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Abstract

We explore how recent advances in Isogeometric analysis, Galerkin Least-Squares
methods, and Augmented Lagrangian techniques can be applied to solve nonstan-
dard problems, for which there is no classical stability theory, such as that provided
by the Lax-Milgram lemma or the Banach-Necas-Babuska theorem. In particular,
we consider continuation problems where a second-order partial differential equa-
tion with incomplete boundary data is solved given measurements of the solution
on a subdomain of the computational domain. The use of higher regularity spline
spaces leads to simplified formulations and potentially minimal multiplier space.
We show that our formulation is inf-sup stable, and given appropriate a priori
assumptions, we establish optimal order convergence.

1 Introduction

The advent of the Galerkin Least-Squares (GaLS) finite element method at the beginning
of the 1980s was a significant advance in computational mechanics [8,34,35]. In particular,
for problems in fluid mechanics, it has become a state-of-the-art tool. For problems in
structural mechanics, the picture is less clear. In Hulbert and Hughes [36,38], a space-time
finite element method for second-order hyperbolic partial differential equations (pde) was
introduced using GaLS stabilization on the bulk residual and the jumps of the stresses over
element faces and a discontinuous Galerkin method in time. It was, however, remarked
that the stabilization did not improve the solution quality in computational examples,
and it was later proved by French [30] and Johnson [39] independently that optimal error
estimates could indeed be obtained without the stabilizing terms. Recently, however,
the method of Hulbert and Hughes was reintroduced in the context of control problems
for wave equations using space-time finite element methods [11]. The upshot here was
that the stabilization used in the control context made it possible to leverage stability
estimates designed specifically for control problems [4] and thereby obtain error estimates.

In this work, we are interested in exploring how recent advances in Isogeometric
analysis [20], Galerkin Least-Squares methods, and Augmented Lagrangian techniques
[14] can be applied also to nonstandard problems for which there is no classical stability
theory, such as that provided by the Lax-Milgram lemma or the Banach-Necas-Babuska
theorem. Instead, for example for certain control or data assimialtion problems stability
can be proven under certain assumptions on the geometry and the data.
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The problem, of that type, we consider here is to find u ∈ H1(Ω) such that

Pu = f in H−1(Ω) and u|ω = q (1.1)

where Ω ⊂ Rn, n = 2, 3, 4, is a domain; ω ⊂ Ω̄ is a subset of Ω, where u = q with
q known measured data; and P : H1(Ω) → H−1(Ω) = [H1

0 (Ω)]
∗ a second-order pde-

operator. Depending on the given data, the problem can be well-posed or not. In the
latter case the stability of the problem can be shown only using a priori assumptions of the
existence of a solution in some space. This is known as conditional stability. Examples of
relevant well-posed problems include indefinite problems, such as the Helmholtz equation
or non-coercive convection-diffusion equations (for instance with non-solenoidal transport
field). In the ill-posed case typical examples are elliptic problems where boundary data
are unavailable on part of the boundary, but instead some other data set is at hand,
for instance in the unique continuation problem the boundary conditions are unknown,
but measurements of the solution are available in the bulk. Another related example is
the elliptic Cauchy problem. Here the boundary data are not available on part of the
boundary, but on the complement both Dirichlet and Neumann data are at hand. The
former problem is a model problem for data assimilation and the latter problem typically
appears in Electrocardiography

Typically, for ill-posed problems with conditional stability, an estimate of the form

|u|X ≤ C(u)(∥u∥M(ω) + ∥Pu∥H−1(Ω))
α, ∀u ∈ H1(Ω) (1.2)

with α ∈ (0, 1) can be shown to hold (see, for instance, [1] for a detailed discussion in
the context of the elliptic Cauchy problem). The M(ω)-norm is the natural norm for
the measurements. The coefficient α measures, in some sense, how ill-posed the problem
is for the quantity measured in the X-seminorm. The estimate is conditional since it
typically requires an a priori bound such as

C(u) ∼ (∥u∥H1(Ω) + ∥Pu∥H−1(Ω))
1−α ≲ 1 (1.3)

Here and below we use the notation a ≲ b to denote a ≤ Cb, where C is a positive
constant and a ∼ b denotes a ≲ b and b ≲ a. For ill-posed problems, there is no theory
providing such a bound and it must therefore be an assumption on the exact solution.
Of course, also well-posed second-order elliptic pdes satisfy estimates on the form (1.2),
but without any a priori assumptions on the solution and with α = 1. For instance,
if P := ∆ + k2I, ω = ∂Ω, and k2 does not coincide with a Dirichlet-eigenvalue of the
Laplace operator on Ω, then by the bounded inverse theorem there holds

∥u∥H1(Ω) ≤ CS(∥u∥H 1
2 (∂Ω)

+ ∥Pu∥H−1(Ω)), ∀u ∈ H1(Ω) (1.4)

Observe that for homogeneous Dirichlet boundary conditions the boundary data term
would vanish if we had chosen u in a space that satisfies the data constraint exactly, i.e.,
for ω = ∂Ω and q = 0, H1

0 (Ω). In this framework, keeping the data term results in weak
imposition of boundary conditions through a penalty similar to Nitsche’s method [44].

In view of the stability estimate (1.2), a natural idea for solving such problems is
to minimize the residual quantities implied by the right-hand side, and hence to find
u ∈ H1(Ω) that minimizes

J(v) :=
1

2
∥v − q∥2M(ω) +

1

2
∥Pv − f∥2H−1(Ω) (1.5)
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For well-posed problems, this approach was first considered in [6,7] and then in [9,17,19]
for convection-diffusion type problems. It is also related to the discontinuous Petrov-
Galerkin (DPG) method [23, 24, 41], with connections to earlier work on residual-free
bubbles [28,32]. See [16] for a related approach in a discontinuous Galerkin setting.

For ill-posed problems, this least-squares minimization problem in negative norm has
been proposed more recently in [18, 21]. When applied in a finite element framework,
however, the implementation of the minimization problem in negative norm results in a
delicate inf-sup condition, requiring a careful balancing of the trial and test spaces to
ensure sufficient control of the pde-residual (for the DPG-method, this is related to the
choice of the test space in the fully discrete scheme). This means that typically the test
space (that approximates zero) has to be chosen larger than the trial space. In the case
of ill-posed problems, it is not clear that stability can always be achieved in this way, for
instance, when the equation has variable coefficients.

Another classical approach typically associated with the ill-posed problems of data
assimilation is to use pde-constrained optimization to fit the data u|ω = q. This results
in a Lagrangian on the form, L : H1(Ω)×H1

0 (Ω) → R,

L(u, z) := 1

2
∥u− q∥2M(ω) + a(u, z)− ⟨f, z⟩H−1(Ω),H1

0 (Ω) (1.6)

where a(·, ·) denotes the weak form of ⟨P·, ·⟩H−1(Ω),H1
0 (Ω). Naive discretizations of (1.6)

have poor stability, and for ill-posed problems, traditionally, Tikhonov regularizations are
added. If the problem has (at least) some conditional stability, this is not always strictly
necessary, as shown in [13]. Using a primal-dual type stabilized finite element method
allows for stable discretizations of (1.6) using arbitrary order interpolation for the forward
and dual equations [9]. Also for this problem it is possible to construct methods that are
inf-sup stable [25,42].

To obtain stable discretizations of (1.6) without any constraints on the test and trial
spaces, both a stabilization of the Lagrange multiplier in the spirit of [2, 3], and an
Augmented Lagrangian term of Galerkin Least-Squares type are needed. Indeed in [2,3]
inf-sup stability is obtained by penalizing the distance between two approximations of the
Lagrange multiplier, and here, the exact multiplier is zero, so any inner product applied to
the multiplier has the same effect. Since the pde is the constraint, the least-squares type
augmentation coincides with the classical GaLS term applied to second-order pde [31].
For finite element methods using C0-approximation, typically, the solution gradient jump
must also be penalized. In the space-time discretization of the wave equation, we recover
exactly the stabilization of Hulbert-Hughes.

In this paper, we will show how Isogeometric Analysis [5] can be used in the Aug-
mented Lagrangian Galerkin Least-Squares (AGaLS) framework leading to a powerful
way of designing H−1-residual minimizing methods, potentially with a minimal multi-
plier space. The rationale for using splines for the approximation space is their good
approximation properties compared to the number of degrees of freedom [26], their good
spectral properties [29,37], and the C1-regularity that allows us to eliminate the penalty
term on the gradient that is present for finite element methods. Using the GaLS stabi-
lization, on the other hand, allows us to use the smallest possible space for the adjoint
variable, which approximates zero without losing stability. Indeed the only requirement
for the multiplier space is that it has optimal approximation properties in the H1-norm
on a scale similar to that of the forward problem. The proposed approach increases the
number of degrees of freedom compared to a standard Galerkin method. However, since
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the multiplier space can be chosen of such low order, the relative increase is much lower
than is the case, for instance, in discontinuous Galerkin methods. We are indeed free
to choose the test space independently of the trial space, which opens up possible new
venues in the spirit of variational multiscale methods [33], but here on the adjoint side
rather than the primal side, as already discussed in [17,43].

There has recently been increased interest in the relation between the Augmented
Lagrange Method and Galerkin Least-Squares stabilization prompted by the ideas be-
hind Nitsche’s method for imposing boundary conditions. The method we discuss below
enters this framework, but here the constraint is the pde (on weak or strong form de-
pending on the choice of spaces). The stabilization, therefore, coincides with the known
Galerkin Least-Squares stabilization of the second-order operator, as mentioned above.
For an overview of the relation between Galerkin Least-Squares methods and Augmented
Lagrangian methods, we refer to [14]. For simplicity, we restrict the discussion below to
linear partial differential operators with smooth coefficients in this contribution.

An outline of the paper is as follows. First, we introduce the discrete Augmented
Lagrangian and its associated optimality system. In this context, we also define the
stabilizing terms (Section 2). In the following Section 3, we discuss the stability of the
methods and first show inf-sup stability in a particular seminorm when the Galerkin
Least-Squares terms are included, and then we give an inf-sup result for the unstabilized
method, relying on a ”sufficiently fine” test space. Note, however, that inf-sup stability
holds for the seminorm defining J in (1.5) and is therefore not related to the Lax-Milgram
Lemma or the Banach-Necas-Babuska Theorem. Once such an inf-sup stability has been
established, error estimates do not follow in a standard fashion. Instead, a stability
estimate such as (1.2) or (1.4) must be at hand to ensure the triple seminorm bounds
the error in a norm. Assuming such a stability of the pde problem, we then prove error
estimates in Section 4. We conclude the theoretical investigations in Section 5 by giving
examples of pde problems that enter the framework and showing the associated error
estimates. Finally, in Section 6, we provide some numerical examples.

2 Discretization

2.1 The finite element spaces

Let TV (Ω) and TW (Ω) denote two different decompositions of Ω in elements KV and
KW respectively, with mesh size parameters hV = maxKV ∈TV diam(KV ) and hW =
maxKW∈TW diam(KW ). By F(T ) we denote the set of interior element faces in T . We
let Vh ⊂ C1(Ω) denote an approximation space defined on the tesselation TV , with local
polynomial degree less than or equal to p and Wh an approximation space on TW to be
defined below. We assume that there exist interpolation operators πV : H1(Ω) → Vh and
πW : H1(Ω) → Wh, such that

∥v − πV v∥Hm(Ω) ≤ CπV h
k−m
V ∥v∥Hk(Ω), 0 ≤ m ≤ k ≤ p+ 1 (2.1)

with m = 0, 1, 2, and

∥v − πWv∥Ω ≤ CπWhW∥v∥H1(Ω) (2.2)

We note that the H2(Ω) norm is well defined on Vh, since Vh is a piecewise polynomial
C1 space and that for πW we only need approximation in H1.
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Remark 2.1. Note that C1-piecewise polynomial spaces are typically constructed us-
ing tensor products of spline functions. We may also handle domains Ω with complex
geometry by using trimmed or cut elements. See Remark 2.6 below for the necessary
modifications of the method in the case of cut elements.

2.2 Discrete augmented Lagrangian and the optimality system

We consider the problem; find u ∈ H1(Ω) satisfying (1.1). The discrete augmented
version of (1.6) reads in this case L : Vh ×Wh → R,

L(vh, ϕh) :=
γ

2
∥vh − q∥2M(ω) + a(vh, ϕh)− (f, ϕh)Ω +

1

2
∥τ

1
2 (Pvh − f)∥2Ω︸ ︷︷ ︸

residual control

− 1

2
∥ϕh∥2s︸ ︷︷ ︸

inf-sup stability

(2.3)

where we have included the parameter γ that allows trading weight between enforcing the
known data and the pde. Here ∥v∥2M(ω) = (v, v)M(ω) is appropriately defined depending

on ω, where we typically may take (v, v)M(ω) = h−2r
V (v, v)ω for a suitable choice of r,

see the assumption (3.2) on the form (·, ·)M(ω) and Section 5 for examples. Further, we
have added two additional terms to (1.6): to ensure sufficient control of the pde residual,
we have augmented the Lagrangian with a Galerkin Least-Squares term, and to ensure
inf-sup stability, we have added a stabilizing term ∥v∥2s = s(v, v) that we will define
below. The GaLS-stabilization parameter τ is typically chosen as τ = τ0h

2
W for some

constant τ0, since then ∥τ 1
2 (Pvh − f)∥Ω ∼ ∥h(Pvh − f)∥Ω, which is a convenient discrete

approximation of ∥Pvh − f∥H−1(Ω).
The Euler-Lagrange equations of (2.3) take the form: find (uh, zh) ∈ Vh ×Wh such

that for all (vh, ϕh) ∈ Vh ×Wh there holds

a(uh, ϕh)− s(zh, ϕh) = (f, ϕh)Ω (2.4)

a(vh, zh) + (τPuh,Pvh)Ω + γ(uh, vh)M(ω) = (f, τPvh)Ω + γ(q, vh)M(ω) (2.5)

Introducing the global form

A[(vh, ϕh), (wh, ψh)] := a(vh, ψh) + a(wh, ϕh) (2.6)

− s(ϕh, ψh) + (τPvh,Pwh)Ω + γ(vh, wh)M(ω) (2.7)

the formulation (2.4)–(2.5) may be written: find (uh, zh) ∈ Vh × Wh such that for all
(vh, ϕh) ∈ Vh ×Wh there holds

A[(uh, zh), (vh, ϕh)] = Fh[(vh, ϕh)] (2.8)

with
Fh[(vh, ϕh)] := (f, ϕh + τPvh)Ω + γ(q, vh)M(ω) (2.9)

2.3 The choice of the space W h and the stabilizing form s

The key design criterion for the form s, with associated norm ∥ · ∥s, is that there exists
a norm ∥ · ∥∗ such that

a(v − vh, ϕh) ≲ ∥v − vh∥∗∥ϕh∥s (2.10)

and
inf

vh∈Wh

∥v − vh∥∗ ≲ hp∥v∥Hp+1(Ω) (2.11)
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The inequality (2.10) must be proven in different ways depending on the operator P and
we will give such results in Section 5 below.

We will consider two different choices ofWh. Either a C
0 space on TW of degree k ≥ 1

with functions that are zero on ∂Ω, or the space of piecewise constant functions on TW .
In both cases we define the form a by

a(vh, ϕh) := (Pvh, ϕh)Ω, vh ∈ Vh, ϕh ∈ Wh (2.12)

that is we take the L2-inner product of the strong form, which is well defined on Vh since
Vh ⊂ C1, and a test function in Wh. Using partial integration we note that for the C0

space a is the standard bilinear form associated with P , while for the piecewise case we
get terms involving the jump in the test function on faces and a boundary term since the
functions in Wh are not zero on the boundary. If we need to distinguish the two different
choices ofWh, we add a subscript 0 to the bilinear form if the order of the functions inWh

is 0 and a subscript 1 if the order is larger than or equal to 1. We define the stabilization
operator differently depending on the choice of Wh. More precisely, the operators si,
i = 0, 1, are defined by

s0(ϕh, ψh) :=
∑

F∈F(TW )

(h−1
W [ϕh], [ψh])F + (h−1

W ϕh, ψh)∂Ω (2.13)

where [y]|F denotes the jump of y over the interior face F , and

s1(ϕh, ψh) := (∇ϕh,∇ψh)Ω (2.14)

In general we use the notation s for the two stabilizing forms and add the index when we
need to be more specific. An important property of the stabilizing form s is that for all
v ∈ H1

0 (Ω) there holds

∥πWv∥s ≤ Cs∥v∥H1(Ω) (2.15)

where ∥ · ∥s is the norm associated with the form s. For s1 this inequality is immediate
by the stability of πW and for s0 it follows by using that [v]F = 0 for all v ∈ H1

0 (Ω) and
application of the elementwise trace inequality. If piecewise splines are used also for the
multiplier space, the trace inequality from [27] can be applied.

Remark 2.2. The boundary condition on the Wh is needed to mimic control of the
residual Pu−f in theH−1Ω) = [H1

0 (Ω)]
∗ norm, since a(vh, ϕh)−(f, ϕh)Ω = (Pvh−f, ϕh)Ω.

In [22], page 46, it was shown in a related, but restricted to well-posed problems, situation
that the boundary condition on Wh is necessary to have the equality between the inf-sup
and the sup-inf.

Remark 2.3. We can take τ = 0 above and get a stable and accurate method provided
Wh is sufficiently fine compared to Vh, that is, hW/hV sufficiently small. Choosing τ >
ch2W , with a sufficiently large constant c, eliminates this mesh constraint while retaining
the good properties of theH−1 minimization method. Observe that, from only minimizing
the GaLS term, we cannot expect optimal results using the approach below since we
bound the H1-norm with the H2-norm and hence lose one power of hV . We derive these
results in Sections 3 and 4.

Remark 2.4. Assume that Vh ∈ H1
0 (Ω) so that we consider a well-posed problem with

strongly imposed boundary conditions and can omit the data term. For the above choices
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of si, equation (2.4) can be solved for zh, and in the absence of the data term, we get
zh = S−1(Puh − f), where S−1 is the inverse of the discrete Laplacian defined by si.
Injecting this into equation (2.5) we get

(Puh, (τ + S−1)Pvh)Ω = (f, (τ + S−1)Pvh)Ω (2.16)

showing that the formulation is a combination of two discrete H−1 inner products on
the residual: on the one hand, the h-weighted L2-norm, and on the other hand, the
approximate H−1-norm. If hW becomes small, S−1 is a good approximation of the inverse
Laplacian, and therefore the L2-contribution can be reduced or even omitted.

Remark 2.5. Note that both proposed stabilizations of the multiplier are consistent
since the exact solution for the multiplier is zero in this context. It is indeed a stabilizer,
similar in spirit to that in [2] where a least-squares stabilization is added on the distance
between two realizations of the multiplier, just that in our case, the exact multiplier is
known to be zero. In other situations, such as for instance in control problems, or if
dual arguments must be applied, the stabilization of the adjoint equation must also be
consistent and therefore residual based (see [9, 11]).

Remark 2.6. In [17] the method without stabilization was interpreted as a variational
multiscale method. We see here that, similarly as in SUPG the Augmented Lagrangian
version introduces a rough subgrid model that stabilizes the solution if the fine scales
resolved by Wh are insufficient. This is also the intuitive way of understanding the
stability analysis below.

Remark 2.7. In our exposition, we assume, for simplicity, that the meshes T are fitted to
Ω, but the framework presented herein can easily be extended to the CutIGA framework
by combining with the ideas from [10,12,15,40]. To fix the ideas, let Ω0 be some meshed
domain with Ω ⊂ Ω0 and define TV and TW be all the elements that intersect Ω in a
suitable decomposition of Ω0. We assume that the elements of the two partitions cover
the same domain and denote this domain ΩT . The only changes necessary to the above
formulation are that

• The functions in Vh are defined through the extension technique proposed in [15] or
suitable stabilization [40] is added.

• The stabilization term si should be integrated on the whole mesh domain ΩT , but since
the boundary condition in Wh on ∂Ω no longer can be imposed strongly, it must be
added in the form of a penalty term. While s0 already is defined this way, s1 must be
modified such that

s1(ϕh, ψh) := (∇ϕh,∇ψh)ΩT + (h−1
W ϕh, ψh)∂Ω (2.17)

• Since the boundary condition in Wh is weakly enforced the form a is defined by (2.12),
which for a second order operator Pv = −∇ · (D∇v) gives

a(vh, ϕh) = (Pvh, ϕh)Ω = (D∇vh,∇ϕh)Ω − (n · (D∇vh), ϕh)∂Ω (2.18)

With those modifications, the analysis herein carries over verbatim.
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3 Stability

3.1 Inf-sup stability with GaLS-stabilization

We define the triple norm

|||(v, ϕ)|||2 := γ∥v∥2M(ω) + ∥Pv∥2H−1(Ω) + ∥τ
1
2Pv∥2Ω + ∥ϕ∥2s (3.1)

on (H1(Ω) + Vh) × (H1
0 (Ω) +Wh). We note that the norm involves three terms which

are present in the method and the additional control of ∥Pv∥H−1(Ω). First we note that
if there is a constant such that

∥v∥M(ω) ≲ h−1
V ∥v∥L2(Ω) + ∥v∥H1(Ω) (3.2)

and hW ≲ hV , then the interpolation error estimate

|||(u− πV u, 0)||| ≲ hpV (3.3)

holds, since, with θ = u− πV u, we have the estimates

|||(θ, 0)|||2 ≲ h−2
V ∥θ∥2L2(Ω) + ∥θ∥2H1(Ω) + ∥Pθ∥2H−1(Ω) + ∥hWPθ∥2Ω (3.4)

≲ h−2
V ∥θ∥2L2(Ω) + ∥θ∥2H1(Ω) + ∥θ∥2H1(Ω) + h2W∥θ∥2H2(Ω) (3.5)

≲ h−2
V h

2(p+1)
V + h2pV + h2pV + h2Wh

2(p−1)
V (3.6)

≲ h2pV (3.7)

Here we used the estimate τ = τ0h
2
W ≲ h2W ≲ h2V , boundedness ∥Pθ∥H−1(Ω) ≲ ∥θ∥H1(Ω)

of the operator P : H1(Ω) → H−1(Ω), and the interpolation estimate (2.1) for πV .
We shall next prove the following important inf-sup result.

Lemma 3.1. There is a constant, proportional to τ0, such that for all (vh, ϕh) ∈ Vh×Wh,

|||(vh, ϕh)||| ≲ sup
(wh,ψh)∈Vh×Wh

A[(vh, ϕh), (wh, ψh)]

|||(wh, ψh)|||
(3.8)

Proof. We first note that the following positivity property holds

γ∥vh∥2M(ω) + ∥τ
1
2Pvh∥2Ω + ∥ϕh∥2s = A[(vh, ϕh), (vh,−ϕh)] (3.9)

and hence to control the triple norm |||(vh, ϕh)|||, we only need to establish control of the
H−1-norm of Pvh. To this end, consider the auxiliary problem

−∆φ+ φ = Pvh in Ω, φ = 0 on ∂Ω (3.10)

with weak form: find φ ∈ H1
0 (Ω) such that

(φ,w)H1(Ω) = (Pvh, w)Ω ∀w ∈ H1
0 (Ω) (3.11)

where (v, w)H1(Ω) = (∇v,∇w)Ω+(v, w)Ω is the H1(Ω inner product. By the Lax-Milgram
lemma there is a unique solution φ ∈ H1

0 (Ω) to (3.11) and we also have the following
identity

∥φ∥H1(Ω) = sup
v∈H1

0 (Ω)
∥v∥H1(Ω)=1

(φ, v)H1(Ω) = sup
v∈H1

0 (Ω)
∥v∥H1(Ω)=1

(Pvh, v)Ω = ∥Pvh∥H−1(Ω) (3.12)
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Setting w = φ in (3.11) and using (3.12) give

(Pvh, φ)Ω = (φ, φ)H1(Ω) = ∥φ∥2H1(Ω) = ∥Pvh∥2H−1(Ω) (3.13)

Adding and subtracting an interpolant πWφ ∈ Wh, we obtain

∥Pvh∥2H−1(Ω) ≤ (Pvh, φ− πWφ)Ω + (Pvh, πWφ)Ω (3.14)

≤ ∥Pvh∥Ω∥φ− πWφ∥Ω + a(vh, πWφ) (3.15)

≤ ∥Pvh∥ΩCπWhW∥φ∥H1(Ω) + a(vh, πWφ) (3.16)

≤ ∥Pvh∥ΩCπWhW∥Pvh∥H−1(Ω) + a(vh, πWφ) (3.17)

where we used the Cauchy-Schwarz inequality, the interpolation estimate (2.2), and the
identity (3.12). Using Young’s inequality it finally follows that

∥Pvh∥2H−1(Ω) − C2
πW
h2W∥Pvh∥2Ω ≤ 2a(vh, πWφ) (3.18)

To prove the inf-sup condition (3.8), we note that taking wh = vh and ψh = −ϕh +
2ζπWφ, with ζ > 0 a parameter, and applying (3.9) followed by estimate (3.18) for the
a-form and then (2.15) and (3.12) for the s-form, we obtain

A[(vh, ϕh), (vh,−ϕh + 2ζπWφ)] (3.19)

= A[(vh, ϕh), (vh,−ϕh)] + A[(vh, ϕh), (0, 2ζπWφ)] (3.20)

= γ∥vh∥2M(ω) + ∥τ
1
2Pvh∥2Ω + ∥ϕh∥2s + ζ2a(vh, πWφ)− ζs(ϕh, 2πWφ) (3.21)

≥ γ∥vh∥2M(ω) + ∥τ
1
2Pvh∥2Ω + ∥ϕh∥2s (3.22)

+ ζ(∥Pvh∥2H−1(Ω) − C2
πW
h2W∥Pvh∥2Ω)− 2ζCs∥ϕh∥s∥Pvh∥H−1(Ω) (3.23)

≥ γ∥vh∥2M(ω) + (1− ζC2
πW
h2W τ

−1)∥τ
1
2Pvh∥2Ω (3.24)

+ (1− 4ζC2
s )∥ϕh∥2s + ζ

1

2
∥Pvh∥2H−1(Ω) (3.25)

≥ (min(1, 1− ζC2
πW
h2W/τ, 1− 4ζC2

s , ζ/2)|||(vh, ϕh)|||2 (3.26)

≥ cζ |||(vh, ϕh)|||2 (3.27)

Recalling that τ = τ0h
2
W we get 1− ζC2

πW
h2W/τ = 1− ζC2

πW
/τ0 and we note that taking

ζ = min(τ0/(2C
2
πW

), 1/(8C2
s ) gives

cζ = min(1, 1− ζC2
πW
h2W/τ, 1− 4ζC2

s , ζ/2) (3.28)

= min(1, 1/2, 1/2, ζ/2) = min(1/2, τ0/(4C
2
πW

), 1/(16C2
s )) (3.29)

We conclude that with hidden constant c−1
ζ it holds

|||(vh, ϕh)|||2 ≲ A[(vh, ϕh), (vh,−ϕh + 2πWφ)] (3.30)

Finally, we also need to show that, for wh = vh and ψh = −ϕh + 2ζπWφ,

|||(wh, ψh)||| ≲ |||(vh, ϕh)||| (3.31)

Clearly, since |||(wh, 0)||| = |||(vh, 0)||| ≤ |||(vh, ϕh)|||, we only need to show that |||(0, ψh)||| ≲
|||(vh, ϕh)|||. To that end applying (2.15), and (3.12) yield

|||(0, ψh)||| = ∥ − ϕh + 2ζπWφ∥s ≤ ∥ϕh∥s + 2ζ∥πWφ∥s (3.32)

≲ ∥ϕh∥s + ∥φ∥H1(Ω) ≲ ∥ϕh∥s + ∥Pvh∥H−1(Ω) ≲ |||(vh, ϕh)||| (3.33)

We conclude that (3.31) holds. It then follows from (3.30) and (3.31) that the inf-sup
stability (3.8) holds. ■
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Remark 3.1. Note that the triple norm of (3.1) is a norm only subject to a stability
estimate such as (1.2) or (1.4). This means that the method is agnostic as to whether the
problem is well-posed. We have stability in the residual norm, which will lead to optimal
error estimates in this norm and then error estimates with whatever rate the physical
stability allows in a second step. If the problem is ill-posed without any stability, the
convergence of the residual norm says nothing about the accuracy of the solution. This
is similar to the situation in a posteriori error estimation, where the residual is a good
error estimator only if a good measure of the physical stability matching it to some goal
quantity is available.

Remark 3.2. At least for P with constant coefficients, the spaces Vh and Wh may be
chosen carefully so the Fortin interpolant exists, meaning that given φ ∈ H1

0 (Ω) there
exists φh ∈ Wh such that ∥φh∥H1(Ω) ≲ ∥φ∥H1(Ω) and (Pvh, φ)Ω = (Pvh, φh)Ω. For
examples we refer to [21]. In that case one may take τ = 0. If the partial differential
equation has varying coefficients, it is unclear how to design the Fortin interpolant. In
any case, it always requires hW < hV , meaning that the adjoint space that approximates
zero has to be larger than the space Vh that must have approximation properties.

3.2 Inf-sup stability without GaLS-stabilization

The objective of this section is to show that for a problem with a stability of the type
(1.4), provided Wh is sufficiently rich, the inf-sup condition is satisfied, without using
any further information on Vh. To make the below argument work, we need to assume
that the space Vh satisfies the following inverse inequality (see [5, Theorem 4.1], for the
leading order term),

∥Pvh∥Ω ≤ CIh
−1
V ∥vh∥H1(Ω) (3.34)

To prove (3.8) we proceed as in (3.19)-(3.26), but with τ = 0, which gives

A[(vh, ϕh), (vh,−ϕh + 2ζπWφ)] (3.35)

= A[(vh, ϕh), (vh,−ϕh)] + A[(vh, ϕh), (0, 2ζπWφ)] (3.36)

= γ∥vh∥2M(ω) + ∥ϕh∥2s + ζ2a(vh, πWφ)− ζs(ϕh, 2πWφ) (3.37)

≥ γ∥vh∥2M(ω) + ∥ϕh∥2s (3.38)

+ ζ(∥Pvh∥2H−1(Ω) − C2
πW
h2W∥Pvh∥2Ω)− 2ζCs∥ϕh∥s∥Pvh∥H−1(Ω) (3.39)

≥ γ∥vh∥2M(ω) − ζC2
πW
h2W∥Pvh∥2Ω + (1− 4ζC2

s )∥ϕh∥2s + ζ
1

2
∥Pvh∥2H−1(Ω) (3.40)

= min(1, 1− 4ζC2
s , ζ/2)|||(vh, ϕh)||| − ζC2

πW
h2W∥Pvh∥2Ω (3.41)

We conclude that for appropriate choices of ζ there is a constant cζ , for instance we may
take ζ = 1/(8C2

s ) which gives cζ = min(1/2, 1/(16C2
s ), such that

cζ |||(vh, ϕh)|||2 − ζC2
πW
h2W∥Pvh∥2Ω ≤ A[(vh, ϕh), (vh,−ϕh + 2ζπWφ)] (3.42)

Now using the inverse inequality (3.34) in the second term on the left-hand side we see
that

cζ |||(vh, ϕh)|||2 − ζC2
πW
C2
I (hW/hV )

2 ∥vh∥2H1(Ω) ≲ A[(vh, ϕh), (vh,−ϕh + 2πWφ)] (3.43)

Clearly, the first term on the left-hand side cannot control the second. However, if P
satisfies a stability estimate of the type (1.4) we may conclude that the inf-sup condition
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(3.8) holds in the following way. Using that Vh ⊂ H1(Ω) it follows from (1.4), with
homogeneous boundary conditions, that

∥vh∥H1(Ω) ≤ CS∥Pvh∥H−1(Ω) ≤ CS|||(vh, 0)||| ≤ CS|||(vh, ϕh)||| (3.44)

and hence

cζ/2|||(vh, ϕh)|||2 +
(
cζ/(2C

2
S)− ζC2

πW
C2
I (hW/hV )

2) ∥vh∥2H1(Ω) (3.45)

≲ A[(uh, ϕh), (uh,−ϕh + 2πWφ)] (3.46)

Thus taking hW sufficiently small, 2ζC2
SC

2
πW
C2
Ih

2
W < cζh

2
V , so that the second term on

the left-hand side is positive we conclude that

cζ/2|||(vh, ϕh)|||2 ≲ A[(uh, ϕh), (uh,−ϕh + 2πWφ)] (3.47)

and thus, noting that (3.31) also holds with τ = 0, it follows that the inf-sup condition
(3.8) holds in the same way as above. Using the stability (3.44), we finally obtain

C−1
S ∥vh∥H1(Ω) + |||(vh, ϕh)||| ≲ sup

(wh,ψh)∈Vh×Wh

A[(vh, ϕh), (wh, ψh)]

|||(wh, ψh)|||
(3.48)

Remark 3.3. Clearly, if the problem is such that either CS or CI is large, we may need
to choose hW very small to ensure stability and the factors CS and CI are not innocent
even for well-posed problems. For Helmholtz-type equations CS is typically proportional
to some power of the wave number, which can be large. For multiscale problems on
the form Pv = −∇ · (ε(x)∇v), with ε(x) some function with strong oscillation, we have
CI ∼ hV∇ε, which may be large.

4 Error estimates

We will first show an error estimate for the triple norm. Then for some different model
cases, we will show how this translates to error estimates in a Sobolev norm. We have
the following bound.

Theorem 4.1. Let u ∈ H2−k(Ω), k = 0, 1, be the solution of (1.1) and let (uh, zh) ∈
Vh×Wh be the corresponding approximation defined by (2.8), using the adjoint space Wh

of degree k. Then there is a constant such that

|||(u− uh, 0− zh)||| ≲ inf
vh∈Vh

(|||(u− vh, 0)|||+ ∥u− vh∥∗) (4.1)

If, in addition, u ∈ Hp+1(Ω), with p the polynomial degree of Vh, then

|||(u− uh, 0− zh)||| ≲ hpV ∥u∥Hp+1(Ω) (4.2)

Proof. First we have |||(u−uh, 0− zh)||| = |||(u−uh, zh)||| and by the triangle inequality

|||(u− uh, zh)||| ≤ |||(u− vh, 0)|||+ |||(vh − uh, zh)||| ∀vh ∈ Vh (4.3)

By (3.8) we have

|||(uh − vh, zh)||| ≲ sup
(wh,ψh)∈Vh×Wh

A[(uh − vh, zh), (wh, ψh)]

|||(wh, ψh)|||
(4.4)
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By the consistency and the continuity (2.10) of the form a, there holds

A[(uh − vh, zh), (wh, ψh)] = A[(u− vh, 0), (wh, ψh)] (4.5)

≲ ∥u− vh∥∗∥ψh∥s + |||(u− vh, 0)||| |||(wh, ψh)||| (4.6)

Using that ∥ψh∥s ≤ |||(wh, ψh)|||, we see that

|||(uh − vh, zh)||| ≲ ∥u− vh∥∗ + |||(u− vh, 0)||| (4.7)

To conclude, we collect terms and use the fact that vh ∈ Vh is arbitrary,

|||(u− uh, zh)||| ≲ inf
v∈Vh

|||(u− vh, 0)|||+ ∥u− vh∥∗ (4.8)

The second bound (4.2) is then a consequence of (3.3) and (2.11). ■

If, in addition, we have stability of the type (1.2) or (1.4), then Theorem 4.1 leads to
an error estimate in the norm bounded by the stability estimate.

Corollary 4.1. Assume that the assumptions of Theorem 4.1 hold. If (1.4) holds, then

∥u− uh∥H1(Ω) ≲ hpV ∥u∥Hp+1(Ω) (4.9)

If (1.2) and (1.3) hold and, in addition, ∥uh∥H1(Ω) ≲ ∥u∥Hp+1(Ω), then

∥u− uh∥H1(Ω) ≲ hαpV ∥u∥Hp+1(Ω) (4.10)

Proof. We only prove the second claim. The first follows using the same argument with
α = 1 and |e|X = ∥e∥H1(Ω). Let e = u− uh. Using (1.2) and (1.3) we get

|e|X ≲ (∥e∥H1(Ω) + ∥Pe∥H−1(Ω))
1−α(∥e∥M(ω) + ∥Pe∥H−1(Ω))

α (4.11)

By the definition of the triple norm

|e|X ≲ (∥e∥H1(Ω) + |||(e, 0)|||)1−α|||(e, 0)|||α (4.12)

and using Theorem 4.1, followed by the bound on ∥uh∥H1(Ω) we see that

(∥e∥H1(Ω) + |||(e, 0)|||)1−α ≲ (∥u∥H1(Ω) + ∥uh∥H1(Ω) + hp∥u∥Hp+1(Ω))
1−α (4.13)

≲ ∥u∥1−αHp+1(Ω) (4.14)

and
|||(e, 0)|||α ≲ hαpV ∥u∥αHp+1(Ω) (4.15)

The claim follows by injecting the two bounds in the right-hand side of (4.12). ■

Remark 4.1. The assumption ∥uh∥H1(Ω) ≲ ∥u∥Hp+1(Ω) can be checked a posteriori, simply
by monitoring that ∥uh∥H1(Ω) remains bounded. It can also be imposed by adding an
hpV -scaled, weakly consistent Tikhonov regularisation of the form

1

2
h2pV ∥uh∥2H1(Ω) (4.16)

to the Lagrangian (1.6).
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5 Applications of the theory

In this section, we will consider three different examples:

• Helmholtz equation with Dirichlet boundary conditions;

• Helmholtz equation with interior data;

• Data assimilation for the wave equation.

5.1 Helmholtz equation with Dirichlet boundary conditions

We consider a general Helmholtz equation with homogeneous Dirichlet boundary condi-
tions. Let

Pu := −∇ · (D∇u)− k2u (5.1)

where D is a symmetric positive definite matrix and

∥u∥M(∂Ω) = ∥h−rV u∥∂Ω, 0 ≤ r ≤ 1/2 (5.2)

We note thatM(∂Ω) satisfies (3.2). Assume that k2 does not coincide with an eigenvalue
of −∇ · (D∇·). Then the stability estimate (1.4) holds and by norm equivalence on
discrete spaces,

∥uh∥H1(Ω) ≲ |||(uh, 0)||| (5.3)

Thus the triple norm is a norm on Vh and the system (2.8) is invertible.

Proof of the properties (2.10) and (2.11). First assume that Wh ⊂ C0(Ω), with
functions that vanish on the domain boundary, then we may take

s(φh, ϕh) = (∇φh,∇ϕh)Ω, ∥φh∥s = ∥∇φh∥Ω, (5.4)

and
∥v∥∗ := ∥D

1
2∇v∥Ω + k2∥v∥H−1(Ω) (5.5)

To show (2.10) note that

a1(v − vh, φh) = (D∇(v − vh),∇φh)Ω + k2(v − vh, φh)Ω (5.6)

Using the Cauchy-Schwarz inequality, we have for the first term on the right-hand side

(D∇(v − vh),∇φh)Ω ≤ ∥D
1
2∇(v − vh)∥Ω∥φh∥s (5.7)

For the second term we let −∆z = v − vh, z|∂Ω = 0, and

k2(v − vh, φh)Ω = k2(∇z,∇φh)Ω ≲ k2∥∇z∥Ω∥φh∥s ≲ k2∥v − vh∥H−1(Ω)∥φh∥s (5.8)

The continuity (2.10) follows by combining the two inequalities. It remains to show the
bound (2.11) for some interpolant πV . To this end, let πV be defined by the L2-projection
on Vh. By standard estimates, we then have

∥D
1
2∇(v − πV v)∥Ω ≲ hpV ∥u∥Hp+1(Ω) (5.9)
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For the second bound, we use that

∥u− πV u∥H−1(Ω) = sup
φ∈H1

0 (Ω)
∥φ∥H1(Ω)=1

(u− πV u, φ− πV φ)Ω ≲ hp+2
V ∥u∥Hp+1(Ω) (5.10)

We conclude that
∥u− πV u∥∗ ≲ (1 + k2h2V )h

p
V ∥u∥Hp+1(Ω) (5.11)

In the second case where Wh consists of a piecewise constant multiplier, we add the
assumption that Ω is convex. Then we have

a0(v − vh, φh) = (∇ · (D∇(v − vh)), φh)Ω + k2(v − vh, φh)Ω (5.12)

Introducing the same variable z as before, we may write

a0(v − vh, φh) = (∇ · (D∇(v − vh) + k2∇z), φh)Ω (5.13)

and after integration by parts and application of the Cauchy-Schwarz inequality

a0(v − vh, φh) ≤ h
1
2
W (∥D∇(v − vh) · n∥F(Wh) + k2∥∇z · n∥F(Wh))s0(φh, φh)

1
2 (5.14)

We see that continuity holds with the norm

∥v∥∗ := h
1
2
W (∥D∇v · n∥F(Wh) + k2∥∇z · n∥F(Wh)) (5.15)

where z is the function defined above. To prove the approximation properties, for vh =
πV v, we use element trace inequalities to get

h
1
2
W (∥D∇(v − πV v) · n∥F(Wh) ≲ ∥∇(v − πV v)∥Ω + hW∥(v − πV v)∥H2(Ω) (5.16)

which has the desired approximation properties and

h
1
2
Wk

2∥∇z · n∥F(Wh) ≲ k2(∥∇z∥Ω + hW∥z∥H2(Ω)) (5.17)

Since Ω is convex we have ∥z∥H2(Ω) ≲ ∥v − πV v∥Ω and we conclude that

∥v − πV v∥∗ ≲ ∥∇(v − πV v)∥Ω + hW∥(v − πV v)∥H2(Ω) (5.18)

+ k2(∥v − πV v∥H−1(Ω) + hW∥v − πV v∥Ω) (5.19)

Assuming hW ≲ hV we conclude as before that

∥v − πV v∥∗ ≲ (1 + k2h2V )h
p
V ∥v∥Hp+1(Ω) (5.20)

Error estimates. To derive error estimates, we note that since Theorem 4.1 holds we
can combine with Corollary 4.1 to conclude that

∥u− uh∥H1(Ω) ≲ CS inf
vh∈Vh

(|||(u− vh, 0)|||+ ∥u− vh∥∗) (5.21)

≤ CS(1 + k2h2V )h
p
V ∥u∥Hp+1(Ω) (5.22)

where we assumed u ∈ Hp+1(Ω). Here we simply applied the inequality (1.4) to the
approximation error u − uh and applied Theorem 4.1 followed by Corollary 4.1 to the
right hand side.
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5.2 Helmholtz equation with interior data

Here we consider an ill-posed second-order elliptic problem where data is given in some
subset ω of Ω and apply stability of the type (1.2). Let

Pu := −∇ · (D∇u)− k2u (5.23)

and
∥u∥M(ω) := ∥h−rV u∥ω, 0 ≤ r ≤ 1, ω ⊂ Ω (5.24)

Then the stability (1.2) holds with |u|X = ∥u∥B, where B̄ ⊂⊂ Ω, in the left-hand side.
Since the system matrix is square, uniqueness implies existence. If u1 and u2 are two
solutions then the error e = u1 − u2 satisfies Pe = 0 and e|ω = 0 and since (1.2) holds
for any subdomain B we can conclude that e = 0 and the system is invertible. The
continuity (2.10) holds as in the previous example. Moreover, since Theorem 4.1 holds
we conclude that, assuming ∥uh∥H1(Ω) ≲ ∥u∥Hp+1(Ω) and u ∈ Hp+1(Ω),

∥u− uh∥B ≤ ChpαV ∥u∥Hp+1(Ω) (5.25)

where the size of α depends on the Hausdorff distance from ∂B to ∂Ω, going to one as
the boundary of B approaches the boundary of ∂Ω.

5.3 Data assimilation for the wave equation

Let Ωd ⊂ Rd be a domain and let Ω = Ωd × [0, T ] be the space-time domain associated
with the time interval [0, T ]. The wave operator is defined by

Pu = ∂2t u−∆u (5.26)

u = 0 on ∂Ω and the data norm is given by

∥u∥M(ω) := ∥h−ru∥L2(ω×[0,T ]), 0 ≤ r ≤ 1 (5.27)

Observe that the initial datum is unknown. For this problem, it is known that provided
the data set ω satisfies a certain condition, known as the geometric control condition [4],
the following inequality similar to (3.43) holds for all u ∈ V = {v ∈ H1(Ω) : v|∂Ωd

= 0},

sup
t∈[0,T ]

∥u(·, t)∥L2(Ωd) + ∥∂tu∥L2(0,T ;H−1(Ωd)) ≲ ∥Pu∥H−1(Ω) + ∥u∥L2(ω×[0,T ]) (5.28)

where H−1(Ω) = [H1
0 (Ω)]

∗ is the space-time weak norm.
In this case, the space-time method defined by (2.8), with Vh satisfying strong Dirichlet

boundary conditions on ∂Ωd, admits a unique solution using arguments similar to the
previous example. The continuity is also proved similarly by integration-by-parts in space
and time, resulting in one term based on the space-time gradient. Details are left to the
reader. Assuming that u ∈ Hp+1(Ω) the approximate solution satisfies the following error
bound

sup
t∈[0,T ]

∥(u− uh)(·, t)∥L2(Ωd) + ∥∂t(u− uh)∥L2(0,T ;H−1(Ωd)) ≲ hpV ∥u∥Hp+1(Ω) (5.29)

This bound is obtained by applying the inequality (5.28) to the approximation error
u− uh and then bounding the right-hand side using the estimate of Theorem 4.1.
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6 Numerical example

We consider a two-dimensional problem of the Helmholtz equation with interior data
described in Section 5.2 above. We impose the boundary condition on Wh weakly via
(2.17), and hence the form a for the Helmholtz operator is given by

a(vh, φh) = (Pvh, φh)Ω = (D∇vh,∇φh)Ω − (n · (D∇vh), φh)∂Ω − k2(vh, φh)Ω (6.1)

Spaces and parameters. We let Vh = Wh be the space of tensor product B-splines
of degree p = 2 of maximum regularity on a quadrilateral mesh of size h, which means
Vh,Wh ⊂ C1(Ω). As penalty parameter for enforcing the interior data on ω, we use
γ = 100, and as GaLS stabilization parameter, we use τ = 0.1h2.

Problem set-up. Let the domain be the unit square Ω = (0, 1)2 and the interior region
where data is known be ω = ((0, 1)× (0, t))∪ ((0, t)× (0, 1))∪ ((0, 0.5)× (1− t, 1)) where
t = 0.2. This region is displayed on the meshes in Figure 1. For coefficients in the
operator, we let D be the identity matrix and the wavenumber k = 20. We manufacture
a problem with a known analytical solution by the ansatz,

u = sin

(
k
x+ 3y√

20

)
sin

(
k
3x− y√

20

)
(6.2)

which gives a zero loading f = −Pu = 0. The data on ω is taken from this analytical
solution q = u|ω, and the M(ω)-form is chosen as (v, v)M(ω) = h−2(v, v)ω.

Numerical results. The geometric set-up, along with numerical solutions for uh ∈ Vh
and the auxiliary field zh ∈ Wh, are displayed for different meshes in Figure 1. By visual
inspection, it is clear that the upper right parts where data is unavailable have the worst
accuracy and that accuracy in those parts seems to improve as the mesh is refined.

The rule of thumb interpretation of the conditional stability estimate for the convex
data domain is that the further inside the convex hull we measure the error, the closer
to one we expect the order parameter α to be. On the other hand, as we measure the
error in a domain approaching the boundary where data is unavailable, α goes to zero. If
we consider the error over the whole domain, we no longer have Hölder stability and can
only expect error convergence of order O(| log(h)|−α), 0 < α < 1. To illustrate this effect,
Figure 2 separately plots the error in the left half of the square domain and the right
half. In the left half, we observe optimal convergence compared to interpolation, whereas
in the right half, we get a severely capped convergence behavior of order approximately
0.36.

7 Conclusions

In this contribution, we have developed and analyzed a finite element method for approx-
imating solutions to problems without standard stability theory, such as that provided
by the Lax-Milgram lemma or the Banach-Necas-Babuska theorem. Our model problem
is a continuation problem involving a second-order partial differential equation with in-
complete boundary data with given measurements of the solution on a subdomain of the
computational domain.
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The method is based on an augmented Lagrangian Galerkin least squares formulation
together with a C1 finite element space for the primal variable and either a continuous
or discontinuous space for the multiplier.

We show inf-sup stability with and without the Galerkin least squares stabilization
term. In the latter case, the mesh size in the multiplier space must be sufficiently small
compared to the primal space. In contrast, this requirement is not necessary for the
stabilized case, leading to a more flexible and efficient method. We can then use the
inf-sup stability and the approximation properties to derive error estimates in the energy
norm. We derive error estimates in other norms by combing the energy norm error
estimate with different stability assumptions on the underlying problem.

The C1 space conveniently handles second-order derivatives, simplifying derivations,
and there is no need to include additional stabilization involving jumps in gradients across
faces. Often tensor products of spline functions are used to construct C1 spaces, and in
that case, it is convenient to be able to handle cut (trimmed) elements in the formulation,
and we discuss this extension in an extended remark.
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(a) hV = hW = 2−2 (b) uh (c) zh

(d) hV = hW = 2−3 (e) uh (f) zh

(g) hV = hW = 2−4 (h) uh (i) zh

Figure 1: Left: Meshes with indicated region ω, where data is given. Mid-
dle: Numerical solution uh where the upper right region without any bound-
ary condition or given data can be noted to have worse accuracy than other
regions. Right: Numerical solution for the Lagrangian field zh.
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(d) Error on right half ΩR

Figure 2: Errors in H1-seminorm and in L2-norm on the left half ΩL =
(0, 0.5) × (0, 1) respectively on the right half ΩR = (0.5, 1) × (0, 1) of the
domain Ω = (0, 1)2. While the errors on the left half converge at about
rates expected from interpolation theory, the convergence rates in both H1-
seminorm and in L2-norm on the right half seem capped at around h0.36.

21


