
ar
X

iv
:2

00
1.

06
35

8v
3 

 [
cs

.D
B

] 
 1

6 
Fe

b 
20

22

Generative Datalog with Continuous

Distributions

Martin Grohe1, Benjamin Lucien Kaminski2, Joost-Pieter Katoen1, and

Peter Lindner1

1{grohe,katoen,lindner}@informatik.rwth-aachen.de
2
kaminski@cs.uni-saarland.de

1RWTH Aachen University, Aachen, Germany
2Saarland University, Saarland Informatics Campus, Saarbrücken, Germany, and

University College London, London, United Kingdom

February 17, 2022

Abstract

Arguing for the need to combine declarative and probabilistic programming, Bárány
et al. (TODS 2017) recently introduced a probabilistic extension of Datalog as a “purely
declarative probabilistic programming language.” We revisit this language and propose a
more principled approach towards defining its semantics based on stochastic kernels and
Markov processes— standard notions from probability theory. This allows us to extend
the semantics to continuous probability distributions, thereby settling an open problem
posed by Bárány et al.
We show that our semantics is fairly robust, allowing both parallel execution and arbi-

trary chase orders when evaluating a program. We cast our semantics in the framework
of infinite probabilistic databases (Grohe and Lindner, ICDT 2020), and show that the se-
mantics remains meaningful even when the input of a probabilistic Datalog program is an
arbitrary probabilistic database.

1. Introduction

Augmenting programming languages with stochastic behavior such as probabilistic choices or

random sampling has a long tradition in computer science [59, 47]. In recent years, a lot of effort

went into the development of dedicated probabilistic programming languages (such as, for

example, Anglican [64], Church [31], Figaro [57], Pyro [6], R2 [55], and Stan [13]) that allow the

specification and “execution”, via probabilistic inference, of sophisticated probabilistic models.
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Such languages are nowadays important tools in a large variety of applications in different

fields like artificial intelligence, computer vision, and cryptography to name a few [30, 32, 65].

From a database perspective, it is desirable to have a declarative probabilistic programming

language that operates on a standard relational data model. Such a language, Probabilistic

Programming Datalog (PPDL1) has recently been introduced by Bárány, ten Cate, Kimelfeld,

Olteanu, and Vagena [5]. This language is relational and declarativewhile still employing main

features of probabilistic programming languages such as random sampling and conditioning

on observations. A PPDL program has a generative and a constraint part. The generative part

is a Datalog program augmented by special tuple-generating rules that involve random sam-

pling. The constraint part conditions the resulting probability space on, say, typical database

constraints.

In this work, we focus on the generative part of such a program, which is referred to as

Generative Datalog. In a nutshell, a Generative Datalog program is a standard Datalog program

with the addition that it may contain rules of the shape

'(®G) ← (1 (®G1), . . . , (< (®G=)

where, as usual, ', (1, . . . , (< are relation symbols and the (8 (®G8) are atoms. The difference is

that we allow the tuple ®G to contain not only variables and constants, but also references to

parameterized distributions as in

'(G, ~,Gaussian〈G,~〉) ← (1 (G), (2 (~).

The standard point of view for generative programs is that they are run in an iterative fashion

where in each step an random fact is added to the current database instance, until no rule is

applicable anymore (which is made precise later). Intuitively, the head '(G, ~,Gaussian〈G,~〉)
of the above rule can be understood as a sampling instruction: If the body (1 (G), (2 (~) of the
rule is satisfied for valuations of 0 = ` and 1 = f2 of G and ~, then we add a fact '(0,1, - )
where - ∼ Gaussian〈0,1〉.

The language of Bárány et al. comes with the restriction that it only allows sampling from

discrete probability distributions. Continuous probability distributions are explicitlymentioned

as a relevant extension to the language in [5], starting with the definition of its semantics. Yet,

acknowledging that this requires even a new, and possibly more challenging definition of the

probability spaces in question, their introduction was left open in [5]. We provide such an

extension in this work. The main technical questions concern 1. a rigorous definition of its

semantics and the well-definedness of outputs, 2. the effect of the order of rule execution on

the outcome, and 3. algorithmic properties. In this paper, we lay the foundations of the extended

language by focusing on (1) and (2).

Probabilistic databases (PDBs) are a formal model for describing uncertainty in data [2, 63,

66]. Traditionally, they were limited to probability spaces that consist of a finite number of

possible alternative database instances (called possible worlds). Continuous probability distri-

butions, however, arise naturally in many application scenarios that involve uncertain data

like noisy sensor measurements [16, 15]. Moreover, for example, a lot of real world statistical

1Not to be confused with Kozen’s Probabilistic Propositional Dynamic Logic [48].
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phenomena, especially those that concern aspects of human behavior, follow normal or log-

normal distributions [51]. In computational security, continuous distributions like the Laplace-

distribution are common [23].

Unfortunately, generalizing from discrete to continuous distributions usually comes with

substantial mathematical overhead. While several systems [3, 41, 60] handle continuous prob-

ability distributions, only recently [36, 37], Grohe and Lindner proposed a general framework

for rigorously dealing with probabilistic databases over continuous domains. Moreover, they

establish basic properties such as the measurability of relational calculus and Datalog queries,

which in turn allows for formally specifying the semantics of queries over continuous proba-

bilistic databases. This framework and some of the basic results, specifically the measurability

of relational calculus queries, is also the foundation for this work. We emphasize that even for

infinite probabilistic databases as in [36, 37], the definition of database instances remains un-

changed: every database instance is still a finite set (or, depending on the context, bag) of facts.

Instead, the probability space may be infinite, meaning that there may be infinitely many possible

worlds. We note that even though some computations of GenerativeDatalog programsmay run

forever, we are always only interested in the finite outcomes, and treat infinite computations

as errors where no output is produced.

1.1. Contributions

Our main contribution is the introduction of a formal semantics for the probabilistic Datalog

language of Bárány et al. [5] that allows sampling from continuous probability distributions.

We focus on the generative component of this language, called Generative Datalog (GDatalog).

We define how a GDatalog program, on input a single database instance produces an output

(sub-)probability distribution over database instances. With our approach (and further extend-

ing [5]), we also allow probabilistic inputs.

Bárány et al. [5] introduce the probabilistic semantics of GDatalog as follows.

• To every GDatalog program, they associate an existential Datalog program [10, 12] from

which they construct a chase tree. This can be seen as the introduction of a nondetermin-

istic semantics in order to model the possible worlds generated by a GDatalog program.

• This nondeterminism is resolved by weighting the paths of the chase tree according to

the distributions that symbolically appear in the GDatalog program.

In a nutshell, Bárány et al. construct a discrete time, discrete space Markov process. We adapt

this approach to the continuous setting, and construct a discrete time, but continuous space

Markov process that is rooted in the framework of standard PDBs [37]. In order to ensure that

the so-obtained probability space is well-defined, we show that the probabilistic transitions

described by a GDatalog program satisfy certain technical conditions (that is, that they are

stochastic kernels).

The main technical result is that the semantics is independent of the choice of the chase tree

and that it is equivalent to the semantics obtained from parallel execution of all applicable rules

at any execution step of a GDatalog program.
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In addition to the extensions sketched before, we propose slight changes to the semantics

introduced by Bárány et al. [5] in order to avoid the following two peculiarities exhibited by the

original semantics. Note that with our changes to the semantics however, we lose the feature

of FO-rewritability. This is addressed in detail in Section 6.2 (see Remark 6.4).

Example 1.1 (Semantic Continuity). Consider the two GDatalog programs shown in Figure 1,

and an input instance�in = {'(0)}. A GDatalog program has access to a setΨ of parameterized

distributions. In this case, Ψ = {Flip}, where Flip〈?〉 denotes the Bernoulli distribution with

parameter ?, i. e. the flip of a coin that is biased according to ?.

G0 : (
(
Flip

〈
1
2

〉)
← '(0)

(
(
Flip

〈
1
2

〉)
← '(0)

GY : (
(
Flip

〈
1
2

〉)
← '(0)

(
(
Flip

〈
1
2 + Y

〉)
← '(0)

Figure 1.: Two GDatalog programs G0 and GY (where 0 < Y < 1
2 ).

The fact '(0) in �in is just a dummy fact that makes all the rules applicable. Under the orig-

inal semantics2, the program G0, on input �in, generates the following probabilistic database:

Table 1.: The probabilistic database generated by G0.
possible world {'(0), ( (0)} {'(0), ( (1)}
probability 1

2
1
2

Yet, for any Y ∈
(
0, 12

)
, the program GY generates three possible worlds under the original

semantics:

Table 2.: The probabilistic database generated by GY .
possible world {'(0), ( (0)} {'(0), ( (1)} {'(0), ( (0), ( (1)}
probability 1

4 − Y
2

1
4 + Y

2
1
2

The probabilities intuitively arise because the rules “fire” independently. In [5], nondeter-

minism is introduced by allocating new relations to store the outcomes of the random sam-

plings associated with k -terms for k ∈ Ψ. These relations are called Result
k
= where k is the

involved distribution (and = is an additional technical parameter related to the arity of the new

relation). The relations Result
k
= however do not distinguish which rule of the original program

lead to their introduction. Therefore they are, for example, oblivious of multiple occurrences of

the same probabilistic rule. Thus, in the probabilistic semantics, both rules of G0 collapse and
we arrive at the probabilities shown in Table 1. Yet, for every Y > 0, this distinction happens

in the semantics of GY , yielding the probabilities from Table 2.

2In the examples of this section, we ignore any auxiliary relations that are introduced in the semantics. We will

later see that this can always be done without introducing any problems (see Remark 4.15 in Section 4).
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Contrary to this, we argue that it is more reasonable to have the probabilistic database pro-

duced by GY converging to the one produced by G0 as Y → 0. Under the semantics we pro-

pose later, both G0 and GY generate the three possible worlds {'(0), ( (0)}, {'(0), ( (1)}, and
{'(0), ( (0), ( (1)}. The probabilities of these worlds obtained from G are 1

4 ,
1
4 , and

1
2 , respec-

tively. This coincides (pointwise) with the limits of the probabilities obtained from GY as Y → 0

(see Table 2). ⊳

Example 1.2 (Independence from SymbolicNames). As another example, consider the following

program G ′0. The difference over G0 is that in the second rule, Flip has been replaced with Flip′

which is mathematically the same distribution, but with a different symbolic name.

G ′0 : (
(
Flip

〈
1
2

〉)
← '(0)

(
(
Flip′

〈
1
2

〉)
← '(0)

Figure 2.: A GDatalog program with two identical, yet differently named distributions.

Under the semantics of [5] (and with removing auxiliary relations), G ′0 generates three pos-
sible worlds, {'(0), ( (0)}, {'(0), ( (1)}, and {'(0), ( (0), ( (1)}, with probabilities 1

4 ,
1
4 , and

1
2 .

Recall that this differs from the result of G0. The reason is that in [5], the syntactic name of

the parameterized distribution is hard-coded into the relations Result
k
= . Under the semantics

we propose later, the results of G0 and G ′0 coincide (after removing auxiliary relations). ⊳

The properties of the original semantics sketched above are not a fundamental problem for

the definition of the semantics, and do not raise any questions about the correctness of [5].

Instead, we argue that these are two examples, where the original semantics feels unnatural.

Consequently, we adapt our semantics to resolve such effects.

1.2. Paper Outline

After concluding the introduction with a short survey of related work, we present the most

centralmathematical definitions and background results frommeasure theory and probabilistic

databases in Section 2. In Section 3, we introduce the syntax of GDatalog programs together

with the backbone of its semantics—the translation into an existential Datalog program. In

Section 4 we present our version of a probabilistic chase, generalizing the ideas of [5]. We

show that this notion defines a Markov process over database instances. Section 5 is devoted to

establishing similar results when a parallel chase procedure is used (which is novel over [5]). In

Section 6, we discuss various properties of the semantics. First, we show that no matter which

kind of chase procedure is used, the probabilistic database that is described by its semantics

turns out to be the same. We argue that (regarding finite outcomes) our semantics can simulate

the original semantics of [5] and discuss the termination behavior of GDatalog programs. We

briefly revisit the full Probabilistic Programming Datalog (PPDL) language in Section 7. We

conclude the work and indicate topics for future research in Section 8.

To ease the accessibility, the longer technical sections of the paper, Sections 3 to 5, openwith

a separate in-depth outline. For obtaining a better understanding before reading the full paper
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in detail, we advise the reader to check out these introductions, along with the discussions of

Section 6.2.

1.3. Related Work

Both the probabilistic programming and the probabilistic database community have developed

a variety of models and systems that allow to specify continuous probability distributions over

data. We brieflymention some of these models and compare them to the scope of this paper. As

the original introduction of PPDL already features a broad survey of related work [5, Section 7]

thatwe leave as is, we just comment on relatedwork regarding the added support of continuous

variables.

Basically all probabilistic programming languages support continuous distributions, for in-

stance Church [31], Anglican [64], and Figaro [57]. Such languages are contrasted by the

database-centric nature of PPDL. Conceptually closer to PPDL are languages studied in sta-

tistical relational artificial intelligence (StarAI) [20]. A prominent example of such a language

is ProbLog [19, 24], a probabilistic variant of Prolog. In ProbLog, standard Prolog rules can be

annotated with a probability value (“rule-based” uncertainty). The extension Hybrid ProbLog

[38] allows continuous attribute-level uncertainty in rule-heads.

Markov Logic Networks (MLNs) [58] describe joint distributions of variables based on

weighted (“soft”) first-order constraints. Hybrid MLNs [68] introduce numeric terms and prop-

erties to MLNs, although it is not easy to tell the relationship between the resulting system and

“pure” continuous attribute-level uncertainty (see the discussion in [38]). Infinite MLNs [61]

allow for countably infinitely many variables with countable domains. Similarly, Probabilis-

tic Soft Logic (PSL) [44] is a formalism for specifying joint distributions with weighted rules,

but also “soft” truth values. PSL rules are restricted to conjunctive bodies, as encountered in

plain Datalog. As MLNs build upon Markov networks, Bayesian Logic (BLOG) [54, 53] builds

upon Bayesian networks. BLOG is a programming language supporting continuous distribu-

tions and a random (say Poisson-distributed) number of objects. Its continuous semantics is

formally treated in [69]. In a nutshell, MLNs, PSL, and BLOG provide first-order templates for

specifying graphical models [45].

While all formalisms mentioned so far (and, additionally, those discussed in [5]) share indi-

vidual features with PPDL, conjoining Datalog with classical probabilistic programming was

novel to [5]. Also, its introduction of attribute-level uncertainty in rule heads differs from pre-

vious probabilistic versions of Datalog that adhere to the rule-based uncertainty and possibly

prior uncertainty for given ground facts (like the probabilistic Datalog languages of [26, 27]

and [22]). A version of Datalog± [33, 34] that is used for specifying ontologies consists of an

MLN, and a Datalog program with (among others) tuple-generating dependencies that may

be annotated with events in the probability space. On the contrary, the event annotations

of JudgeD [67] use distinguished variables solely used to introduce dependencies among the

rules. The connection between probabilistic Datalog and database-valued Markov processes is

already noted in [22, 5]. TheMonte Carlo Database System (MCDB) [41] allows for the specifica-

tion and querying of probabilistic databases in an SQL-like syntax. Its successor SimSQL [11],
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in particular, is a framework that allows the definition of Markov processes over database in-

stances.

2. Preliminaries

2.1. Foundations from Measure Theory

Here we cover the background from measure theory needed for this paper. More details can

be found in standard textbooks on measure theory and Borel sets [42, 62]. Some well-known

key results we use can moreover be found in Appendix A.

2.1.1. Measure Spaces

A family X of subsets of a set � is called a f-algebra on � if it contains � and is closed

under complements and countable unions. A pair (�,X) with X being a f-algebra on � is

called a measurable space. The elements of X are called measurable sets or events. A function

` : X → ℝ≥0 ∪ {∞} is a measure on a measurable space (�,X) if ` (∅) = 0 and ` (⋃8∈ℕ^ 8) =∑
8∈ℕ ` (^8 ) for any sequence of pairwise disjoint events ^8 ∈ X (8 ∈ ℕ). The value ` (�) is

called the mass of `. Measures with ` (�) = 1 are called probability measures, measures with

` (�) ≤ 1 are called sub-probability measures.

A triple (�,X, `) is called ameasure space if (�,X) is a measurable space and ` is a measure

on (�,X). If ` is a (sub-)probability measure, then (�,X, `) is called a (sub-)probability space.

The measure space (�,X, `) (or simply `) is called f-finite, if there exists a partition of� into

countably many measurable sets of finite measure. All measures that appear in this paper are

f-finite.

In this paper, we need four standard constructions of measurable spaces.

1. Generated f-algebra. If � is a non-empty set and G ⊆ P(�), then f (G) denotes the
(unique) inclusionwise smallest f-algebra on� containingG. We say f (G) is generated
byG.

2. Trace f-algebra. If (�,X) is a measurable space and ^ ⊆ �, then X↾^ ≔ {^ ′∩^ : ^ ′ ∈
X} is a f-algebra on � ∩^ , called the trace f-algebra of ^ . If ^ ∈ X, then X↾^ ⊆ X.

3. Disjoint union f-algebra. Let (�,X) and (�,Y) be measurable spaces with � ∩ � = ∅.
Then the family X ⊕ Y ≔ {` ⊆ � ∪ � : ` ∩ � ∈ X and ` ∩ � ∈ Y} is a f-algebra

on � ⊎ �. This easily generalizes to
⊕

8∈� X8 for any finite index set � .

4. Let (�8,X8), with 8 ∈ � for some index set � , be a collection of measurable spaces and let

� ≔
∏

8∈� �8 . The product f-algebra
⊗

8∈� X8 is the coarsest f-algebra on� that makes

all canonical projections c8 : � → �8 : (G8)8∈� ↦→ G8 measurable. If � is countable, then⊗
8∈� X8 is generated by the family of measurable rectangles

∏
8∈� ^8 with ^ 8 ∈ X8 . If

� = {1, . . . , =} we write
⊗=

8=1 X8 or X1 ⊗ · · · ⊗X= for the product f-algebra. If all (�8,X8 )
are equal, we write X⊗= . If � = ℕ, and all (�8 ,X8 ) are equal, we write X⊗l for

⊗∞
8=0 X8 .
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Measure theory is closely tied to notions from topology. A topological space is a pair (�,T)
where � is a set and T is a family of subsets of �, called the open sets, such that T contains

both � and ∅ and is closed under finite intersections and arbitrary unions. The f-algebra

on a topological space (�,T) that is generated by the open sets is called the Borel f-algebra

on (�,T) (resp. on � if T is understood from context). We denote the Borel f-algebra on �

byBor (�). Typical examples are Bor (ℝ) andBor [0, 1] ≔ Bor ([0, 1]).
In probability theory, one often works with the Borel f-algebras generated from Polish topo-

logical spaces, i.e. from completely metrizable spaces containing a countable dense set. The re-

sulting measurable spaces are called standard Borel spaces. We do not delve into the details here,

as all measurable spaces appearing in this paper are standard Borel. For further information,

especially in the context of probabilistic databases, see [37].

2.1.2. Measurable Functions and Kernels

Let (�,X) and (�,Y) be measurable spaces. A function 5 : �→ � is called (X,Y)-measurable

(or simply measurable, if clear from context) if for all _ ∈ Y it holds that 5 −1 (_ ) ≔ {G ∈
� : 5 (G) ∈ _ } ∈ X. The function 5 is called bimeasurable if additionally 5 (^) ∈ Y for all

^ ∈ X.
If 5 is (X,Y)-measurable and ` is a measure on (�,X), then ` ◦ 5 −1 is the so-called push-

forward measure of ` along 5 on (�,Y). If ` is a (sub-)probability measure, so is ` ◦ 5 −1.
A function ^ : � ×Y→ [0, 1] is called a (sub-)stochastic kernel from (�,X) to (�,Y) if

• for all- ∈ �, the function ^ (-, · ) : Y→ [0, 1] is a (sub-)probability measure on (�,Y),
and

• for all _ ∈ Y, ^ ( · , _ ) : �→ [0, 1] is (X,Bor [0, 1])-measurable.

For every measurable space (�,X), the function ] : � × X → [0, 1] with ] (G,^ ) = 1 if G ∈ ^
and ] (G,^ ) = 0 if G ∉ ^ is a stochastic kernel from (�,X) to itself, called the identity kernel on
(�,X).

2.1.3. Graphs, Sections and Product Measures

First we note that any countable product of standard Borel spaces (with the product f-algebra)

is standard Borel again [62, Proposition 3.1.23]. If 5 : � → � is measurable with (�,X) and
(�,Y) standard Borel, then the graph of 5 , defined by

graph( 5 ) ≔ {(G, 5 (G)) : G ∈ �},

is measurable in X ⊗ Y [62, Proposition 3.1.21 and 2.1.9].

If ` ⊆ � × � and G ∈ �, then `G ≔ {~ ∈ � : (G,~) ∈ `} is called the G-section of ` . If

` ∈ X ⊗ Y, then `G ∈ Y. Symmetrically, for any ~-section `~ of ` , we have `~ ∈ X.
If (�,X, `) and (�,Y, a) are measure spaces with ` and a f-finite, then there exists a unique

product measure ` ⊗ a of ` and a on (� × �,X ⊗ Y) with the property that (` ⊗ a) (^ × _ ) =
` (^) · a (_ ) for all ^ ∈ X and _ ∈ Y. This can be extended to any finite (nonempty) product
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of measures [42, cf. Theorem 1.27 and p. 15]. We use the notation
⊗=

8=1 `8 and `⊗= analogous

to the one for product f-algebras.

Fubini’s Theorem intuitively states that integration in a product space can be carried out in

an arbitrary order.

Fact 2.1 (Fubini’s Theorem, cf. [42, Theorem 1.27]). Let (�,X) and (�,Y) be measurable spaces

and ` be a f-finite measure on (�,X). Then for all measurable 5 : � × �→ ℝ≥0, it holds that∫
�×�

5 3 (` ⊗ a) =
∫
�

( ∫
�

5 3a
)
3` =

∫
�

( ∫
�

5 3`
)
3a . ⊳

2.1.4. Multifunctions and Selections

Let (�,X) and (�,Y) be measurable spaces where (�,Y) is standard Borel (with fixed Polish

topology T�). A function" : �→ P(�) \ ∅ is called amultifunction, and is denoted" : �⇒

�. A multifunction" : �⇒ � is called

• closed-valued, if for every G ∈ �," (G) ⊆ � is closed w. r. t. T�, and

• X-measurable, if"−1 (_ ) ≔ {G ∈ � : " (G) ∩ _ ≠ ∅} ∈ X for every open set _ ∈ T�.

Similarly to the corresponding statement for measurable functions, if " : � ⇒ � is a closed-

valued measurable multifunction, then

graph(") ≔ {(G, ~) : ~ ∈ " (G)}

is a measurable set in X ⊗ Y.

A selection of a multifunction" is a function B : �→ � with B (G) ∈ " (G) for all G ∈ �. A

well-known result from Kuratowski and Ryll-Nardzewski (Fact A.5, see [49] and [62, Theorem

5.2.1]) states that for (�,Y) standard Borel, every measurable, closed-valued multifunction

" : �⇒ � has a (X,Y)-measurable selection.

2.1.5. (Discrete-Time) Stochastic Processes

A stochastic process in discrete time is a sequence of random variables in some state space (�,X).
Intuitively, a (discrete-time) Markov process is a stochastic process where the distribution in

the (8 + 1)th step only depends on the distribution of the previous step 8. By a theorem of Kol-

mogorov (Fact A.8), Markov processes in discrete time are guaranteed to exist for any initial

distribution and any sequence of stochastic kernels ^8 : � × X → [0, 1], describing the proba-

bilistic transition on the state space from the 8th to the (8 +1)th step. If (�,X) is the state space
of the process, then (�l,X⊗l ) is its path space.

2.2. Parameterized Distributions

Let Π be a non-empty set (of parameters) and let (�,W, `) be a measure space.

9



Definition 2.2. A parameterized distribution with parameter space Π and underlying space

(�,W, `) is a function k : Π ×� → ℝ≥0 such that for all ? ∈ Π it holds that k (?, · ) is
(W,Bor (ℝ≥0))-measurable and that ∫

�

k (?, · ) 3` = 1. (2.1)

⊳

If k is a parameterized distribution, we use Πk to refer to its parameter space and

(�k ,Wk , `k ) to refer to its underlying measure space. Moreover, we usually make the pa-

rameter in the argument ofk explicit by writingk 〈?〉(F ) instead ofk (?,F ), and k 〈?〉 for the
functionk (?, · ).

The requirement from (2.1) demands that for a parameterized distribution k and any fixed

parameter ?, the function

%k 〈? 〉 : Wk → [0, 1] : ] ↦→
∫
]

k 〈?〉 3`k

is a probability measure. We will always assume that (�,W, `) is either

• a discrete measure space, withW = P(�) being the powerset f-algebra and ` being the
counting measure on (�,W); or

• the Euclidean space ℝ= for some = ∈ ℕ>0, equipped with its Lebesgue-measurable sets

W and the =-dimensional Lebesgue measure `.

Note that in the first case, the integral from (2.1) collapses to the sum
∑

F∈�k (?,F ) andk 〈?〉
plays the role of a probability mass function. Accordingly, in the second case, k 〈?〉 is a proba-
bility density function. If Πk is a space of<-tuples, then< = pardim(k ) is called the parameter

dimension of k . Typically, if pardim(k ) = < > 1, then Πk is the full Cartesian product of<

spaces. We refer to parameterized distributions by symbolic names such as Binomial, Poisson

or Gaussian if they describe the corresponding well-known distributions. Such examples are

shown in Table 3.

For our work, we need to discuss situations where the parameters themselves are random

variables. Thus, the following result on measurability with respect to parametrizations is cen-

tral for our work. It is a special case of [28, Theorem 3.2], tailored to our definition of param-

eterized distributions. It states that, under suitable technical conditions, the probability of a

fixed event under a parameterized distribution is a measurable function of the parameters.

Fact 2.3 (Gaudard & Hadwin [28, Theorem 3.2]). Let k be a parameterized distribution such

that Πk is a Borel subset of a Polish space and the following hold.

1. For all F ∈�k , the function Πk → [0, 1] : ®? ↦→ k 〈®?〉(F ) is continuous.

2. Every ®?0 ∈ Πk has a neighborhood # ( ®?0) with∫
�k

(
sup
®?∈# ( ®?0)

k 〈®?〉
)
3`k < ∞.
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Table 3.: Prominent examples of parameterized distributions.

Parameterized

Distribution k

Parameter

Space Πk

Underlying

Space�k
pmf / pdf k 〈®?〉(F )

Flip [0, 1] {0, 1} Flip〈?〉(F ) =
{
? for F = 1,

1 − ? for F = 0

Binomial ℕ>0 × [0, 1] ℕ≥0 Binomial〈=, ?〉(:) =
(=
:

)
?: (1 − ?)=−:

Poisson ℝ>0 ℕ≥0 Poisson〈_〉(:) = _:

:!
4−_

Gaussian ℝ×ℝ>0 ℝ Gaussian〈`, f2〉(G) = 1√
2cf2

4
− (G−` )

2

f2

3. If ®?, ®@ ∈ Πk with ®? ≠ ®@, then %k 〈®? 〉 and %k 〈®@〉 are different probability measures.

Then for every] ∈Wk and H ∈ Bor [0, 1], it holds that{
®? ∈ Πk : %k 〈®?〉 (] ) ∈ H

}
∈ Bor (Πk ). ⊳

Let us first describe the three conditions in words. Condition 1 states that for every fixed

argumentF the densityk 〈®?〉(F ) inF is continuous with respect to ®? . Condition 2 means that

for every parameter ®? , the supremum of densities parameterized from within a neighborhood

of ®? is integrable. Finally, condition 3 states that distinct parameters produce different dis-

tributions through k . Together, the conditions enforce that the parameterized distribution is

well-behaved with respect to certain topological properties in the parameter space.

We emphasize the crucial role of Fact 2.3 for the results of this paper. We only allow such

parameterized distributions in generative Datalog programs, that adhere to the technical precon-

ditions of this theorem. The reason for this is that we need its conclusion at a central point in

our constructions.

If the underlying space of a parameterized distribution is countable at most (and hence, `k
is the counting measure), then condition 2 is trivially fulfilled. If additionally, the parameter

space is discrete, then condition 1 is always satisfied as well. For uncountable parameter spaces,

this need not be the case. However, one may easily verify that, for example, the Binomial

and the Poisson distribution meet condition 1 (and 2 and 3, for that matter). The Gaussian

distribution is a continuous distribution for which Fact 2.3 is applicable [28, p. 173]. Thus, all

the distributions from Table 3 are suitable for our later application. Moreover, according to

[28, p. 173], the conditions generally apply “to the most common [parameterized] families”.

Therefore, they should not be considered as too harsh a restriction for our purposes. We want

to point out a particular caveat though. Notably, the theorem is not applicable for the Dirac

distribution. This is, because the Dirac distribution is not even a parametrized distribution in

the sense of Definition 2.2 to begin with. Related to this, we note that it has recently been

pointed out [4], that the class of “allowed” parameterized distributions should also be treated

with care in the setting of [5] (where the sample space is always discrete, but the parameter

space may be uncountable).

11



2.3. Relational Databases

We fix a countably infinite set Xel , and a non-empty set �. The elements of Xel are called

relation symbols and � is called the universe. We also fix a function ar : Xel → ℕ and call

ar(') the arity of '. The attributes of ' are then the numbers 1, . . . , ar('). Additionally, we fix
a function dom that maps every pair (', 8) with ' ∈ Xel and 1 ≤ 8 ≤ ar(') to a non-empty

subset of�, and we write dom8 (') instead of dom(', 8). Then dom8 (') is called the domain of

the 8th attribute in '. We define the domain of ' as

dom(') ≔
ar(')∏
8=1

dom8 (') ⊆ �ar(') .

Throughout the rest of the paper, we assume that Xel , �, ar and dom are fixed.

A database schema S is a non-empty, finite subset of Xel . A fact (or, S-fact) is an expression

of the shape '(D1, . . . , D=) where D8 ∈ dom8 (') for all 8 = 1, . . . , ar('). The set of facts with

relation symbol ' (or, '-facts) is denoted by �' . The set of all S-facts is denoted by �S . A
database instance over S and � (or, S-instance) is a finite bag (multiset) of facts from �S .

The following example is loosely based upon an example from [41] and serves as a running

example throughout the paper.

Example 2.4 (Corporate Data). We consider a database that stores data of various companies,

with database schema S = {PartnerOf , Employee, PayScale}. The tuples of the relations cap-
ture the following information:

• PartnerOf (21, 22) means that the companies 21 and 22 are contract partners.

• Employee(B, 2, 3) means that the social security number (SSN) B is associated with an

employee at the department 3 of company 2.

• PayScale(2, 3, `) means that employees of department3 at company 2 achieve an average

annual income of ` dollars.

The database is shown in Figure 3 below.

Employee

SSN Company Department

962-00-3472 F-Corp HR

981-00-8876 E-Corp IT

PartnerOf

Company_1 Company_2

A-Corp F-Corp

A-Corp D-Corp

PayScale

Company Department Average_Salary

A-Corp IT $ 55 000

E-Corp IT $ 63 000

F-Corp HR $ 56 000

Figure 3.: A database with three relations, containing corporate data.
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For example, we might assume that dom1 (PayScale) is the set of strings over some alphabet,

whereas typically dom3 (PayScale) = ℕ. For technical reasons, it is convenient to formally let

dom3 (PayScale) = ℝ though, in order for it to coincide with the respective parameter domain

of the parameterized Gaussian distribution. ⊳

2.4. Probabilistic Databases

In a nutshell, a probabilistic database (PDB) is a collection of database instances (in the sense

of Section 2.3) that is equipped with a probability measure. Throughout this paper, we use

the framework of standard probabilistic databases [37] (to be consulted for details). Recall that

for a database schema S, we let �S denote the set of facts that can be built from S. A basic

assumption for standard PDBs is that all attribute domains are standard Borel. Then �S is

standard Borel as well and we denote its (Borel) f-algebra by FS . The sample space � of a

standard PDB is the set of all database instances over S, that is, finite bags of facts from �S .
We drop the subscript S, if the schema is clear. By a generic construction,� is equipped with a

f-algebraD, turning it into a measurable space. The f-algebraD is generated by the family of

counting events I (L , =) consisting of those instances that contain exactly= facts from L , where

L is a measurable set of facts.

Definition 2.5. A standard probabilistic database is a probability space Δ = (�,D, %) where
(�,D) is the measure space from the construction above. ⊳

As we only work with standard PDBs, we omit the term “standard” henceforth.

Fact 2.6 (Measurability of Queries [37]). Relational algebra and aggregate queries are measur-

able functions on PDBs. ⊳

The construction of PDBs sketched before inherently uses bag semantics, meaning that the

sample space contains instances with duplicates. For the purpose of this paper, we only want to

consider set semantics though. This can either be achieved on the side of measures, i. e. PDBs

with almost surely set-valued instances; or by restricting the sample space to the set �set of

duplicate-free instances from �. Note that �set is a measurable subset of � and, consequen-

tially,Dset
≔ D↾�set a sub-f-algebra ofD, that is,Dset ⊆ D. Moreover,D is generated by the

family of all set-valued counting events Iset (L , =) ≔ I (L , =) ∩�set (cf. [62, p. 83]).

Proposition 2.7. For every standard PDB (�,D, %), the measurable space (�,D) is standard
Borel, as is its restriction to set instances. ⊳

Proof. This is an instantiation of a known result from point process theory and the theory of

random measures. We use the notation from [18]. For any standard Borel space (�,X), the set
N #

�
ofℕ∪{∞}-valued measures ` on (�,X) with the property that ` (^) < ∞ for all bounded

^ ∈ X is a Polish space and its Borel f-algebra is generated by the evaluation maps

eval^ : N #
� → ℝ: ` ↦→ ` (^)

where ^ ∈ X [18, Proposition 9.1.IV]. The subspace N� = eval−1� (ℕ) of measures of N #
�
of

finite total mass is a measurable subset ofN #
�
and thus, a standard Borel space when equipped
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with the corresponding trace f-algebra [25, 424G]. It is easy to see that there is a Borel isomor-

phism between our space (�,D) and the space (N�,Bor (N�)). Since �set is a measurable

subset of �, (�set,D↾�set) is standard Borel as well. �

With the single exception of the proposition above, all facts we use about standard PDBs in

this paper are shown in [37].

Throughout this paper we will exclusively use set instances and set semantics. To simplify no-

tation, we write (�,D) instead of (�set,Dset) for the measurable space of set instances.

Definition 2.8 (Sub-Probabilistic Databases). If (�,D) is the measurable space of a stan-

dard PDB, and % is a sub-probability measure on (�,D), then D = (�,D, %) is called a sub-

probabilistic database. ⊳

Let �⊥ ≔ � ⊎ {⊥} and equip this space with the f-algebra D⊥ ≔ D ∪ {J ∪ {⊥} : J ∈
D}. There is a natural one-to-one correspondence between probability measures on (�⊥,D⊥)
and sub-probabilistic databases on the instance space (�,D). A natural interpretation of the

“missing” probability mass of a sub-probabilistic database is that it describes the probability of

an error event (or the outcome of a draw from the PDB to be undefined). The space�⊥ makes

this error event (“⊥”) explicit. Note that with this transformation the results of [37] concerning

query measurability directly also apply to sub-probabilistic databases.

2.5. Logic and Datalog

We briefly introduce the background from logic that we need throughout the paper. For details,

we refer, for example, to [1, 50]. Let S be a relational schema and� the universe as before. Let

\ar ≠ ∅ be a fixed, countably infinite set of variables. As is common in database theory, we do

not distinguish between constant symbols and constants from�. An atom is an expression of

the shape '(®D) where ' is a relation symbol from S and ®D ∈ (\ar ∪�): where : is the arity

of '. First-order formulas are built from atoms using ¬, ∧, ∨, ∀ and ∃. The free variables of

i are the variables appearing among its atoms that are not bound by a quantifier. A formula

without free variables is called a sentence, or Boolean. We write i (®G) to indicate that i has free

variables exactly ®G .
Suppose ®G = (G1, . . . , G=) is a tuple of variables. A valuation of ®G is a function U mapping

every variable G8 in ®G to a constant U (G8 ) = 08 ∈ �. If ®D is a tuple of variables and constants,

and U a valuation of the variables in ®D, then U (®D) denotes the tuple obtained by replacing every
variable G in ®D with U (G). It is often convenient to identify a valuation U of variables G1, . . . , G=
with the tuple ®0 = (01, . . . , 0=). If the free variables of i are all contained in the tuple ®G , we
write i ( ®0) for the formula that emerges from i by replacing every occurrence of G8 with 08 .

Remark 2.9. Formally, we consider sorted first-order languages. The set of valuations of a

single variable G is then given as the intersection of all the attribute domains of the positions

where G occurs. For simplicity, we assume that all positions where a variable G occurs are typed

equally. ⊳

The semantics |= of first-order logic are defined in the standard way.
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For the introduction of Datalog, we follow [1, Chapter 12], to which we refer the reader for

further details. A Datalog rule is a logical expression of the shape

'(®G) ← (1 (®G1), . . . , (< (®G<) (2.2)

where ' and (8 are relation symbols and ®G , ®G8 are tuples of variables or constants of the appro-
priate lengths such that every variable in the tuple ®G appears among the variables of some tuple

®G8 . The head of the rule (2.2) is '(®G), and the body is (1 (®G1), . . . , (< (®G<). A Datalog program is

a finite set of Datalog rules.

The relation symbols that only occur in the rule bodies of a program are called extensional.

The remaining ones (those appearing at least once in a rule head) are called intensional. The

extensional (or intensional) relation symbols form the extensional (intensional, resp.) schema of

the program. The combined schema consists of both the extensional and intensional relation

symbols.

Under the model-theoretic view, a Datalog program P is a conjunction i of first-order sen-

tences, where all variables in every rule are universally quantified. A model of P is a database

instance over the combined schema satisfying i . The input to a Datalog program is a database

instance� over the extensional schema. The outcome of P on� is the minimalmodel of P that

contains � . Such a minimal model always exists, and it contains no constants beyond those

present in� and P. It is a superset of� that only contains additional facts from the intensional

schema.

Foreshadowing a “generative” point of view, we highlight the equivalent approach toDatalog

semantics through fixpoints. Let again P be a Datalog program and � be a database instance

over the combined schema. A fact 5 is an immediate consequence of � subject to P, if there
exists a valuation of the variables of a rule such that its body is satisfied in � , and such that 5

is the valuation of the head of the rule. The map that sends any database instance to the set

of its immediate consequences is a monotone operator on database instances (with respect to

⊆). Then the outcome of P on � is the minimal fixpoint of the operator. This is unique, and

equivalent to the model-theoretic notion of outcome described above. This second definition

can be interpreted algorithmically: Given an input instance � , at every step in time, we add all

immediate consequences to the current database instance, until no further changes occur. This

produces exactly the outcome of P on � .

3. General Generative Datalog

In this section, we introduce the Generative Datalog language in a version that allows the use

of continuous distributions. After specifying the syntax, the main goal of this section is to

provide the groundwork for a well-defined semantics of Generative Datalog programs.

Structure of this section

First of all, in Section 3.1, we establish the syntax of Generative Datalog. For this, we build

upon the original syntax of [5] but implement some slight alterations that on the one hand are

tailored to the technical developments later on, and on the other hand allow us to overcome
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the issues discussed in Section 1.1. In Section 3.2, we set the scene for the later introduction

of the semantics, by describing the desired workings of a Generative Datalog program in an

abstract, but informal way. The rest of the section prepares key ingredients for the semantics:

the translation of Generative Datalog programs into existential Datalog programs (Section 3.3),

the notion of rule applicability (Section 3.4), the definition and properties of the possible new

instances emerging after letting a rule fire (Section 3.5), and a brief discussion of functional

dependencies that are induced by the rules of the translated existential Datalog program (Sec-

tion 3.6). We remark that all of these developments mirror equivalent developments in the

original introduction of Generative Datalog in [5], but come with the additional need to dis-

cuss various measurability properties due to considering continuous distributions. Based on

this, the concrete semantics will be introduced and treated in the sections thereafter.

3.1. Syntax of Generative Datalog

We start by introducing the syntax of Generative Datalog programs. We note that, already

here, there are slight differences to the version of Bárány et al. that stem from the updated

semantics we are going to introduce. At a later point (Section 6.2), we will come back to the

differences to [5].

We fix two disjoint database schemas E , and I. The schema E is called the extensional

database schema, and I is called the intensional database schema.

Additionally, we fix a set Ψ of (symbolic names of) parameterized distributions. In order

to not worry about which combinations of parameters are “legal”, we require that if k is a

parameterized distribution, then the parameter space Πk is a full Cartesian product of< > 0

spaces where< is the number of parameters in k . All parameterized distributions we would

typically want to support (including, in particular, those of Table 3) satisfy this requirement

anyway.

The terms of the GDatalog-language (over E , I and Ψ) are defined as follows:

1. All variables and all constants from E ∪I are terms. Such terms are called deterministic

terms.

2. Let k ∈ Ψ be a parameterized distribution with pardim(k ) = <, say with parameter

space Πk = Πk,1 × · · · × Πk,<. Then

k 〈?1, . . . , ?<〉 (3.1)

is a term where ?8 is either a variable, or a constant in Πk,8 . Terms of the shape (3.1) are

called probabilistic terms or Ψ-terms.

An atom is an expression of the form '(C1, . . . , C=) where = is the arity of ' ∈ E ∪ I and

C1, . . . , C= are terms subject to the following restrictions for all 8 = 1, . . . , =:

• If C8 = 2 is a constant, then 2 ∈ dom8 (').

• If C8 = k 〈®?〉, then ' ∈ I and �k ⊆ dom8 (').
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If some term C8 is probabilistic, '(C1, . . . , C=) is called a probabilistic atom, and a deterministic

atom otherwise. If ' ∈ E , then '(C1, . . . , C=) is called an E-atom and otherwise, if ' ∈ I, then
' is called an I-atom. We emphasize that probabilistic terms are only allowed to occur in

I-atoms.

Definition 3.1. A GDatalog[E,I,Ψ] rule i is an expression

'(C1, . . . , C=) ← (1 (C11, . . . , C1=1), . . . , (: (C:1, . . . , C:=: ) (3.2)

such that

• ' is intensional with = = ar(') and '(C1, . . . , C=) is an I-atom, possibly with Ψ-terms;

• (1, . . . , (: are relation symbols (extensional or intensional) with =8 = ar((8) and for all

8 = 1, . . . , : , (8 (C81, . . . , C8=8 ) is a deterministic atom; and,

• all variables appearing among C1, . . . , C= appear in {C8 98 : 1 ≤ 8 ≤ : and 1 ≤ 98 ≤ =8 }.

Moreover, we require that if C8 = k 〈?1, . . . , ?<〉, and ? 9 is a variable for 9 = 1, . . . ,<, then all

attribute positions where the variable ? 9 reappears on the right-hand side of (3.2) have the

same attribute domain, coinciding with Πk,9 . ⊳

The last requirement in Definition 3.1 ensures that parameterized distributions cannot be

used with malformed parameters. We denote the rule i from (3.2) as

iℎ (®Gℎ) ← i1 (®G)

so that iℎ is the formula (atom) '(C1, . . . , C=) and ®Gℎ is the tuple of variables appearing therein

(i. e. iℎ’s free variables), and, similarly, i1 is the conjunction of atoms on the right-hand side

of (3.2), with free variables ®G . By definition, all variables of ®Gℎ reappear in ®G . As in standard

Datalog terminology, the formula iℎ is called the head, and i1 is called the body of the rule. A

rule i is called deterministic if its head is a deterministic atom, and probabilistic otherwise.

Definition 3.2 (GDatalog Programs). A GDatalog[E,I,Ψ]-program is a finite bag

{{i1, . . . , i:}} of GDatalog[E,I,Ψ] rules. ⊳

The significance of letting a program be a bag rather than a set of rules is that it is our mech-

anism of sampling multiple times for the same parameters. Every copy of a rule is interpreted

as a separate sampling instruction. We expand on this in Sections 3.2 and 6.2.

Example 2.4 (continued). We use the database instance shown in Figure 3 (see Example 2.4) as

an input instance for a GDatalog program. Apart from the given extensional schema E ≔ S =

{PartnerOf , Employee, PayScale}, we let I ≔ {AffilEmployee, Res}. The intended purpose of
Res is to store the query result we are interested in, whereasAffilEmployee is just an auxiliary

relation. Let Ψ ≔ {Gaussian}. Then, for example,

Res(B, 2,Gaussian〈`, 10 000〉) ← Employee(B, 2, 3), PayScale(2, 3, `) (3.3)

is a GDatalog[E,I,Ψ] rule. Intuitively, (3.3) is an instruction that defines circumstances under

which we should generate new I-facts. In this case, we want to sample an income amount for
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employees, based on the average income at their workplace. The Ψ-term Gaussian〈`, 10 000〉
indicates that the income amount is Normal distributed, parameterized with the average value

` from the PayScale table and a constant variance 10 000.

Gsal : AffilEmployee(B, 20, 3) ← Employee(B, 20, 3)
AffilEmployee(B, 2, 3) ← Employee(B, 2, 3),AffilEmployee(B ′, 2 ′, 3 ′), PartnerOf (2, 2 ′)
AffilEmployee(B, 2, 3) ← Employee(B, 2, 3),AffilEmployee(B ′, 2 ′, 3 ′), PartnerOf (2 ′, 2)
Res(B, 2,Gaussian〈`, 10 000〉) ← AffilEmployee(B, 2, 3), PayScale(2, 3, `)

Figure 4.: A GDatalog program for our running example.

Figure 4 shows the GDatalog[E,I,Ψ] program Gsal with three deterministic rules and one

probabilistic rule. This program computes tuples (B, 2, 8), such that B is an employee at company

2 with an annual income of 8 dollars, where 8 is sampled from a Gaussian distribution like

described before. ⊳

Example 3.3. Figure 5 shows the running example3 of [5] in our syntax (cf. [5, Figure 3, p. 22:8]).

Gburglary : Earthquake(2, Flip〈0.1〉) ← City(2, A )
Unit(ℎ, 2) ← House(ℎ, 2)
Unit(1, 2) ← Business(1, 2)
Burglary(G, 2, Flip〈A〉) ← Unit(G, 2),City(2, A )
Trig(G, Flip〈0.6〉) ← Unit(G, 2), Earthquake(2, 1)
Trig(G, Flip〈0.9〉) ← Burglary(G, 2, 1)
Alarm(G) ← Trig(G, 1)

Figure 5.: The GDatalog program from the running example of [5] in our syntax.

There, E = {City,House,Business} and I = {Earthquake,Unit,Burglary,Trig,Alarm}
with Ψ = {Flip}. Initially, we have a database instance containing assignments of cities to

regions (in City), and of houses and businesses to cities (in House and Business). The pro-

gram does not further distinguish between houses and businesses, and collects them together

as units. With the first rule, we flip a coin, whether city 2 is struck by an earthquake. Simi-

larly, with the fourth rule, we flip a coin determining whether unit G in city 2 is burglarized.

We assume that every unit is equipped with an alarm system that triggers when someone is

trespassing (but may fail to do so). This is captured by rule number six. Yet, an earthquake

may also trigger the security system, but with a lower probability, as modeled by rule number

five. Finally, when the system is triggered, it sounds the alarm. ⊳

From now on, to simplify notation, we assume that our GDatalog programs contain at most

one parameterized distribution per rule. Furthermore, we assume that the parameterized dis-

tribution (if existing) is invoked in the last attribute of the relation in the rule head. That is, we

assume rule heads of probabilistic rules to be of the form '(®D,k 〈®?〉).

3The example itself is based on a famous example from [56].
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Our proofs generalize to the unrestricted setting. The measurability discussions that follow

are not affected by permutations of the attribute positions, and, moreover, for the simultaneous

usage of two ormore parameterizeddistributions, the resulting tuples are distributedwith their

respective product distribution (cf. Fact 2.1).

3.2. An Informal Semantics

Before delving into the intricacies of a formal semantics for GDatalog programs, let us explain

an informal operational semantics for GDatalog rules and programs. We have already given

the intuition of applying a rule in Example 2.4, considering the rule (3.3):

Res(B, 2,Gaussian〈`, 10 000〉) ← Employee(B, 2, 3), PayScale(2, 3, `) (3.3)

Let U be a valuation of B, 2, 3, ` such that Employee(B, 2, 3) and PayScale(2, 3, `) exist in the

input database. This makes the rule applicable for the valuation U . Just as in plain Datalog, we

generate a fact to add to the current database instance. For this, we sample a random variable

- ∼ Gaussian〈U (`), 10 000〉, and generate Res
(
U (B), U (2), -

)
.

We run a GDatalog program G on a database instance over the extensional schema simi-

larly to a normal Datalog program. All intensional relations are initialized to be empty. By

repeatedly applying the rules as described above, the program generates (random) facts. All

rule applications are stochastically independent. We stipulate that each rule of the program

(or more precisely, each occurrence of each rule—remember a program is a bag of rules where

a rule may occur several times) can only be applied once for every instantiation of the vari-

ables appearing in the head of the rule. The computation terminates if no rule is applicable

anymore, and the output consists of the original input, extended by the set of facts generated

in the execution, that is, a database instance over the combined (extensional plus intensional)

schema.4 Because of the sampling of values in the rule applications, the output is probabilistic.

We interpret it as a probabilistic database. Thus, given a database instance over the extensional

schema, a GDatalog program generates a probabilistic database over the combined schema.

However, our informal description of the semantics raises several crucial questions:

1. Does the program always terminate?

2. How can we be sure that the output is indeed a well-defined probabilistic database?

3. In which order do we apply the rules, and does this make a difference?

The answer to Question (1) is simply ‘no’ (in general), as the following easy example demon-

strates.

Example 3.4. Suppose a GDatalog program G contains the rule

'(Gaussian〈`, 1〉) ← '(`),

4Defining the output this way enables us to treat all input, output, and intermediate instances in the same space

in our proofs. Alternatively, one could consider only the generated facts as the output but this is in the end just

a matter of taste.
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where ' ∈ I. Intuitively the program stops, when a value is sampled that we have already

seen. For this concrete example, this will happen with probability 0 though. That is, the pro-

gram almost surely diverges. A similar behavior can already be enforced with deterministic

distributions alone, for example with the rule

'(Incr〈8〉) ← '(8),

where Incr〈8〉, for parameter 8 ∈ ℕ, is a probability mass function on ℕ with probability 1 on

the outcome 8 + 1. This program always diverges (provided that the rule fires at all). ⊳

The first program of Example 3.4 points at another complicating issue. It may well happen

that a program terminates for certain random choices, but does not for others. We resolve this

issue by conditioning the output probability distribution on termination, or by saying that a

GDatalog program only defines a sub-probabilistic database, where the probability mass of the

whole space may be smaller than 1. The “missing” probability mass is then the probability of

divergence.

It is an open research question to understand termination criteria for GDatalog programs.

The other two questions are main guiding questions of our paper. The answer to (2) is given by

a thorough investigation of the stochastic process sketched above, and regarding (3), we will

indeed see that we don’t have to worry too much about the order of rule applications in the

end.

3.3. Translation to Existential Datalog Programs

As in [5], we first introduce a nondeterministic semantics for our programs by translating

a given GDatalog program into an existential Datalog program (Datalog∃ program). This is

basically the same procedure as in [5, Section 3.2] modulo slight changes that are motivated by

the discussions of the previous section.

Intuitively, the probabilistic rules of a GDatalog program introduce attribute values that are

the result of some random sampling. In contrast, the rules of a Datalog∃ programmay introduce

attribute values that are subject to nondeterminism.

A Datalog∃ program is a Datalog program that additionally allows rules of the shape

∃~ : iℎ (®Gℎ, ~) ← i1 (®G),

where ®G again contains all variables of ®Gℎ . Such rules are called existential rules.

Construction (Associated Datalog∃ Program). Let G = {{i1, . . . , i:}} be a GDatalog[E,I,Ψ]
program. We construct the Datalog∃ program G∃ as follows. For all 8 = 1, . . . , : do the follow-

ing:

1. If i8 is a deterministic rule of G, then i8 is a rule of G∃.

2. If i8 is a probabilistic rule of G, say

i8 (®G) =
(
'(®D,k 〈®?〉) ← i8,1 (®G)

)
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with ®D = (D1, . . . , Dar(')−1) and ®? = (?1, . . . , ?pardim (k ) ) being tuples of variables or con-

stants (such that the variables therein all appear in ®G), then we add the following two

rules to G∃, where '8 is a new, distinguished relation symbol of arity ar(') + pardim(k ):

∃I : '8 (®D, ®?, I) ← i8,1 (®G)
'(®D, I) ← '8 (®D, ®?, I)

(3.4)

We call G∃ the existential, or Datalog∃ version of G. It inherits the extensional schema E∃ ≔ E
fromG. The intensional schemaI∃ ofG∃ is obtained fromI by adding the new relations'8 . ⊳

Intuitively, probabilistic rules in the original program G introduce two new rules (an exis-

tential, and a standard one) in G∃ in order to “decouple” sampling values using parameterized

distributions from adding facts to the database. The first rule of (3.4) carries the information

which valuation, resp. parametrization, is used for the sampling, and introduces a variable (I)

storing the sample outcome. With facts produced by the first rule, the second rule specifies how

to assemble the tuple with the given “sample outcome”. In particular, note the parametrization
®? being projected away. This enables us to sample more than once with different parametriza-

tions ®? , without altering the rule applicability in the case where ®? is not contained in ®D.
Example 2.4 (continued). Reconsider our running example, and the GDatalog program Gsal
from Figure 4. Its Datalog∃ version G∃

sal
is shown in Figure 6 below.

G∃
sal
: AffilEmployee(B, 20, 3) ← Employee(B, 20, 3)

AffilEmployee(B, 2, 3) ← Employee(B, 2, 3),AffilEmployee(B ′, 2 ′, 3 ′), PartnerOf (2, 2 ′)
AffilEmployee(B, 2, 3) ← Employee(B, 2, 3),AffilEmployee(B ′, 2 ′, 3 ′), PartnerOf (2 ′, 2)
∃I : Res′(B, 2, `, 10 000, I) ← AffilEmployee(B, 2, 3), PayScale(2, 3, `)
Res(B, 2, I) ← Res′(B, 2, `, 10 000, I)

Figure 6.: The Datalog∃ program associated with the GDatalog program Gsal.

The rules that are typeset in a lighter shade remain unchanged over the original GDatalog

program Gsal. The fourth and fifth rules are the new rules introduced by our construction.

Therein, Res′ is the new relation symbol introduced in the translation of the fourth rule of the

original program. ⊳

In the following, we prepare the introduction of a chase procedure similar to [5]. With the

presence of parameterized distributions with uncountable measure spaces, deriving the proba-

bilistic semantics from G∃ is more involved than in [5]. In fact, most of their approach towards

the construction of a probability space immediately breaks down. There, the authors construct

the probability space based on defining the probability of cylinder sets (to be thought of as an

initial sequence of generated facts) by multiplying their probabilities. This is only possible,

since [5] is restricted to discrete distributions. In particular, after every finite number of steps,

their programs have only countably many possible program configurations. In our setting, this

might be a continuum, even after just a single step. Therefore, we already need to proceedwith

additional care regarding the applicability of rules, and the probability distribution induced by
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a single program step. In particular, we need more advanced tools from measure theory in

order to ensure well-definedness of these concepts. Nevertheless, the whole approach can be

thought of as a generalization of ideas already present in [5].

In the next section, we start with a rigorous treatment of the applicability of rules, and the

set of result instances after firing a rule.

Remark 3.5. In the remainder of this paper, we predominantly need the existential version G∃
of our GDatalog program G. Unless explicitly mentioned otherwise, i will denote a rule of

G∃ in the following. Note that unlike the original GDatalog program which is a bag of rules,

we can always assume that the constructed program G∃ is a set of rules {i1, . . . , i: }. The

existential rules we created are pairwise different anyway, and for every deterministic rule,

we just retain a single copy (for the semantics of existential Datalog, multiple copies have no

additional effect).

For simplicity, we always let G∃ = {i1, . . . , i:} from now on. In particular, : is to be under-

stood as the number of rules in G∃. ⊳

3.4. Rule Applicability

In this subsection, we formalize the notion of rules being enabled to fire in the execution of

the program. So far, we have associated an existential Datalog program G∃ with our original

program G. Existential Datalog is already well-established, and has a well-defined semantics

[12]. So why do we need to worry about matters of rule applicability in the first place? There

are two issues we need to pay attention to:

1. It is not immediately clear, how rule applications adhere to the measurable structure

of our underlying spaces of database instances. Quite naturally, multiple rules might be

applicable at once, leaving us with the burden to come upwith a policy for rule execution.

In order to transform the probability measure in a well-defined way, this policy has to

be measurable (in a sense that will become clear below).

2. Usually, the choice of policy is not unique. Even if the outcomes of the existential pro-

gram do not depend on the chosen policy, we still need to argue that different policies

do not produce different probability distributions.

We start by formalizing the relevant notions to tackle the first problem, and defer the discussion

of the second problem to Section 6.

If i = i (®G) is a formula with free variables ®G , then we let �i ⊆ � | ®G | denote the domain of

the valuations of ®G , which is the Cartesian product of the attribute domains. The space �i is

naturally equipped with the corresponding product f-algebraVi obtained from the attribute

spaces.

Definition 3.6. Let i = i (®G) ∈ G∃ and let ®D ∈ �i . Let � ∈ � be a database instance. Then i

is applicable for valuation ®D if � 6 |= iℎ (®D) and � |= i1 (®D). The rule i is called applicable if such

®D exists. ⊳
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Suppose i is a rule of G∃ with iℎ = iℎ (®Gℎ) and i1 = i1 (®G). Recall that �i is the space of

valuations of the free variables ®G in the rule. The ground space ofi (or, space of head groundings

of i ) is defined as follows.

• Ifi is existential, say iℎ (®Gℎ) = ∃I : '(C1, . . . , C<−1, I) for an<-ary relation symbol ', then

�
(ℎ)
i ≔ dom1 (') × · · · × dom<−1 (').

• Otherwise, say if iℎ (®Gℎ) = '(C1, . . . , C<), then�
(ℎ)
i ≔ dom1 (') × · · · × dom< (').

Again, �
(ℎ)
i is equipped with the corresponding product f-algebra V

(ℎ)
i , which makes

(�(ℎ)i ,V
(ℎ)
i ) standard Borel. We consider the function ci : �i → �

(ℎ)
i that maps valua-

tions of ®G to valuations of the full tuple in the head atom. For example, for the rule i (G,~) =(
∃I : '(G, G, 1, I) ← ( (G,~),) (~, G)

)
, we have

�i = dom1 (() × dom2 (() = dom2 () ) × dom1 () ),
�
(ℎ)
i =

{
(D1, D2, D3) : D8 ∈ dom8 (')

}
and

ci (G, ~) = (G, G, 1) for all (G, ~) ∈ �i .

Lemma 3.7. For all rules i it holds that ci is (Vi ,V
(ℎ)
i )-measurable. ⊳

Proof. For all i , ci is a composition of the following kinds of functions: projections (G,~) ↦→ G ,

transpositions (G,~) ↦→ (~, G), repetitions G ↦→ (G, G), and appending constants G ↦→ (G, 2). All
of these are measurable with respect to the corresponding standard Borel product f-algebras,

and so are their compositions. �

Definition 3.8. The set of applicable pairs for an instance � ∈ � is given by

App(�) =
{
(i, ®0) : i applicable for some ®D with ci (®D) = ®0

}
. ⊳

For any database instance � , the set App(�) tells us which rules are applicable, and under

which valuations of their free variables. Later, when we talk about executions of a program,

reaching an instance � with App(�) = ∅, intuitively means that the program terminates. We

are going to analyze the properties of App in order to show that we can select one particular

pair from each App(�) in a measurable way.

Example 2.4 (continued). We consider two artificial examples of database instances� of schema

(E∃ ∪I∃). Suppose that the rules of G∃
sal

(see Figure 6) are enumerated as i1, . . . , i5, from top

to bottom. Thus,

i4 = i4(B, 2, 3, `)
=
(
∃I : Res′(B, 2, `, 10 000, I) ← AffilEmployee(B, 2, 3), PayScale(2, 3, `)

)
and

i5 = i5(B, 2, `, I)
=
(
Res(B, 2, I) ← Res′(B, 2, `, 10 000, I)

)
.
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1. Suppose that � contains exactly the facts5

AffilEmployee(981-00-8876, E-Corp, IT),
AffilEmployee(935-00-3912, E-Corp, IT),
PayScale(E-Corp, IT, $ 63 000).

Then App(�) contains exactly the two tuples

(i4, 981-00-8876, E-Corp, $ 63 000, $
2 10 000) and

(i4, 935-00-3912, E-Corp, $ 63 000, $
2 10 000).

Note that the department (for both tuples taking the value “IT”) is already projected

away, and that the constant “[$2] 10 000” has been added).

2. Now suppose that � additionally contains the fact

Res′(981-00-8876, E-Corp, $ 63 000, $2 10 000, $ 62,271).

With the presence of the new tuple, i4 is no longer applicable for any valuation with

(B, 2, `) ↦→ (981-00-8876, E-Corp, $ 63 000).

Yet, with the new tuple, i5 is now applicable. In this situation App(�) contains exactly
tuples

(i4, 935-00-3912, E-Corp, $ 63 000, $
2 10 000) and

(i5, 981-00-8876, E-Corp, $ 62,271). ⊳

We let (�,D) be the measurable space of instances associated with the schema E∃ ∪ I∃
(see Section 2.4). Note that the set �App ≔ {� ∈ � : App(�) ≠ ∅} is measurable in (�,D)
using Fact 2.6, because the conditionApp(�) ≠ ∅ is expressible as a Boolean relational calculus
query. We letDApp ⊆ D denote the trace f-algebra of �App. Formally, App is a multifunction

App : �App ⇒ � =
⋃

i ∈G∃
(
{i} ×�(ℎ)i

)
. Therein, � is naturally equipped with the f-algebra

A ≔
⊕

i ∈G∃
(
{i} ⊗V(ℎ)i

)
.

Our goal is to show that App is ameasurable multifunction, and apply the Theorem of Kura-

towski and Ryll-Nardzewski (see Fact A.5) to obtain a measurable selection. Such a measurable

selection is the kind of measurable “policy” we sought to obtain.

Lemma 3.9. Let G ∈ A. Then App−1 (G) = {� ∈ �App : App(�) ∩ G ≠ ∅} ∈ DApp ⊆ D. ⊳

That is, for every measurable set G of potentially applicable pairs, the set of instances where

a pair from G really is applicable, is measurable.

5Units are only displayed for illustration, and not part of the tuples.
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Proof. The function � ↦→ App(�) can be expressed as a relational algebra view + as follows.

For every rule i (®G) there exists a relational algebra query&i that on input � returns all tuples

®D where ®D is a valuation of the free variables of i making i applicable. Then ci ◦&i (with ci
being applied pointwise) is a measurable query as well. Our view+ finally is the deduplication

of
⋃

i ∈G∃{i} × (ci ◦&i) (�). Then for all G ∈ A it holds that

App−1 (G) = + −1
(
I (G, 0)c

)
where I (G, 0)c is the set of instances in the associated instance measurable space that contain

at least one fact from G. Since + is measurable by Fact 2.6, the claim follows. �

It easily follows that App is a measurable multifunction on �App.

Corollary 3.10. There exists a measurable function app : �App → � such that for all� ∈ �App

it holds that app(�) ∈ App(�). ⊳

Subsequently, we use a measurable selection app to resolve the case of multiple rules being

applicable in a deterministic way. If multiple rules are applicable (i. e. multiple tuples could

be produced, possibly via sampling), the function app selects the rule that is allowed to fire

together with the relevant part of the valuation.

Remark 3.11. With the introduction of ci into App, we rectify an inaccuracy of the conference

version [35]. There, for the sake of simplicity, we did not distinguish valuations ®D that make a

rule i applicable, and the resulting tuple ci (®D). With the above, we have made this distinction

explicit. Technically, the simplification raises no problems due to the measurability of ci . Yet,

possible projections have to be accounted for in the parallel chase procedure. We elaborate on

this in the section on the parallel chase (Section 5). ⊳

3.5. Follow-Up Instances

For upgrading the semantics of Datalog∃ to a probabilistic one (according to the original

GDatalog program G), we need a measurable correspondence between “intermediate in-

stances” that occur during the execution of the program and all the “follow-up instances” or

“extensions” that emerge from such instances by a single rule application. Intuitively, when-

ever a rule is applicable (that is, its body is satisfied but its head is not), it may fire. If the rule is

deterministic, then the ground fact from the head of the rule gets added to the current database

instance. If the rule is probabilistic, then the ground fact from the head of the rule gets added

with some valuation of the existentially quantified variable and we get a distribution over the

follow-up instances according to the parameterized distribution from the original rule. The

present section is devoted to formalizing this set-up.

Let i be a rule of G∃ with ground space (�(ℎ)i ,V
(ℎ)
i ). If i is existential, then its correspond-

ing original rule in G contains a Ψ-term, say using the parameterized distribution k . We let

(�i ,Wi , `i) ≔ (�k ,Wk , `k ) be the underlying space of k . The elements of �i are called

the sample outcomes of i and (�i,Wi) the sample space of i .

Remark 3.12. For every deterministic rule i , we introduce a dummy measure space

(�i ,Wi , `i) with �i = {∗} some fixed singleton set, Wi its powerset, and `i the function

with {∗} ↦→ 1. ⊳
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We let (�i,Fi) = (�',F') if ' is the relation symbol in the head of i . For all existential

rules i , all ®0 ∈ �
(ℎ)
i , and all 1 ∈ �i , we let 5i ( ®0, 1) ∈ �i denote the fact that is obtained by

substituting ®0 and1 into the atom in the head ofi . We define 5i ( ®0, 1) similarly for deterministic

rules, but in this case, the value 1 = ∗ is just discarded. In particular, for all i , 5i is a function

5i : �
(ℎ)
i ×�i → �i .

Example 2.4 (continued). Consider rule i4 of G∃sal (see Figure 6). Let

®0 = (981-00-8876, E-Corp, $ 63 000, $2 10 000) ∈ �(ℎ)i4

and let 1 = $ 62,271 ∈�i4 be a sample outcome. Then

5i4 ( ®0,1) = Res′(981-00-8876, E-Corp, $ 63 000, $ 10 000, $ 62,271). ⊳

When (i, ®0) is an applicable pair in an instance � , then i is applicable for some ®D ∈ c−1i ( ®0).
In that situation, i may fire, which amounts to sampling a value 1 ∈ �i , and adding the fact

5i ( ®0, 1) to � . We first describe this process of adding facts formally, and regardless of rule

applicability. Note that clearly, 5i is (V(ℎ)i ⊗Wi ,Fi)-measurable, as it just prepends the right

relation symbol to its argument.

We consider two kinds of extension functions, the sequential extension function and the par-

allel extension function. The sequential extension function captures the effect of firing a single

rule in a database instance. In essence, if (i, ®0) is applicable in � and 1 a possible sample out-

come for the parameterized distribution in i , the sequential extension function maps � to the

instance that is obtained by adding 5i ( ®0,1) to� . The parallel extension function does the same

thing, but for the case where multiple rules may fire at once. We will need that both functions

obey certain measurability properties. The remainder of this section formally introduces these

functions, and establishes various kinds of measurability results that are needed later.

The sequential extension function is defined as follows. Recall that G∃ = {i1, . . . , i:}. First,
let

� ≔ � ×
:⋃
8=1

(
{i8} ×�(ℎ)i ×�i

)
=
{
(�,i, ®0, 1) : � ∈ �, i ∈ G∃, ®0 ∈ �(ℎ)i , and 1 ∈�i

}

and letG denote the f-algebra on � constructed in the straight-forward way using the disjoint

union and product constructions. Then the function ext : �→ � with

ext(�,i, ®0,1) = � ∪
{
5i ( ®0,1)

}
is the sequential extension function where 5i is defined as indicated above.

For every tuple ®ℓ ≔ (ℓ1, . . . , ℓ: ) ∈ ℕ: , the parallel extension function with firing configura-

tion ®ℓ is defined as follows. Let

�®ℓ ≔ � ×
:∏
8=1

(
{i8} ×

(
�
(ℎ)
i8
×�i8

) ℓ8 )

=
{(
�, (i8, ®08 98 , 18 9 )8 98

)
: � ∈ �, i8 ∈ G∃, ®08 9 ∈ �(ℎ)i8

, and 18 9 ∈�i8
)
}
.
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As above, we equip �®ℓ with its canonical f-algebraG®ℓ . The function Ext®ℓ : �®ℓ → � with

Ext®ℓ
(
�, (i8, ®08 98 , 18 98 )8, 98

)
= � ∪

:⋃
8=1

ℓ8⋃
98=1

{
5i8
( ®08 98 , 18 98 )

}

is called a parallel extension function.

Definition 3.13 (Follow-Up Instances). Let � ∈ �.

1. If (i, ®0) is applicable in � , then every instance ext(�,i, ®0, 1) with 1 ∈ �i is called a

follow-up instance of � with respect to (i, ®0) under sequential rule execution.

2. If App(�) ≠ ∅, then every instance Ext®ℓ (�, (i8, ®08 98 , 18 98 )) is called a follow-up instance

of � with respect to App(�) under parallel rule execution, with firing configuration
®ℓ = (ℓ1, . . . , ℓ: ), App(�) = {(i8, ®08 98 ) : 1 ≤ 8 ≤ : , 1 ≤ 98 ≤ ℓ8}, and 18 98 ∈�i8

. ⊳

Note that when discussing follow-up instances Ext®ℓ (�, (i8, ®08 98 , 18 98 )), an entry ℓ8 = 0 in the

configuration ®ℓ corresponds to the rule i8 not being able to fire in � .

For a given instance and fixed pairs (i, ®0), the various sets of follow-up instances are mea-

surable.

Lemma 3.14. Let � ∈ �.

1. For all i ∈ G∃ and all ®0 ∈ �(ℎ)i it holds that

⋃
1∈�i

ext(�,i, ®0,1) ≕ ext(�,i, ®0,�i) ∈ D.

2. For all ®ℓ = (ℓ1, . . . , ℓ: ) ∈ ℕ: and all i8 ∈ G∃ and ®08 98 ∈ �
(ℎ)
i8

where 8 = 1, . . . , : and

98 = 1, . . . , ℓ8 for all 8, it holds that⋃
18 98 ∈�i8
for all 8, 98

Ext®ℓ
(
�, (i8, ®08 98 , 18 98 )8, 98

)
≕ Ext®ℓ

(
�, (i8, ®08 98 ,�i8

)8, 98
)
∈ D. ⊳

Proof. Consider the first part of the lemma and fix � ∈ � and (i, ®0) ∈ App(�). Then

5i ( ®0,�i) = {5i ( ®0, 1) : 1 ∈�i} ∈ Fi , and it holds that

ext(�,i, ®0,�i) =
( ⋂
5 ∈�
C( 5 , 1)

)
∩ C( 5i ( ®0,�i ), 1) ∩ C

(
(� ∪ 5i ( ®0,�i ))c, 0

)
.

This is a finite intersection of counting events, so the claim follows.

The second part of the lemma can be shown analogously. �

In the remainder of this section, we show that the sequential and parallel extension functions

are measurable. Recall thatF is the f-algebra on the space � of all facts.
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Lemma 3.15. It holds that
{
(�, 5 ) ∈ � × � : 5 ∈ �

}
∈ D ⊗F. ⊳

Proof. Recall that � is a Polish space. We fix a compatible Polish metric on �, as well as a

countable dense set �0 ⊆ �. Then for all � ∈ � and 5 ∈ � it holds that

5 ∈ � ⇐⇒ ∀ Y > 0 ∃ 5Y ∈ �0 : (�, 5 ) ∈ C
(
�Y ( 5Y), >0

)
× �Y ( 5Y),

where �Y ( 5Y) denotes the open ball of radius Y around 5Y . The above equivalence easily trans-

lates to a countable combination of products of counting events and open balls. Thus, it follows

that {(�, 5 ) : 5 ∈ �} ∈ D ⊗F. �

It follows from Lemma 3.15 and the measurability of 5i that

{(�,i, ®0,1) ∈ � : 5i ( ®0,1) ∈ �} ∈G, (3.5)

as it is the intersection of the set from Lemma 3.15 with

:⋃
8=1

(
� × 5 −1i8

(�i8
)
)
.

Proposition 3.16 (Measurability of the Extension Functions).

1. The function ext : �→ � is (G,D)-measurable.

2. For all ®ℓ ∈ ℕ: , the function Ext®ℓ : �®ℓ → � is (G®ℓ,D)-measurable. ⊳

Proof. Note that (1) is a consequence of (2), since

ext−1 (D) = Ext−1®41 (D) ∪ · · · ∪ Ext
−1
®4: (D)

where ®41, . . . , ®4: are the : unit vectors. We will only show (2) for the special case of : = 1 and
®ℓ = (2) and indicate in the end how the proof can be generalized to arbitrary : and ®ℓ .
Let L ∈ F and = ∈ ℕ. It holds that (�,i, ®0,1, i, ®0′, 1 ′) ∈ Ext−1(2)

(C(L , =)) if and only if one

of the following holds (with 5 ≔ 5i ( ®0,1) and 5 ′ ≔ 5i ( ®0′, 1 ′)):

(i) � ∈ C(L , = − 2) and 5 , 5 ′ ∈ L with 5 ≠ 5 ′ and 5 , 5 ′ ∉ � .

(ii) � ∈ C(L , = − 1) and
• 5 ∈ L but 5 ′ ∉ L and 5 ∉ � , or

• 5 = 5 ′ ∈ L and 5 = 5 ′ ∉ � .

(iii) � ∈ C(L , =) and
• 5 , 5 ′ ∉ L , or

• 5 ∈ L but 5 ′ ∉ L and 5 ∈ � , or
• 5 , 5 ′ ∈ L and 5 , 5 ′ ∈ � .
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Thus, Ext−1(2)
(
C(L , =)

)
is the union of the sets described in the items above. The individual

sets are measurable using the measurability of 5i , by the measurability of (3.5), and by the

measurability of the diagonal {( 5 , 5 ) : 5 ∈ �i} in �i × �i .

With the same ideas, the proof can be generalized to any firing configuration ®ℓ and any

number of rules. All that is needed is a similar case distinction for facts 51, . . . , 5< (with< =

ℓ1 + · · · + ℓ: ) over the number of facts of L that are contained in � , over the number of facts

among 51, . . . , 5< that belong to L , and over whether some of the 51, . . . , 5< are equal. �

We let b andΞ®ℓ denote the characteristic functions of the graphs of ext and Ext®ℓ , respectively.
That is, b : �→ {0, 1} is defined by

b (�,i, ®0, 1, � ′) =
{
1 if ext(�,i, ®0, 1) = � ′ and

0 otherwise,
(3.6)

and Ξ®ℓ is defined similarly.

Corollary 3.17.

1. The function b is (G ⊗D,Bor (ℝ))-measurable.

2. The function Ξ®ℓ is (G ⊗D,Bor (ℝ))-measurable for all ®ℓ ∈ ℕ: . ⊳

Proof. By Proposition 3.16, the functions ext and Ext®ℓ are measurable. Thus, their graphs are

measurable sets in the corresponding product space. Since characteristic functions of measur-

able sets are measurable, the claim follows. �

3.6. Induced Functional Dependencies

Following [5], with every existential rule i of G∃ , we associate a functional dependency FD(i)
in the following way. Recall that we assumed that all existential rules have the atom in their

head in the format '(®D, ®?, I) where I is the existentially quantified variable. Suppose ' is the

relation symbol in the head of i with attributes �1, . . . , �: . Then FD(i) is the functional

dependency ' : �1, . . . , �:−1 → �: . Then this functional dependency intuitively expresses that

there is at most one value of the random (resp. existential) attribute when all other attribute

values are fixed, cf. [5, p. 22:8].

Recall that (�,D) is the measurable space of database instances of schema E∃ ∪ I∃. Input
instances are restricted to the schema E∃. We denote by (�in,Din) the measurable space of

instances over E∃. Note that�in ⊆ � andDin ⊆ D.

The following is easy to check using the definitions of App, 5i , ext and Ext.

Lemma 3.18 (cf. [5, Proposition 4.2]). Let i be an existential rule of G∃. Then the following

holds:

1. Every database instance � ∈ �in satisfies FD(i).
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2. If � ∈ � and App(�) ≠ ∅, then � satisfies FD(i). Moreover, for all (i, ®0) ∈ App(�), and
all 1 ∈�i , the follow-up instance ext(�,i, ®0, 1) satisfies FD(i) as well. Likewise, it holds
that Ext®ℓ (�, (i8, ®08 98 , 18 98 )8, 98 ) satisfies FD(i) where App(�) = {(i8, ®08 98 ) : 1 ≤ 8 ≤ : , 1 ≤
98 ≤ ℓ8} and 18 98 ∈�i8

for all 8, 98 . ⊳

This result intuitively means that in the execution of our programs, we will only ever have

a single sample outcome for a given instantiation of head variables. This becomes crucial at a

later point, as it allows us to show that the computation steps needed to obtain an intermediate

instance � from an input instance �in to the program are unique.

4. Sequential Probabilistic Chase

The chase of a GDatalog program G corresponds to chasing its Datalog∃ version G∃. We

will construct a chase tree for the Datalog∃ program G∃, the nodes of which are labeled with

database instances, and the edges of which capture applications of rules. Thus, existential

rules lead to nodes with multiple (in our case possibly uncountably many!) children. In the

countable case, one can label the edges to these children with probabilities according to the

probabilistic rule that the existential Datalog∃ rule was constructed from (cf. Section 3.3). This

is the approach [5] took.

We follow the general spirit of this approach. However, the edge labeling outlined above is

only sufficient for domains that are countably infinite at most. Instead of labeling edges, we

label nodes with the probability distribution over their children. Yet, making the distribution

explicit in the chase tree is not necessary, as it is implicit from the current instance � and the

applicable pair we use. In this section, we formalize this procedure and demonstrate how such

chase trees induce a stochastic process on database instances.

Remark 4.1. In the construction of said stochastic process, implicit independence assumptions

are made. Intuitively, we want that if multiple samplings occur along a path, then they are

stochastically independent, as long as there is no logical dependence between them. Thismeans

that random samplings should only depend on the current state of the database where the

corresponding rule and instantiation of variables get applicable, and ultimately comes down to

the stochastic process being Markov (cf. Section 2.1.5). ⊳

Note that from a measure-theoretic point of view, there is no need to associate the execution

of a Datalog program to a tree as we are going to do. We believe though, that doing so is bene-

ficial for exposing the intuition behind the underlying stochastic process and for emphasizing

the connections to the original approach in [5].

Structure of this section

In Section 4.1 we introduce the central notion of chase steps, capturing the effect of a single

rule application from the existential Datalog program, and, in the case of existential rules pro-

viding it with a probabilistic structure based upon the parameterized distribution that induced

the existential rule. This can be thought of as the continuous generalization of the notion of

chase steps from [5]. Chase steps naturally compose into a chase tree, that, in turn, captures

the stepwise execution of the whole program. Along the way, we already make some technical
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observations concerning these notions, before focusing, in Section 4.2, on paths in the chase

tree. These paths correspond to individual runs of the program, including fixed sampling out-

comes for the existential rules. Every chase path either leads to a finite output instance (where

no rules are applicable anymore), or is infinite. In Section 4.3 we formalize this in terms of a

function that maps terminating paths to their output instance, and non-terminating paths to

some error event. Our main concern lies in proving that the probability distribution over chase

paths can be described in terms of stochastic kernels comprising the individual chase steps. We

show this in Section 4.4. This establishes that the chase paths are the paths of a Markov process

over the space of database instances. Combining this with the tools from Section 4.3 allows us

to associate a well-defined output (sub-)probability distribution for our programs.

4.1. Chase Steps and Chase Trees

A chase step captures the semantics of applying a single (applicable) rule to an input instance.

Definition 4.2 (Chase Step). A (sequential) chase step for G is a tuple (�,i, ®0, K , `), where

• � is a database instance in �App (i. e. App(�) ≠ ∅)

• (i, ®0) ∈ App(�) is an applicable pair

• K = ext(�,i, ®0,�i) is the set of follow-up instances of � w. r. t. (i, ®0) under sequential
rule execution, and

• ` is the probability measure onD↾K that is defined as follows:

– If i is an existential rule of G∃, then for all measurable J ⊆ K ,

` (J) =
∫
�i

b (�,i, ®0, · ,J) ·ki 〈®0〉( · ) 3`i , (4.1)

whereki is the parameterized distribution in the rule of G that i originated from.6

– Otherwise,

` (J) =
{
1 if J = {ext(�,i, ®0, ∗)}, and
0 if J = ∅.

(4.2)

⊳

Recall that b (�,i, ®0,1, J) is an indicator telling us whether in � an application of the rule i

with head grounding ®0 and resulting sample 1 leads to an instance in J . Thus, the integral in

(4.1) is the total probability of all samples 1 that lead from � to an instance in J when rule i

is fired with head grounding ®0.

6Note that ®0 contains the full tuple of parameters (cf. 3.4). To be precise, we should write ki 〈®?〉 instead of

ki 〈®0〉, where ®? is the projection of ®0 to the parameter part. Again, all we need is that this transformation is

measurable, but this is clearly the case, because ®0 ↦→ ®? is simply a projection between product measurable

spaces. Alternatively, we could just let ki be a version of the parameterized distribution that ignores those

components of ®0 that do not belong to the parameter. Either way, we just write ki 〈®0〉 and treat ®0 as if it were

the parameter tuple itself.
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1

K :

`` (J)

ext(�,i, ®0,1) = � ′ ∈ K
(a) Discrete case.

�

ext(�,i, ®0,1) = � ′ ∈ K

1

K :

`` (J)

(b) Continuous case.

Figure 7.: Illustration of a (sequential) chase step.

We denote a chase step (�,i, ®0, K, `) as

�
(i,®0)−−−−→ (K, `)

and say that the chase step starts in � , uses (i, ®0), and goes into K with distribution `. Note that

in such a chase step, K and ` are determined by � , i and ®0.
Figure 7 illustrates a sequential chase step �

(i,®0)−−−−→ (K, `) as a directed tree of depth 1

with root � . The children of � are the follow-up instances of � using (i, ®0), and the edge

from � to a follow-up instance � ′ corresponds to a sample outcome 1 ∈ �i . The illustration

also insinuates that the transition from � to � ′ is probabilistic. In particular, note that � has

uncountably many children if the random variable that is sampled has an uncountable support.

Remark 4.3. Recall from Remark 3.12 that for deterministic rules i , we defined �i = {∗} for
some dummy singleton {∗}. Lettingki 〈®0〉(∗) = `i (∗) = 1 in this case, we can regard (4.2) as a

special case of (4.1). This allows us without loss of generality to uniformly treat all the chase

step measures that appear later as if they were of shape (4.1). ⊳

In Definition 4.2, we covertly claimed that ` as in (4.1) and (4.2) is a well-defined probability

measure. We repay the debt by showing that this is indeed the case.

Lemma 4.4. The function ` from Definition 4.2 is well-defined, and a probability measure on

D↾K . ⊳

Proof. Let �
(i,®0)−−−−→ (K, `) be a sequential chase step. Then by Lemma 3.14, it holds that K =

ext(�,i, ®0,�i ) ∈ D. For fixed, measurable J ⊆ K , consider the function

b (�,i, ®0, · ,J) : �i → {0, 1} : 1 ↦→
{
1 if � ∪ {5i ( ®0,1)} ∈ J ,

0 otherwise.
(4.3)

Then b (�,i, ®0, · ,J) maps 1 to 1 if and only if 1 is in the (�,i, ®0)-section of ext−1 (J). In

particular, b (�,i, ®0, · ,J) is
(
Wi ,Bor (ℝ≥0)

)
-measurable, and it follows that

b (�,i, ®0, · ,J) ·ki 〈®0〉
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(as a product of real-valued, measurable functions) is (Wi,Bor (ℝ≥0))-measurable as well.

Thus, the function `, as defined in (4.1) is a well-defined measure. Note that for J = K , the

function from (4.3) is the constant 1-function. Since ki is a parameterized distribution, it fol-

lows that ` is a probability measure. �

Given a database instance� , we can now argue about sequences of follow-up instances using

sequences of chase steps.

· · · �
(i,®0)−−−−→ (K, `) � ′

(i′,®0′)−−−−−→ (K ′, ` ′) · · ·
∋

(4.4)

Here sequences can branch, when the rules that are applied are existential rules of the

Datalog∃ version of G (cf. Figure 7). What we just described is formalized in the notion of

chase trees.

Recall that �App denotes the set of instances � with App(�) ≠ ∅, and that (�,A) is the
space of pairs (i, ®0) with i ∈ G∃ and ®0 ∈ �(ℎ)i .

Definition 4.5. A measurable chase policy is a measurable function app : {� ∈ � : App(�) ≠
∅} → � with the property that app(�) ∈ App(�). ⊳

By Corollary 3.10, a measurable chase policy always exists (as long as any rule is applicable

in some instance at all). Intuitively, if multiple pairs (i, ®0) are applicable in an instance, app(�)
stipulates which of these is used for the next chase step.

Definition 4.6 (Chase Tree). Let �in ∈ �in and let app : �App → � be a measurable chase

policy. The (sequential) chase tree )app,�in
for input instance �in with respect to the GDatalog

program G and app is a labeled countable-depth tree)app,�in
= (+, �,Λ) with labeling function

Λ, root node A ∈ + , and the following properties.

1. The root node A is labeled with �in.

2. If E ∈ + is a leaf node, then it is labeled with an instance �E such that App(�E) = ∅.

3. If E ∈ + is an inner node, then it is labeled with an instance �E such that App(�E) ≠ ∅
and

a) �E

app(�E )−−−−−−→ (K E, `E) is a chase step with (K E, `E) as in Definition 4.2.

b) the function E ′ ↦→ �E′ is a bijection between the children of E and K E . ⊳

In essence, a chase tree captures all possible computations of a GDatalog program according

to a (measurable) chase policy. See Figure 8 for an illustration. Observe that for all �in ∈ �in,

the chase tree)app,�in
is uniquely determined by app. The treemay contain paths of (countably)

infinite length, and it may contain nodes with uncountably many children.

Lemma 4.7. Let �in ∈ �in be an input instance and let app be a measurable chase policy. Then

E ≠ F implies �E ≠ �F for all nodes E ≠ F in the corresponding chase tree )app,�in
. ⊳
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�in

intermediate
instance

instances without
applicable rule

· · ·

Figure 8.: Illustration of a sequential chase tree, cf. Figure 7.

This is shown using the functional dependencies introduced by the Datalog∃ program. The

short proof below is directly transferred from [5] to our setting.

Proof. Let �in and app be fixed and suppose there exist E,F ∈ +
(
)app,�in

)
with E ≠ F such that

�E = �F . LetD be the least common ancestor of E andF in)app,�in
. In particular, the nodeD has

multiple child nodes. Thus, the rule iD from app(�D) = (iD, ®0D ) is existential. Let E ′ andF ′ be
the children ofD on the path to E respectivelyF . Then�E′ = �D ∪{5E} and�F′ = �D ∪{5F} for
some 5E, 5F ∈ �iD

with 5E ≠ 5F. By the setup of )app,�in
, �D ⊆ �E = �F , so 5E, 5F ∈ �E = �F .

This, however, contradicts Lemma 3.18. �

Note that if the GDatalog program G only contains discrete distributions, then any chase

policy app is trivially measurable. In this case, and modulo our changes to the existential

version G∃, we obtain the same chase trees as [5] (omitting any kind of probability labels).

4.2. Chase Paths

For the remainder of the section, we fix an arbitrary input instance �in ∈ �in, and an arbitrary

measurable chase sequence app. Our goal is to construct a Markov process on the space of

database instances (�,D) by embedding the sequential chase tree)app,�in
≕ ) = (+, �,Λ) into

the path space (�l,D⊗l ).

We define a binary relation ⊢app ⊆ � × � (denoted in infix notation) on � as follows. Let

� ∈ �.

• If App(�) = ∅, then � ⊢app � ′ if and only if � ′ = � .

• If App(�) ≠ ∅, then there exists a unique chase step �
app(�)−−−−−−→ (K, `). Then � ⊢app � ′

if and only if � ′ ∈ K .

34



In this section, we drop the subscript and just write ⊢ instead of ⊢app.

Lemma 4.8. The relation ⊢ ⊆ � ×� is measurable, i. e. ⊢ ∈ D ⊗D. ⊳

Proof. We decompose ⊢ depending on the rule prescribed by the chase policy. First observe

{(�,� ′) ∈ �2 : App(�) = ∅ and � ⊢ � ′} = diag(�2) ∩
(
� \ (�App) ×�

)
∈ D ⊗D.

Now fix a rule i ∈ G∃. We conclude the proof by showing

{(�,� ′) ∈ �2 : App(�) ∋ (i, ®0) = app(�) for some ®0 ∈ �(ℎ)i and � ⊢ � ′} ∈ D ⊗D. (4.5)

Recall that (�(ℎ)i ,V
(ℎ)
i ), the space of head groundings of i , is standard Borel. Moreover, recall

that the space of all facts over E ∪ I, (�,F) is standard Borel.
For each of these spaces, we fix compatible Polish metrics, and countable dense sets �0 ∈

V
(ℎ)
i , respectively �0 ∈ F. We let �Y (G) denote the open ball of radius < Y around an element

G in either space.

Then a pair of instances (�,� ′) is contained in the set from Equation (4.5) if and only if

� has the shape {51, . . . , 5=} and it holds that app(�) = (i, ®0) for some ®0 such that � ′ =

{51, . . . , 5=}∪{5i ( ®0, 1)} for some 1 ∈�i . This is the case if and only if there exists some Y0 > 0

such that for all Y ∈ (0, Y0) there exists some ®0Y ∈ �0, and facts 51,Y . . . , 5=,Y ∈ �0 of distance at

least Y0/3 to each other such that

1. app(�) = (i, ®0) for some ®0 ∈ �Y ( ®0Y), i. e. � ∈ app−1
(
i, �Y ( ®0Y)),

2. for all 8 = 1, . . . , =, both � and � ′ contain exactly one fact from �Y ( 58,Y),

3. � contains no fact outside of
⋃=

8=1 �Y ( 58,Y), and

4. � ′ contains no fact outside of
⋃=

8=1 �Y ( 58,Y) ∪ 5i
(
�Y ( ®0Y),�i

)
and contains exactly one

fact in 5i
(
�Y ( ®0Y),�i

)
.

Note that in the condition above, we have that
⋂

Y∈(0,Y0) 5i
(
�Y ( ®0Y),�i

)
= 5i ( ®0,�i), and

that 5i
(
�Y ( ®0Y),�i

)
∈ Fi ⊆ F.

Our condition then describes a measurable set inD ⊗D, as it can be written as a countable

intersection over Y = 1/: , small enough, of counting events and preimages of app. �

The relation ⊢ is our vehicle for embedding the chase tree) into (�l,D⊗l ). Note that every
edge (E,F ) ∈ � corresponds to �E ⊢ �F . The relation ⊢, however contains “loops” �E ⊢ �E

for every leaf E of) . Moreover, as the chase tree starts with the fixed root label �in, there may

be pairs of instances (�,� ′) with � ⊢ � ′ that do not appear as instance labels in the tree) at

all. We only achieve a direct correspondence between ⊢ and the edge relation � of ) , once we

restrict the first component of ⊢ to the set of inner node labels, i. e. to {�E : E ∈ + : App(�E) ≠
∅}. Let

paths(app) ≔
{
(�0, �1, . . . ) ∈ �l : �8 ⊢ �8+1 for all 8 ∈ ℕ

}
and

paths(app, �in) ≔
{
(�0, �1, . . . ) ∈ paths(app) : �0 = �in

}
.
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The elements of paths(app) are called the paths of app and the elements of paths(app, �in) are
called the paths of app starting in �in. Note that paths(app) is the set of paths in ) where all

finite maximal paths have been extended to infinite sequences by repeating the label of the leaf

node infinitely often.

While the full path space (�l,D⊗l ) contains paths completely unrelated to app (and �in),

the sets paths(app) and paths(app, �in) only contain relevant paths for the given GDatalog

program and chase policy.

Remark 4.9. We introduce two separate notions, because we consider two scenarios: the single

input instance scenario, where we evaluate a GDatalog program for a given input instance

�in ∈ �in; and the PDB input scenario, where the input is already a probability distribution

over database instances. Technically, the former can be cast as a special case of the latter. The

single input instance scenario however, is the one originally described by Bárány et al. [5], and

we thus prefer to give it an explicit treatment. ⊳

Using a pairwise intersection of ⊢-pairs in �l , we immediately obtain the following from

Lemma 4.8.

Corollary 4.10. The sets paths(app) and paths(app, �in) are measurable in (�l,D⊗l). ⊳

This concludes the embedding of chase trees into the path space (�l,D⊗l). We are not

interested in the paths themselves though. Intuitively, finite paths in the chase trees need to

be mapped back to database instances.

4.3. Limit Instances

Recall Figure 8. By now, we have described how a GDatalog program spans a “computation

tree” of database instances. Yet (as discussed in Example 3.4, some of these computations (i. e.

paths in the tree) are of infinite length.

The definitions of Bárány et al. [5] also cover infinite paths with their (per path) probability.

We choose a different approach and ignore infinite paths altogether, which we justify by the

following two reasons.

Infinite paths correspond to infinite results of the computation and such “infinite instances”

are not captured by our framework of standard PDBs.

For practical means, arguably any interest lies on finite results. In fact, Bárány et al. put a

strong focus on a restriction to their programs that guarantees all computation paths to be fi-

nite. Yet, we include in our discussion programs that terminate with a positive probability ≤ 1.

In probabilistic programming, it is common practice to consider programs with infinite com-

putation paths and analyze the termination behavior of such [9, 14]. For example, a GDatalog

program with infinite paths is as good as a completely finite one if the probability of all infinite

computation is 0.

With the above, we motivate how we wrap up our semantics of GDatalog with continu-

ous distributions. Further discussion on semantic properties and a glimpse into termination

behavior is given in Section 6.
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intermediate
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terminating paths
↦→ limit instance in �

non-terminating paths
↦→ error event ⊥

(�,D)

(�,D)

(�,D)

...

⊢

⊢

⊢

path space
(�l ,D⊗l )

Figure 9.: Terminating and non-terminating paths in the sequential chase tree.

A path ®� = (�0, �1, �2, . . . ) ∈ �l is called terminating after 8 steps if �8 = � 9 for all 9 > 8,

but �8 ≠ �8−1 (in the case 8 > 0). We call a path ®� terminating if such an 8 exists. The sets

of such paths are easily seen to be measurable in (�l,D⊗l ). Figure 9 shows our intended

mapping from paths to instances. A special error event ⊥ is used as a sink for non-terminating

paths.

We let�⊥ ≔ �∪{⊥} denote the augmented instance space with the additional error event,

andD⊥ = D ⊕ {∅, {⊥}} its f-algebra. Our mapping between�l and�⊥ is defined as follows

limapp ( ®�) ≔
{
�8 if ®� ∈ paths(app) and ®� is terminating at position 8,

⊥ otherwise.
(4.6)

If limapp ( ®�) ≠ ⊥, then limapp ( ®�) is called the limit instance of ®� . Just like limapp, we define

limapp,�in
by using paths(app, �in) instead of paths(app) in (4.6). If limapp,�in

( ®�) ≠ ⊥, then
limapp,�in

( ®�) is called the limit instance of ®� in )app,�in
. We emphasize that the effect of limapp

is indeed that terminating chase paths are mapped to the instance they terminate in, whereas

all infinite chase paths are collectively mapped onto the error event ⊥.
Lemma 4.11. Both limapp and limapp,�in

are bimeasurable. ⊳

Proof. We only show the assertions for limapp. The corresponding results for limapp,�in
are

obtained the same way.

First note that for all ®� ∈ �l it holds that limapp ( ®�) = ⊥ if and only if either ®� ∉ paths(app),
or ®� is not terminating. Thus, lim−1app ({⊥}) ∈ D⊗l .

For J ∈ D, it holds that ®� ∈ lim−1app(J) if and only if there exists 8 ∈ ℕ such that ®� is a path

of app terminating at position 8 with the property that ®� ∈ c−18 (J) (i. e. c8 ( ®�) ∈ J), where
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c8 is the (measurable) projection to the 8th coordinate. Thus, lim−1app (J) ∈ D⊗l , and together

with the above, limapp is (D⊗l ,D⊥)-measurable.

It remains to prove that limapp maps measurable sets to measurable sets. Lemma 4.7 implies

that limapp is injective on lim−1app(�). The lemma only applies to the chase tree for a fixed input

instance�in, but as the input instance remains part of any subsequent instance in the evaluation

of a Datalog program, it directly extends to all input instances. As limapp is measurable, so is its

restriction to lim−1app (�) ∈ D⊗l (with respect to D⊗l↾lim−1app (�) ). Since (�,D) and (�l,D⊗l )
are standard Borel (Proposition 2.7), the assertion follows from Fact A.4. �

4.4. Chase Trees as Markov Processes

In this subsection, we establish a correspondence between a chase tree for a given GDatalog

program and a discrete-timeMarkov process whose state space is the (in general not countable)

space of database instances. We have seen in the previous subsection how paths in a chase tree

naturally correspond to a set of paths of such a process (cf. Section 2.1.5) in the countably

infinite product space (�l,D⊗l ).
To obtain the correspondence to a Markov process, we need to show that the probabilistic

transitions that are encoded within the nodes of any level of the chase tree, or, to be more

precise, by its measurable chase policy, describe a stochastic kernel from (�,D) to itself.
The interpretation of the GDatalog semantics as a database-valued Markov process (which,

by itself, was already recognized in [5, p. 22:14]) makes also apparent that the natural general-

ization of the GDatalog language is to allow the input to be a (sub-)probabilistic database rather

than a single instance. A GDatalog program then induces a mapping from a (sub-)probabilistic

database to a sub-probabilistic database (“losing” the mass of “non-terminating” paths). We

will come back to this at the end of the subsection.

We extend ⊢app to a function ^⊢app : �×D→ [0, 1] where again, if the reference is clear, we
just write ^⊢ . For � ∈ � and J ∈ D we distinguish two cases.

• If App(�) ≠ ∅ with app(�) = (i, ®0) such that�
(i,®0)−−−−→ (K, `) is the corresponding chase

step, then ^⊢ (�,J) ≔ ` (J ∩ K) =
∫
b (�,i, ®0, · ,J ∩ K) ·ki 〈®0〉 3`i .

• If App(�) = ∅, we let ^⊢ (�,J) = ] (�,J) where ] is the identity kernel.

Intuitively, ^⊢ (�,J) = Pr(� ⊢ J) with the latter referring to the probability space for the

chase step starting in � . The following proposition resolves the main technical obstacle for

turning measurable chase policies and sequential chase trees into Markov processes.

Proposition 4.12. ^⊢ is a stochastic kernel. ⊳

Proof. Clearly, ^⊢ (�, · ) is a probability measure for all � ∈ �. The complicated part of the

proof is establishing that ^⊢ ( · ,J) is (Di,Bor [0, 1])-measurable for all J ∈ D.

Let J ∈ D be fixed. It suffices to show for all rules i that ^⊢ ( · ,J) is (Di ,Bor [0, 1])-
measurablewhere (�i ,Di) is the restriction of (�,D) to the instances� withApp(�) ≠ ∅ and
app(�) = (i, ®0) for some ®0 ∈ �(ℎ)i . Note that the corresponding statement for the restriction

to the set of instances� with App(�) = ∅ clearly holds, as ^⊢ is the identity kernel in this case.

38



Thus, leti be a fixed rule ofG∃. Without restriction (see the discussion belowDefinition 4.2),

we always treat i as an existential rule. By Fact 2.3, the function ^1 : �
(ℎ)
i ×Wi → [0, 1] with

^1 ( ®0,H) ≔
∫
H

ki 〈®0〉 3`i

is a stochastic kernel from�
(ℎ)
i to�i . Thus, the function ^2 : (�i ×�(ℎ)i ) ×Wi → [0, 1] with

^2 (�, ®0,H) ≔ ^1 ( ®0,H)

is a stochastic kernel from�i ×�(ℎ)i to�i . The function b ( · , i, · , · ,J) : �i ×�(ℎ)i ×�i →
{0, 1} with

b ( · , i, · , · ,J) : (�, ®0, 1) ↦→ b (�,i, ®0,1, J)

is (Di ⊗V(ℎ)i ⊗Wi ,Bor [0, 1])-measurable, as it is the characteristic function of the i-section

of ext−1 (J), and ext−1 (J) ∈ Di ⊗ V
(ℎ)
i ⊗ Wi by Proposition 3.16. Using Fact A.2 for

b ( · , i, · , · ,J) and ^2, the function

6 : �i ×�(ℎ)i → [0, 1] : (�, ®0) ↦→
∫
�i

b (�,i, ®0, · ,J) ·ki 〈®0〉 3`i

is (Di ⊗V(ℎ)i ,Bor [0, 1])-measurable. Observe that the function ℎ : �i → �i ×�(ℎ)i with

ℎ(�) ≔ (�, ®0)

is (Di ,Di ⊗ V
(ℎ)
i )-measurable by the measurability of app, and using Fact A.1. Thus, for all

G ∈ [0, 1], it follows that

^⊢ ( · ,J)−1 [0, G) = {� ∈ � : ^⊢ (�,J) < G} =
(
ℎ−1 ◦ 6−1

)
[0, G) ∈ D,

entailing the claim. �

Proposition 4.12 directly implies the following by Kolmogorov’s existence theorem

(Fact A.8).

Corollary 4.13. Let app be a measurable chase policy and let (�,D, %) be a sub-probabilistic

database. Then there exists a Markov process with state space (�,D), with initial distribution %

and with transition kernels ^⊢ . ⊳

Note that every sub-probability measure ®% on the path space (�l,D⊗l ) defines a push-

forward sub-probability measure ®% ◦ lim−1app (or ®% ◦ lim−1app,�in
, respectively) on (�⊥,D⊥). Thus,

every Markov process like in Corollary 4.13 defines an output sub-probabilistic database. The

semantics of our GDatalog program G, finally, is said output.

Theorem 4.14. Let app be a measurable chase policy.

1. For all �in ∈ �in, the program G on input �in defines a sub-probabilistic database

Gapp (�in) with respect to app.
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2. For all sub-probabilistic databases D = (�in,Din, %), the program G on input D defines a

sub-probabilistic database Gapp (D) with respect to app. ⊳

For the first part of the above theorem, we let the initial distribution of Corollary 4.13 be

the Dirac one on the instance �0.
7 For the second part, the initial distribution is the sub-

probability distribution of the input sub-probabilistic database. Note that even if the input

D is a probabilistic database (i. e. % has total mass 1), the output �app may be a proper sub-

probabilistic database.

Remark 4.15. In the end, we might want to get rid of the auxiliary relations that were created in

the translation to the Datalog∃ program. This can be done in a measurable way by a relational

algebra view (cf. Fact 2.6), yielding again a sub-probabilistic database. ⊳

5. Parallel Probabilistic Chase

We obtain another variant of the chase procedure if we allow all applicable rules to fire si-

multaneously. This notion of parallel chase is of interest as it is not depending on having a

measurable chase policy at hand.

Remark 4.1 (continued). Recall our discussion of independence assumptions and the Markov

property from the beginning of Section 4. As there, the parallel chase has independent sampling

in the absence of logical dependencies. This is, in particular, the case for multiple rules firing

in parallel in a single parallel step. ⊳

In this section, we again fix aGDatalog programG, with its Datalog∃ versionG∃, and assume

that G∃ = {i1, . . . , i: }.

Structure of this section

In the following, we introduce the parallel chase for the GDatalog language (Section 5.1) and

construct a Markov process (Section 5.2) as in the sequential case. Most of the definitions

and results are modest extensions of their counterparts in Section 4, thus allowing a briefer

presentation.

5.1. Parallel Chase Steps and the Parallel Chase Tree

If � is a database instance, the firing configuration of � is the tuple ®ℓ (�) = (ℓ1, . . . , ℓ: ) ∈ ℕ:

where ℓ8 = |{®0 : (î8, ®0) ∈ App(�)}| for all 1 ≤ 8 ≤ : . Note that the set �®ℓ of database
instances having a fixed firing configuration ®ℓ is measurable in (�,D), since we know thatApp

corresponds to an Relational Calculus view and the cardinalities in question can be obtained

by a counting aggregation. This yields a measurable mapping by Fact 2.6.

Definition 5.1 (Parallel Chase Step). A parallel chase step for G is a tuple (�,App(�), K, `)
where

7For the initial distributions, just a measure is needed. In particular, the problems of the Dirac distribution with

respect to Fact 2.3 pointed out in Section 2.2 are irrelevant here.
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• � is a database instance in �App, say with firing configuration ®ℓ = (ℓ1, . . . , ℓ: ) such that

App(�) =
{
(i8, ®08 98 ) : 1 ≤ 8 ≤ : and 1 ≤ 98 ≤ ℓ8

}
.

• K is the event

K = Ext®ℓ
(
�,^11, . . . ,^ 1ℓ1, . . . ,^:1, . . . ,^:ℓ:

)
with ^ 8 98 =

{
(i8, ®08 98 , 1) : 1 ∈�i8

}
, and

• ` is the probability measure onD↾K that is defined by

` (J) =
∫
�

Ξ®ℓ
(
�,i1, ®011, 111, . . . , i:, ®0:ℓ: , 1:ℓ: ,J

)
·

:∏
8=1

ℓ8∏
98=1

k8 〈®08 98 〉(18 98 ) 3`⊗ (5.1)

for all measurableJ ⊆ K , wherek8 is the parameterized distribution in the rule of G that

i8 originated from,� =
∏:

8=1 �
ℓ8
i8

and `⊗ is the product measure `⊗ =
⊗:

8=1 `
⊗ℓ8
k8

on�

with `k8
being the measure underlying the parameterized distributionk8 (cf. Section 2.2).

⊳

Note that as before (see Section 4.1), we use a dummy integration for non-existential rules

to enable the unified expression of (5.1). Then, we again concentrate on the existential rules

and interpret the deterministic ones as special cases (cf. Remark 4.3).

Remark 5.2. Note that by definition ofExt®ℓ , the case wheremultiple deterministic ruleswith the

same left-hand sides are applicable, is nicely resolved, and the corresponding fact is only added

once in the extension, i.e., the results from applications of deterministic rules may collapse.

Recall that it may well happen that App(�) contains multiple pairs with first component an

existential rule i , for example (i, ®0) and (i, ®0′). However, for any related sample outcomes 1

and 1 ′ it holds that 5i ( ®0, 1) ≠ 5i ( ®0′, 1 ′) because ®0 ≠ ®0′. That is, if i8 is existential, any follow-

up instance will contain ℓ8 new facts with the relation symbol from the head of i . In particular,

the results from applications of existential rules do not collapse. ⊳

Lemma 5.3. The function ` from Definition 5.1 is well-defined, and a probability measure on

D↾K . ⊳

Proof. This can be shown analogously to Lemma 4.4. That the integral is well-defined follows

from the measurability of Ξ®ℓ and the measurability of the k8 . For the integration, we use a

product density of our parameterized distributions. Thus, in the case K = J , (5.1) collapses to∫ ∏
8

∏
98 k8 〈®08 9 9 〉 3`⊗ = 1 and it follows that ` is a probability measure. �

The use of the product density in (5.1) stipulates the independence assumption we discussed

before—all probabilistic rules that fire together in a parallel chase step do so independently.

Note that by Fact 2.1 and the definition of Ξ®ℓ , the concrete order of the tuples (i8, ®08 9 , 18 9 ) has
no impact on ` whatsoever. Also note that for firing configurations ®ℓ with ℓ8 = 0 for all but one

80 and ℓ80 = 1, (5.1) coincides with (4.1). Figure 10 contains an illustration of a parallel chase

step.
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�

Ext(�,i1, ®011, 111, . . . , i: , ®0:ℓ: , 1:ℓ: ) = � ′ ∈ K

111, . . . 1:ℓ:

K :

`` (J)

Figure 10.: Illustration of a parallel chase step, continuous case.

We denote a parallel chase step (�,App(�), K , `) as

�
App(�)
=======⇒ (K, `).

Note that a parallel chase step is already determined by � (and App) alone. That is, if there

exists a parallel chase step starting in � , it is unique. This is in contrast to the sequential chase

step that additionally depends on a measurable chase policy app of App. In the following, we

adapt the definitions from Sections 4.1 to 4.3 to the parallel setting. For the definition of a

chase tree, all we have to do is take the definition of the sequential chase tree, and replace the

sequential chase steps with parallel ones.

Definition 5.4 (Parallel Chase Tree). Let �in ∈ �in. The parallel chase tree )App,�in
for in-

put instance �in with respect to the GDatalog program G is a labeled countable-depth tree

)App,�in
= (+, �,Λ) with labeling function Λ, root node A ∈ + , and the following properties.

1. The root node A is labeled with �in.

2. If E ∈ + is a leaf node, then it is labeled with an instance �E such that App(�E) = ∅.

3. If E ∈ + is an inner node, then it is labeled with an instance �E such that App(�E) ≠ ∅
and

a) �E

App(�E )
========⇒ (K E, `E) is a chase step with (K E, `E) as in Definition 5.1, and

b) the function E ′→ �E′ is a bijection between the children of E and K E .

⊳

For all �in ∈ �in, the parallel chase tree )App,�in
is unique. As for the sequential chase tree,

)App,�in
has paths of at most countable length but may contain nodes with uncountably many

children. Again, the tree is labeled injectively. This can be shown just like Lemma 4.7.

Lemma 5.5. Let �in ∈ �in. Then E ≠ F implies �E ≠ �F for all E ≠ F in )App,�in
. ⊳
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We proceed with the introduction of parallel versions of the various relations and functions

encountered in Sections 4.2 and 4.3. First, we define a parallel version of the relation ⊢ from
Section 4.2. Our new relation  ⊆ �2, again denoted in infix notation, is defined just like ⊢,
except that the sequential chase step is once more replaced by a parallel one:

• If App(�) = ∅, then �  � ′ if and only if � = � ′.

• If App(�) ≠ ∅, there exists a unique parallel chase step �
App(�)
=======⇒ (K, `) starting in � .

In this case, �  � ′ if and only if � ′ ∈ K .

We let

paths(App) ≔
{
(�0, �1, . . . ) ∈ �l : �8  �8+1 for all 8 ∈ ℕ

}
and

paths(App, �in) ≔
{
(�0, �1, . . . ) ∈ paths(App) : �0 = Din

}
.

Again, paths(App, �in) corresponds to the paths in)App,�0 where finite paths are continued

by repeating the last instance label infinitely often. We keep using the notions of terminating

paths and paths terminating at position 8 from Section 4.2.

To map paths to instances in the parallel setting, we define limApp : �
l → �⊥ by

®� ↦→
{
�8 if ®� ∈ paths(App) and ®� is terminating at position 8,

⊥ otherwise.
(5.2)

Again, we define a version limApp,�in
of limApp where using paths(App, �in) instead of

paths(App) in (5.2).

The relations, sets and functions we just defined enjoy properties analogous to their sequen-

tial counterparts (cf. Lemmas 4.8 and 4.11 and Corollary 4.10).

Lemma 5.6.

1. The relation  ⊆ �2 is measurable inD ×D.

2. The sets paths(App) and paths(App, �in) are measurable in (�l,D⊗l ).

3. Both limApp and limApp,�in
are bimeasurable. ⊳

Proof. The proofs are easy extensions of the proofs of Lemmas 4.8 and 4.11 and Corollary 4.10.

1. Let ®ℓ be a fixed firing configuration. For the set of instances having firing configuration
®ℓ , we can decompose App into a sequence of

∑
8 ℓ8 measurable selections as follows. We

start withApp0 ≔ App(�) and note that |App0 (�) | =
∑

8 ℓ8 . AsApp is a measurable mul-

tifunction, it has a measurable selection app1. We set App1 (�) ≔ App(�) \ {app1 (�)}.
One can easily show that {� ∈ � : App1 (�) ≠ ∅} is measurable, and that App1 is a

measurable multifunction on this set (as long as it is non-empty). Repeating this process

for 9 = 1, . . . ,
∑

8 ℓ8 , we obtain functions app1, . . . , app
∑

8 ℓ8
. If (i (8), ®0 (8) ) = app8 (�), then

for all 1 (8) ∈�i (8 ) it holds that

Ext®ℓ
(
�, (i (8), ®0 (8) , 1 (8) )) = ext

(
. . . (ext(�,i (1), ®0 (1) , 1 (1) ) . . . ), i (

∑
8 ℓ8 ) , ®0 (

∑
8 ℓ8 ) ) (5.3)
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To see this note that on any database instance � with |App0 (�) | =
∑

8 ℓ8 , our sequence

of app-functions yields a sequence of pairs (i, ®0). The only situation in which several

of these pairs yield the same resulting tuple 5i ( ®0,1) = 5i′ ( ®0′, 1 ′) is when i and i ′ are

two different deterministic rules (with the same head), with ®0 = ®0′ and ®1 = ®1 ′ = ∗. Thus,
there are two pairs (i, ®0) and (i ′, ®0) among the sequence (app8 (�))8 . Even though the

one of these two that appears “later” is not an applicable pair anymore in the intermediate

instance constructed in (5.3), this is no problem, for if 5i ( ®0, ∗) is already contained in an

intermediate instance � ′, then by definition ext(� ′, i ′, ®0, ∗) = � ′.

Now with our sequence of app-functions (resp. of pairs (i (8), ®0 (8) )), we can proceed as

in Lemma 4.8, where we showed the measurability of the set (4.5). There, we described

the membership of a pair (�,� ′) in the relation ⊢ by countably approximating � and

� ′ = � ∪ {5i ( ®0, 1)} (for some 1). The only thing that changes is that now � ′ = � ∪
{5i1 ( ®0 (1) , 1 (1) ), . . . , 5i:

( ®0 (
∑

8 ℓ8 ) , 1 (
∑

8 ℓ8 ))} (for some 1 (1) , . . . , 1 (
∑

8 ℓ8 ) ).

2. This follows immediately from (1).

3. This can be shown just like Lemma 4.11, with the only change being the use of App

instead of app, and using Lemma 5.5 instead of Lemma 4.7. �

5.2. The Markov Process for Parallel Chasing

In analogy to Section 4.4, we show in this section how the parallel chase defines a Markov

process of database instances.

We define ^ : � ×D→ [0, 1] as follows. Let � ∈ � and J ∈ D.

• If App(�) ≠ ∅ and �
App(�)
=======⇒ (K, `) is the corresponding parallel chase step, then

^ (�,J) = ` (J ∩ K) with ` as in Definition 5.1.

• If App(�) = ∅, then ^(�,J) = ] (�,J) where ] is the identity kernel.

Intuitively, ^(�,J) = Pr(�  J) with the latter referring to the probability space defined for

the chase step starting in � .

Proposition 5.7. ^ is a stochastic kernel. ⊳

The proof is similar to that of Proposition 4.12.

Proof. By Lemma 5.3 and the definition of^, the function^(�, · ) is a probabilitymeasure for

all � ∈ �. So again, the harder part is to show that ^( · ,J) is (D,Bor [0, 1])-measurable. For

this, it suffices to show that the restriction of ^( · ,J)−1 [0, U) to any fixed firing configuration
®ℓ is inD for all U ∈ [0, 1]. The claim then follows since there are only countably many ®ℓ , since
the set �®ℓ = {� ∈ � : ®ℓ (�) = ®ℓ} is measurable, and since the sets [0, U) generateBor [0, 1].

We use the trick of the proof of Lemma 5.6(1) and decompose App into multiple mea-

surable selections. With these selections we construct a measurable function � ↦→
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(�,i1, ®011, . . . , i: , ®0:ℓ: ). With a repeated application of Fubini’s theorem to the definition of

` (see Definition 5.1), we obtain that for all J it holds that

` (J) =
∑
®ℓ

∫
�

Ξ®ℓ
(
�,i1, ®011, 111, . . . , i:, ®0:ℓ: , 1:ℓ: ,J ∩�®ℓ

)

·
:∏
8=1

ℓ8∏
98=1

k8 〈®08 98 〉(18 98 ) 3
(
`⊗ℓ1
k1
⊗ · · · ⊗ `

⊗ℓ:
k:

)

=
∑
®ℓ

∫
�1

k1〈®011〉(111) · · ·
∫
�:

k: 〈®0:ℓ: 〉(1:ℓ: )

· Ξ®ℓ
(
i1, ®011, 111, . . . , i:, ®0:ℓ: , 1:ℓ: ,J ∩�®ℓ

)
3`k:

. . . 3`k1

(Note that there are ℓ1 + · · · + ℓ: integrals in every summand of the last expression above.) In

this situation, proceeding exactly like in the proof of Proposition 4.12, one can show that the

innermost integral is(
D ⊗ U⊗ℓ11 ⊗ · · · ⊗ U⊗ℓ:−1

:−1 ⊗ P
(
{i: }

)
⊗V(ℎ)i:

,Bor [0, 1]
)
-measurable, (5.4)

whereU8 is the f-algebra of {i8 }×�(ℎ)i8
×�i8

. Using the sequence of measurable functions we

introduced before, we can get rid of the trailing P
(
{i: }

)
⊗V(ℎ)i:

in (5.4) just like in the proof

of Proposition 4.12. Propagating the above procedure outwards yields that (the mentioned

restriction of) ^ is (D,Bor [0, 1])-measurable. �

By the merit of Proposition 5.7, we can construct a Markov process analogously to Sec-

tion 4.4.

Corollary 5.8. Let (�,D, %) be a sub-probabilistic database. Then there exists a Markov process

with state space (�,D), with initial distribution % and with transition kernels ^. ⊳

Mapping the paths of the process back to instances using limApp, the parallel chase also

generates an output sub-probabilistic database.

Theorem 5.9.

1. For all �in ∈ �in, the program G on input �in defines a sub-probabilistic database

GApp (�in).

2. For all sub-probabilistic databases D = (�in,Din, %), the program G on input D defines a

sub-probabilistic database GApp (D). ⊳

6. Semantic Properties of Generative Datalog

6.1. Chase Independence

Let G be a GDatalog program. We know from Theorems 4.14 and 5.9 that for every input

sub-probabilistic database D, G defines outputs GApp (D) for parallel steps and Gapp (D) for
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sequential steps where app is a measurable chase policy. In this section we show, that the

output is independent of the chase procedure and, in particular, independent of the choice of

policy in the sequential chase.

Theorem 6.1. For all input instances �in ∈ �in and all measurable chase policies app we have

Gapp (�in) = GApp (�in). ⊳

Remark 6.2. In the light of the above result, it is natural to askwhywe introduced the sequential

version (Section 4) in the first place, when the semantics could just have been introduced using

the parallel chase. Apart from the sequential version being the more typical approach to the

semantics, having both the sequential, and the parallel version at hand, together with the fact

that they yield the same result, renders the semantics of GDatalog programs quite robust. The

original motivation for introducing the parallel chase was, in fact, just to establish that the

sequential chase does not depend on the choice of chase policy. The paper [5] features a similar

statement but does not introduce a parallel version of the chase. Thus, the sequential chase also

serves the purpose of connecting our work to [5]. ⊳

We outline the proof of Theorem 6.1 and ask the reader to already have a peek at Figure 11.

We will fix an event J in the output and show that it has the same measure in both processes.

For this, it suffices to come upwith an easier to handle countable partition ofJ into measurable

sets and show that the measures coincide on each set of the partition. This partition roughly

brings paths in the existential and the parallel chase trees into a one-to-one correspondence

with respect to the effect of rule applications.

Proof of Theorem 6.1. Let `⊗
app,�in

denote the probability measure on the path space (�l,D⊗l )
of the Markov process associated with the sequential chase using app. Likewise, we let

`⊗
App,�in

denote the probability measure on (�l,D⊗l) from the parallel chase. That is,

`⊗
app,�in

◦ lim−1app,�in
is the sub-probability measure of Gapp (�in), and `⊗

App,�in
◦ lim−1App,�in

is the

sub-probability measure of GApp (�in). Let i1, . . . , i: be the rules of G∃.
First note that if � is the label of a leaf in)app,�in

, then it is also the label of a leaf in)App,�in
,

and vice versa.8 We call the (unique) path from �in to � (in either tree) the (�in, �)-path. If �
is a leaf label, then the set of facts that are produced on the (�in, �)-path in )app,�in

coincides

with the set of facts that are produced on (�in, �)-path in )App,�in
. We say a rule fires on a

path if it appears in one of the chase steps along the path. If � is a leaf label, then for every

existential rule i of G∃, the number of times it fires on the (�in, �)-path in)app,�in
is equal to

the number of times it fires on the (�in, �)-path in )App,�in
.

Consider two paths, one in)app,�in
and one in)App,�in

, that end in a leaf with the same label.

For these two paths, we say that the application of i in the sequential chase produces the same

fact as the application of i ′ in the parallel chase, if there exist intermediate instances � (in the

sequential chase) and � ′ (in the parallel chase) such that all of the following holds.

• For all 1 it holds that 5i ( ®0,1) = 5i′ ( ®0′, 1) ≕ 51 where (i, ®0) = app(�) and (i ′, ®0′) ∈
App(�).

• The instance � ∪ {51} is the successor instance of � on the path in )app,�in
.

8This is not complicated to verify, but tedious. A proof of this can be found in [52, Lemma 6.4.14].
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• The instance� ′∪{51} is contained in the successor instance of� ′ on the path in)App,�in
.

We say that an instance � , the rule application of i in the sequential chase produces the

same fact as a rule application of i ′ in the parallel chase, if 5i ( ®0, 1) = 5i′ ( ®0′, 1)

We now fix an arbitrary measurable set J ∈ D and show that

`⊗
app,�in

(
lim−1app,�in

(J)) = `⊗
App,�in

(
lim−1App,�in

(J)) .
Let<,= ∈ ℕ. For 8 = 1, . . . ,< let � (8) be a {0, 1}-valued = × :-matrix

� (8) =
©«
2
(8)
11 . . . 2

(8)
1:

...
. . .

...

2
(8)
=1 . . . 2

(8)
=:

ª®®®¬
.

We call such a matrix a correspondence matrix. We use such matrices to fix correspondences

in paths of our both chase trees (cf. Figure 11). The gist of our approach is to partition the

discussed event J according to correspondence matrices for the paths in our chase trees.

Let i (1), . . . , i (<) be a sequence of< rules and let ®ℓ1, . . . , ®ℓ= be a sequence of = firing config-

urations. Then we define a set

J ®i,®!, ®� = Ji (1),...,i (<) ,®ℓ1,...,®ℓ=,� (1) ,...,� (<)

by letting � ∈ J ®i,®!, ®� if � ∈ J and

1. � is a leaf label on level< in)app,�in
, such that the sequence of rules firing on the (�in, �)-

path in )app,�in
is exactly i (1), . . . , i (<) ; and

2. � is a leaf label on level = in )app,�in
, such that the sequence of firing configurations on

the (�in, �)-path in )App,�in
is exactly ®ℓ1, . . . , ®ℓ= (where ®ℓ9 = (ℓ91, . . . , ℓ9A )); and

3. it holds that 2
(8)
9A = 1 if and only if the application of i (8) in the 8th step in the sequential

chase tree )app,�in
produces the same fact as one of the ℓ9A applications of rule iA in the

9th step in the parallel chase tree)App,�in
.

In essence, the matrix � (8) tells us how the application of i (8) in the sequential chase corre-

sponds to rule applications in the parallel chase, subject the firing sequence we fixed. For an

illustration of the setup of J ®i,®!, ®� , see Figure 11.

Note that if i (8) is an existential rule, then� (8) contains exactly one 1-entry (this is because

all existential rules come with different head relation symbols and since the same fact cannot

be produced by the same existential rule under different instantiations).

If i (8) is deterministic, then all but one row of � (8) are all zeroes (if this were not the case,
then the fact produced by i (8) in the sequential chase would get produced in two different

rounds of the parallel chase, which is impossible by the definition of rule applicability). It can

happen though that 2
(8)
9A = 2

(8)
9A ′ = 1 for some A ≠ A ′. This happens when multiple (deterministic)

rules produce the same fact as the application of i (8) in the 8th step of )app,�in
.
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Figure 11.: Paths obtained from J ®i,®!, ®� in the sequential (left) and the parallel (right) chase tree.

Every instance � ∈ J lies in exactly one set J ®i,®!, ®� . That is, the sets J ®i,®!, ®� partition J

into countably many sets. (Moreover, J ®i,®!, ®� are measurable. They can be expressed using

app, sequences of measurable selections app8 98 (which are introduced below), the measurable

functions 5i and the diagonals in the fact spaces.)

Now let ®J = ®J ( ®i, ®!, ®�) ≔ lim−1App,�in

(
J ®i,®!, ®�

)
. Then, by definition9,

`⊗
App,�in

( ®J )
=

∬
· · ·

∫
1 ®J (�in, �1, . . . , �=−1, �=, �=, . . . )

^(�=−1, 3�=) · · ·^(�1, 3�2) ^(�in, 3�1)

(6.1)

where ^(�8, 3�8+1) is shorthand for 3
(
^(�8, · )

)
.

Recall that for any firing configuration ®ℓ ′ = (ℓ ′1, . . . , ℓ ′: ) for parallel chasing, we can obtain a

sequence of
∑

8 ℓ
′
8 measurable selections app1, . . . , app

∑
8 ℓ
′
8
such that for all � with firing con-

figuration ®ℓ ′ it holds that

App(�) =
{
app9 (�) : 1 ≤ 9 ≤ ∑

8 ℓ
′
8

}
.

(We have already used this in the proof of Lemma 5.6(1), details can be found ibid.) For all

the firing configurations ®ℓ1, . . . , ®ℓ= we fixed before, we chose such a sequence of measurable

selections app8 98 such that app8 9 is the 98th measurable selection belonging to ®ℓ8 = (ℓ81, . . . , ℓ8: ).
In the following we let

(i8 98 , ®08 98 ) ≔ app8 98 (�8)
where 1 ≤ 98 ≤ ℓ81 + · · · + ℓ8: ≕ B8 for all 8 = 1, . . . , =. Moreover, we letk8 98 denote the parame-

terized distribution from rule i8 98 and `8 98 the associated underlying measure (cf. Section 2.2).

9For details see [42, p. 21 & Proposition 8.2].
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Note that since we fixed ®ℓ1, . . . , ®ℓ=, the collections (i8 98 ) 98 , (k8 98 ) 98 and (`8 98 ) 98 do not depend on
�8 .

Now for every measurable function 6 it holds that∫
�

6(�8+1) ^ (�8, 3�8+1) =
∫
�

6
(
Ext®ℓ8 (�8, i81, ®081, 181, . . . , i8B8 , ®08B8 , 18B8 )

)
·k81〈®081〉(181) · . . . ·k8B8 〈®08B8 〉(18B8 ) 3

(
`81 ⊗ · · · ⊗ `8B8

) (6.2)

where � =
∏B8

9=1�i8 9
and 8 ∈ {0, . . . , = − 1} with �0 = �in. The equality in (6.2) is obtained

as follows. We apply the substitution rule (see Fact A.7) for the measurable function Ext®ℓ8 to
transform the domain of integration. With applications of the chain rule (see Fact A.6, we

extractk8 98 from the integration measure.

Now by Fubini’s theoremwe can rewrite the right hand side of (6.2) as an iterated integration

with B8 integrals. We do so from the inside to the outside for all of the integrals appearing in

(6.1). We obtain that `⊗
App,�in

( ®J) is equal to

Γ®J =

∫
1J ®i, ®!, ®�

(
Ext®ℓ=

(
Ext®ℓ=−1

(
· · ·Ext®ℓ1

(
�in, (i191, ®0191, 1191) 91

)
· · ·

)
, (i=9= , ®0=9= , 1=9= ) 9=

) )

·
=∏
8=1

B8∏
98=1

k8 98 〈®08 98 〉(18 98 ) 3
(
`11 ⊗ · · · ⊗ `=B=

)
.

(6.3)

With ®K = ®K ( ®i, ®!, ®�) ≔ lim−1app,�in
(J ®i,®!, ®�), applying the same procedure to the corresponding

expression for `⊗
app,�in

( ®K) yields

W ®K =

∫
1J ®i, ®!, ®�

(
ext(ext(· · · ext(�in, i

(1), ®0 (1) , 1 (1) ), . . . ), i (<) , ®0 (<) , 1 (<) )
)

·
<∏
8=1

k (8) 〈®0 (8) 〉 3
(
` (1) ⊗ · · · ⊗ ` (<)

)
.

(6.4)

We have already argued that the rules, parameterized distributions, and underlying measures

are fixed in these expressions. Yet, we note that the parametrizations ®0 (8) and ®08 98 in (6.4) and

(6.3) depend on the outcome of the previous sample via app and themeasurable selections app8 98
we constructed before. Note that the integrands of (6.3) and (6.4) are functions in 111, . . . , 1=B= ,

respectively 1 (1) , . . . , 1 (<) . Every (suitable) tuple (11B1 , . . . , 1=B= ) gives rise to a random path

�in  �1  �2  . . .  �=

in)App,�in
, that is almost surely contained in ®J = lim−1App,�in

(J ®i,®!, ®�). Likewise, every (suitable)
tuple 1 (1) , . . . , 1 (<) in (6.4) describes a random path

�in ⊢ �1 ⊢ �2 ⊢ . . . ⊢ �<

in )app,�in
that is a. s. contained in ®K = lim−1app,�in

(J ®i,®!, ®�). By the definition of J ®i,®!, ®� , we have
�= = �< ∈ J where no rule is applicable anymore. Recall that in J ®i,®!, ®� , the application of rule
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i (8) in)app,�in
has the same resulting fact effect as 2

(8)
9A of the applications ofiA in the 9th step in

)App,�in
. The confinement to J ®i,®!, ®� establishes a one-to-one correspondence between ®J and ®K ,

resp. between tuples (111, . . . , 1=B= ) and (1 (1) , . . . , 1 (<) ) (where the first of these sequences may

contain redundant ∗’s as leftovers from collapsing deterministic rules). In this case, we call the

tuples equivalent. It remains to show that if (111, . . . , 1=B= ) and (1 (1) , . . . , 1 (<) ) are equivalent,
then

=∏
8=1

B8∏
98=1

k8 98 〈®08 98 〉(18 98 ) =
<∏
8=1

k (8) 〈®0 (8) 〉(1 (8) ). (6.5)

This is the case because of the correspondence fixed by ®�, which can be seen as follows. First

of all, all factors that belong to non-existential rules can be canceled from (6.5) (even though

there might be a different number of them on both sides) as they evaluate to 1 (cf. Remark 4.3).

The remaining numbers of factors on both sides coincide (see our discussion of 2
(8)
9A before)

and, again, are in one-to-one correspondence with each other via ®�. In particular, if ®08 98 , 18 98
and ®0 (8) , 1 (8) produce the same fact, then ®08 98 = ®0 (8) and 18 98 = 1 (8) .

A similar argument applies to the product measures (of the ` (8) , resp. the `8 98 ) used for the

integration in (6.3) and (6.4)—recalling that the measures themselves are already fixed by fixing

®i and ®! and that the measure spaces from the non-existential rules are trivial (Remarks 4.3

and 3.12).

We have shown that the expressions (6.3) and (6.4) have the same value (for fixed J), i. e. for

all suitable ®i , ®!, and ®� it holds that

`⊗app,�in

(®K ( ®i, ®!, ®�)) = W ®K ( ®i,®!, ®�) = Γ®J ( ®i,®!, ®�) = `⊗
App,�in

( ®J ( ®i, ®!, ®�)) . (6.6)

As J ®i,®!, ®� is a countable, measurable partition of J , we obtain

`⊗
app,�in

(
lim−1app,�in

(J)
)
=

∑
®i,®!, ®�

W ®K ( ®i,®!, ®�)
(6.6)
=

∑
®i,®!, ®�

Γ®J ( ®i,®!, ®�) = `⊗
App,�in

(
lim−1App,�in

(J)
)
. �

When fed an initial distribution instead of a single instance �in, we directly obtain the fol-

lowing corollary.

Corollary 6.3. For all sub-probabilistic databases D = (�in,Din, %), and all measurable chase

policies app it holds that Gapp (D) = GApp (D). ⊳

Because of the results in this subsection, we just write G(D) for the sub-probabilistic

database that is obtained by running G on D. Recall that we can also eliminate the auxiliary

tuples if we want to (see Remark 4.15).

6.2. Comparison to the Original Semantics

We continue from the discussions surrounding Examples 1.1 and 1.2. The key difference be-

tween our semantics and Bárány et al.’s semantics is in themechanism that prevents generating

infinitely many facts that only differ in a sampled value. We tie this to the rules: each prob-

abilistic rule is only permitted to fire once for each setting of the parameters. Bárány et al.
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tie it to the distributions: each distribution is only permitted to produce one sample for each

parameter setting. This difference in the semantics (in particular, the decoupling of sampling

from distribution names) resolves the issue sketched in Example 1.2.

Both we and Bárány et al. have mechanisms to relax the requirement of only sampling once:

we allow it to repeat rules; Bárány et al. introduce symbolic parameters that can be added to

a distribution to allow several applications. Multiple copies of the same rule have a different

behavior under our semantics as they would exhibit in the original one. We treat multiple

copies as separate instructions, while they collapse to the effect of just a single such rule in the

original semantics. We achieve this by associating different existential rules to the individual

copies during the translation to the existential program, leading to the semantic difference

pointed out in Example 1.1.

With our version of the semantics, we can, however, simulate the semantics of Bárány et al.,

as far as only the distribution over finite outcomes is concerned. This means that for a program

G using the original semantics, we can construct a new programH that, under our semantics,

has the property that the sup-probabilistic database it produces on (finite) outcome instances

coincides with the distribution over the finite outcomes of G. As database instances are finite
per definition, this is, after all, the interesting part of the distribution. The semantics of Bárány

et al. extends towards a distribution also over the infinite chase paths, that is, over infinite

outcomes. Recall that in our semantics, all infinite chase paths are merged into a single error

event. Therefore, we necessarily lose the information about the infinite program executions

that are present in the semantics of [5].

The following example exposes the difference in the semantics and illustrates the simulation

mentioned above.

G : (
(
Flip

〈
1
2

〉)
← '(0)

)
(
Flip

〈
1
2

〉)
← '(0)

(a) The program G.

H : �
(
Flip

〈
1
2

〉)
← '(0)

( (G) ← �(G)
) (G) ← �(G)

(b) The programH .

Figure 12.: Exemplary simulation of the original semantics.

Under Bárány et al.’s semantics, G has outcomes {'(0), ( (0),) (0)} and {'(0), ( (1),) (1)}
with probability 1/2 each, whereas our semantics yield the four possible outcomes

{'(0), ( (0),) (0)}, {'(0), ( (0),) (1)}, {'(0), ( (1),) (0)} and {'(0), ( (1),) (1)}, each with prob-
ability 1/4. Yet, we can easily simulate the original semantics of G by pulling out the sampling

to a separate rule, as in Figure 12b. This program has outcomes {'(0), �(0), ( (0),) (0)} and
{'(0), �(1), ( (1),) (1)} with probability 1/2 each. We can ignore the auxiliary predicate �

and restrict the resulting probabilistic database to the schema {', (,) } without changing the

probabilities.

This simple argument can be generalized to arbitrary programs. We note that the original

semantics also featured the use of “event expressions” that could be employed to reuse samples

for the same parameter configuration. Such can be simulated by decomposing the rule, and
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putting the event expression into a separate relation. We leave the details to the reader. Let

us remark that it is similarly easy to simulate our semantics with that of Bárány et al. All our

results would also hold starting from Bárány et al.’s semantics for discrete distributions, so it

is really just a matter of taste which version the reader prefers.

Remark 6.4 (First-Order Equivalence). While the different semantics can simulate each other,

the choice of Bárány et al.’s semantics was in particular made to obtain a decidable sufficient

criterion for the “semantic equivalence” of two programs.

Following [5], two programsG andG ′ are first-order equivalent, if the first-order theories de-
fined by their collection of rules coincide.10 For this, they interpret parameterized distributions

as function symbols. Bárány et al. show that their notion of first-order equivalence is decid-

able for a simple syntactic class of programs, and that first-order equivalence of two programs

entails that they produce the same output distribution under their semantics [5, Theorem 5.6

and 5.5] (this latter property is called semantic equivalence). In general, semantic equivalence

is undecidable, even when there are no parameterized distributions at all [5, Theorem 5.6].

While the above definition of first-order equivalence feels natural and is in line with typical

notions of first-order equivalence, the decision to interpret every occurrence of a parameterized

distribution as another occurrence of the same function symbol is susceptible to debate. In

particular, this treats a parameterized distribution just like a function, yet sampling repeatedly

from a distribution without changing its parameters may well yield different outcomes. If the

distribution is continuous, this even happens almost surely.11

The result from [5], that (their notion of) first-order equivalence implies semantic equiva-

lence no longer holds with our semantics. One may easily verify that with our semantics, for

example, that the program G0 from Example 1.1 is first-order equivalent to the program ob-

tained by removing one of its rules. Yet, under our semantics, they produce different outputs.

We propose to adapt the notion of first-order equivalence to be tailored to our semantics.

Recall that one major change we made was that we allowed rules to be present multiple times.

When translatingGDatalog toDatalog∃ programs though, we introduced a distinction between

the copies of a probabilistic rule, by providing (per rule) a unique new relation for storing the

sample outcomes (cf. (3.4) in Section 3.3). Thus, we propose the following change in the notion

of first-order independence: Call two GDatalog programs G and G ′ first-order equivalent, if

the first-order theories defined by their collection of rules coincide, where every occurrence of a

parameterized distribution k 〈®?〉 is treated as an occurrence of a new distinguished function sym-

bol. With this changed notion, copies of probabilistic rules cannot be (first-order equivalently)

rewritten into single rules anymore.

With respect to this new notion of first-order equivalence it seems possible to transfer the

results of [5, Section 5.1] to our semantics. ⊳

Remark 6.5 (Fairness). In [5], the authors restrict their scope to “fair” chase trees. This means

that if for an intermediate instance � it holds that � |= i1 (®D) for some valuation ®D, then even-

tually� ′ |= iℎ (®D) for some later intermediate instance, on all paths. Note that by construction,

any finite path of the chase tree that is ending in a leaf satisfies this fairness condition. Contrary

10To be precise, this notion is introduced for the full PPDL language (see Section 7), not only the generative part

in [5].
11With this, it is also clear that the first-order equivalence of [5] is a weaker notion than semantic equivalence.
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to [5], we do not impose the fairness condition on the infinite parts of the tree, as all infinite

paths are collectively mapped to our error event ⊥ anyway. The important point is that the

(sub-)probability space obtained from the finite paths is independent of any fairness issue. ⊳

6.3. Termination Behavior

In Sections 4 and 5, we have constructedMarkov processes for givenGDatalog programs. Every

point in the 8th component of the path space (�l,D⊗l) can be seen as corresponding to a

program configuration after 8 steps and every path in (�l,D⊗l) as a program run. A run is

called terminating if it corresponds to a finite path in the respective chase tree. The program

G is called terminating if all its runs terminate. The following result from the original paper

trivially extends to our setting, with the notion of weak acyclicity remaining unchanged (see

[5]).

Theorem 6.6 (cf. [5, Theorem 3.10]). Let G be a GDatalog program. If G is weakly acyclic, then

G is terminating. ⊳

That is, whenever there are no circular dependencies involving probabilistic rules, then all

paths in any chase tree are finite. In general, the GDatalog program G terminates on input �in

if and only if its existential version is terminating on�in. Likewise,G terminates on every input

probabilistic database, if its existential version terminates on all instances. There exists a lot of

research surrounding the termination of existential Datalog programs, in particular regarding

classes of programs (going way beyond the notion of weakly acyclicity) where termination is

guaranteed, or at least decidable (see, for example, [17, 29]).

For probabilistic programs, termination is a more subtle notion. A program is said to be

almost surely terminating if it terminates with probability one. If the program terminates in

finitely many steps in expectation, it is called positively almost-sure terminating [9]. The hard-

ness of these notions is studied in [43]. Active research in probabilistic programming is con-

cerned with identifying sufficient criteria for determining (positive) almost-sure termination

[14].

A more thorough investigation of, in particular, the probabilistic termination of generative

Datalog programs is still open at this point.

7. The Full Probabilistic Programming Datalog Language

The GDatalog language is extended by constraints to obtain the full probabilistic-programming

Datalog (PPDL) language [5, Section 5]. Formally, a PPDL program is a pair (G,Φ) where Φ

is some constraint specification, for example, a first order sentence over the database schema

of G. The semantics of the PPDL program is then given by conditioning the output G(D) ≔
(�,D, %) of G on the set of instances �Φ satisfying the constraint specification Φ (see [5,

Definitions 5.1 and 5.3]). That is, the probability of an event J is given as

%
(
J ∩�Φ

)
%
(
�Φ

) .
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There are multiple pitfalls to be aware of here. Conditioning the (sub-)probability space

G(D) = (�,D, %) in the suggested way requires not only that the set of instances�Φ satisfying

Φ is measurable, but also that % (�Φ) > 0. If these two requirements are fulfilled, then the PPDL

program returns a well-defined (sub-)probabilistic database.

As Bárány et al. note, the measurability of�Φ is already an issue in their setting of discrete

distributions unless the program G is weakly acyclic [5, p. 22:18]. The good news is that in our

framework of standard PDBs, the measurability of�Φ is constituted by Fact 2.6 as long as the

constraint can be expressed by (for example) a relational algebra query.

Thus, we see the requirement of having % (�Φ) > 0 as the more delicate one. This discussion

is bypassed in [5] by resorting to the weakly acyclic case, where the probability space gets

discrete in their setup. For example, it might be reasonable to use constraints involving equality

when designing PPDL programs. Alas, for example equality in ℝ yields a set of Lebesgue

measure 0 (namely the diagonal) in ℝ2. From this, one can easily construct examples where

% (�Φ) = 0 even though Φ is a very natural and typical kind of constraint. Trying to condition

on events of measure 0 usually yields paradoxical results, as in the Borel-Kolmogorov paradox

[46, p. 50 et seq.]. Still, this does not rule out sensible definitions of a probabilistic database

conditioned on such a constraint. Work from the area of probabilistic programming however

suggests that resolving the paradox is no trivial task [8, 40].

Remark 7.1 (More Simulations). Bárány et al. [5] showed that their language version of PPDL

can simulate Markov Logic Networks (MLNs) [58] and Probabilistic Context-Free Grammars

(PCFGs) [7] (see [39]). Because we can simulate their language, we can simulate MLNs and

PCFGs as well using the methods described in [5]. Since our language is more powerful, one

might wonder whether these simulations can be reasonably extended.

There exist two extensions of MLNs that come to mind, one with infinitely many variables

(Infinite MLNs [61]), and one with uncountable variable domains (although then finitely many

variables; Hybrid MLNs [68]). Unfortunately, there is no easy correspondence between our

language and these models.

• Hybrid MLNs describe distributions over a finite and fixed number of variables with un-

countable domains, contrasting the unbounded size of our collections of facts. Moreover,

the semantics of Hybrid MLNs only takes intervals of ℝ into consideration.

• Infinite MLNs describe a probability space over countably (possibly countably infinitely)

many variables all of which have (to our understanding) at most countable domains.

While the resulting probability space is indeed uncountable, this contrasts our setting

with a probability distribution over finite subsets of uncountable spaces. In particular,

our continuous distributions seem to add no power here and, should a correspondence

between infinite MLNs and Probabilistic Programming Datalog exist, then it is already

exhibited by the discrete semantics of [5].

To our knowledge, there is no sensible generalization of PCFGs that involve uncountable

spaces. Typically, the underlying domains in PCFGs are finite. ⊳
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8. Conclusion

The original Probabilistic Programming Datalog language of Bárány, ten Cate, Kimelfeld,

Olteanu and Vagena [5] is limited to discrete distributions. Given that continuous distribu-

tions appear in a variety of application scenarios for probabilistic databases (cf. [15, 21]), an

extension with support for continuous distributions was noted as an open problem in [5]. In

this paper, we developed such an extension.

Our key technical results are as follows:

1. The Generative Datalog language of [5] can be faithfully extended towards the support

of continuous distributions, adding to its expressive power. Into this extended language,

one may also incorporate conditioning under events of positive probability just as in [5].

2. We consider the semantics using a sequential and a parallel chase procedure, and show

that the results of programs coincide under both kinds of approaches. In particular, out-

comes do not depend on chase policies.

3. We may also use (sub-)probabilistic databases as inputs, and we obtain a well-defined

output sub-probabilistic database as long as the probability of a finite computation is

greater than 0.

We summarize the technical developments in a high-level view of the (new) semantics. The

generative part of a PPDL program can sample from probability distributions in order to gen-

erate new attribute values, and it can do so recursively. The semantics itself is described via

chase trees, where different branches correspond to different samples. This becomes techni-

cally challenging with the introduction of continuous distributions, as nodes of the chase trees

may now have uncountably many children. Exploiting the advanced machinery of probability

and measure theory, we show that such uncountable chase trees are encodings of a Markov

process of database instances. Associated with each Markov process is a probability measure

on its paths, that is, on the paths of the chase tree. Each path in the tree that is starting in the

root node corresponds to the process of building a database instance by adding facts one by

one. Paths that end in leaf nodes then correspond to well-defined database instances. In cutting

off infinite paths, and projecting the rest back to the represented database instances, we obtain

a sub-probabilistic database “generated” by the program, that may afterwards be conditioned

on satisfying a given set of constraints.

In addition to the added expressive power, we embed our semantics of PPDL into the Stan-

dard PDB framework of [37]. This makes the language compositional in the sense that it

may use (sub-)probabilistic input databases, and produces (sub-)probabilistic output databases

within the framework. We show the equivalence of sequential chase procedures with a notion

of parallel chase, rendering the semantics quite robust.

Future Work

The discrete version of PPDL can simulate every finite probabilistic database, for example, by

using the MLN simulation. Thus, PPDL can be seen as a complete representation system for
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finite PDBs. From the point of view of probabilistic databases, the most interesting question is

how powerful PPDL is as a representation system for infinite PDBs. This is even unclear for

the purely discrete version.

Moreover, PPDL raises a lot of natural questions in the overlap of probabilistic databases

and probabilistic programming that remain unanswered. For the constraint part of a PPDL

program, can we determine from the syntax of the program whether a particular constraint

has measure 0? Are there sensible languages or fragments that avoid the issue of measure 0

conditioning? In the case of measure 0 conditioning, can we apply techniques from the prob-

abilistic programming community in order to resolve the emergent problems in a reasonable

way? And can we deal algorithmically with possibly infinite computation paths without re-

sorting to mechanisms that ensure that all computations are finite?

That last question touches upon the challenging field of investigating the termination be-

havior of GDatalog programs in detail, and without restricting ourselves to a setting where all

computations are finite. In general, whether the execution of a GDatalog program terminates

may depend on the random choices that are made during the computation. That is, some paths

in the chase tree may be terminating, while others are not. This is fine, as long as, for exam-

ple the probability of the program terminating is 1. It is an open research question to build a

thorough understanding of the probabilistic termination of GDatalog programs.

Finally, it is not known whether (and if so, in which cases) the output probabilistic database

of a generative Datalog program admits a concise representation allowing for the output to be

queried effectively. At the moment, a generative Datalog program should be thought of as a

representation of a probabilistic database itself, in particular with the option to have infinitely

many possible worlds. In case of termination, we can always approximate the output through

Monte Carlo sampling, by letting the program run multiple times. This can be extended to

query answers by querying the samples. The properties of this option are yet to be explored.
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A. Background Results from Measure Theory

This section is intended to extend Section 2.1 by some well-known results. They can accord-

ingly be found in the literature [42, 62].

A.1. Measurability of Functions and Sets

The following statement says that collections of measurable functions yield a function that is

measurable with respect to the product f-algebra.

Fact A.1 ([42, Lemma 1.8, p. 5]). If (�,X) and (�8,X8 ) are measurable spaces (for 8 in some

index set � ) and 58 : � → �8 is measurable for all 8 ∈ � , then 5 : � → ∏
8∈� �8 : G ↦→ ( 58 (G))8∈�

is
(
X,

⊗
8∈� X8

)
-measurable. ⊳

The next two results are concerned with the measurability of certain kinds of integration

maps.

Fact A.2 ([42, Lemma 1.41(i), p. 21]). Let ` be a stochastic kernel from� to� and let 5 : �×�→
ℝ≥0 be measurable. Then

�→ ℝ≥0 : G ↦→
∫

5 (G, · ) 3` (G, · )

is measurable. ⊳

Fact A.3 ([42, Lemma 1.26, p. 14]). Let (�,X) and (�,Y) be measurable spaces, ` a f-finite

measure on � and 5 : � × �→ ℝ≥0 a measurable function. Then

1. the ~-section 5 ( · , ~) : �→ ℝ≥0 of 5 is (X,Bor (ℝ≥0))-measurable for all ~ ∈ �, and

2. the function ~ ↦→
∫
5 (G,~) ` (3G) is (Y,Bor [0, 1])-measurable. ⊳

If we have a measurable function between two standard Borel spaces, then the image of

measurable sets needs not to be measurable in general, the standard example perhaps being

projection functions (see [62, Proposition 4.1.1 and Theorem 4.1.5]). Given certain conditions

however, measurable sets have measurable images under measurable functions:

Fact A.4 ([62, Theorem 4.5.4, p. 153]). Let (�,X) and (�,Y) be standard Borel, ^ ∈ X and let

5 : ^ → � be an injective, (X↾^ ,Y)-measurable function. Then 5 (^) ∈ Y. ⊳

Finally, we come back to the multifunctions of Section 2.1.4 and explicitly state the theorem

of Kuratowski and Ryll-Nardzewski on the existence of measurable selections:

Fact A.5 (Kuratowski and Ryll-Nardzewski [49], see [62, Theorem 5.2.1]). Let (�,X) be a mea-

surable space and let (�,Bor (�)) be standard Borel. Then every closed-valued X-measurable

multifunction " : �⇒ � has a (X,Bor (�))-measurable selection B : �→ �. ⊳
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A.2. Identities for Integration

If ` is a measure and 5 a measurable function, then 5 · ` ≔ a , defined by a (^) =
∫
^
5 3` is a

measure. The following chain and substitution rules are the main tools to establish statements

regarding the equality of transformed measures.

Fact A.6 (Chain Rule, cf. [42, Lemma 1.23, p. 12]). Let (�,X, `) be a measure space and 5 : �→
ℝ and 6 : � → ℝ≥0 be measurable functions. Let a ≔ 5 · `. Then, if either of the following
integrals exists (i. e. is finite), it holds that∫

�

5 · 6 3` =

∫
�

6 3a . ⊳

Fact A.7 (Substitution, cf. [42, Lemma 1.22, p.12]). Let (�,X) and (�,Y) be measurable spaces

and ` a measure on (�,X). Let 5 : � → � and 6 : � → ℝ be measurable. Then, if either of the

following integrals exists (i. e. is finite), it holds that∫
�

6 ◦ 5 3` =

∫
�

6 3 (` ◦ 5 −1)

where ` ◦ 5 −1 is the push-forward measure of ` along 5 on (�,Y). ⊳

A.3. Existence of Markov Processes

Fact A.8 (Existence of Markov Processes, Kolmogorov, cf. [42, Theorem 8.4]). Let (�,X) be a
standard Borel space, `0 a probability measure on (�,X) and (`8)8≥1 a family of stochastic kernels

`8 : � × X → [0, 1] for 8 ≥ 1. Then there exists a Markov process b (with time scale N and paths

in
∏∞

8=0 �) with initial distribution `0 and transition kernels `8 . ⊳
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