in Section 3.4 how this result relates to other results on the value of commitment in

mechanism design.

3.2 General setup

A principal must solve the economic problem described as follows. For n = 1, ..., N , let Yn be a finite set and

A = ×n ∆(Yn) with typical element α. Let Σ a subset of a convex compact subset of Rp with typical element

σ. Let v : A× Σ → R, g : A× Σ → Rk and BR(σ) = {α : v(α, σ) ≥ v(α′, σ), ∀α′}. The assumption that

A is the product set of simplexes allows for product set of intervals with the right normalisation by taking Ym

to be binary.

Consider the following maximisation problem:

V =max
α,σ

v(α, σ) (V)

s.t. g(α, σ) ≥ 0

α ∈ BR(σ)

The function v denotes the principal’s payoff, the function g describes a set of constraint he is facing andBR(σ)

describes the set of element of A that are a best reply to σ.
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If the principal could commit to α, he would solve the following problem:

V =max
α,σ

v(α, σ) (V)

s.t. g(α, σ) ≥ 0

I say that there is no value of commitment if V = V . The aim of this paper is to find condition under which it

is the case.

To do so, I first introduce the following maximisation problem where the principal commits over some α:

V (α) =max
σ

v(α, σ) (V(α))

s.t. g(α, σ) ≥ 0

and the associated Lagrangian,

L(σ, λ;α) = v(α, σ) + λ · g(α, σ)

We can now state our main theorem. Say that the first-order conditions are sufficient for v if for each σ ∈ Σ,

α∗ ∈ argmaxα v(α, σ) implies that for all n, y ∈ suppα∗(·|n) only if ∂v(α∗,σ)
∂α(y|n) ≥ ∂v(α∗,σ)

∂α(y′|n) for all y′.

Theorem 4. Suppose that each element of ∇αv(α, σ) and ∇αg(α, σ) is continuous in (α, σ), that first-order

conditions are sufficient for v and that the solution of V(α) can be obtained by finding a saddle-point of L(·, ·;α)

for all α.

If there is α∗ ∈ argmaxα V (α) and saddle-point of L(·, ·;α∗), (σ, λ), such that

λ · ∇α g(α
∗, σ) = 0 (3.1)

and any saddle-point in a neighbourhood of α∗ is bounded and V (α) is differentiable at α∗, then V = V

All proofs are relegated to Section 3.6.

This result tells us that commitment has no value if the marginal contribution of the constraints is zero. Note

that if all the constraints were slack at the optimum, then λ = 0 and the condition is satisfied. This is what

we would expect: if the principal is not effectively facing any constraint, he is better off best-replying to the

information revealed. Theorem 4 tells us that what really matters is not that constraints do not matter but that

their marginal contribution is null.

The condition that first-order conditions are sufficient is satisfied whenever v(α, σ) is linear in α. This would
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be the case if v(α, σ) is the expected utility over some finite action set ×nYn.

What does no commitment mean? To clarify what the notion of best-reply means exactly, let’s use the

setup of mechanism design without commitment of Bester and Strausz (2001). An agent with private type sends

a message with a principal with a strategy represented by σ. In the case of commitment, the principal commits

to a mapping from message to allocation, represented by α. In the case of no commitment, the strategy α must

best-reply to σ. In this case, the functions g(·, ·) represent the agent’s IC constraints.

Note that from the definition of BR(σ), the equilibrium concept associated is Bayes Nash Equilibrium. But in

this case, any Bayes Nash Equilibrium is also a Perfect Bayesian Equilibrium if any allocation is optimal under

some beliefs. This reasoning would hold for all the applications considered below.

3.3 Application – Disclosure Mechanism

I now put more structure by considering a mechanism design setup where the principal directly observes the

message sent by the agent as in Bester and Strausz (2001) or in disclosure mechanisms Glazer and Rubinstein

(2004); Hart et al. (2017); Ben-Porath et al. (2019). There a principal and an agent. The agent has a private type

θ ∈ Θ and access to set of messages M(θ). Let M = ∪θM(θ). If M(θ) = M for all θ, we are in a cheap-talk

setup. Otherwise, M(θ) represents a set of evidence the agent can submit. The outcome is denoted by y ∈ Y .

The payoffs of the principal are v(y, θ) and the agents payoff’s are u(y, θ). The sets Θ and M are finite and the

set Y is a compact convex subset of R. All utility functions are assumed to be differentiable.

A mechanism maps a message to an outcome y, α :M → Y . A mixed strategy for the agent is a mapping from

type to messages: σ : Θ → ∆M with the condition suppσ(·|θ) ⊆M(θ).

The optimal mechanism with commitment solves

max
α

max
σ

∑
θ

∑
m

µ(θ)σ(m|θ)v(α(m), θ)

s.t. for all θ and m′ ∈M(θ),
∑

m∈M(θ)

σ(m|θ)u(α(m), θ) ≥ u(α(m′), θ)

∑
m∈M(θ)

σ(m|θ) = 1

This problem selects for each mechanism the best agent strategy subject to this strategy best replies to the

mechanism and then maximises over mechanisms.
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The optimal mechanism is implementable without commitment if there is an optimal mechanism α with agent

strategy σ such that α ∈ BR(σ).

I say that first-order conditions are sufficient for any expected v if for all µ ∈ ∆Θ, first-order conditions are

sufficient for
∑

θ µ(θ)v(y, θ).

Proposition 10. If first-order conditions are sufficient for any expected v, u(·, θ) is strictly monotonic for each

θ and

f(θ, y, y′) =
v(y, θ)− v(y′, θ)

u(y, θ)− u(y′, θ)
is bounded (3.2)

then the optimal mechanism is implementable without commitment.

Given the assumption that u(·, θ), the condition (3.2) holds whenever v(·, θ) is differentiable and Lipschitz

continuous.

First-order conditions are sufficient for any expected v if v is concave and differentiable in y. Hart et al. (2017)

give examples of function that satisfy this condition.

Proposition 10 generalises the results from Hart et al. (2017) that focus on agent’s payoffs u(y, θ) = y and an

evidence structure that satisfies a form of transitivity. I show that their result on the no-value of commitment

extends to arbitrary evidence structure as well as both increasing and decreasing agent’s payoffs.

3.4 Relation to other results in the literature

Many papers in the literature in mechanism design with evidence show that the principal does not benefit from

a form of commitment. Ben-Porath et al. (2021) show that when preferences are semi-aligned, i.e. v(y, θ) =

ν(θ)u(y, θ) for some function ν, the principal does not benefit from commitment. In the case y is a mixed

strategy over a binary action, they show that any principal’s preferences can take this form, generalising the

result of Glazer and Rubinstein (2006). Thus, in the case of binary actions, Proposition 10 extends this result

by allowing non-expected utility for the principal as v(y, θ) is not required to be linear in y. Ben-Porath et al.

(2019) look at more general preferences where Y = ∆n and preferences are v(y, θ) = Ey[ψ(·)] + ν(θ)u(y, θ)

but focus on evidence structure satisfying the normality condition (Bull and Watson, 2007).

Vohra et al. (2021) show that when the optimal mechanism is partitional, i.e., the mechanism partitions the

allocation space and each type strictly prefers his allocation over the other elements of the partition, and

v(y, θ) = f(u(y, θ), θ), then the principal does not benefit from commitment. Unfortunately, in many in-

stances the optimal mechanism is not partitional. In particular, it is not when some types have to mix over
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which message they send as is typical in mechanism design without commitment.

3.5 Conclusion

I have presented a method leveraging the envelope theorem for saddle-point problems to show that commit-

ment has no value in some economic problems. The advantage of this method is that it does not necessitate

checking that the principal actually best-replies to the information revealed. Moreover it has a natural economic

interpretation in terms of the marginal contribution of the constraints.

I have shown it can be useful in the context of strictly monotonic agent utility. One big limitation of this

approach is that it requires that the value function to be differentiable at the optimal α. I conjecture that this

condition can be dispensed with. If this conjecture is correct, then many results on the value of commitment

can be proved in a unified way using this method, like results from Vohra et al. (2021), Ben-Porath et al. (2021)

and Ben-Porath et al. (2019).
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3.6 Omitted proofs of Chapter 3

3.6.1 Proof of Theorem 4

First note that V ≥ V . It is also true that maxα V (α) = V ≥ V . The goal of the proof is to show that

maxα V (α) = V . To do so, I will show that if the condition of the theorem is satisfied for (σ∗, α∗) maximising

maxα V (α), then α∗ ∈ BR(σ∗).

Let L(σ, λ;α) be the Lagrangian associated with V(α).

From the assumptions of Theorem 4,

V (α) = max
σ

min
λ

L(σ, λ;α)

Let Σ∗(α) = argmaxminλ′ L(σ′, λ′;α) and Λ∗(α) = argminmaxσ′ L(σ′, λ′;α). By Milgrom and Segal

(2002, Corollary 5), if Σ∗(α) and Λ∗(α) are bounded in a neighbourhood of α∗, for any σ ∈ Σ∗(α) and

λ ∈ Λ∗(α), for each element of α, αi

dV (α)

dαi
=

∂L
∂αi

a.e.

Because we assume that V (α) is differentiable, this equality holds at α∗.

Furthermore, Milgrom and Segal (2002) show that both the left- and right-derivative exist for any interior α

with:

d+V (α)

dαi
= max

σ∈Σ∗(α)
min

λ∈Λ∗(α)

∂L
∂αi

d−V (α)

dαi
= min

σ∈Σ∗(α)
max

λ∈Λ∗(α)

∂L
∂αi

Observe that from condition (3.1), at α∗, we have ∂L
∂αi

= ∂v(α,σ)
∂αi

.

For any interior αi, we have dV (α)
dαi

= ∂v(α,σ)
∂αi

= 0 and if αi = 0, 1, we must have d+V (α)
dαi

≤ 0 or d−V (α)
dαi

≥ 0.

Because first-order conditions are sufficient for v, then α∗ ∈ BR(σ).
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3.6.2 Proof of Proposition 10

The problem

max
σ

∑
θ

∑
m

µ(θ)σ(m|θ)v(α(m), θ)

s.t. for all θ and m′ ∈M(θ),
∑

m∈M(θ)

σ(m|θ)u(α(m), θ) ≥ u(α(m′), θ)

∑
m∈M(θ)

σ(m|θ) = 1

is linear in σ and thus solvable by finding a saddle-point of the associated Lagrangian.

Fix a strategy α and a saddle-point (σ, λ). Takem ∈ suppσ(·|α). For any saddle-point, (σ′, λ), if λ(θ,m′) > 0,

then by complementary slackness, u(α(m′), θ) = u(α(m), θ). Because u(·, θ) is injective, this means that

α(m) = α(m′).

I will now show that for any α, it is possible to find a saddle-point satisfying condition (3.1). Because α is

fixed throughout and to simplify the exposition, I will write v(m, θ) and u(m, θ) instead of v(α(m), θ) and

u(α(m), θ). The dual problem is

min
λ,z

∑
θ

∑
m′∈M(θ)

−λ(θ,m′)u(m′, θ) +
∑
θ

z(θ)

s.t. for all θ, m ∈M(θ), z(θ)−
∑
m′

λ(θ,m′)u(m, θ) ≥ µ(θ)v(m, θ)

λ(θ,m′) ≥ 0, z(θ) ∈ R

Where λ and z are the dual variables associated with the IC constraints and feasibility constraints. Take a

solution (σ, λ, z) of the primal and dual problem. First, note that if λ(θ,m′) > 0, by complementary slackness,

we must have ∑
m

σ(m|θ)u(m, θ) = u(m′|θ)

and therefore u(m, θ) = u(m′, θ) for any m ∈ suppσ(·|θ). By condition (3.2). Because u(·, θ) is injective,

this means that α(m) = α(m′).

Next, I will give a new solution to the primal and dual problem and show that (1) it is indeed a solution and (2)

it satisfies condition (3.1).

Let (σ̃, λ, z) with σ̃(m|θ) = λ(θ,m)∑
m′ λ(θ,m′) if

∑
m′ λ(θ,m′) > 0 and σ̃(m|θ) = σ(m|θ) otherwise.
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(1) (σ̃, λ, z) is a solution.

First, let’s verify it satisfies all the constraints of the primal and dual problem.

IC constraints: We have established that for any m′ : λ(θ,m′) > 0, u(m, θ) = u(m′, θ) for any m ∈

suppσ(·|θ). Therefore if σ satisfies the IC constraints, so must σ̃. The new strategy σ̃(·|θ) is also a well-

defined probability for each θ.

Dual constraints: for any pair θ,m,

z(θ)−
∑
m′

λ(θ,m′)u(m, θ) ≥ µ(θ)v(m, θ)

only depends λ and is thus still satisfied.

Let’s verify that complementary slackness holds. The payoffs from σ̃(·|θ) and σ(·|θ) are the same for each θ.

Therefore we still have that λ(θ,m′) > 0 implies
∑

m σ̃(m|θ)u(m, θ) = u(m′|θ).

We are left to check that σ̃(m|θ) > 0 implies

z(θ)−
∑
m′

λ(θ,m′)u(m, θ) = µ(θ)v(m, θ) (3.3)

Now remember that the equality (3.3) would hold for anym′ ∈ suppσ(·|θ). We have also shown that u(m, θ) =

u(m′, θ) for any m ∈ supp σ̃(·|θ) and by (3.2), we also have v(m, θ) = v(m′, θ). Therefore, equation (3.3)

also holds.

We thus have that (σ̃, λ, z) are also a solution to the primal and dual problems.

(2) Show that (σ̃, λ, z) satisfies condition (3.1)

Let u′(·, θ) denote the partial derivative of u with respect to y. The derivative of the constraint part of the

Lagrangian with respect to α(m̃) is

∂

∂α(m̃)

∑
θ

∑
m′∈M(θ)

λ(θ,m′)
[∑

m

σ̃(m|θ)u(α(m), θ)− u(α(m′), θ)]

=
∑
θ

u′(α(m̃), θ)σ̃(m̃|θ)
∑
m

λ(θ,m)− u′(α(m̃), θ)λ(θ, m̃) = 0

Show that the dual variables are bounded

For each α, we can find a saddle-point (σ, λ, z). Now note that σ must maximise the Lagrangian. If m ∈
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suppσ(·|θ),
∂L(σ, λ, z)
∂σ(m|θ)

− ∂L(σ, λ, z)
∂σ(m′|θ)

≥ 0, for all m′

Assuming u(α(m), θ)− u(α(m′), θ) ̸= 0, this conditions boils down

∑
m̃

λ(θ, m̃) ≥ µ(θ)
v(α(m′), θ)− v(α(m), θ)

u(α(m), θ)− u(α(m′), θ)

where I have used that u(α(m), θ)− u(α(m′), θ) ≥ 0 because m ∈ suppσ(·|θ).

Because λ ∈ argminmaxL(σ, λ, z), this constraint must be binding if the RHS is positive for some m′,

otherwise the minimiser can decrease the Lagrangian, without changing the maximiser’s best-reply. Therefore

a sufficient condition for
∑

m̃ λ(θ, m̃) to be bounded is that v(y,θ)−v(y′,θ)
u(y,θ)−u(y′,θ) is bounded for any θ, y, y′.

Any binding dual constraint pins down z(θ) through
∑

m̃ λ(θ, m̃), therefore z(θ) is bounded if and only if∑
m̃ λ(θ, m̃) is.

Show that the value function is differentiable at the optimum

Take a sequence of strategies (αn) converging to α and for each n, an optimal mechanism satisfying condition

(3.1), (σn, λn, zn). Assume that αn(m) − α(m) > 0. This is a bounded sequence in Rn and so a converging

subsequence exists. Let’s focus on this one, with limit (σ+, λ+, z+). Because the value function is continuous

(Milgrom and Segal, 2002, Corollary 5) and the set of constraints satisfy the closed graph property, (σ+, λ+, z)

is a saddle-point of the Lagrangian at α. By Theorem 5 of (Milgrom and Segal, 2002) V (α) is directionally

differentiable and by definition of a saddle-point,

L(σ+, λn, zn, αn)− L(σ+, λn, zn, α)

αn(m)− α(m)
≤ V (αn)− V (α)

αn(m)− α(m)
≤ L(σn, λ+, z+, αn)− L(σn, λ+, z+, α)

αn(m)− α(m)

Take the first inequality and add (L(σ+, λ+, z+, αn)−L(σ+, λ+, z+, αn)+L(σ+, λ+, z+, α)−L(σ+, λ+, z+, α))

on the LHS. Define the vector IC(σ, α) = (
∑

m′ σ(m′|θ)u(α(m′), θ)−u(α(m), θ))θ,m. Rearranging, we have

L(σ+, λ+, z+, αn)− L(σ+, λ+, z+, α)

αn(m)− α(m)
+

(λn − λ+) · (IC(σ+, αn)− IC(σ+, α))

αn(m)− α(m)
≤ V (αn)− V (α)

αn(m)− α(m)

Taking n → ∞, we get ∂+L(σ+,λ+,z+,α)
∂α(m) ≤ d+V (α)

dα(m) . A similar reasoning yields d+V (α)
dα(m) ≤ ∂+L(σ+,λ+,z+,α)

∂α(m)

and thus d+V (α)
dα(m) = ∂+L(σ+,λ+,z+,α)

∂α(m) .

A similar reasoning establishes that d−V (α)
dα(m) = ∂−L(σ−,λ−,z−,α)

∂α(m) where (σ−, λ−, z−) is a saddle-point at α and

the limit to a sequence of strategies αn → α with αn < α satisfying condition (3.1).

Now note that the set of saddle-points is rectangular and thus (σ+, λ−, z−) and (σ−, λ+, z+) are also saddle-
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points. This means that if m ∈ suppσ+(·|θ), m′ ∈ suppσ−(·|θ) and m ̸= m′, we must have u(α(m), θ) =

u(α(m′), θ) and by injectivity of u(·, θ), α(m) = α(m′).

Note that for any m, d+V (α)
dα(m) ≤ 0 ≤ d−V (α)

dα(m) , with a strict inequality if it is not differentiable. But if∑
θ µ(θ)σ

+(m|θ)v′(α(m), θ) < 0 for some m taken with positive probability, then v′(α(m), θ) < 0 for all m′

such that λ−(θ,m′) > 0. Therefore, we get
∑

θ µ(θ)σ
−(m′|θ)v′(α(m′), θ) < 0 contradicting the optimality

of α.
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