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Cellular engineered neural tissues have significant potential to improve
peripheral nerve repair strategies. Traditional approaches depend on quan-
tifying tissue behaviours using experiments in isolation, presenting a
challenge for an overarching framework for tissue design. By comparison,
mathematical cell–solute models benchmarked against experimental data
enable computational experiments to be performed to test the role of biologi-
cal/biophysical mechanisms, as well as to explore the impact of different
design scenarios and thus accelerate the development of new treatment strat-
egies. Such models generally consist of a set of continuous, coupled, partial
differential equations relying on a number of parameters and functional
forms. They necessitate dedicated in vitro experiments to be informed,
which are seldom available and often involve small datasets with limited
spatio-temporal resolution, generating uncertainties. We address this issue
and propose a pipeline based on Bayesian inference enabling the derivation
of experimentally informed cell–solute models describing therapeutic cell
behaviour in nerve tissue engineering. We apply our pipeline to three rel-
evant cell types and obtain models that can readily be used to simulate
nerve repair scenarios and quantitatively compare therapeutic cells.
Beyond parameter estimation, the proposed pipeline enables model selection
as well as experiment utility quantification, aimed at improving both model
formulation and experimental design.
1. Introduction
Peripheral nerve injury (PNI) repair is a fertile area of research [1,2]. PNIs are
characterized by loss of sensory and motor functions and can cause chronic
neuropathic pain. Three per cent of trauma results in PNIs [3], affecting the
life of millions of people worldwide every year.

For less severe PNIs, natural nerve regeneration mechanisms are sufficient
to induce functional repair; however, for more severe injuries, surgical interven-
tion is often required. The autograft is the gold-standard treatment and involves
transplanting a nerve section from a donor site into the nerve gap induced by
the injury. The autograft therefore has numerous downsides which include the
damages made to the donor site, the need for additional surgery and limited
functional recovery [4].

Engineered tissues are being developed to address these issues and are con-
sidered a promising alternative to the autograft [1,5,6]. Cellular nerve conduits
consist of a biomaterial tube which can either be hollow or filled with a variety
of material components (e.g. hydrogels, fibres) to support regeneration [1].
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Figure 1. The combined experimental computational approach we propose to improve peripheral nerve injury treatment, with the focus of this work highlighted by
the grey box.
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These fillings can in turn be seeded with therapeutic cells that
secrete an array of growth factors and provide trophic sup-
port for nerve regeneration. One example is engineered
neural tissue (EngNT), which consists of aligned, cellular col-
lagen hydrogel and has been developed at the UCL Centre
for Nerve Engineering [5,7]. The aligned cells then produce,
after transplantation and under the low-oxygen conditions
of the injury site, a host of growth factors, including vascular
endothelial growth factor (VEGF), which stimulate revascu-
larization of the injury site.

A series of questions arise around the optimal design of a
cellular nerve conduit including: what cell type, density and
spatial distribution will lead to the best functional recovery?
Answering such questions is challenging due to (i) our lack
of fundamental understanding of the complex cascade of
events that constitutes nerve regeneration and (ii) the large
number of design parameters available. Tackling such ques-
tions using in vivo experiments in isolation is costly, time-
consuming and requires a significant number of animal
experiments.

Combining experiments with mathematical modelling
provides an opportunity to address these challenges [8–10].
Mathematical models benchmarked against experimental
data enable computational experiments to be performed to
test the role of different biological and biophysical mechan-
isms, as well as to explore the impact of different design
scenarios. A combined experimental-modelling framework
allows for the efficient testing of hypotheses and design
ideas, accelerating the translation of promising nerve repair
solutions (figure 1).

One popular class of mathematical models used in tissue
engineering are cell–solute models [8,11–13]. Such models
consist of a set of continuous, coupled and generally non-
linear, partial differential equations describing the interplay
between nutrients, the cell population(s) and the cell secre-
tome in a given tissue. Cell–solute models describe a
collection of interactions through a limited number of effec-
tive parameters. This makes them easy to implement and
reasonably easy to interpret. One bottleneck of using such
effective models, however, is that they rely heavily on the
value of the parameters embedded within them, as well as
the functional forms used to describe cell–solute interactions.

Parameter values and functional forms relating to cell
metabolism and secretome are specific to an individual cell
type in a particular environment and can be challenging to
estimate. One option is to perform dedicated in vitro exper-
iments in a highly controlled set-up, where inputs/outputs
can be readily assessed. We have developed an in vitro set-
up comprising multi-well plates where each well has a
well-defined geometry and contains a thin layer of engin-
eered tissue overlaid with a thick layer of culture media
(figure 3a). Within this set-up, it is feasible to monitor cell
activity under a range of culture conditions mimicking in
vivo scenarios. A simultaneous benefit and limitation of
such experiments is their limited spatio-temporal resol-
ution—whereas this supports controlled and careful
measurement, it remains a challenge to extrapolate these
measured behaviours, generating uncertainties in mathemat-
ical model predictions which must be explored.

Bayesian inferences are a class of methods used to
estimate parameter values and can take into account an arbi-
trary degree of uncertainty [14]. They have been used to build
robust models in a wide range of fields [15–17], including
tissue engineering [18,19], where it still remains uncommon
due to the scarcity of combined modelling-experimental
studies. The approach combines prior knowledge and new
measurements to obtain posterior distributions of parameters
rather than unique values, enabling the estimation of a range
of statistics linked to each parameter (such as expected values
or credible intervals). As well as providing quantitative infor-
mation on specific parameter values, it also enables analysis
of the relative contribution of different mechanisms and con-
trollable parameters (such as operating parameters) in the
model. This is highly valuable in informing the selection of
functional forms to describe biomechanical mechanisms as
well as design features. The trade-off, however, is that such
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Figure 2. The framework developed in this work (highlighted by the grey box in figure 1) that integrates dedicated in vitro experiments with Bayesian inferences to
build a mathematical model able to predict therapeutic cell behaviour.
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analyses are stochastic by nature and may quickly become
computationally expensive.

Building a mathematical model is therefore the result of
the balance between the number of parameters in the
model, the data availability to infer them and the compu-
tational cost of the associated simulations.

In this work, we focus on building a robust cell–solute
model, relevant to therapeutic cells targeted in peripheral
nerve tissue engineering, using Bayesian inferences inte-
grated with cell outcome data from well-plate experiments
in vitro, i.e. we focus on the highlighted section of the cycle
displayed in figure 1. The outcome is a model that could be
used to simulate cell–solute interactions in nerve repair
scenarios, for instance in a nerve conduit.

We focus on collagen-based hydrogels and three cell
types with high therapeutic potential—rat differentiated
adipose-derived stem cells (dADSC, [8]), human neural
stem cells (CTX, [13]) and rat Schwann cells (F7), though
the framework we develop could be readily adapted to
other cell and biomaterial combinations.

Besides parameter estimation we use our Bayesian
approach to select the functional forms used in the cell–
solute model, with a focus on the VEGF secretion rate.
VEGF is an essential biochemical cue in blood vessel regener-
ation which is one of the first steps in nerve repair process.
However, relatively few studies have sought to quantify the
dependence of VEGF secretion rates on factors such as
oxygen availability and cell density for individual cell types.

Finally, we quantify the impact of the operating/design
parameters on cell behaviour. This will inform the design
of future experiments to ensure they generate the most
meaningful data on cell–solute interactions.
2. Material and methods
This section presents the in vitro experiments (§2.1), the math-
ematical model derivation (§2.2) and the Bayesian inference
methods (§2.3) that together form the basis of the framework
we propose, which is detailed in figure 2.
2.1. In vitro experiments
In vitro experiments were performed using standard 96-well
plates. Each individual well had a truncated cone geometry
(figure 3a) with fixed dimensions (table 1), with a layer of
engineered tissue at the bottom (comprising of stabilized
collagen-based cellular hydrogel, also referred to as the gel in
this work, for thickness, see table 1) and a layer of culture
media on top (figure 3a, for thickness, see table 1). Gels were
fabricated using a range of seeded cell densities (table 2) and
incubated at a range of ambient oxygen levels for 24 h (table 2).
Oxygen concentration in the gel was monitored continuously for
approximately 24 h (§2.1.2). Glucose and VEGF concentrations in
the media were measured after 24 h (§2.1.3). Cell density in the
gel was estimated after 24 h (§2.1.4). Sections 2.1.1 to 2.1.4 focus
on F7 cell experiments; the counterpart data for dADSC and
CTX cells have already been published [8,13].

2.1.1. Engineered tissue
Cell culture. Rat Schwann cell line SCL4.1/F7 (Health Protection
Agency) cells were grown in high glucose Dulbecco’s Modified
Eagle’s Medium (DMEM) (Sigma Aldrich), supplemented with
10% (v/v) heat inactivated foetal bovine serum (FBS) (GibcoTM,
ThermoFisher) and 1% (v/v) penicillin/streptomycin solution
(GibcoTM, ThermoFisher), in tissue culture flasks (Greiner
CELLSTAR, Sigma-Aldrich). Cells in flasks were maintained in
a humidified incubator at 37°C and 5% CO2. The medium was
replaced every 2–3 days until cells were approximately 80% con-
fluent, as observed under phase-contrast microscopy. When
passaging, cells were washed with phosphate-buffered saline
(PBS) (GibcoTM, ThermoFisher) and trypsinized by the addition
of 0.25% Trypsin-EDTA (GibcoTM, ThermoFisher) for 5 min at
37°C. Trypsin was inactivated by the addition of medium and
the cell suspension was centrifuged at 300(g-force) for 5 min at
room temperature.

This standard protocol was also used (with adaptations as
appropriate) for dADSCs and CTXs [8,13].

Fabrication of engineered tissue. Stabilized cellular collagen gels
were fabricated using protocols derived from [8,13,20]. Stabilized
cellular collagen gels in in vitrowells were built to mimic the con-
ditions in EngNT constructs. All gels were prepared using 80%
v/v type I rat tail collagen (2 mgml−1 in 0.6% acetic acid; First
Link, UK) mixed with 10% v/v 10 × minimum essential
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Figure 3. The well geometry (a) in three dimensions (3D), (b) after simplification via rotational symmetry in two dimensions (2D) and (c) after averaging to define
an effective one-dimensional system (1D). (a–c) The culture media is depicted in pink and the cellular collagen gel is depicted in grey. (d ) Confocal fluorescence
microscopy image of F7 cell population in the gel after 24 h for an initial cell density of 31 million cells ml�1. Living cells are shown in blue, dead cells are in red.

Table 1. Well geometry dimension in millimetres (10−3 m).

cell type top radius (Rt) bottom radius (Rb) gel thickness (Lg) media thickness (Lm) well height (Lt)

F7 3.45 3.35 0.2 5.5 11.4

CTX 3.45 3.35 0.2 5.5 11.4

dADSC 4.03 3.31 0.18 3.82 12.4

Table 2. Experimental scenarios: ambient oxygen and seeded cell density tested for each cell type along with each species measured and the associated
repeats. For each cell type, every combination of initial cell density and ambient oxygen level was tested.

cell type ambient oxygen (%O2)
cell density (post-stabilization,
106 cell ml−1) species measured

F7 (rat Schwann cells) 1, 3, 7, 19 20, 31, 60 — oxygen gel concentration (n = 3)

— glucose media concentration (n = 4)

— VEGF media concentration (n = 4)

— cell density (n = 4)

CTX (human neural stem cells) 1, 3, 7, 19 20, 31, 60 — oxygen gel concentration (n = 3)

— glucose media concentration (n = 4)

— VEGF media concentration (n = 4)

— cell density (n = 4)

dADSC (rat differenciated adipose-

derived stem cells)

1, 3, 5, 10, 16 39, 77, 154, 231, 385 — oxygen gel concentration (n = n.a.)

— VEGF media concentration (n∈ [3; 6])

— cell density (n∈ [3; 6])
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medium (Sigma). The mixture was then neutralized using sodium
hydroxide (NaOH; Sigma-Aldrich), and 10% v/v cell suspension
was added to give a cell density of 0.5−1.5 × 106 cells ml−1. Then
240 μl of this mixture was added per well in a 96-well plate. Gels
were allowed to set at 37°C for 15 min. Stabilization was achieved
using RAFT absorbers (Lonza Bioscience) for 15min. The cell
density post-stabilization was 20−60 × 106 cellsml−1.

2.1.2. Ambient oxygen control and local oxygen measurement
A hypoxiaworkstation and incubator (HypoxyLab, Oxford Optro-
nix, Oxford, UK) was used to control the ambient oxygen levels
for the 24 h culture period (range 1�19%O2). Local (or in situ)
dissolved oxygen within the centre of the gels was measured
using the integrated OxyLite (Oxford Optronix, UK) monitoring
system. Fibre-optic oxygen probes were inserted into the centre
of the three-dimensional stabilized collagen gels and the local
oxygen concentration measured at 1 s time intervals (subsampled
every half hour). The results were recorded on a standard laptop
using Labview (National Instruments, Berkshire, UK).

2.1.3. Glucose and VEGF measurement
Glucose measurements. Glucose consumption was quantified by
an enzymatic assay (Glucose (HK) Assay Kit, GAHK20, Sigma
Aldrich). Briefly, after 24 h, media samples were collected. The
reconstituted reagent was added to each sample and the result-
ing solution was incubated for 15min at room temperature.
Optical absorbance was measured at 340 nm and was directly
proportional to glucose concentration.

VEGF measurements. Secreted vascular endothelial growth
factor-A (VEGF-A) concentrations after 24 h incubation of the cel-
lular gels were determined by an enzyme-linked immunosorbent
assay (ELISA). Media samples were collected, stored at �20�C
and analysed with a VEGF-A sandwich ELISA kit (human and
rat VEGF-A kits, RayBiotech, GA, USA).

2.1.4. Cell density measurement
To assess cell viability, cultures were stained using Syto 21/Pro-
pidium Iodide (PI) (Sigma Aldrich) which allow for the
simultaneous staining of viable and dead cells. The medium
was removed from the gels, which were then washed three
times with 200 μl of media (37�C). (200 μl of Syto 21/PI solution
for 15min at 37�C). Gels were imaged using a confocal micro-
scope (Zeiss-LSM710, Carl Zeiss, Germany) with 20× water
immersion objectives.

2.2. Model derivation
2.2.1. General equations
The well geometry is divided into two domains: the media m and
the gel g (figure 3). Transport in both domains is assumed to be
driven by diffusion (there is no imposed pressure gradient or
flow) with diffusive fluxes modelled using Fick’s First Law.
Both domains are treated as continua given the large cell den-
sities (million cells ml−1) and we assume constant diffusion
coefficients in each domain. Finally, we treat the problem as a
superposition of independent binary solute/solvent mixtures,
where each species is sufficiently dilute so that it does not
change the medium density. Hence in the media we have

@tCm ¼ Dmr2Cm � lCm, ð2:1Þ
where Cm is the local solute (oxygen, glucose, VEGF) concen-
tration in the media, Dm the associated diffusion coefficient and
λ a linear degradation rate that represents the potential instability
of the solute.

Similarly in the gel, we have

@tCg ¼ Dgr2Cg � lCg þMðfCggÞ, ð2:2Þ
where Cg is the local solute concentration or cell density field in
the gel, Dg the associated diffusion coefficient. The term M({Cg})
represents cell–solute interactions (e.g. consumption, secretion,
proliferation, etc.), which are functions of {Cg}, the set of all con-
centration/cell density fields in the gel. We note that in general
Dg should depend on cell density; however, this dependence
can be neglected for relatively low cell densities, which are the
focus of this work [21].

Boundary conditions are imposed to mimic the physical and
biological set-up. No-flux conditions are imposed on the well
walls and base for all species so that

�DXrCX � n ¼ 0, ð2:3Þ
where X∈ {m, g} and n is the outward pointing normal vector
associated with the boundary. At the air/media interface, the
nature of the boundary condition changes depending on the
solute under consideration. For oxygen, we assume a fixed ambi-
ent oxygen concentration on the interface so that

Cm ¼ Ca=m, ð2:4Þ
where Ca=m ¼ ePa=m is the concentration at the air/media inter-
face, e is the solubility factor associated with Henry’s Law in
the media phase and Pa/m the partial pressure. For all other
solutes, we assume a no-flux boundary condition which yields

�DmrCm � n ¼ 0: ð2:5Þ
Finally, at the gel/media interface, we assume zero mass flux for
cells,

�DgrCg � n ¼ 0, ð2:6Þ
and mass flux continuity with no sorption for all solutes so that

�DmrCm � n ¼ �DgrCg � n, ð2:7Þ
and to close the problem we assume that at equilibrium we have
for all solutes

lim
t!1Cm ¼ hg=mCg, ð2:8Þ

where ηg/m corresponds to the chemical affinity (analogous to the
partition coefficient). We note that the case ηg/m = 1 corresponds
to continuity of the concentration fields between the gel and
media.
2.2.2. Effective equations
Equations (2.1)–(2.8) can be expressed in two dimensions given the
axisymmetry of the geometry (figure 3a,b). It is possible to further
simplify them to a one-dimensional description (figure 3c) assum-
ing the well wall slope (R0 =−(Rt−Rb)/Lt) to be small and the gel
layer thickness Lg to be small compared with the media layer thick-
ness Lm. Table 1 shows that these assumptions are reasonable for
the cases considered in this work since R0 < 0.05 and Lg/(Lg+
Lm) < 0.05. We apply asymptotic homogenization to equations
(2.1)–(2.8) to obtain new, effective formulations (appendix A). For
the media domain, this yields

@thCmi ¼ 2Dm
R0

R
@zhCmi þDm@

2
zhCmi � lhCmi, ð2:9Þ

where 〈Cm〉 represents the cross-section average solute concen-
tration, R the local radius of the well and z the position along
the axis of the well. The counterpart boundary conditions at the
air/media interface become

hCmi ¼ Ca=m ð2:10Þ
and

�Dm@zhCmi ¼ 0, ð2:11Þ
for oxygen (equation (2.10)) and other solutes (equation (2.11)). For
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all solutes, at the gel/media interface, we now have an effective
membrane condition

�Dm@zhCmi ¼ K hCmi � hg=m
�Cg

� �
, ð2:12Þ

where �Cg represents the average concentration in the gel layer and
K=Dg/Lg represents the effective permeability of the gel layer.
Mass flux conservation is then enforced so that the integral balance
in the gel layer becomes

d�Cg

dt
¼ Sg=mK

Vg
ðhCmi � hg=m

�CgÞ þMðf�CggÞ, ð2:13Þ

where Sg/m is the cross-sectional area at the gel/media interface
and Vg is the volume of the gel layer. For the case of cells, we
consider K= 0.

Equations (2.9)–(2.13) form a nonlinear coupled set of effec-
tive diffusion–reaction equations that is solved numerically
using a coarse-mesh finite volume approach (appendix B), for
prescribed functional forms cell–solute interactions constitutive
relationships, as described next.
20:20230258
2.2.3. Functional forms for cell–solute constitutive relationships
Equations (2.9)–(2.13) describe the transport of a generic species
in the gel and media. For each species of interest (here oxygen,
glucose, VEGF, cells), the parameters in the model (such as diffu-
sion coefficients) must be prescribed, as well as the functional
form of Mðf�CggÞ (denoted as Mox, Mglu, MVEGF and Mcell,
respectively) which encapsulates cell and solute processes as
well as their interactions.

There are numerous approaches to describing these relation-
ships in the literature [11,22–24]. We seek an approach which
encapsulates the relevant biological mechanisms while minimiz-
ing the number of free parameters that must be prescribed.
Where literature relationships are less well established and
tested, we use a Bayesian approach (see §2.3) to select the form
most relevant to our in vitro data.

Oxygen consumption is described using Michaelis–Menten
kinetics, a simple and widely used expression in the literature
for a variety of tissues [25–27] and given by

Mox ¼ ��CcellMox; max

�Cox

Cox,1=2 þ �Cox
, ð2:14Þ

where �Ccell and �Cox are the average cell density and oxygen
concentration in the gel, respectively. Mox,max represents the
maximum rate of oxygen consumption and Cox,1/2 the oxygen
concentration for which the consumption rate is half its maximal
value. The Michaelis–Menten kinetics is linear for oxygen con-
centration �Cox � Cox,1=2 and constant for �Cox � Cox,1=2 which
represent the transition between a first-order kinetic and a
saturated one.

Similarly, glucose consumption is modelled through Michae-
lis–Menten kinetics [28,29]. However, this time a term is added to
account for consumption via both anaerobic respiration (under
low-oxygen conditions) as well as respiration under oxygen-
rich conditions

Mglu ¼ ��CcellMglu,max

�Cglu

Cglu,1=2 þ �Cglu
1þ A

Cox,1=2
�Cox þ Cox,1=2

 !
,

ð2:15Þ
where �Cglu is the average glucose concentration in the gel.
Mglu,max represents the maximum glucose consumption rate,
Cglu,1/2 the glucose concentration for which the consumption
rate is half its maximal value and A is a factor which weights
the contribution of anaerobic consumption (which is dependent
on the local oxygen concentration) to the overall glucose con-
sumption. The augmented glucose consumption due to the
anaerobic mechanism is described as the difference between
the baseline and oxygen-saturated scenarios (�Cox ! 1), i.e.
1� ð�Cox=ð�Cox þ Cox,1=2ÞÞ ¼ ðCox,1=2=ð�Cox þ Cox,1=2ÞÞ.

Cells, on the other hand, can proliferate and die so that

Mcell ¼ P�Q, ð2:16Þ
where P and Q represent the proliferation and death rates,
respectively. We assume cells proliferate through logistic
growth, which is an established approach when modelling cell
growth [30,31]

P ¼ g�Ccell

�Cox
�Cox,1=2 þ �Cox

 !
�Cglu

Cglu,1=2 þ �Cglu

 !

� 1�
�Ccell

Ccell,max

� �
, ð2:17Þ

where γ represents the baseline proliferation rate and Ccell,max the
threshold beyond which cells compete for space. The terms
�Cox=ð�Cox,1=2 þ �CoxÞ and �Cglu=ðCglu,1=2 þ �CgluÞ relate high prolifer-
ation rates to high oxygen and glucose concentrations without
adding new parameters into the model. To describe cell death,
we follow the approach of Eleftheriadou et al. [13] and prescribe

Q ¼ �Ccell d0 þ dox
Cox,1=2

�Cox þ Cox,1=2
þ dglu

Cglu,1=2

�Cglu þ Cglu,1=2

 !
, ð2:18Þ

where δ0 is the baseline death rate and where δox and δglu are
coefficients for cell death in low oxygen and glucose concen-
trations environment, respectively.

A number of functional relationships have been used to
model VEGF secretion. Here four models have been selected
(table 3).MVEGF,1 was selected for its simplicity (two parameters),
MVEGF,2 because it is often encountered when modelling tissues
[33] and MVEGF,3 and MVEGF,4 because they were derived specifi-
cally for nerve engineering purposes [8,13]. All four models take
into account the upregulation of VEGF in low-oxygen conditions,
via an upregulated secretion rate β and upregulation threshold
Cox,hypo. The model MVEGF,2 introduces a baseline secretion rate
α and a transition regime bounded by Cox,hyper and Cox,hypo

between baseline and upregulated regimes. The transition
between these two regimes is controlled by ν, with upregulated
and baseline secretion rates related through the parameter V so
that β = α(1 +V ). By comparison, model MVEGF,3 introduces a
dependence upon the initial cell density �Ccell,0 via parameters α
and V. Finally, model MVEGF,4 introduces a dependency upon
local cell density through a crowding threshold �Ccell,crowd, i.e. a
cell density beyond which VEGF secretion is hindered. We
point out that parameter names and definitions have been
adapted from their original publications in order to facilitate
comparisons between models.

2.3. Bayesian inferences
The model (equations (2.9)–(2.18) and table 3) includes a number
of unknown parameters that we seek to estimate based on the
experimental measurements, while taking account of the under-
lying uncertainty in those measurements. To do so we employ
Bayesian inferences. Based on Bayes’ theorem, we write

PðujYÞ/ PðYjuÞPðuÞ, ð2:19Þ
where Y is a vector of dimension Ne containing experimental
measurements and where θ is a vector of dimension Nu contain-
ing the parameters to be inferred. In this context, P(θ)
corresponds to the prior distribution, i.e. the information
known about the parameters before taking into account the
new measurements (§2.3.1). Then, P(Y|θ) corresponds to the like-
lihood distribution, which serves as a proxy to represent the
probability of a model prediction to accurately describe
the measurements (§2.3.2). Finally, P(θ|Y) corresponds to the



Table 3. Candidate VEGF secretion models used to represent therapeutic cell behaviour.

name expression mechanisms/characteristics reference

MVEGF,1 0 �Cox . Cox,hypo
b�Ccellð1� ð�Cox=Cox,hypoÞÞ �Cox � Cox,hypo

— low oxygen upregulation [32]

— linear upregulated state

— two parameters

MVEGF,2 a�Ccell �Cox . Cox,hyper

a�Ccellð1þ Vð Cox,hyper��Cox
Cox,hyper�Cox,hypo

ÞnÞ Cox,hypo � �Cox � Cox,hyper

a�C cellð1þ VÞ �Cox , Cox,hypo

— low oxygen upregulation [33]

— constant baseline state

— constant upregulated state

— controlled transition

— five parameters

MVEGF,3 aðCcell,0Þ�Ccellð1þ ð1=2ÞVðCcell,0Þð1þ tanh nð1� ð�Cox=Cox,hypoÞÞÞÞ
aðCcell,0Þ ¼ a0 þ a1Ccell,0 þ a2C2cell,0

VðCcell,0Þ ¼ V0 þ V1Ccell,0

— low oxygen upregulation [8]

— constant baseline state

— constant upregulated state

— controlled transition

— initial cell density effect

— seven parameters

MVEGF,4 að�Cox=Cox,hypoÞ�C cell þ b�Ccell e�ðð�Cox=Cox,hypoÞþð�C cell=�C cell,crowdÞÞ — low oxygen upregulation [13]

— linear baseline state

— exponential upregulated state

— local cell density effect

— four parameters
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posterior distribution, which represents the knowledge of the
parameters after taking into account the new measurements.
To estimate parameters, we sample the posterior distribution
multiple times using a Monte Carlo Markov chain (§2.3.3) and
compute statistics based on the sample distribution, representa-
tive of the knowledge of the parameters a posteriori (§2.3.4) that
can then be used as the basis for model selection (§2.3.5) and
experimental design improvement §2.3.6).
2.3.1. Prior distribution
Parameters to be inferred are placed into three categories:

(i) Transport mechanisms (table 7), which include diffusion
coefficients in the media and gel (Dm, Dg), partition coef-
ficients (ηg/m) and degradation rates (λ) for each species.

(ii) Cell–solute interactions (table 8), which include all par-
ameters involved in reaction terms (Mox, Mglu, MVEGF,
Mcell).

(iii) Initial and boundary conditions (table 9), which include the
initial oxygen concentration (C0,ox), the initial glucose con-
centration (C0,glu), the initial cell density (C0,cell) and the
oxygen concentration at the interface between air and
media (Ca/m).

We note that some additional parameters are fixed (e.g. well
shape, media and gel thicknesses). Further, CTXs are con-
ditionally immortalized so can only proliferate under certain
conditions in vitro, and are inhibited from undergoing cell div-
ision after implantation into the body, hence we assume γ = 0.
Similarly, oxygen and glucose do not degrade so that λ = 0 for
both of them. Finally, we assume that there is no VEGF in the
media at the outset (C0,VEGF = 0).

In total, Nθ≈ 30 parameters are inferred, this number chan-
ging slightly depending on the cell type and choice of VEGF
secretion model.
For these parameters, we assume a positive, truncated
normal distribution for simplicity, though we note that the
approach could be readily adapted to any distribution. Only
α1, α2 and V1 are associated with a normal distribution as we
consider them as deviations of α0 and V0 in VEGF secretion
model MVEGF,3 and therefore can take negative values.

We inform the mean and standard deviation for each par-
ameter and initial and boundary condition using either values
from the literature or by extrapolating them from the experimen-
tal data (appendix C).

Finally, all inferred parameters are assumed independent so
that the joint prior distribution corresponds to the product of
each individual distribution.

2.3.2. Likelihood distribution
We describe the difference between model and experiment via a
normally distributed noise with zero mean so that we have, for
each data point of each species (oxygen, glucose, VEGF, cell
density) and each cell type

Yk � FkðuÞ ¼ N ð0, s2
e,kÞ, ð2:20Þ

where Yk represents the experimental data point, Fk(θ) represents
the model prediction (i.e. the solution of equations (2.9)–(2.18)
and table 3) and σe,k the standard deviation associated with
data point k, which serves as a proxy for the confidence in the
experiment. The likelihood distribution is then given by

PðYkjuÞ ¼ N ððYk � FkðuÞÞ, s2
e,kÞ: ð2:21Þ

We estimate Yk and σe,k, for each species (oxygen, glucose, VEGF,
cell) and each cell type (F7, CTX, dADSC) using the mean and
standard deviation associated with the experimental repeats
(appendix D).

Similar to the prior distribution, we consider each data point
as independent so that the joint likelihood distribution is the
product of each individual distribution.
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2.3.3. Sampling posterior distribution
We sample the posterior distribution P(θ|Y), which we recall
combines prior knowledge of the parameters and adequacy
between experiment and model predictions (figure 2) using
Monte Carlo Markov chains (MCMC, appendix E), for each
VEGF model (table 3) and each cell type (table 2).

For each combination, we obtain a set of samples fuig0,i�Ns

where Ns represents the number of times the posterior distribution
was sampled. Each sample, θi is a vector of dimension Nθ contain-
ing a single value for each of the parameters to be inferred, i.e.
each parameter used to build the prior distribution (§2.3.1). Alter-
natively, fuig0,i�Ns

can be interpreted as a Ns ×Nθ matrix where
each row corresponds to a single sample θi and where each
column contains all the sampled values for a specific parameter,
that we label θj. In this context, θij then represents the value of a
specific parameter value within a given sample.
 Soc.Interface

20:20230258
2.3.4. Parameter estimation
For each parameter, we compute a set of statistics to evaluate the
outcomes of the Bayesian inference process, for each cell type and
each VEGF model. These are: the expected value of each
parameter a posteriori

mu,j 	
1
Ns

Xi¼Ns

i¼1

uij, ð2:22Þ

the marginal standard deviation a posteriori

su,j 	 1
Ns

XNs

i¼1

ðuij � mu,jÞ2
 !1=2

, ð2:23Þ

and the 80% credible interval, i.e. the interval containing 80% of
the posterior distribution defined as follows:

½u
j ¼ ½uinf,j; usup,j
, ð2:24Þ

where

uinf,j 	 argminuinf[uj
(k@(fs [ uj, s , uinfg)� 0:9Nsk) ð2:25Þ

and

usup,j 	 argminusup[uj
(k@(fs [ uj, s . usupg)� 0:9Nsk), ð2:26Þ

where @ represents the cardinal of the different sets.
2.3.5. Vascular endothelial growth factor model selection and
model averaging

We use the Watanabe–Akaike information criterion (WAIC, [34])
to evaluate the performance of each VEGF model, calculated for
each cell type independently. WAIC takes into account both qual-
ity of fit and number of parameters and has the following
expression:

WAIC ¼ �2
XNVEGF

k¼1

( log (PðYkjuÞ)� dlogðPðYkjuÞÞ), ð2:27Þ

where NVEGF is the number of VEGF data points for each cell

type, PðYkjuÞ ¼ ð1=NsÞ
PNs

i¼1 PðYkjuiÞ and dlogðPðYkjuÞÞ ¼ ð1=NsÞPNs
i¼1ðlogðPðYkjuiÞ � logðPðYkjuÞÞ2 [35]. The smaller the WAIC

value, the stronger the performance of the model so that we
rank VEGF models accordingly.

The WAIC values associated with each model may be
combined via an average posterior distribution [36]. This enables
quantities such as expected values or marginal standard
deviations for parameters shared by all the models (i.e. all par-
ameters except the VEGF secretion-related parameters) to be
calculated. This average posterior distribution has the form

PðujYÞ ¼
Xl¼4

l¼1

PðujY , MVEGF,lÞPðMVEGF,ljYÞ, ð2:28Þ

where P(θ|Y, MVEGF,l) corresponds to the posterior distribution
associated with each model MVEGF,l (table 3), and P(MVEGF,l|Y)
represents the posterior knowledge about the model itself. The
latter may be calculated from Bayes theorem as

PðMVEGF,ljYÞ/ PðYjMVEGF,lÞPðMVEGF,lÞ, ð2:29Þ
where P(Y|MVEGF,l) represents the accuracy of the model com-
pared with data, and P(MVEGF,l) the a priori knowledge we
have regarding the model itself.

We do not discriminate between the VEGF models presented
in table 3 and assume them to be equally likely in representing
VEGF secretion a priori. We use WAIC as a proxy to evaluate
model performance and write

PðYjMVEGF,lÞPðMVEGF,lÞ 	 e�ð1=2ÞDWAIClPn¼4
n¼1 e�ð1=2ÞDWAICn

, ð2:30Þ

where ΔWAICl represents the difference in the WAIC value
between each MVEGF,l and the best performing model. Using
equations (2.29) and (2.30) in equation (2.28) allows us to esti-
mate the average posterior distribution and to derive expected
values, standard deviation and credible intervals by adapting
equations (2.22)–(2.26) to the case of a sum of weighted
distributions.

2.3.6. Information gain and experiment utility
The relative entropy, defined as the Kullback–Leiber divergence
associated with the posterior and prior distributions, is an estab-
lished tool used to represent the utility of an experimental
outcome in learning about model parameters [37–39]. It can be
defined as

DKL(PðujYÞ, PðuÞ) ¼ �HðPðujYÞ, PðYjuÞÞ, ð2:31Þ
where H(P(θ|Y), P(Y|θ)) represents the cross entropy between
likelihood and posterior distributions. Altogether, the Kull-
back–Leiber divergence can be interpreted as the information
missing when using the prior distribution instead of the posterior
distribution, and hence the information gain from performing the
experiments. Following the definition of Shannon entropy, we
have

HðPðujYÞ, PðYjuÞÞ ¼ log(PðYjuÞ)� logðPðYÞÞ, ð2:32Þ
where logðPðYjuÞÞ 	 1

Ns

PNs
i¼1 logðPðYjuiÞÞ and log(P(Y)) is the

Bayesian model evidence [40], which is the normalizing constant
of the posterior distribution associated with a given set of exper-
iments, i.e. PðYÞ ¼ Ð PðYjuÞPðuÞdu. We estimate this constant by
adapting the MCMC used to sample the posterior distribution in
§2.3.3 to the case of the prior distribution.
3. Results
3.1. Acellular case
We apply our approach to a preliminary case where no cells
are seeded in the collagen gel. This allows us to estimate
oxygen transport parameters for the first time in a simplified
set-up. We then use such distributions as prior for the cellular
case.

Figure 4 shows the measured oxygen levels in the gel over
a 22 h period, maintained with ambient oxygen levels (or
oxygen concentration at the air/media interface, i.e. Ca/m)
of 1%O2 (figure 4a), 3%O2 (figure 4b) and 7%O2 (figure 4c).



0 6 12 18 22

2

4

6

8

10

12

time (h)

0 6 12 18 22

2

4

6

8

10

12

time (h)

0 6 12 18 22

2

4

6

8

10

12

(a) (b) (c)

time (h)

ox
yg

en
le

ve
l

in
th

e
ge

l
(%

O
2) experiments

1%O2 3%O2 7%O2

2 std: exp.
simulations 2 std: sim.

Figure 4. Comparison of oxygen concentration in the gel between experiment and simulation for the case of an acellular gel (C0,cell = 0). (a) 1%O2, (b) 3%O2,
(c) 7%O2. Number of repeats for oxygen measurements n.a. The red area corresponds to the standard deviation associated with the model predictions based on the
posterior sample distribution, i.e. fuig0,i�Ns . The blue area corresponds to the standard deviation associated with the experiments.

Table 4. Posterior estimates of oxygen transport parameters, and oxygen initial and boundary conditions in the acellular case. μθ, σθ and [θ] correspond to
the expected values, marginal standard deviation and credible intervals defined in equations (2.22), (2.23) and (2.24). Tables 7 and 9 recapitulate the
parameter descriptions.

parameter units μθ σθ [θ]

Dm,ox 10−9 m2 s−1 1.99 0.05 [1.91, 2.05]

Dg,ox 10−10 m2 s−1 4.51 0.57 [3.87, 5.39]

ηg/m,ox n.a. 0.96 0.02 [0.94, 0.98]

C0,ox 4.21 × 10−4 kg m−3 11.54 0.30 [11.15, 12.85]

Ca/m 4.21 × 10−4 kg m−3 1.31/3.16/6.87 0.06/0.07/0.09 [1.23/3.07/6.76, 1.40/3.24/6.98]
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Measured data are shown in blue and model predictions in
red, based on expected values. Figure 4 shows good agree-
ment between model and experiment for each ambient
oxygen condition with a slight underestimation of the
model around 6 h. The red area corresponds to the standard
deviation associated with the model prediction based on the
posterior sample distribution, i.e. fuig0,i�Ns

, and can be seen
as a measure of the sensitivity of the predictions.

Table 4 shows the posterior expected value, marginal stan-
dard deviation and credible interval associated with the
parameters, including initial and boundary conditions. We
note that for the boundary condition, i.e. the oxygen concen-
tration at the air/media interface, the expected value a
posteriori remained close to its prior counterpart, which aligns
with the posterior marginal standard deviation remaining
close to its prior value. This is a direct effect of the higher con-
fidence placed on the ambient oxygen level, which can be
readily measured with high accuracy. We also see that the
initial oxygen concentration, while remaining close to its
prior value, has a drastically smaller standard deviation (this
is also true of the associated partition coefficient). Indeed, the
partition coefficient values inferred are close to one, indicating
continuity between concentration fields between the gel and
the media, and aligning with oxygen being a small molecule.

Next, the expected values and marginal standard devi-
ations reported in table 4 for the diffusion coefficient in the
media, gel and partition coefficient are used as prior
distribution for the cellular gel cases.

3.2. Cellular case
We use the samples obtained from the posterior distributions
(§2.3.3) to estimate, for each cell type (F7, CTX, dADSC) and
for each VEGF secretion model (table 3), the posterior
expected values (equation (2.22)), the posterior marginal stan-
dard deviations (equation (2.23)) and the credible intervals
(equation (2.24)) of all the parameters in the model (§2.3.1).
Such estimates are reported in electronic supplementary
material (tables S1–S12).

3.2.1. Model selection
We use the posterior samples to compute the WAIC (equation
(2.27)) associated with each VEGF secretion model, i.e. their
ability to represent experimental data. Figure 5 shows the
results for F7, CTX and dADSC. We see that for F7, all four
models behave similarly, with MVEGF,2 performing the best.
However, we see that when the influence of an outlier point
not described by any model (C0,cell = 60 × 1012 cell m−3,
Ca=m ¼ 3%O2, see figure 7l ) was excluded using an exagger-
ated uncertainty (10 times the value reported in table 10),
the WAIC associated with each model decreases significantly,
showing that the models are able to represent the remaining
data, with MVEGF,4 performing better.

For CTX, we see that MVEGF,4 is associated with signifi-
cantly lower WAIC and therefore is able to represent
dataset. Finally, for dADSC we see that model MVEGF,2

behaves more poorly and MVEGF,4 performs better. Comput-
ing the sum of WAIC over all three cell types for the case
of the complete dataset (figure 5d ), we conclude MVEGF,4 is
globally performing better. That is because MVEGF,4 is the
only model to include nonlinear effects induced by local
cell density through a crowding threshold (Ccrowd) that hin-
ders cell secretion for larger cell densities. It also expresses
VEGF secretion as a linear function of oxygen for large
oxygen concentration (aðCox=ChypoÞ), while other models
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(a) includes the WAIC associated with each VEGF secretion model for the case where a single outlier point (C0,cell ¼ 60� 1012 cell m�3, Ca=m ¼ 3%O2, see figure 7l )
was excluded from calculation.
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have a constant secretion rate at high oxygen concentration,
or for the case of MVEGF,1, no secretion at all. Consequently,
the latter fails to capture any data point lying above the up-
regulation threshold (Chypo), hence consistently ranking last.
F7s CTXs dADSCs
0

20

40

D
K

L
 (

na
ts

)

Figure 6. Kullback–Leiber divergence associated with each experimental
dataset, i.e. each cell type (F7s, CTXs and dADSCs). Error bars correspond
to the standard deviation associated with the VEGF secretion model (table 3).
3.2.2. Experiment utility
Next we use the posterior samples to evaluate the Kullback–
Leiber divergence (DKL, equation (2.31)). Doing so can be
seen as the counterpart of computing the WAIC, as the
latter evaluates the ability of a model to represent the data
while the former evaluates the ability of an experimental
design/dataset to inform a given model.

Figure 6 shows the Kullback–Leiber divergence for each
cell type. The values reported correspond to the average
over the different VEGF secretion models and the error bars
correspond to the associated standard deviations. We see
that the information gain associated with F7 is larger than
the one associated with CTXs, despite their underlying exper-
imental designs being identical (table 2). This difference
stems mostly from the experimental uncertainties being
higher in the case of CTXs (table 10). Similarly, we see that
the information gain associated with dADSCs is comparable
to that associated with CTXs, despite its experimental design
being larger (i.e. including more design points; cf. table 2).
We attribute this to the much higher experimental



Table 5. Posterior estimates for cell–solute interaction parameters. mu corresponds to the expected value, su, to the standard deviation and ½u
 to the
credible interval obtained using the averaged posterior distribution (equation (2.28)) while μθ, σθ and [θ] correspond to the expected values, marginal
standard deviation and credible intervals defined in equations (2.22), (2.23) and (2.24). Italic numbers correspond to the expected value estimates. Table 8
recapitulates the parameter descriptions.

parameter units F7s CTXs dADSCs

Mox (mu, su, ½u
)
Mox,max 10−20 kg s−1 cell−1 11.89 1.18 [10.42, 13.45] 4.95 0.73 [4.07, 5.90] 0.95 0.21 [0.70, 1.23]

Cox,1/2 4.21 × 10−4 kg m−3 0.95 0.23 [0.67, 1.23] 0.87 0.43 [0.33, 1.42] 0.68 0.32 [0.26, 1.11]

Mglu (mu, su, ½u
)
Mglu,max 10−18 kg s−1 cell−1 7.82 1.63 [5.72, 10.03] 2.22 0.89 [1.11, 3.43] 5.31 2.67 [1.80, 8.92]

Cglu,1/2 kg m3 0.55 0.31 [0.15, 0.97] 1.63 0.78 [0.63, 2.65] 0.87 0.56 [0.17, 1.67]

A n.a. 0.88 0.47 [0.35, 1.53] 4.61 2.41 [1.60, 7.96] 3.94 2.03 [1.24, 6.62]

Mcell (mu, su, ½u
)
γ 10−6 s−1 0.78 0.52 [0.14, 1.51] n.a. 28.22 8.10 [17.19, 38.34]

Ccell,max 1012 cell m−3 51.87 16.42 [31.03, 72.82] n.a. 144 94.32 [67.16, 229.32]

δ0 10−6 s−1 0.35 0.30 [0.05, 0.78] 8.78 1.13 [7.21, 10.33] 7.90 3.68 [3.16, 12.81]

δox 10−6 s−1 0.72 0.50 [0.15, 1.41] 2.08 1.10 [6.84, 5.78] 4.48 2.08 [1.72, 3.83]

δglu 10−6 s−1 1.71 1.14 [0.36, 3.39] 0.72 0.32 [0.22, 1.23] 1.78 0.88 [0.62, 3.00]

MVEGF,1 (μθ, σθ, [θ])

β 10−22 kg s−1 cell−1 0.05 0.02 [0.02, 0.07] 0.57 0.27 [0.25, 0.94] 1.17 0.53 [0.49, 1.89]

Cox,hypo 4.21 × 10−4 kg m−3 1.33 0.49 [0.75, 2.00] 1.38 0.47 [0.85, 2.05] 7.5 2.95 [4.05, 11.50]

MVEGF,2 (μθ, σθ, [θ])

α 10−24 kg s−1 cell−1 2.53 1.19 [1.03, 4.16] 10.61 4.22 [4.34, 16.41] 62.11 27.01 [29.1, 97.9]

V n.a. 0.63 0.30 [0.20, 1.00] 2.43 0.95 [1.28, 3.68] 1.50 1.03 [0.33, 2.97]

ν n.a. 3.88 1.83 [1.41, 6.24] 3.67 1.81 [1.33, 6.10] 3.28 1.83 [0.88, 5.82]

Cox,hypo 4.21 × 10−4 kg m−3 0.99 0.55 [0.33, 1.73] 1.01 0.64 [0.32, 1.97] 5.44 2.83 [1.89, 9.25]

Cox,hyper 4.21 × 10−4 kg m−3 4.77 2.79 [1.20, 8.61] 2.20 2.22 [0.55, 5.51] 11.90 6.81 [3.58, 21.37]

MVEGF,3 (μθ, σθ, [θ])

α0 10−24 kg s−1 cell−1 2.61 1.10 [1.01, 4.33] 15.9 6.04 [8.71, 24.01] 57.03 0.88 [21.33, 92.11]

α1 10−38 kg m3 s−1 cell−2 0.04 1.02 [− 1.28, 1.36] −0.24 6.93 [− 9.14, 8.39] 2.66 2.05 [− 1.01, 5.39]

α2 10−51 kg m6 s−1 cell−3 −0.01 0.22 [− 0.28, 0.29] −0.70 0.88 [− 1.82, 0.37] 0.12 0.10 [− 0.10, 0.30]

V0 n.a. 0.55 0.31 [0.16, 0.99] 3.24 1.24 [1.65, 4.88] 1.92 1.83 [0.24, 4.66]

V1 10−14 cell−1 m3 0.83 1.96 [− 1.64, 3.38] −0.35 2.57 [− 3.47, 3.03] 0.1 0.1 [0.01 0.20]

ν n.a. 4.05 1.84 [1.70, 6.57] 3.86 1.90 [1.51, 6.50] 2.78 1.83 [0.50, 5.20]

Cox,hypo 4.21 × 10−4 kg m−3 1.08 0.61 [0.35, 1.80] 0.83 0.35 [0.50, 1.23] 5.88 3.22 [1.32, 10.02]

MVEGF,4 (μθ, σθ, [θ])

α 10−24 kg s−1 cell−1 0.19 0.11 [0.05, 0.35] 1.12 0.51 [0.44, 1.89] 25.11 10.70 [11.70, 39.40]

β 10−22 kg s−1 cell−1 0.07 0.03 [0.03, 0.10] 2.54 1.23 [1.12, 4.19] 3.32 1.92 [1.09, 5.90]

Cox,hypo 4.21 × 10−4 kg m−3 1.08 0.51 [0.80, 2.12] 1.12 0.44 [0.62, 1.73] 5.94 2.83 [2.54, 9.63]

Ccell,crowd 1012cell m−3 51.44 22.04 [24.57, 80.36] 26.67 7.54 [18.53, 37.06] 184.14 102.11 [58.01, 325.11]
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uncertainties (appendix D) and the lack of glucose concen-
tration measurement, which hinder the potential
information gains.
3.2.3. Pseudo-Bayesian model averaging
Cell–solute interaction parameter. Next, we use the WAIC esti-
mated for each VEGF secretion model (figure 5) to derive
the average posterior distribution (equation (2.28)) for each
cell type, and deduce averaged posterior estimates for par-
ameters shared across VEGF models. Table 5 shows mu the
average expected value, su the average marginal standard
deviation and ½u
 the average credible interval, for cell–
solute interaction parameters. We can see that F7, CTX and
dADSC cells exhibit different behaviours. In particular, we
see that the oxygen maximum consumption rate (Mox,max)
is the largest for F7 cells, which consume 2.5 times more
oxygen than CTX cells and almost 12.5 times more than
dADSCs.

For glucose, maximum consumption rate (i.e. Mglu,max

(1 +A)), F7s and CTXs are comparable, but we note that F7
cells have a higher baseline glucose consumption rate. On



Table 6. Posterior estimates for transport parameters. mu corresponds to
the expected value, su the marginal standard deviation and ½u
 the
credible interval obtained by averaging across cell types and VEGF secretion
models. Italic numbers correspond to the expected value estimates. Table 7
recapitulates the parameter descriptions.

parameter units mu su ½u

Dm,ox 10−9 m2 s−1 1.96 0.06 [1.81,2.06]

Dg,ox 10−10 m2 s−1 4.51 0.66 [3.64,5.36]

ηg/m,ox n.a. 0.98 0.02 [0.95,1.00]

Dm,glu 10−10 m2 s−1 9.56 0.70 [8.64,10.49]

Dg,glu 10−10 m2 s−1 2.70 0.32 [2.27,3.11]

ηg/m,glu n.a. 1.40 0.17 [1.13,1.61]

Dm,VEGF 10−10 m2 s−1 1.49 0.10 [1.37,1.63]

Dg,VEGF 10−11 m2 s−1 4.96 0.61 [4.15,5.74]

ηg/m,VEGF n.a. 1.07 0.12 [0.91,1.20]

λVEGF 10−5 s−1 7.05 0.22 [3.84,10.46]
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the other hand, we see that dADSCs have a glucose maxi-
mum consumption rate approximately two times larger
than F7s and CTXs, although we recall that no glucose
measurement were included in the dADSC dataset, so this
estimate is probably imprecise.

Regarding cell dynamics, we can see that CTX and dADSC
cells have similar maximum death rates Qmax = δ0 + δox + δglu,
i.e. the death rate associated with the asymptotic regime
where oxygen and glucose are depleted. F7s, on the other
hand, have a maximal death rate approximately five times
smaller and therefore will deplete slower. What is more, F7s
and dADSCs proliferate, whereas CTX cells are immortalized
so do not. Looking at the asymptotic regime where oxygen
and glucose are in excess, we can estimate the maximum pro-
liferation rate as Pmax = (1/2)(γ− δ0). We see that such a
proliferation rate is 50 times larger for dADSCs than for F7s.
Additionally, we note that in this regime we have, for both
F7s and dADSCs, δ0 < γ so that there is a stable, steady-state
cell density towards which the model will converge, i.e.
�Ccell,stat ¼ Ccell,maxð1� ðd0=gÞ) which is estimated at �Ccell,stat 	
25� 1012 cell m�3 for F7s and �Ccell,stat 	 104� 1012 cell m�3

for dADSC. We point out, however, that such a state only
exists in asymptotic regimes and is degraded for lower
oxygen and glucose concentration in the gel.

Finally, we see that all three cell types have widely different
VEGF secretion rates, whether associated with baseline (α) or
upregulated (β or α(1 +V )) states. In particular, we see that
dADSC cells have a baseline VEGF secretion rate between 4
and 20 times larger than CTX cells and between 20 and 100
times larger than F7 cells, depending on the model considered.
Similarly for the upregulated state, dADSCs secrete between
1.5 and 5 times more than CTXs and between 20 and 50
times more than F7s depending on the model considered.

Transport parameters. Next, similar to equation (2.28), which
uses the WAIC as a proxy to create an averaged posterior
distribution over the VEGF secretion models, we use the Kull-
back–Leiber divergence as a proxy to create an averaged
distribution over the three cell types (replacing the minimum
WAIC in equation (2.30) with the maximum DKL). We then
apply this new averaging operator to the transport parameters
that are shared across cell types, that were already averaged
over the VEGF secretion models to obtain parameter estimates
representative of the entire problem. The results are reported in
table 6, which shows mu the expected value, su the marginal
standard deviation and ½u
 the credible interval averaged
over both VEGF models and cell types.

Model predictions. Next, we combine the values reported in
tables 5 and 6 for cell–solute interactions and transport par-
ameters, to the WAIC-average (i.e. average over the VEGF
secretion model) of the initial and boundary conditions
reported in electronic supplementary material (tables S1–S12)
to simulate the different cell types in the well during 24 h.

Figures 7, 8 and 9 compare the simulations (red) with the
experiments (blue) for F7, CTX and dADSC cells, respectively.
Figures 7, 8 and 9 all include the measured and simulated
values for oxygen concentration in the gel, cell density in the
gel and VEGF concentration in the media, while only figures
7 and 8 include the fraction of glucose concentration remaining
in the media. Further, all three figures include the values pro-
duced for each VEGF model. Error bars for the experiments
represent the standard deviations over the repeats. Error bars
for the simulations correspond to the standard deviation
associated with the model predictions based on the combined
averaged posterior distributions.

Starting with F7 cells (figure 7), we see a good agreement
for oxygen concentration, glucose concentration and cell den-
sity. For VEGF, we see that one point is poorly described,
regardless of the model chosen. Given the moderate experi-
mental uncertainties associated, this could indicate a gap in
the model formulation. The general rationale underlying
VEGF secretion models introduced in table 3 is that VEGF
secretion is upregulated by low oxygen concentration, and hin-
dered by increasing local cell density in the case of MVEGF,4.
Such models are therefore inherently unable to capture such
an isolated spike. One idea to overcome this could be to locally
refine the experimental design (e.g. adding more initial cell
densities) around the spike to potentially identify an unde-
scribed metabolic process. Alternatively, surrogate model
approaches such as Gaussian mixture model formulations
[41] could be considered, with the trade-off of separating
model formulation and metabolic processes description.

Similarly, figure 8 shows that simulations compare well
with experiments in the case of CTX cells for oxygen, glucose,
cell density and VEGF secretion.

For dADSC cells (figure 9), while we still see good agree-
ment for oxygen, we note significant discrepancies for cell
density. We link this to potential gaps in the model formulation,
although some data points could also present some inconsisten-
cies. For instance, figure 9g–j shows that there are cells
surviving for Ca=m ¼ 3%O2 but not for Ca=m ¼ 5%O2, while
figure 9a–e shows that the oxygen concentration in the gel
remains consistent for such conditions regardless of the initial
cell density. Additionally, cell density data are associated with
high level of uncertainties compared with F7s and CTXs
(table 10). Finally, we see that MVEGF,4 predictions are in good
agreement with VEGF data, which is in line with its lower
WAIC (figure 5), although here too we note that the data are
associated with a larger standard deviation (table 10), which
makes it difficult to highlight potential gaps in the models.
3.2.4. Effect of information gain on parameters
Figure 6 shows how informative the experimental datasets
were for the models. An alternative way to look at the
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Figure 7. Comparison between experiment (blue) and simulation (red) for F7 cells. (a)–(c) Oxygen concentration in the gel. (d )–( f ) Fraction of glucose concen-
tration remaining in the media after 24 h. (g)–(i) Cell density in the gel after 24 h. ( j )–(l ) Mean VEGF concentration in the media after 24 h. Number of repeats for
oxygen measurements n = 3. Number of repeats for glucose, cell and VEGF measurements n = 4. The red area (a–c) and error bars (d–l ) correspond to the standard
deviation associated with the model predictions based on the averaged posterior sample distribution. The blue area (a–c) and error bars (d–l ) correspond to the
standard deviation associated with the experiments.
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effect of information gain on individual parameters is to
evaluate the relative variation of marginal standard devi-
ation for each parameter, as a narrower distribution can be
an indicator of information gain. We define such a variation
as Dsu ¼ ðsprior

u � sposterior

u Þ=sprior

u , where sprior

u corresponds to
the prior marginal standard deviation (appendix C.4) and
sposterior

u its posterior counterpart (tables 5 and 6). Figure 10
shows, for each parameter, Δσθ as a function of their influ-
ence in the model output. We evaluate the global
influence of a parameter using the median PAWN sensi-
tivity indices (see appendix F), the larger the index, the
greater the influence.
We can see that influential parameters are generally associ-
ated with larger marginal standard deviation variations, as
illustrated by the correlation coefficient (ρ). This indicates
that globally we tend to inform influential parameters prefer-
entially. We also see that dADSCs are associated with a
weaker correlation and a smaller mean variation in marginal
standard deviation (11%) compared with F7 (18%) and CTX
(20%) cells. This can be explained by the higher level of uncer-
tainty associated with the experimental dataset (table 10).
Additionally, glucose concentration was not measured for
dADSCs, so glucose-related parameter marginal standard
deviations (green symbols) are almost unaffected.
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Figure 8. Comparison between experiment (blue) and simulation (red) for CTX cells. (a)–(c) Oxygen concentration in the gel. (d )–( f ) Fraction of glucose con-
centration remaining in the media after 24 h. (g)–(i) Cell density in the gel after 24 h. ( j )–(l ) Mean VEGF concentration in the media after 24 h. Number of repeats
for oxygen measurements n = 3. Number of repeats for glucose, cell and VEGF measurements n = 4. The red area (a–c) and error bars (d–l ) correspond to the
standard deviation associated with the model predictions based on the averaged posterior sample distribution. The blue area (a–c) and error bars (d–l ) correspond
to the standard deviation associated with the experiments.
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On the other hand, oxygen metabolism-related parameters,
especially the maximum metabolic rate Mox,max have their
marginal standard deviation significantly reduced (60% for
F7s, 75% for CTXs and 40% for dADSCs for Mox,max). Such
parameters are influential as oxygen is directly involved in
Mglu, Mcell and MVEGF, which may explain their variation in
marginal standard deviation.

A similar conclusion can be drawn about baseline (δ0)
and oxygen-related (δox) cell death rates for F7 and CTX
cells, although we note that for dADSCs this effect is
reduced due to the limited ability of the model to represent
experimental data (figure 9f–j ). Still we point out that the
maximum cell density Ccell,max has its marginal standard
deviation reduced by 50%. We attribute this to the large
range of initial cell density (C0,cell) included in the exper-
imental design which allows the triggering of crowding
effects.

Finally, we see that the initial cell density (C0,cell) is the
most influential parameter overall and has its marginal
standard deviation significantly reduced across all three
cell types (90% for F7s, 70% for CTXs and 40% for
dADSCs). This is due to its high prior marginal standard
deviation (appendix C) and role in controlling
long-term cell density and, indirectly, cell metabolism. In
comparison, the other initial and boundary conditions are
generally less influential due to their smaller prior
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Figure 9. Comparison between experiment (blue) and simulation (red) for dADSC cells. (a)–(e) Oxygen concentration in the gel. ( f )–( j ) Cell density in the gel
after 24 h. (k)–(o) Mean VEGF concentration in the media after 24 h. Number of repeats for oxygen measurements n.a. Number of repeats for cells and VEGF
n∈ [3− 6]. The red area (a–e) and error bars ( f–o) correspond to the standard deviation associated with the model predictions based on the averaged posterior
sample distribution. The blue area (a–e) and error bars ( f–o) correspond to the standard deviation associated with the experiments.
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marginal standard deviation. Still, we note that the mar-
ginal standard deviation associated with the initial
oxygen concentration C0,ox is systematically reduced
between 30 and 40% despite being marginally influential.
That is because we have direct access to oxygen concen-
tration measurements in the gel at early time points
(cf. oxygen fields in figures 7–9).

Besides looking at the variations of marginal standard
deviation for initial and boundary conditions, it is useful to
look at how their posterior estimates compare with their
prior counterparts. The latter, contrary to other parameters,
are the result of experimental design, so that a strong
variation might point toward potential experimental biases.

In that sense, figure 11 shows the relative changes in the
expected value for the initial and boundary conditions (i.e.
oxygen concentration at the air/media interface Ca/m, the
initial oxygen concentration C0,ox, the initial glucose concen-
tration C0,glu and initial cell density C0,cell). Similar to the
variation in marginal standard deviation, we define such a
relative variation as Dmu ¼ ðmprior

u � m
posterior
u Þ=mprior

u , where
m
prior
u corresponds to the prior values reported in table 9
and m
posterior
u the estimates a posteriori obtained from electronic

supplementary material (tables S1–S12). Similar to figure 10,
the values were first averaged over the different VEGF
secretion models. We also recall that each value of Ca/m and
C0,cell reported in table 9 is considered an independent par-
ameter. In this context, the values displayed in figure 11 for
these parameters are obtained by averaging Δμθ over all the
values taken by such parameters. The error bars represent
the associated standard deviation.

We see that Ca/m, C0,ox and C0,glu remain generally close to
their reported values (less than 10% change) regardless of the
type of cell considered. This is a direct consequence of the
small prior standard deviation, reflective of our higher confi-
dence associated with such parameters. For Ca/m this result is
reinforced by the asymptotic behaviour observed for dADSCs
(figure 9a–e).

On the other hand, we see that the initial cell density
(C0,cell) behaves differently. First, we see that for F7 cells the
posterior estimates remain close to their prior estimate, with
little spread. Combining this result with the 90% reduction
in marginal standard deviation reported in figure 10 (yellow



(a) F7
1.0

ρθ1, θ2

0.5 0 –0.5 (b) CTX (c) dADSC

Mox
Mglu MVEGF,1 MVEGF,2 MVEGF,3 MVEGF,4

C0,ox Ca/m
C0, glu C0,cell

oxygen glucose VEGF cells IBC oxygen glucose VEGF cells IBC oxygen glucose VEGF cells IBC

Mox
Mglu MVEGF,1 MVEGF,2 MVEGF,3 MVEGF,4

C0,ox Ca/m
C0,glu C0,cell Mox

Mglu MVEGF,1 MVEGF,2 MVEGF,3 MVEGF,4
C0,ox Ca/m

C0,glu C0,cell

Figure 12. Pearson correlation coefficient ru1 ,u2 associated with the posterior distribution of transport, cell–solute and initial and boundary condition parameters for
(a) F7, (b) CTX and (c) dADSC cells. Plain lines delimit the species considered (e.g. oxygen, glucose) and dotted lines represent the separation between transport and
cell–solute interaction-related parameters, or between the different initial and boundary conditions. For clarity, correlation coefficients with jru1,u2 j , 0:2 were
rendered in white.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230258

17

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 S

ep
te

m
be

r 
20

23
 

pentagons) suggests a correct initial estimation of the cell
density.

For CTX cells, while we still observe little spread, we note
that the posterior estimates are consistently larger (60%) than
their prior reported values. Given that figure 10 also indicates
a strong (70%) reduction in marginal standard deviation for
this parameter, this could potentially point towards a prior
underestimation of the initial cell density.

Finally, we see that for dADSCs the initial cell density
remained unchanged on average but that the different esti-
mates are significantly more spread than for F7s and CTXs,
which is linked to the combined effect of the large prior mar-
ginal standard deviation and the large level of uncertainties
in the dataset, especially for cell density (figure 9).

Figures 10 and 11 focus on the effect the information gain
has on individual parameter, ignoring potential couplings
emerging a posteriori. To address this, we compute the
Pearson correlation coefficient matrix associated with the
posterior parameter distribution

ru1,u2 ¼
1
Ns

P
i ((ui,1 � mu1 )(ui,2 � mu2 ))

su1su2

, ð3:1Þ

where θ1 and θ2 are any two parameters being inferred (tables
7–9). Figure 12 shows the Pearson correlation coefficient
matrix for each cell type and each VEGF model. We see
that for most parameters jru1,u2 j , 0:2. We interpret this as
no correlation, which we consider as evidence for the under-
lying hypothesis that all parameters in the problem are
independent. The rest of the parameters were only weakly
correlated, with no parameters having an absolute cross-
correlation coefficient superior to 0.5, which can be considered
as the threshold between weak and moderate correlation.

Figure 12 further shows that most non-zero correlation
coefficients are the result of the coupling between cell–
solute interaction parameters, i.e. parameters that underpin
Mox, Mglu, MVEGF and Mcell. This is not surprising, as cell–
solute interaction terms can include explicit relationships
between different species (e.g. Mcell (equation (2.16)) depends
on oxygen concentration and glucose concentration) or even
include parameters that are directly involved in other cell–
solute interaction terms (e.g. Mcell (equation (2.16)) depends
on Cox,1/2, which is also involved in Mox (equation (2.14))
and Mglu (equation (2.15)) that favour correlation a posteriori.
In addition, cell–solute interaction terms are composed of
several parameters, each describing only a fraction of the
underlying metabolic processes and can therefore be influ-
enced by other parameters involved in describing the
remainder of the processes.

On the other hand, transport parameters such as diffusion
coefficients are seldom correlated with other parameters as
they correspond to specific, independent processes.

Finally, figure 12 shows that initial and boundary con-
dition parameters (C0,ox, Ca/m, C0,glu, C0,cell) are also
associated with non-zero Pearson correlation coefficients.
First, we see that initial cell densities (C0,cell) are correlated
between each other, regardless of cell type. This opens the
possibility of modelling initial cell densities as coming from
the same distribution, potentially decreasing the global par-
ameter space. Then, initial and boundary condition
parameters are correlated with different cell–solute inter-
action terms. Such couplings are mainly the effect of the
nonlinear formulation of the cell–solute interaction terms
(Mox, Mglu, MVEGF, Mcell). This further motivates creating
experimental design capable of taking advantage of the
relationship between initial and boundary conditions and
cell–solute interaction parameters.
3.2.5. Experimental design
Figures 6, 10, 11 and 12 show the impact each experimental
dataset has on the parameter posterior distributions. Such
datasets originated from different experimental designs
(table 2). These designs varied the oxygen concentration at
the air/media interface (Ca/m) and the initial cell density
(C0,cell). In practice, other initial or boundary conditions
could have been changed, i.e. initial oxygen concentration
(C0,ox) and initial glucose concentration (C0,glu).

When devising a new experimental design to inform a
model it can be difficult to evaluate which operating con-
ditions should be prioritized. This is especially difficult for
species such as VEGF, which are only indirectly controlled
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Figure 13. Kullback–Leiber divergence associated with each design of exper-
iment presented in table 12. x-labels highlight the initial or boundary
condition around which each experimental design is based on, i.e. initial
oxygen concentration (C0,ox), initial glucose concentration (C0,glu), initial cell
density (C0,cell) and oxygen concentration at the air/media interface (Ca/m).
High DKL values infer a more informative design. Error bars represent the
standard deviation over the four VEGF models reported in table 3.
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by the experimental conditions. We propose to use the Kull-
back–Leiber divergence (equation (2.31)) to determine which
operating conditions should be varied in order to better
inform model development.

To do so, we propose four experimental designs
(table 12). Each design is centred around varying one initial
or boundary condition, i.e. Ca/m, C0,ox, C0,glu and C0,cell. For
each design, we calculate the associated Kullback–Leiber
divergence (appendix G). We repeat the process for each
VEGF secretion model reported in table 3.

Figure 13 shows the results obtained, with each point, simi-
lar to figure 6, corresponding to the average over the VEGF
secretion models and error bars corresponding to the associ-
ated standard deviations for a given experimental design.
We can see that designs centred around initial oxygen or glu-
cose concentrations are less informative. For oxygen, this can
be explained as the oxygen concentration profiles displayed
in figures 7–9 show that the influence of initial oxygen concen-
tration has relaxed after a few hours. As for initial glucose
concentration, equations (2.9)–(2.18) and table 3 show that glu-
cose concentration has only an indirect coupling with VEGF
secretion, contrary to oxygen and cell density, and figure 10
shows that overall the influence of initial glucose concentration
on the model output remains small.

On the other hand, we see that designs centred around
initial cell density or air/media oxygen concentration are
more informative. For the latter case, figures 7–9 show that
Ca/m controls in part the long-term concentration of oxygen
in the gel, which is a key component of each VEGF secretion
model (table 3). Varying such a parameter then allows the
models to exhibit both baseline and upregulated states, there-
fore yielding more information. As for initial cell density,
VEGF secretion depends at least linearly on the cell density
in the gel, which is still influenced by its initial value after
24 h as displayed by figures 7–9. What is more, MVEGF,3 and
MVEGF,4 exhibit additional nonlinearities depending on the
cell density. In this context, varying the initial cell density
allows such behaviour to be highlighted and gain information.

Overall figure 13 points towards prioritizing initial cell
density and air/media oxygen concentrations, with a slight
preference for initial cell density when designing an in vitro
experiment.
4. Discussion
Cellular engineered tissues have a high potential to improve
nerve repair strategies. Optimizing the design of such tissues,
however, represents a considerable challenge, given the large
number of parameters available (therapeutic cell type, cell
density, material density, arrangement, etc.), so that testing
every combination possible using experiment in isolation is
costly and time-consuming.

In this context, integrating a mathematical model to
simulate nerve repair scenarios in silico can accelerate the
development of such tissue (figure 1).

Being able to describe therapeutic cell behaviour in the engin-
eered tissue is pivotal to deriving a model that is predictive of
experimental scenarios. This process also offers the opportunity
to investigate mechanisms underlying cell behaviour. This
requires dedicated in vitro experiments in a controlled setting
for a given cell type, which are seldom available. Performing
systematic, extensive experiment campaigns can be practically
infeasible due to time and cost constraints (e.g. new therapeutic
cell types are constantly being considered [42,43]).

This results in experimental designs with limited resol-
ution (e.g. small number of initial cell density considered)
that themselves generate datasets associated with generally
low spatial and temporal resolution (e.g. one measure of
cell density the entire gel layer after 24 h). This is the source
of experimental uncertainty. On the other hand, mathemat-
ical models rely on functional forms and parameters that
need to be informed for the model to yield predictive
power. The challenge for the model is then to maintain a
subtle balance between the size and quality of the resulting
experimental datasets and the number of parameters it
uses, to avoid issues such as overfitting.

This work proposed to address this challenge by (i) build-
ing a pipeline to derive an experimentally informed
mechanistic cell–solute model for therapeutic cell behaviour,
accounting for experimental uncertainties (figure 2) and (ii)
applying it to three therapeutic cell types (F7s, CTXs,
dADSCs), for which dedicated in vitro experiments were per-
formed (figure 3) so as to obtain a ready-to-use cell–solute
model which allowed us to quantitatively compare different
therapeutic cell types. Such a model could then be included
in larger frameworks to explore nerve repair scenarios in
silico, for instance by simulating cell–solute interactions in
nerve conduits. This would offer the opportunity to compare
the benefit of different conduit designs, in order to select the
best performing one, e.g. the one associated with largest
VEGF gradient or cell survival, to test in vivo.

Our approach relied on Bayesian inferences to parametrize
the cell–solute model by combining prior knowledge of the
parameters and likelihood to represent the new data and
obtain posterior knowledge about them. We note that this
approach is conditioned by the structure of the prior and like-
lihood distributions, as those reflect our knowledge of the
problem. In this work, we used normal distributions as they
are simple to interpret, rely only on a small number of par-
ameters and are often used in other Bayesian frameworks
[15,16], but we note that more complex distributions could
have been used. We also point out that the prior estimates
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we used were based on previous estimates taken from the lit-
erature and asymptotic analysis (appendix C) so as to ensure
being in a credible order of magnitude in the first place. Simi-
larly, for the likelihood distribution we used the upper bound
of the standard deviation associated with experimental repeats
in order to mitigate overconfidence (appendix D).

Besides parameter estimation, we showed that the pos-
terior distributions obtained could be used to discriminate
between different functional forms using WAIC (figure 5),
taking into account both quality of fit and number of par-
ameters. We compared four VEGF secretion models
(table 3) and concluded that MVEGF,4 was performing better
overall, primarily due to its nonlinear account of local cell
density through crowding effects. VEGF was selected in
this work because it is central for the revascularization of
the injury site and its secretion rate is generally not as under-
stood as, for instance, oxygen. Still, we emphasize that our
approach could be readily adapted to other cell–solute
interactions (e.g. Mox, Mglu and Mcell).

Mirroring model selection, the posterior distributions
were also used to calculate the utility of each experimental
dataset in informing the models, here defined as the Kull-
back–Leiber divergence (figure 6). It showed that the
dataset associated with dADSCs was not the most informa-
tive, despite stemming from the largest experimental design
(table 2), while the one associated with F7 cells was, primarily
due to smaller uncertainties.

We then showed that WAIC and Kullback–Leiber diver-
gence could be integrated into pseudo-Bayesian averaging
to obtain summary parameter estimates representative of
each model and each cell type.

Table 5 shows that the three cell types behave differently.
Overall F7 cells consume oxygen at a higher rate so that they
will probably create low-oxygen conditions sooner after the
implantation of the repair construct and therefore potentially
initiate regenerative angiogenesis sooner. What is more, they
are associated with smaller death rates so that they would be
able to sustain secreting VEGF over longer time scale. They
are, however, associated with a much lower VEGF secretion
rate than CTX and dADSC cells, so they might have a limited
ability to build the strong gradient of VEGF necessary to trig-
ger angiogenesis. On the other hand, dADSCs can sustain
larger long-term cell density and secrete more VEGF, but
have a much lower oxygen consumption rate, so will probably
take more time to create the low-oxygen condition necessary to
trigger the upregulation of VEGF secretion.

Parameter estimates in tables 5 and 6 could then be used
as a basis for simulating cell–solute interactions in collagen
gel. Figures 7–9 showed good agreement between exper-
iments and simulations across all three species, which
points toward capturing most of the mechanisms involved
in cell behaviour at this scale. Still, there were some notable
discrepancies, in particular for the description of dADSC
density. Besides experimental uncertainties, such differences
could stem from the limitations of logistic growth functional
form we used to describe cell dynamics [44]. A following step
could be to apply our approach to different cell dynamics
relationships and select, using the WAIC, the most appropri-
ate one to represent the data.

Beyond estimating representative parameter values, figures
10 and 11 highlighted the impact the information gain had on
parameter distributions and showed that influential par-
ameters tend to be informed more. In particular, figure 11
showed that the prior initial cell density estimates for CTX
were potentially underestimated. Taken together, figures 10
and 11 show that combining relative variation in posterior
marginal standard deviation (Dsu) and expected values
(Dmu) can be used to gain insight in the potential biases in
the prior knowledge of the experimental conditions. Addition-
ally, figure 12 showed that while most parameters remained
independent of each other a posteriori, initial and boundary
condition parameters were correlated with cell–solute inter-
action parameters, further highlighting the need for careful
experimental design to inform the model.

Consistent with the strong influence of the initial cell
density displayed in figures 10 and 13 showed that an exper-
imental design including more initial cell density was more
informative for the VEGFmodels and therefore should be prior-
itized in future experiments compared with experimental
designs including more initial oxygen concentration, air/
media oxygen concentration or initial glucose concentration.
Still, we point out that the experimental designs tested were
ranked according to how informative they were after 24 h. For
longer periods, the oxygen concentration at the air/media inter-
face will probably become more important as it is stationary,
while the influence of initial conditions are likely to fade.

Additionally, the different experimental designs reported
in table 12 were made simple on purpose in order to better
highlight the impact of each initial and boundary conditions.
In practice, however, a combination of them could be used.
The next step would then be to extend this approach and to
build a proper Bayesian experimental design [45], i.e. finding,
for a fixed size, the combination of initial and boundary
conditions that would be associated with the largest
Kullback–Leiber divergence to optimize information gain
for the model.
5. Conclusion
We built a pipeline capable of deriving experimentally
informed cell–solute models to describe the behaviour of
therapeutic cells used in nerve tissue engineering that
involved balancing experimental uncertainties and model
complexity. We applied it to three therapeutic cell types
and deduced reference estimates which allowed us to quanti-
tatively compare different candidate therapeutic cells. The
model obtained could readily be used for in silico experiments
of nerve repair scenarios, for instance to evaluate the benefit
of a nerve conduit design.

Besides parameter estimations, we were able to interro-
gate models of VEGF secretion, and showed that both local
cell density and local oxygen concentration should be con-
sidered, and subsequently selected the appropriate VEGF
secretion model. We further explored the influence of
experimental operating conditions on informing model par-
ameters/behaviours and showed that initial cell density
played a major role in informing the VEGF model secretion
so that more initial cell densities should be included when
designing future in vitro experiments.

Finally, this pipeline combines cell–solute modelling, Bayes-
ian inferences and in vitro data for the first time in nerve tissue
engineering, and is readily translatable to characterize the
behaviour of other therapeutic cells in tissue engineering.
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subject or animal welfare committee.
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Appendix A. Effective transport equations

A.1. Culture media
Exploiting the rotational symmetry highlighted in figure 3a,b
in equation (2.1) yields

@tCm ¼ Dm
1
r
@rðr@rCmÞ þ @2

zCm

� �
� lCm, ðA1Þ

with r and z denoting the radial and axial coordinates,
respectively. We non-dimensionalize equation (A 1) with

r ¼ ðRa=m � Rg=mÞr, z ¼ Lmj, t ¼ L2m
Dm

t,

where Lm is the thickness of the media layer and Ra/m and
Rg/m are the radii of the well at the air/media and gel/
media interfaces, respectively. This yields

@tCm ¼ R0�2 1
r
@rðr@rCmÞ þ @2

jCm �DaCm, ðA2Þ

where R0 =−(Ra/m −Rg/m)/Lm corresponds to the slope of the
well and Da ¼ lL2m=Dm to the Damköhler number associated
with degradation. Assuming R0 ≪ 1, we expand the concen-
tration field in powers of the small well slope parameter
through

Cm ¼ Cm,0 þ R0Cm,1 þ R02Cm,2 � � � ðA3Þ

Additionally, we will assume that Da =O(R0−1), i.e. that the
reaction is much stronger than the diffusion. We do so
since the resulting effective one-dimensional equation has
the same form as for Da =O(1) but is less straightforward
to obtain. Finally, we assume that @t� ¼ @T � þDa@@� to be
able to capture the variations associated with diffusion as
well as degradation. Doing so allows us to write the
following sequence of equations:

OðR0�2Þ 0 ¼ 1
r
@rðr@rCm,0Þ, ðA4Þ

OðR0�1Þ R0Da@@Cm,0 ¼ 1
r
@rðr@rCm,1Þ � R0DaCm,0 ðA5Þ

and Oð1Þ @TCm,0 þ R0Da@@Cm,1 ¼ 1
r
@rðr@rCm,2Þ þ @2

jCm,0

�R0DaCm,1:

ðA6Þ
A similar expansion can be applied to the boundary con-
dition at the well wall noting

n � rCm ¼ 0 , �R0�2@rCm ¼ @jCm, ðA7Þ
which leads to

OðR0�2Þ @rCm,0 ¼ 0, ðA8Þ
OðR0�1Þ @rCm,1 ¼ 0 ðA9Þ

and
Oð1Þ @rCm,2 ¼ �@jCm,0: ðA10Þ

We then combine equations (A 4)–(A 10) to obtain an effective
one-dimensional effective equation. To do so, we define the
following averaging operator:

h�i ¼ 1
pR2

ð2p
0

ðR
0
�rdrdu

¼ 2
Ra=m � Rg=m

R

� �2ðR=ðRa=m�Rg=mÞ

0
�rdr, ðA11Þ

where θ corresponds to the rotation angle and R(z) =R0 z +
Ra/m to the local radius of the well. Applying the averaging
operator to equation (A 4) while taking into boundary
condition (A 8) yields

Cm,0ðr, j, tÞ ¼ Cm,0ðj, tÞ, ðA12Þ
hence we have 〈Cm,0〉 =Cm,0(ξ, τ). Doing the same with
equation (A 5) while taking into account boundary condition
(A 9), leads to

R0Dah@@Cm,0i ¼ �R0DahCm,0i: ðA13Þ
The above equation can be simplified since
h@@Cm,0i ¼ @@hCm,0i ¼ @@Cm,0. Equation (A 5) now reads

0 ¼ 1
r
@rðr@rCm,1Þ: ðA14Þ

Applying the averaging operator on the above equation
taking into account boundary conditions (A 9) again leads to

Cm,1ðr, j, tÞ ¼ Cm,1ðj, tÞ, ðA15Þ
so that 〈Cm,1〉 =Cm,1(ξ, τ). Applying the averaging operator
to equation (A 6), taking into account boundary condition
(A 10), noticing that h@2

jCm,ii ¼ @2
jhCm,ii for i = 0, 1 because

we are in a conic geometry, and 〈∂T Cm,0〉 = ∂T〈Cm,0〉

and h@@Cm,1i ¼ @@hCm,1i, this leads to

@ThCm,0i þ R0Da@@hCm,1i ¼ �2
Ra=m � Rg=m

R
@jhCm,0i

þ @2
jhCm,0i � R0DahCm,1i: ðA16Þ

To close the problem, we assume that

hCmi ¼ hCm,0i, ðA17Þ
so that 〈Cm,i〉 = 0, i > 0. Consequently, equation (A 16) now

https://github.com/MaximeTGB/TherapeuticCellsBehaviourInference
https://github.com/MaximeTGB/TherapeuticCellsBehaviourInference
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reads

@ThCm,0i ¼ �2
Ra=m � Rg=m

R
@jhCm,0i þ @2

jhCm,0i: ðA18Þ

Finally, recalling that @ThCm,0i ¼ @thCm,0i �Dah@@Cm,0i, and
that we have from equation (A 13) Dah@@Cm,0i ¼ �DahCm,0i,
equation (A 18) becomes

@thCmi ¼ �2
Ra=m � Rg=m

R
@jhCmi þ @2

jhCmi
�DahCmi, ðA19Þ

which corresponds to the target effective transport equation.
We recall that the derivation is done for the case Da =O(R0−1)
but the same form is still valid for Da =O(1). For smaller
Damköhler scalings (e.g. O(R0)), the only change is the simpli-
fication of the last term in equation (A 19). To avoid loss of
generality, we are going to keep equation (A 19) in the next
sections, which has the following expression once dimensio-
nalized:

@thCmi ¼ 2Dm
R0

R
@zhCmi þDm@

2
zhCmi � lhCmi: ðA20Þ

A.2. Interface air/media
At the air/media interface, the boundary condition is either a
Dirichlet or a Neumann condition depending on the species
considered. For a Dirichlet boundary condition, the trans-
formation is straightforward,

hCmi ¼ Ca=m: ðA21Þ

For a Neumann boundary condition, this yields

�Dm@zhCmi ¼ 0, ðA22Þ
neglecting O(R02) terms.

A.3. Interface gel/media
At the gel/media interface continuity of mass flux is imposed
(equation (2.7)) so that

�Dm@zhCmi ¼ 1
Sg=m

ðð
Sg=m

�Dg@zCgdSg=m, ðA23Þ

and the thermodynamic equilibrium

lim
t!1hCmi ¼

hg=m

Sg=m

ðð
Sg=m

CgdSg=m: ðA24Þ

A.4. Collagen gel
We integrate equation (2.2) over the gel domain so thatððð

Vg

@tCgdV ¼
ðð

@Vg

n �DgrCgd@V

þ
ðð

Vg

MðCgÞdV: ðA25Þ

Taking into account the Neumann boundary conditions at
the well walls and bottom, the above equation becomesððð

Vg

@tCg dV ¼
ðð

Sg=m
�Dg@zCg dSg=m

þ
ðð

Vg

MðCgÞdV: ðA26Þ

Since we consider the gel layer to be thin we are going to
assume that the volume-averaged concentration is represen-
tative of the concentration within the gel so that the above
equation reads

dt�Cg ¼ 1
Vg

ðð
Sg=m

�Dg@zCgdSg=m þMð�CgÞ, ðA27Þ

where �Cg ¼ ð1=VgÞ
ÐÐÐ

Vg
CgdV is the average concentration in

the gel. Further applying the conservation of mass (equation
(A 23)) this yields

dt�Cg ¼ � Sg=m
Vg

Dm@zhCmi þMð�CgÞ: ðA28Þ

To close the problem, we then to use the following membrane
boundary condition that satisfies equation (A 24):

�Dm@zhCmi ¼ KðhCmi � hg=m
�CgÞ, ðA29Þ

where K represents an effective permeability K =Dg/Lg.
Equation (A 28) then becomes

dt�Cg ¼
Sg=mK
Vg

ðhCmi � hg=m
�CgÞ þMð�CgÞ: ðA30Þ
Appendix B. Numerical methods
Equations (2.9)–(2.13) form a nonlinear system that we solve
iteratively using finite volume methods. Since the resolution
of such a problem is combined to Monte Carlo Markov
chains, a number of simulations are going to be performed.
Therefore, we use a coarse mesh and a large time step to
reduce computational costs. We describe the gel with a
unique mesh cell and the media with a few other so that
the total number of mesh cells typically lies below 10. To miti-
gate the effect of having a coarser mesh, we based the
estimation of the differential operators at the interface
between mesh cells using analytical solutions, instead of the
usual approximations, assuming that the concentration pro-
file in between two mesh cell centres in the media reached
stationary state during one time step so that we can write

2Dm
R0

Ri þ R0z
@zC½i,iþ1
 þDm@

2
zC½i,iþ1
 � lC½i,iþ1
 ¼ 0, ðB 1Þ

C½i,iþ1
 ¼ Ckþ1
i , z ¼ 0 ðB 2Þ

and
C½i,iþ1
 ¼ Ckþ1

iþ1 , z ¼ Dz, ðB 3Þ
where C[i,i+1](ζ) represents the concentration profile in
between mesh cells i and i + 1, ζ the local axial position,
and Ckþ1

i and Ckþ1
iþ1 the concentration at the centre of mesh

cells at time step k + 1. While equation (B 1) holds in each
mesh cell located in the media, the local boundary conditions
(equations (B 2) and (B 3)) can be changed to accommodate
for the global boundary conditions (equations (2.10)–(2.12))
where necessary. Equation (B 1) has the following homo-
geneous solutions:

C½i,iþ1
ðzÞ ¼ A
e�

ffiffiffiffiffiffiffiffiffi
l=Dm

p
z

Ri þ R0z
þ B

e
ffiffiffiffiffiffiffiffiffi
l=Dm

p
z

2
ffiffiffiffiffiffiffiffiffiffiffiffi
l=Dm

p
(Ri þ R0z)

,

l . 0

ðB 4Þ

and

C½i,iþ1
 ¼ Aþ B
1

Ri þ R0z
, l ¼ 0, ðB 5Þ
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Figure 14. Comparison of normalized oxygen (blue), glucose (red), VEGF (green) concentration predictions and cell density (cyan) predictions between one-dimensional
coarse mesh (plain), semi-analytical (dash-dotted), one-dimensional (dashed line) and two-dimensional (dotted) formulations in (a) the media and (b) the gel.
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where A and B are constants that are computed using the
local boundary conditions (equations (B 2) and (B 3) and
their variants). In general, C[i,i+1] can be written under the
form

C½i,iþ1
ðzÞ ¼ fiðzÞCkþ1
i þ fiþ1ðzÞCkþ1

iþ1 , ðB 6Þ

where fi and fi+1 are functions deduced from A and B. This
solution can then be used in the evaluation of the differential
operator at the interface between the two mesh cells.

We note that for the asymptotic case of pure diffusion in a
cylinder, i.e. λ = 0, R0 → 0, equation (B 6) writes C[i,i+1]

= (1− (ζ/Δz))C
i
+ (ζ/Δz)Ci+1 and has the following gradient

∂ζ C[i,i+1] = (Ci−Ci+1)/Δz which corresponds to the order 1
approximation used in most classical numerical methods
when solving diffusion.

Implementation was done in Python using standard
packages (Numpy 1.18.1 and Scipy 1.4.1). Simulations were
run on a desktop computer with intel Xeon W 18-core 2.3
GHz and 128 GB Ram 2666 MHz DDR4. Time resolution of
the cell–solute problem for one specific set of values for initial
and boundary condition was 0.01 s.

To verify this coarse-mesh approximation, we compared
it against a classic, refined, one-dimensional finite volume
resolution of equations (2.9)–(2.13). We also included a
comparison with a two-dimensional axisymmetrical finite
volume resolution of the initial set of equations (equations
(2.1)–(2.8)) and a comparison with a semi-analytical solution
of equations (2.9)–(2.13) we derived based on the superposi-
tion of Sturm–Liouville eigenvalue problems. While elegant,
such a solution is quite sensitive to the number of eigenvalues
chosen so that it quickly becomes computationally compar-
able to a refined one-dimensional approach and was not
selected to be used for MCMC.

Figure 14 shows the normalized average concentration in
the media (figure 14a) and gel (figure 14b) as a function of
time for the four resolution methods aforementioned using
parameter values listed in tables 7–9 and VEGF secretion
model MVEGF,4 for the case of F7 cells. We see that
refined one-dimensional and two-dimensional cases are
superimposed, validating our derivation of equations
(2.9)–(2.13). Then, we see that both the semi-analytical and
coarse-mesh approximations generally agree well with the
two reference solutions. Figure 14, compares the models
only for one specific set of parameters. To have a better
idea of the general behaviour of the coarse-mesh approxi-
mation, we sampled intervals derived from the prior
distribution using Morris trajectories [47]. For each sample,
we compared the one-dimensional reference with the
one-dimensional coarse predictions, amounting to around
10 000 simulations in total, which figure 15 summarizes. In
particular, we computed the relative difference in (i) the aver-
age concentration of oxygen in the gel (figure 15a), (ii) the
average concentration of glucose in the media (figure 15b),
(iii) the average concentration of VEGF in the media (figure
15c), and (iv) the average cell density in the gel (figure 15d )
after 24 h. We can see that the coarse-mesh approximation
lies within 2% of the one-dimensional reference solution in
general, except for VEGF where it lies within 4%, which we
consider acceptable for the purpose of inverse problem
resolution.
Appendix C. Prior distribution parameters

C.1. Transport parameters
We consider the culture media to behave very similarly to
water. In that respect, we use reference values for the diffu-
sion coefficient in the media (Dm) for oxygen [48], glucose
[49,50] and VEGF [33] in water at 37°C, respectively.

The stabilized gel, on the other hand is composed of
approximately 5–10% collagen [20], and between approxi-
mately 1:5% and 15% cells in volume (depending on the
initial cell density) so that we expect the diffusion coefficient
in the gel (Dg) to be smaller than in the media. We use
Stokes–Einstein Law to obtain a first approximation of the dif-
fusion coefficient, which falls reasonably close to the range of
values reported in the literature for oxygen [13,51], glucose
[13,52] and VEGF [13,53,54].
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Table 7. Description and prior estimation for transport parameters.

parameter units description value

Dm,ox 10−9 m2 s−1 diffusion coefficient of oxygen in the media 2.60

Dg,ox 10−10 m2 s−1 diffusion coefficient of oxygen in the gel 7.00

ηg/m,ox n.a. gel/media partition coefficient for oxygen 1.00

Dm,glu 10−10 m2 s−1 diffusion coefficient of glucose in the media 9.60

Dg,glu 10−10 m2 s−1 diffusion coefficient of glucose in the gel 2.70

ηg/m,glu n.a. gel/media partition coefficient for glucose 1.50

Dm,VEGF 10−10 m2 s−1 diffusion coefficient of VEGF in the media 1.50

Dg,VEGF 10−11 m2 s−1 diffusion coefficient of VEGF in the gel 5.00

ηg/m,VEGF n.a. gel/media partition coefficient for VEGF 1.10

λVEGF 10−5 s−1 VEGF degradation 5.00
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Since the gel is primarily composed of water, we can
expect the concentration jump resulting from the com-
pounded effect of chemical affinity and porous structure
represented by the partition coefficient (ηg/m) to be small,
so that continuity condition (i.e. ηg/m = 1) remains reason-
able, in particular for small molecules such as oxygen. For
glucose and VEGF, we use values evaluated in the layer of
the skin (glucose) [55] and the extracellular matrix of
muscle tissue (VEGF) [56]. Finally, we estimate the
degradation rate for VEGF (λVEGF) using values from the
literature [8,13,54,57].

C.2. Cell–solute interaction parameters
This work is, to the best of our knowledge the first where F7
cells are being characterized in such a controlled environ-
ment. Consequently, there is little information available
with regard to the value of cell–solute interaction parameters
associated with these cells. To avoid using non-informative



Table 8. Description and prior estimation for cell–solute interaction parameters.

parameter units description F7s CTXs dADSCs

Mox,max 10−20 kg s−1 cell−1 maximum oxygen metabolic rate 5.00 5.00 0.60

Cox,1/2 4.21 × 10−4 kg m−3 concentration at half the maximum metabolic rate 0.80 1.50 0.50

Mglu,max 10−18 kg s−1 cell−1 maximum glucose metabolic rate 6.20 1.80 4.00

Cglu,1/2 kg m3 concentration at half the maximum metabolic rate 0.50 1.40 0.95

A n.a. anaerobic glucose consumption factor 1.80 4.60 3.20

γ 10−6 s−1 cell proliferation rate 0.90 n.a. 22.00

Ccell,max 1012 cell m−3 maximum cell density sustaining cell proliferation 30.00 n.a. 400.00

δ0 10−6 s−1 baseline cell death rate 1.20 3.20 5.30

δox 10−6 s−1 oxygen-related cell death rate 3.90 2.50 3.20

δglu 10−6 s−1 glucose-related cell death rate 2.50 0.60 1.50

cMVEGF,1
β 10−22 kg s−1 cell−1 upregulated VEGF secretion rate 0.04 0.90 1.10

Cox,hypo 4.21 × 10−4 kg m−3 upregulation threshold 1.00 1.10 4.80

MVEGF,2
α 10−24 kg s−1 cell−1 baseline VEGF secretion rate 2.90 12.00 50.00

V n.a. transition coefficient 1.50 2.00 2.00

ν n.a. transition coefficient 3.00 3.00 3.00

Cox,hypo 4.21 × 10−4 kg m−3 upregulation threshold 1.00 1.10 4.80

Cox,hyper 4.21 × 10−4 kg m−3 baseline threshold 5.00 5.00 10.00

MVEGF,3
α0 10−24 kg s−1 cell−1 baseline VEGF secretion rate 2.90 12.00 50.00

α1 10−38 kg m3 s−1 cell−2 baseline secretion rate order 1 deviation coefficient 0.00 0.00 0.00

α2 10−51 kg m6 s−1 cell−3 baseline secretion rate order 2 deviation coefficient 0.00 0.00 0.00

V0 n.a. baseline VEGF secretion rate 0.50 2.00 2.00

V1 10−14 cell−1 m3 upregulation order 1 deviation coefficient 0.00 0.00 0.00

ν n.a. transition coefficient 3.00 3.00 3.00

Cox,hypo 4.21 × 10−4 kg m−3 upregulation threshold 1.00 1.10 4.80

MVEGF,4
α 10−24 kg s−1 cell−1 baseline VEGF secretion rate 0.29 1.20 22.00

β 10−22 kg s−1 cell−1 upregulated VEGF secretion rate 0.05 2.90 4.00

Cox,hypo 4.21 × 10−4 kg m−3 upregulation threshold 1.00 1.10 4.80

Ccell,crowd 1012 cell m−3 crowding threshold 60.00 23.00 200.00

Table 9. Description and prior estimation for initial and boundary condition parameters.

parameter units description F7s CTXs dADSCs

Ca/m 4.21 × 10−4 kg m−3 oxygen concentration at the air/media interface 1/3/7/19 1/3/7/19 1/3/5/10/16

C0,ox 4.21 × 10−4 kg m−3 initial oxygen concentration 12.5 12.5 18.5

C0,glu kg m−3 initial glucose concentration 4.5 4.5 4.5

C0,cell 1012 cell m−3 initial cell density 20/31/60 20/31/60 39/77/154/231/385
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prior, we combine a simplified version of equations
(2.9)–(2.18) and table 3 with the measures reported in figure
7a,b to obtain a crude approximation of the mean of the
prior distribution of each parameter.

Starting with oxygen-related parameters, we consider the
cases C0,cell = 6 × 1013 cellm−3 and Ca=m ¼ 1%O2 and
Ca=m ¼ 3%O2, for which figure 7 shows that oxygen levels
measured in the gel are approximately constant after a few
hours. Considering that this constant value is the result of the
balance between the oxygen flux coming from the air/media
interface and the consumption of oxygen in the gel yields

Mox,max 	
Dm,oxDg,oxSg=m(Ca=m � �Cox,S)(�Cox,S þ Cox,1=2)

�Ccell,T �Cox,SVg(LgDm,ox þ LmDg,ox)
,

ðC1Þ
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where �Ccell,T is the cell density after 24 h and �Cox,S is the asymp-
totic value of oxygen concentration in the gel. The above
equation should yield for both Ca=m ¼ 1%O2 and
Ca=m ¼ 3%O2 so that we can deduce

Cox,1=2 	 k1%O2

k3%O2 � k1%O2

�Cox,S,1%O2 �
k3%O2

k3%O2 � k1%O2

�Cox,S,3%O2 ,

ðC2Þ

where k ¼ ðCa=m � �Cox,SÞ=�Ccell,T �Cox,S.
A comparable rationale can be applied to cell dynamics.

We consider the same cases, i.e. C0,cell = 6 × 1013 cell m−3 and
Ca=m ¼ 1%O2 and Ca=m ¼ 3%O2 for which we already know
that oxygen levels in the gel are low, and for which crowding
effects are likely to be high. In this context, cell proliferation is
hindered, hence P≈ 0. Additionally, we see that the concen-
tration of glucose in the media remains high after 24 h. Since
the Damköhler number associated with glucose consumption
in the gel Daglu ¼ L2gMglu,maxC0,cell=Dg,gluC0,glu is small, it
suggests that the glucose concentration in the gel also remains
high during the first 24 h. As consequence, we can assume that
glucose-related cell deaths are only a fraction of baseline and
oxygen-related cell deaths and can be ignored. This yields

d0 þ dox
Cox,1=2

�Cox,S þ Cox,1=2
	 1

T
ln

C0,cell
�Ccell,T

� �
, ðC3Þ

where T represents a day in seconds. Following previous
estimation for CTXs, and to be consistent with our hypothesis,
we further evaluate δglu≈ 1/2(δ0 + δox). Next, we evaluate
proliferation-related parameters using the case Ca=m ¼ 19%O2

and C0,cell ¼ 2� 1013 cellm�3, i.e. high oxygen concentration
and low cell density, so that oxygen is probably in excess
and crowding effects are probably weak. This leads to
P 	 g�Ccell and Q 	 d0�Ccell. In this context, we deduce that

g 	 d0 � 1
T
ln

C0,cell
�Ccell,T

� �
: ðC4Þ

Finally, it is possible to estimate Ccell,max. To do so, we consider
the case Ca=m ¼ 19%O2 and C0,cell = 6 × 1013 cellm−3, i.e. high
oxygen concentration and high initial cell density, so oxygen
is probably in excess and cell crowding effects are probably
maximal, hence we assume P 	 g�Ccellð1� ð�Ccell=Ccell,maxÞÞ
and Q 	 d0�Ccell. In this context, we can write

Ccell,max 	 C0,cell
g

ðd0 � gÞ
(eðd0�gÞT � 1)

(ðC0,cell=�Ccell,TÞ � eðd0�gÞT)
: ðC5Þ

We then apply the same rationale to glucose. We consider
the case Ca=m ¼ 19%O2 and C0,cell = 2 × 1013 cellm−3, i.e. high
oxygen concentration and low initial cell density, so that
impact of anaerobic respiration is minimal. Additionally, we
consider glucose to remain in excess in the gel due to the
Damköhler number being small, hence Mglu 	 �Mglu,max

�Ccell.
In this context, we deduce that

Mglu,max 	 Vm

Vg

C0,glu � hCiglu,T
� �

(g� d0)

C0,cell(eðg�d0ÞT � 1)
, ðC6Þ

where hCiglu,T corresponds the average concentration of
glucose in the media after 24 h and Vm the volume of the
media. Similarly, we consider the case Ca=m ¼ 1%O2 and
C0,cell ¼ 6� 1013 cellm�3, i.e. low oxygen concentration and
high initial cell density, so that anaerobic consumption is
promoted. In this context, we deduce that

A 	 Vm

Vg

C0,glu � hCiglu,T
� �

(g� d0 � doxðCox,1=2=ð�Cox,S þ Cox,1=2ÞÞÞ
Mglu,maxC0,cell(eðg�d0�doxðCox,1=2=ð�Cox,SþCox,1=2ÞÞÞT � 1)

� 1:

ðC7Þ
We consider the concentration in the media to be high, and
since the Damköhler number associated with glucose metab-
olism is small, we also consider the concentration in the gel
to be high, so that glucose is in excess and the associated
Michaelis–Menten kinetics is saturated. This requires Cglu,1/2

to be small compared with the concentration of glucose in
the gel, hence we assume Cglu,1/2≈ 0.1 C0,glu.

Finally, we apply the same reasoning to VEGF secretion.
We consider the case Ca=m ¼ 19%O2, C0,cell = 2 × 1013 cell m−3

so that oxygen is likely to be in excess, hence
MVEGF 	 a�Ccell. In this context, we have

a 	 VmhCiVEGF,T(gþ l� d0)
VgC0,cell(eðg�d0ÞT � e�lT)

, ðC8Þ

where hCiVEGF,T corresponds to the average VEGF concen-
tration in the media after 24 h. Next, we consider the case
Ca=m ¼ 1%O2, C0,cell = 6 × 1013 cellm−3 so that VEGF secretion
is upregulated by low-oxygen condition, hence
MVEGF 	 b�Ccell. In this context, we have

b 	 VmhCiVEGF,T(l� d0 � doxðCox,1=2=ð�Cox,S þ Cox,1=2ÞÞÞ
VgC0,cell(eð�d0�doxðCox,1=2=ð�Cox,SþCox,1=2ÞÞÞT � e�lT)

:

ðC9Þ
We note that this procedure treats baseline and upregulated
secretion rates as parameters of a generic secretion model;
however, they can then be used as the basis to evaluate par-
ameters specific to each VEGF secretion model reported in
table 3.

Starting with MVEGF,1 we have aMVEGF,1 	 0 and
bMVEGF,1

	 b. We then infer from the experimental values
reported in figures 7–9, that Cox,hypo,MVEGF,1 	 1%O2.

For MVEGF,2, we have aMVEGF,2 	 a and V≈ β/α− 1.
Similarly, we have Cox,hypo,MVEGF,2 	 1%O2 and
Cox,hyper,MVEGF,2 	 5%O2. Finally, we follow [33] and have
nMVEGF,2 	 3.

For MVEGF,3, we have α0≈ α. We treat α1 and α2 as higher-
order deviations, so that α1 = α2 = 0. Similarly, we have V0≈
β/α− 1 and V1 = 0. We then have Cox,hypo,MVEGF,3 	 1%O2

and similar to MVEGF,2 we assume nMVEGF,3 	 3.
For MVEGF,4, finally, we have aMVEGF,4 	 a and bMVEGF,4

	 b.
Again we have Cox,hypo,MVEGF,4 	 1%O2. As for the cell crowd-
ing effect, we have Ccell,crowd 	 6� 1013 cellm�3, as figure 7
shows that VEGF secretion does not seem hindered by
higher cell density.

We note that the above procedure can be also be applied to
CTXs and dADSCs. When doing so, values fall reasonably
close to the ones found in [8,13] for which dedicated
experiments were performed or within range of values found
in the literature for other types of cell (e.g. Mox,max [

½10�20, 5� 10�17
 kg s�1 cell�1 [8,13,58,59], Mglu,max∈ [10−18,
4 × 10−17] kg s−1 cell−1 [13,60,61]).

We point out, however, that only MVEGF,3 and MVEGF,4

were parametrized in [8] and [13] for CTXs and dADSCs,
respectively. Therefore, all other VEGF secretion-related par-
ameters are estimated using the above procedure. We finally
note that [8] proposes to use nMVEGF,3 	 405 for dADSCs, but



Table 10. Standard devitation (σe) associated with the noise used to describe the likelihood distribution associated with the different species.

specie units F7s CTXs dADSCs

oxygen concentration in the gel (�Cox) 4.21 × 10−4 kg m−3 0.6 0.4 0.5

fraction of glucose remaining in the media (hCiglu=C0,glu) n.a. 0.03 0.05 n.a.

average concentration of VEGF in the media (hCiVEGF) 10−9 kg m3 50 150 3000

living cell density in the gel �Ccell 1012 cell m−3 3 5 100

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230258

26

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 S

ep
te

m
be

r 
20

23
 

since tanh(3)/tanh(405)≈ 0.99 we consider it unnecessary to
explore such high values and will consider nMVEGF,3 	 3 for
the case of dADSCs as well.

We also recall that no glucose measurements were available
for dADSC so no glucose-related parameters were estimated in
[8]. However, we note that values estimated for CTXs and F7s
were comparable for glucose-related parameters. Since CTXs,
F7s and dADSCs all mimic Schwann cell phenotypes, we
assume dADSCs glucose-related parameters to be the average
of the value estimated for CTXs and F7s.

C.3. Initial and boundary condition parameters
For all initial and boundary conditions, the mean value is
taken as the reported experimentally controlled value, and
the standard deviation is set based on our confidence in that
value. Beginning with the ambient (Ca/m) and initial (C0,ox)
oxygen levels in the gel and initial glucose concentration
(C0,glu), were straightforward to control so were assigned a
relatively small standard deviation s

prior
u ¼ 0:1mprior

u (i.e. 10%
of the value reported experimentally). On the other hand,
the initial cell density (C0,cell) is obtained after gel compression,
a step with the potential to introduce additional variability, so
a larger standard deviation (sprior

u ¼ 0:5mprior
u ) was imposed.

Similarly, initial oxygen level in the media, which was not
directly measured, is also associated with a larger marginal
standard deviation (sprior

u ¼ 0:5mprior
u ).

C.4. Marginal standard deviation
We use the marginal standard deviation as a proxy for the
confidence we have in the prior knowledge of a given par-
ameter. To keep things tractable, we use s

prior
u ¼ 0:5mprior

u ,
s
prior
u ¼ 0:1mprior

u or s
prior
u ¼ 0:05mprior

u where X, for each cell
type, represents any transport or cell solute interaction
parameter or initial and boundary condition.

The case sprior
u ¼ 0:5mprior

u allows for the exploration within
the same order of magnitude and is used for parameters that
have been estimated using the procedure described in appen-
dix C.2, that are scarcely represented in the literature or that
cannot be controlled finely (cf. appendix C.3). This concerns
all parameter reported in table 8 as well as the initial concen-
tration of oxygen (C0,ox) and the initial cell density (C0,cell).

The case s
prior
u ¼ 0:1mprior

u , on the other hand, allows for
the exploration of smaller deviations and is used for par-
ameters better established in the literature or parameters
that can be controlled finely (cf. appendix C.3). This includes
the initial glucose concentration (C0,glu), the oxygen concen-
tration at the interface between air and media (Ca/m) and
the diffusion coefficients in the gel (Dg,ox, Dg,glu, Dg,VEGF,
ηg/m,ox, ηg/m,glu, ηg/m,VEGF).

Finally, the case s
prior
u ¼ 0:05mprior

u is used specifically for
the diffusion coefficients in the media, as those are well
established.
The only exceptions to these rules are α1, α2 and V1, which
are treated as deviations of the baseline secretion rate
in MVEGF,3. We set their standard deviation so that
s
prior
a1 	 0:1a0=C0,cell and s

prior
a2 	 0:1a0=C2

0,cell. Similarly, we
have s

prior
V1

	 0:1ðV0=C0,cellÞ. We use an initial cell density of
40 × 1012 cellm−3 for CTX and F7 cells and 200 × 1012 cellm−3,
as those correspond to approximately the middle of the range
of cell density explored in each case.
Appendix D. Likelihood distribution parameters
We estimate the experimental data point value Yk as the mean
over the experimental repeats (blue curves and bar in figures
4 and 7 to 9) for each species and for each cell type.

We then estimate the marginal standard deviation associ-
ated with each data point σe,k. Instead of using the pointwise
standard deviation associated with experimental repeats (i.e.
the error bars reported in figures 4–9 for each data point) we
rather consider the upper bound associated with each data-
set, i.e. se,X ¼ max1�k�Ne se,X,k with X∈ {oxygen, glucose,
VEGF, cell} in order to mitigate overconfidence. Table 10
recapitulates the values used for σe,X for each cell type.

When repeats were not available, e.g. for the measures of
oxygen concentration in the gel in the acellular and dADSC
cell cases, we assumed a standard deviation corresponding
to the average of the ones used for F7 and CTX cells, again,
to avoid overconfidence.
Appendix E. Convergence of the Monte Carlo
Markov chains and robustness of the predictions
We sample the posterior distribution using Monte Carlo
Markov chains (MCMC) based on a Metropolis–Hastings
Algorithm [62], for each VEGF model and each cell type
approximately 106 times, assuming normal state transition
coefficients for each of the parameters reported in tables
7–9. Transition coefficients were chosen so that approxi-
mately 40% of the proposals were accepted to ensure
reasonable mixing of the chain. They were generally of the
order of 5% of prior marginal standard deviation. Precisely,
we ran 10 MCMCs in parallel, each starting from a random
point sampled from the prior distribution. The simulations
were run on a desktop computer with intel Xeon W 18-core
2.3 GHz and 128 GB Ram 2666 MHz DDR4. Time resolution
of the cell–solute problem for one specific set of values for
initial and boundary condition was 0.01 s. Typical time resol-
ution for one of the experiment designs introduced in table 2
was 0.1 s. Time resolution for a single MCMC chain sampling
was 24 h. Implementation of the Metropolis–Hasting algor-
ithm was done in Python using standard packages (Numpy
1.18.1 and Scipy 1.4.1).



Table 11. GRSu, Zu and fu for each parameter, for the case of F7s and
VEGF model MVEGF,4. values reported for Ca/m and for C0,cell are averaged
values over the different conditions reported in table 2.

parameter GRSu Zu fu

transport

Dm,ox 1.01 0.05 0.07

Dg,ox 1.03 0.03 0.01

ηg/m,ox 1.05 0.10 0.10

Dm,glu 1.01 0.02 0.05

Dg,glu 1.04 0.04 0.15

ηg/m,glu 1.05 0.18 0.03

Dm,VEGF 1.03 0.06 0.10

Dg,VEGF 1.13 0.03 0.05

ηg/m,VEGF 1.07 0.05 0.15

λVEGF 1.06 0.07 0.26

initial and boundary condition

Ca/m 1.10 0.10 0.11

C0,ox 1.11 0.09 0.53

C0,glu 1.01 0.01 0.05

C0,cell 1.08 0.08 0.47

cell–solute interaction

Mox,max 1.03 0.04 0.05

Cox,1/2 1.15 0.01 0.10

Mglu,max 1.06 0.15 0.30

Cglu,1/2 1.03 0.09 0.23

A 1.02 0.14 0.15

γ 1.04 0.10 0.16

Ccell,max 1.08 0.04 0.24

δ0 1.01 0.02 0.26

δox 1.05 0.03 0.51

δglu 1.03 0.08 0.44

α 1.03 0.06 0.12

β 1.02 0.03 0.29

Cox,hypo 1.05 0.05 0.06

Ccell,crowd 1.02 0.10 0.13
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In order to estimate the statistics defined in §2.3.4,
MCMCs have to be converged. MCMCs are indeed stochastic
by nature and exhibit a transient regime during which ergo-
dicity is not respected. To overcome this, we discard the first
20% of the sample distribution that is called the burn-in. We
then assess if the remaining distribution is converged by
adapting the Z-value derived by Geweke [63], which we
defined as

Zu ¼
jmu,a � mu,bjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
u,a þ s2

u,b

q , ðE 1Þ

where α and β correspond to two intervals of length Na and
Nb. We used the first 10% and last 50% of the chain after
removing the burn-in and checked if their difference in aver-
age lay within 2 standard deviations. Table 11 shows that it is
the case for every parameters for F7s and VEGF model
MVEGF,4.

Besides assessing the convergence of each chain individu-
ally, we also assess the convergence in between the chains run
in parallel. To do so we computed the Gelman–Rubin statistic
(GRS) [64] defined the following way:

GRSu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ns � 1
Ns

þ Nchain

Nchain � 1

P
nðmchain,n

u � mchain
u Þ2P

n (s
chain,n
u )2

s
, ðE 2Þ

where Nchain denotes the number of Markov chains used,
mchain,n
u and schain,n

u the mean and standard deviation of a par-
ameter θwithin chain n and where mchain

u represents the mean
of a parameter θ across all chains. The idea behind this cri-
terion is that, using chains with different starting points,
they should converge to the same final distribution so that
the GRS should converge to 1. Table 11 shows the results
for 10 chains for the case of F7 cells and VEGF model
MVEGF,4. As we can see in tables GRS < 1.2 regardless of the
parameter, which we consider as evidence of converging
behaviour.

Additionally, the solutions of the inverse problem pre-
sented in the Results section are based on all available data.
To assess the robustness of the parameter estimation and
model fitting, we adapt k-fold cross validation. Briefly, we
separate the experiment dataset into k components, leave
one of the components out and perform Bayesian inference
using the remaining k− 1 components. We repeat the process
once for each of the components. The measurements included
in each component k are picked randomly, without repetition.
The number of measurements varies between oxygen, VEGF,
cell density and glucose, so each species was partitioned
independently. In this work, we choose k = 5, i.e. 20% of the
dataset is retained. We then compute the mean absolute
difference between expected values obtained using partial
and complete datasets and compare it with the posterior
marginal standard deviation obtained using the complete
dataset, i.e.

fu ¼
1
Nk

Xk¼5

k¼1

jmpartial,k
u � m

complete
u j

s
complete
u

, ðE 3Þ

where Nk represents the number of partition, here 5. Table 11
presents the results for the case of F7s and VEGF secretion
model MVEGF,4. We see that the expected values obtained
using a partial dataset remain close to the ones obtained
using the complete dataset and are in general within 50%
of the posterior marginal standard deviation, which points
towards a consistent estimation of the parameters. Finally,
we compute the relative variation in WAIC (equation
(2.27)). We find, on average less than 10% change between
partial and complete dataset cases, indicating very similar
ability to represent the data.
Appendix F. PAWN sensitivity analysis
We quantify the influence a given parameter has on the
model output using the PAWN sensitivity analysis [65].
This method is a global sensitivity analysis which produces
summary statistics based on the model output cumulative
density function. Briefly, the idea is to calculate a distance
between the unconditional cumulative distribution associated
with the model output and the conditional cumulative



Table 12. Experimental designs tested.

parameter units design 1 design 2 design 3 design 4

Ca/m 4.21 × 10−4 kg m−3 1, 3, 7 3 3 3

C0,ox 4.21 × 10−4 kg m−3 3 1, 3, 7 3 3

C0,glu kg m−3 2 2 1, 2, 4 2

C0,cell 1012 cell m−3 30 30 30 15, 30, 60
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distribution for which one parameter is fixed. The larger the
distance between the two distributions the more influential
the parameter. This distance evaluation is repeated for differ-
ent values of the parameter fixed (referred to as conditioning
intervals) and a summary statistic is chosen to represent the
distribution of distances obtained. Here we consider the
median distance to mitigate effects of extreme values. This
median is referred to as the median PAWN sensitivity index.

To evaluate such indices, parameters have to be sampled
multiple times. To do so we create intervals based on prior
distribution so that Iu,j ¼ ½mprior

u,j � s
prior
u,j ; mprior

u,j þ s
prior
u,j 
 where

m
prior
u,j is the parameter expected value a priori (i.e. values

reported in tables 7–9) and s
prior
u,j the marginal standard devi-

ation a priori (as described in appendix C.4). We then sample
the combined interval (i.e. u [ P

j¼Nu

j¼1 Iu,j) using a Latin–hyper-
cube sampling algorithm approximately 106 times. We
further use 20 conditioning intervals and we use the
implementation of PAWN median sensitivity index available
in SALib [66].

We calculate PAWN median sensitivity index associated
with the oxygen concentration in the gel, the glucose concen-
tration in the media, the VEGF concentration in the media
and the cell density in the gel after 24 h. We obtain one sen-
sitivity index per field that we then sum to obtain the global
impact each parameter has on the model predictions that is
used in figure 10.
Appendix G. Bayesian experimental designs for
vascular endothelial growth factor secretion
We devised four experimental designs, each one centred
around varying one initial or boundary condition, i.e. the
oxygen concentration at the air/media interface Ca/m, the
initial oxygen concentration C0,ox, the initial glucose
concentration C0,glu and initial cell density C0,cell (table 12).

Briefly, each design is composed of three points. All designs
share one central point namely (Ca=m ¼ 3%O2, C0,ox ¼ 3%O2,
C0,glu = 2 kgm−3 and C0,cell = 30 × 1012 cellm−3). Each design
then adds two points, one located above and one located
below the central point for each of the initial and boundary
condition. For instance, the design centred around C0,cell

(Design 4 in table 12) has C0,cell ¼ 30� 1012 cellm�3 as a
central value for initial cell density and C0,cell ¼ 60�
1012 cellm�3 and C0,cell = 15 × 1012 cell m−3 as cell density
values associated with points located above and below the
central point, respectively.

The designs were chosen to reflect the one used for F7s
and CTXs (table 9). Three points per design were chosen to
mitigate computational costs. We note that in practice, any
experimental design could be tested.

We then generate, for each experimental design, a syn-
thetic experimental dataset. Here we do so by taking the
posterior estimates reported in tables 5 and 6. We then
solve equations (2.9)–(2.18) for the values of VEGF concen-
tration in the media after 24 h for each VEGF secretion
model reported in table 3. Similarly to the F7s dataset, we
consider an additive noise with σe = 50 × 10−9 kgm−3.

Finally, we calculate the Kullback–Leiber divergence for
each experimental design and each VEGF secretion model
using the prior estimates reported in tables 8 and 7 and
appendix C.4. The only difference with §2.3.6 is that the
initial and boundary conditions are assumed to be known
exactly to better highlight their impact. The results are
then averaged over the VEGF secretion models and
displayed in figure 13.
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