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We present a methodology for constructing modified gravity (MG) constrained simulations of the local
Universe using positions and peculiar velocities from the CosmicFlows data set. Our analysis focuses on the
following MG models: the normal branch of the Dvali-Gabadadze-Porrati (nDGP) model and the
Hu-Sawicki fðRÞ model. We develop a model-independent methodology for constructing constrained
simulations with any given power spectra and numerically calculated linear growth functions. Initial
conditions (ICs) for a set of constrained simulations are constructed for the standard cosmological model
ΛCDM and the MG models. Differences between the models’ reconstructed Wiener filtered density and the
resultant simulation density are presented showing the importance for the generation ofMGconstrained ICs to
study the subtle effects of MG in the local Universe. These are the first MG constrained simulations ever
produced. The current work paves the way to improved approximate methods for models with scale-
dependent growth functions, such as fðRÞ, and for high-resolution hydrodynamicalMG zoom-in simulations
of the local Universe.
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I. INTRODUCTION

The standard model of cosmology, Λþ cold dark matter
(ΛCDM) stands on firm pillars formed by a multitude of
observational tests. From the early epochs of primordial
nucleosynthesis [1], and the statistical properties of the
cosmic microwave background radiation and its angular
fluctuations [2], to the late-time formation and evolution of
large-scale structure as gloriouslymanifested by the amazing
spatial patterns observed from vast and deep modern-age
galaxy surveys (such as the BaryonOscillation Spectroscopic
Survey [3]). The observations concerning all of these epochs
and phenomena can be explained remarkablywell bya simple
six-parameter ΛCDM model. These undeniable empirical
successes that form the foundations of ΛCDM come, how-
ever, mostly either from the large scales or early epochs when
the physics of the involved phenomena is generally in the
linear or mildly-nonlinear regimes.
Over the last 30 years the precision, quality and volume of

the data concerning the so-called local Universe has grown
and improved many folds. Thus, opening the window on
nonlinear scales,where the environment defined by the large-
scale matter/galaxy distribution is entangled with local

nonlinear processes driving the evolution of galaxies, and
their motions and clustering. Dedicated observational
campaigns have brought us a detailed and interesting picture
of our close cosmic neighborhood—within a region of
100-200 h−1Mpc from the Local Group. With new obser-
vations of hundreds and thousands of local dwarf galaxies,
more precise measurements of the Virgo, Coma, and other
local galaxy clusters such as the stunning Cosmic Flows data
containing distances and velocities of tens of thousands of
nearby galaxies. All these new local Universe data have a
great potential for providing new stringent tests for cosmol-
ogy and new insights into nonlinear phenomena and physics
of galaxy formation and evolution. They also provide new
intricate details concerning the local Universe that require
robust modelling and understanding of structure formation
physics in the nonlinear regime.
Classically, the high-resolution state-of-the-art cosmo-

logical simulations provide a powerful tool for modeling
and understanding the physics of the nonlinear structure-
formation regime [4]. However, since classical simula-
tions use random phases of the initial conditions, the
structures reflect just one particular random realization
from a vast ocean of potential configurations. Aiming at
simulating the very local Universe requires running very
high-resolution simulations to capture the intricate phys-
ics in the deeply-nonlinear regime. At the same time one
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needs to run large-box simulations, in order to sample
local grouplike environments out of cosmic variance.
Large-box high-resolution galaxy formation simulations
are prohibitively expensive.
Here, the constrained simulations [5] of the local

Universe, which reproduce structures and phase information
from observations, allows us to circumvent the aforemen-
tioned limitations of random-phase simulations. This new
class of carefully-designed and engineered simulations
nowadays play a critical role in distinguishing the subtle
features from model extensions to ΛCDM. In constrained
simulations the variance of the structures and resultant
statistics is greatly reduced—a property which is especially
important in the context of the local Universe where
observations of galaxies are made to higher accuracy (than
those made on distant galaxies typically measured from
galaxy redshift surveys) and there is a greater sensitivity to
small-scale physics (such as the properties of dwarf gal-
axies) that is not available to larger surveys. Simulations
mimicking structures from real galaxy observations have
been produced from a variety of methodologies; constrained
simulations [5] using peculiar velocities constraints from the
local Universe [6–8] (the focus of this paper), Bayesian
reconstruction of the density field [9,10], andmethods using
both density and peculiar velocity constraints [11].
In this paper we focus on constructing constrained simu-

lations of the local Universe using peculiar velocities [12].
Unlike estimations of the density field from galaxy
positions—biased tracers of the density field—peculiar
velocities in the linear regime are related directly to the
density field. This allows us to estimate the density field
with limited dependence on the galaxy tracer bias, while the
bias fromnonlinear and stochastic galaxymotions are limited
by considering only large-scale linear regime reconstructions
of the density field. Furthermore, peculiar velocities come
with the following limitations: (1) measurements are limited
to only the radial component of the velocities, (2) they can
only be measured at low redshift (depending on accurate
distance measurements and assumptions on the background
expansion and Hubble constant), (3) nonlinear velocities
need to be removed, and (4) Malmquist bias need to be
considered (see [13] for a more detailed review). As a result
constrained simulations from peculiar velocities have been
limited to the local environment, in particular using data from
CosmicFlows [see [14] ]. Several studies, such as the
Constrained Local UniversE Simulations (CLUES) [6,7]
and the High-resolution Environmental Simulations of The
Immediate Area (HESTIA) [8], have used peculiar velocities
from CosmicFlows to produce constrained simulations of
the local Universe. However, these simulations have been
limited to ΛCDM and the model dependence of the
reconstruction and the reproduced structures has yet to be
explored.
Modified gravity (MG) are a class of models that extend

Einstein’s theory of general relativity. They are motivated by

a desire to provide a better theoretical explanation of the
cosmological constant; a constituent of nature that has
proven to be a significant challenge for theoretical funda-
mental physics. They achieve this by introducing an effective
fifth force, that replicates the effects of the cosmological
constant but that is screened on relatively-small cosmological
scales. The range of this screening mechanism and the high-
fidelity observations of the local Universe, make it a perfect
environment for extracting the subtle effects of MG. In this
paper we focus on the following MG models: Hu-Sawicki
fðRÞ with chameleon screening [15] and the normal branch
of the Dvali-Gabadadze-Porrati (nDGP) with Vainshtein
screening [16]. Constrained simulations have never been
produced for models ofMG and those produced for the local
Universe would enable detailed comparison studies looking
to smaller scales than is typically accessible to large
cosmological galaxy surveys.
In this paper we extend the methodology used by CLUES

for creating constrained local Universe simulations to two
models of MG. We particularly focus on making these
methods numerically driven, enabling the extension to other
models in future studies. The methods used by CLUES
follows the procedures in [17–19] which are implemented in
ICeCoRe (Initial Conditions and Constrained Realizations)
which is used to generate initial conditions (ICs). To
construct ICs we first use theWiener filter [20] to reconstruct
the density field which is used to calculate the linear
displacement field. The displacement field is used to push
the constraint points to their locations in Lagrangian space
at early times. This assumes linear perturbation theory
and is referred to as the reverse Zeldovich approximation
(RZA) [17]. Constrained realizations (CRs) are then gen-
erated [5,19] from the corrected location of galaxies after
applying the RZA and the density is scaled to an initial
redshift to which ICs are generated. In this work we modify
these methods to allow for MG ICs. We test and run
constrained simulations using the COmoving Lagrangian
Acceleration method (COLA) [21], specifically MG-
PICOLA [22] which implements the COLA method for a
variety of MG models.
The paper is organized as follows, in Sec. II we discuss the

theory behinds the models and constrained realizations, in
Sec. III we discuss the methodology for the current ΛCDM
implementation and modification for MG, in Sec. IV we
discuss the results on the constrained initial conditions and
constrained COLA simulations and in Sec. V we discuss the
results, future work and challenges.

II. THEORY

A. Cosmological models

Here, we provide a brief description of the cosmological
models we investigate. Our fiducial case that we take as a
baselinewith respect towhichwemeasure all deviations and
signals is the standard ΛCDM. We explore the physics of
nonstandard structure formation in two families of MG
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models, fðRÞ and nDGP. For all the simulations we
assume the same background cosmology based on [2] with
parameter values:Ωm¼0.3111,Ωb ¼ 0.049,ΩΛ ¼ 0.6889,
H0 ¼ 67.66, As ¼ 2.105 × 10−9, and ns ¼ 0.9665 in a
spatially flat universe (i.e., Ωk ¼ 0) and with neutrinos
assumed to be massless (i.e.,

P
mν ¼ 0 eV). That is all

models share the same expansion history, and the various
cosmologies differ in the structure formation pace (i.e., the
linear growth rate) and the locally operating highly-nonlinear
fifth forces and screening mechanism (for the case of MG).

1. Modified gravity models: nDGP and f(R)

Observational constraints from the Solar System and
massive bodies significantly reduce the possible extensions
and deviations from Einstein’s theory of General Relativity.
Any modifications need to simultaneously match Solar
System constraints for gravity but at the same time need to
allow for possible departures from ΛCDM on large
cosmological scales. Typically this is achieved in MG by
the inclusion of a screening mechanism.
In nDGP, gravity is propagated through extra dimen-

sions, unlike other forces, while in fðRÞ, nonlinear func-
tions are added to the Ricci scalar. In both cases, the new
effective action integral will allow for extra degrees of
freedom, that can be modeled by additional scalar fields
and their interactions with matter. As a result, the new
dynamics of these class of models allows for a nonvanish-
ing fifth scalarlike force operating on cosmological and
intergalactic scales. The physics of models from both
families naturally contains a nonlinear mechanism to
suppress propagation of such fifth forces. These are called
screening mechanism, and in general the effective range of
their operation is limited to small nonlinear scales. In the
nDGP model, screening is achieved by the means of
the Vainshtein effect [23], while in the fðRÞ family, the
corresponding mechanism is the Chameleon screening
effect [24]. The Vainshtein screening is dependent on the
mass and distance from a screened object with no explicit
dependence on either the local or global environment, while
the chameleon screening is dependent on the local curva-
ture, and thus effectively on the density distribution of the
local matter fields.
As a testbed for the MG theories we select one particular

model for nDGP and one model for fðRÞ. In both cases we
assume a background cosmology following the parameters
given for the fiducial ΛCDM model discussed above with
the additional parameter rcH0 ¼ 1 for nDGP and jfR0j ¼
10−5 for fðRÞ. We refer to these models as N1 and F5,
respectively. At high redshift these models exhibit almost
identical clustering properties as ΛCDM but depart at low
redshift. This is showcased by the differences in their linear
power spectra at redshift z ¼ 0 (shown in Fig. 1 and
obtained from a modified version of CAMB) where
nDGP shows a scale independent shift, while in fðRÞ

the shift is scale dependent with large scales consistent with
ΛCDM but departing at smaller scales.

B. Constrained simulations

The motivations for constrained simulations are many.
One particular goal is to create simulations that mimic
properties of data and the view of our local Universe that it
offers. Another important aspect of constrained simulations
is that they allow for studying, and thus limiting to some
extent, the impact of cosmic variance on nearby nonlinear
structures. In this context, it is crucial to remember that the
observational galaxy data is noisy and sparse. Thus, the
constrained simulations both replicate properties of the data
but also add information where data is missing.
Our approach involves three major steps: (1) Wiener

filtering which reconstructs the linear velocity and density
field from peculiar velocity measurements; (2) the RZA
which reduces linear-order shifts in the position of con-
straints relative to an initial redshift; and (3) the generation of
constrained realizations which adds random fluctuations in
places which are poorly constrained. It is important to note
that constrained realizations assume the input data and
realizations are Gaussian. Of course low-redshift observa-
tions of large-scale structures are certainly non-Gaussian, so
some care is needed to try to limit measurements to the linear
regime. The latter is usually attained by considering all
the relevant density and velocity fields smoothed on scales
where the effects of the nonlinearities are already reduced.
The procedure for obtaining constrained field realizations
using the observed velocity data is described in detail in [12].
Below, for completeness, we discuss the main steps of this
method.

1. Wiener filtering

Following [12], the Wiener filtered (WF) density δWF is
estimated from a given set of peculiar velocity u constraints
from the relation

FIG. 1. The linear power spectra at redshift z ¼ 0 is shown for
the fiducial ΛCDM model, the nDGP model N1, and the fðRÞ
model F5 in the top panel. Differences with respect to ΛCDM are
shown in the bottom panel.
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δWFðrÞ ¼
XM
i¼1

XM
j¼1

hδðrÞuiihuiuji−1uj; ð1Þ

where hδðrÞuii is given by the linear theory velocity-
density correlation, huiuji is the peculiar velocity covari-
ance matrix and the indices i and j sum over M peculiar
velocity constraints. The density-velocity correlation vector
is defined as

hδðrÞuii ¼ − _afζðr0Þðei · r̄0Þ; ð2Þ

where a is the scale factor related to the redshift z by
a ¼ 1=ð1þ zÞ, _a ¼ aHðzÞ and HðzÞ is the Hubble param-
eter (note at z ¼ 0 this reduces to _a ¼ H0). The logarithmic
growth rate f ¼ d lnD=d ln a where D is the linear growth
function normalized at z ¼ 0 and ζðrÞ is the density-
velocity correlation function. Lastly r0 ¼ jr0j, r̄0 ¼ r0=r0,
and ei is a unit vector describing the direction of the
peculiar velocity constraint ui, in this study this is equiv-
alent to the line-of-sight vector.
The velocity covariance matrix is given by

huiuji ¼ ei · huiðrÞujðrþ r0Þi · ej þ σ2i δ
K
ij; ð3Þ

where σi are measurement errors on the peculiar velocities,
δKij is the Kronecker delta function and the components of
the linear theory peculiar velocity covariance matrix (i.e.,
velocity correlation tensor) are given by

Ψv
αβ ≡ huðrÞuðrþ r0Þiαβ ¼ ð _afÞ2

× fψ⊥ðr0ÞδKαβ þ ½ψkðr0Þ − ψ⊥ðr0Þ�r̄0αr̄0βg: ð4Þ

Where ψ⊥ðrÞ and ψkðrÞ are the tangential and radial
velocity-velocity correlation functions. The above decom-
position of the full velocity correlation into its radial and
tangential holds for a statistically homogeneous and iso-
tropic velocity field [25]. We can define the autocorrelation
and cross-correlation functions for the density and peculiar
velocities as follows:

ξðrÞ ¼ 1

2π2

Z
∞

0

k2PðkÞj0ðkrÞdk; ð5Þ

ζðrÞ ¼ 1

2π2

Z
∞

0

kPðkÞj1ðkrÞdk; ð6Þ

ψkðrÞ ¼
1

2π2

Z
∞

0

�
PðkÞj0ðkrÞ − 2

j1ðkrÞ
kr

�
dk; ð7Þ

ψ⊥ðrÞ ¼
1

2π2

Z
∞

0

PðkÞ j1ðkrÞ
kr

dk; ð8Þ

where ξðrÞ is the density-density correlation function. The
integrals are functions of the linear-matter power spectra

PðkÞ and spherical Bessel functions jnðxÞ (i.e., a spherical
Bessel function at x of order n). In the above relation, we
will be using consistently PðkÞ and f of either ΛCDM or a
given MG model, respectively. The numerically computed
correlation functions are shown in Fig. 2 for two MG
models andΛCDM. Negative correlations are seen for large
scales in ξ and ψR and the wiggles seen in the subpanel
comparisons of ξ originate from numerical instabilities at
larger radii where the correlation values are small.

2. Reverse Zeldovich approximation

If constrained simulations were generated directly from
the peculiar velocity constraints at their native (i.e., final
observed) positions, the simulations generated would have
structures that are systematically shifted from the input
field. This is because the location of structures move with
respect to an arbitrary point of origin as they grow and
evolve. This is a direct consequence of large and small-
scale coherent (i.e., bulk) flow motions in the Universe. In
order to account for this and to ensure that the final
simulated structures appear at the comoving positions
corresponding with the observational data locations we
need to push our constraints to where they would appear at
early times i.e., the initial redshift. In [17] the dominant
effect was shown to be well-captured already by the terms
from linear perturbation theory. Thus it is sufficient to
perform a simple linear order shift to the positions of
the peculiar velocity constraints, known as the Reverse
Zeldovich approximation [26].
The Zeldovich approximation [27], based on linear-order

perturbation theory, can be used to describe the relation
between the initial (i.e., Lagrangian) position of a fluid
element in space, with its final (i.e., Eulerian) position as a
function of time

xðq; zÞ ¼ qþ ψðq; zÞ; ð9Þ

where x is the final position in space, q the initial condition
position and ψ the displacement field, all given in comov-
ing coordinates. The peculiar velocities u are related to the
displacement field by

uðq; zÞ ¼ _afψðq; zÞ: ð10Þ

In the RZA the following approximation is employed,

qRZAðxÞ ∼ xðzÞ − vðx; zÞ
_af

; ð11Þ

to give the initial condition positions of the peculiar
velocity constraints. Note, in our work ψ is the linear
displacement computed from the reconstructed WF veloc-
ity field.
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3. Constrained realizations

The final step is to now construct specific initial
condition realizations from the constraints (i.e., the data)
after performing the RZA. This creates realizations which
retain information at locations with high constraints, but
with added noise and random information at scales and
locations which are poorly constrained. The density con-
trast for a constrained realization is obtained from the
following relation

δCRðrÞ ¼ δRRðrÞ þ
XM
i¼1

XM
j¼1

hδðrÞuiihuiuji−1ðuj − uRRj Þ;

ð12Þ
following [5] where u are the peculiar velocities at their
initial condition positions (i.e., after applying the RZA),
δRR the density from a random realization, and uRR the
peculiar velocity from the random realization at the
position and direction of the peculiar velocity constraints.
The density and displacement field are related in Fourier
space by

ψðkÞ ¼ ik
k2

δðkÞ; ð13Þ

since ∇2Φ ¼ δ and ψ ¼ −∇Φ, and where k ¼ jkj and i is
the imaginary unit.

4. ICeCoRe f ðRÞ implementation

The production of constrained realizations from
ICeCoRe broadly follows the steps outlined above.
However, ICeCoRe was designed for constructing con-
strained realizations in ΛCDM and as a result there are a
few design choices which are ΛCDM specific. Although
these limitations do not limit the accuracy of constrained
nDGP simulations they do affect the accuracy of con-
strained fðRÞ simulations. The most important of them is
the choice to take constraints of the displacement field
rather than the velocity field directly. The two are linked by
Eq. (10) where a simple division by the factor _af can
convert u to ψ, but this is only true when f is scale
independent. To correctly convert one to the other in fðRÞ
would require a multiplication in Fourier space, but this is
impractical given the constraints u do not lie on a uniform
grid [where we can take advantage of Fast Fourier
Transforms (FFTs) and numerical methods]. The choice
to constrain the displacement field also leads to the
simplification of Eqs. (2) and (4) where the _af terms drop
from the equation. To generate self-consistent fðRÞ con-
strained simulations will require developing ICeCoRe
with a different philosophy. This will require moving the
linear growth function f from Eqs. (2) and (4) to inside the
integrals of Eqs. (6)–(8). Furthermore, we will need to
use the peculiar velocity constraints directly to generate
the constrained realizations rather than converting to the
displacement field. Implementing this change will be the

FIG. 2. The density and velocity correlation functions are shown for the fiducial ΛCDM model and the MG models of nDGP N1 and
fðRÞ F5. In the top left panel ξ is the density-density correlation function, in the top right panel ζ is the velocity-density cross correlation
function and in the bottom panels are the velocity-velocity correlation functions (ψR the radial component on the left and ψT the
tangential component on the right). Subpanels show the differences between these correlation functions with respect to the base fiducial
ΛCDM model.
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subject of future work. For the moment, we instead consider
an effective scalar value for f at some chosen scale.

III. METHOD

In this section we discuss the steps for constructing
constrained simulations for ΛCDM and MG. We begin by
discussing the peculiar velocity constraints used, then
discuss the implementation of ICeCoRe for generating
initial conditions for ΛCDM followed by a discussion of
the modifications to the ICeCoRe inputs and intermediate
procedures for generating initial conditions for MG. Lastly,
we discuss the subsequent COLA N-body simulations and
the random realizations used for comparisons.

A. Peculiar velocity constraints from CosmicFlows-2

We use CosmicFlows-2 (CF2) [28], a catalog of galaxy
redshifts and distances, and hence of galaxy distances and
peculiar velocities, for imposing the constraints. The data
consist of measurements of the sky positions, distance
moduli and redshifts for over 10,000 local Universe
galaxies and groups of galaxies, which are mostly con-
tained within a distance of ≲ 150 h−1 Mpc. Galaxies which
are closely clustered are grouped and the peculiar velocity
constraints replaced by their mean—suppressing virial
motions in high density environments [29] and maintaining
the suitability of linear theory assumptions. A straightfor-
ward transformation from the noisy distance muduli and
redshifts to distances and velocities induces Malmquist-
like biases. The data used here is corrected by the bias
minimization algorithm [30].
Although newer CosmicFlows data releases are

available [14,31], CF2 [28] has been widely used in the
community for the production of constrained simulations
by CLUES [7] and systematics are well understood [30],
while the effects in later releases still require further study.
As we are simply interested in comparing and studying the
implementation of MG for constrained simulations the
most up-to-date data are not required for the time being.

B. Constrained realizations for ΛCDM
Constrained simulations are generated by ICeCoRe in

four steps. In each step ICeCoRe takes as input the linear
power spectrum PðkÞ which is computed for ΛCDM using
the cosmological Boltzmann code solver CAMB.1

(1) Wiener filtering: Peculiar velocity constraints from
CF2 are used to construct the WF density field and
velocity field computed by differentiating the WF
density field in Fourier space.

(2) Reverse Zeldovich approximation: Using interpo-
lated values of the displacement field, from the
WF reconstruction, we subtract the linear-order

displacement to place the constraints to their posi-
tions in the initial conditions in Lagrangian space.

(3) Constrained realizations: A random seed is given to
generate a CR of the density field using the peculiar
velocities at the RZA positions following the density
power spectrum at z ¼ 0.

(4) Initial conditions: The density field at the initial
conditions are calculated by multiplying the CR
density by the linear growth function at the initial
redshift zIC ¼ 49. IC particles are then generated on
a grid using the Zeldovich approximation.

C. Constrained realizations for modified gravity

Constrained simulations for MG are implemented with
ICeCoRe in a similar method to ΛCDM. We take
advantage of the modular set up to alter the inputs and
intermediate steps for MG and compute scale-independent
(for nDGP) and scale-dependent [for fðRÞ] growth func-
tions numerically from MG power spectra.
The first modification is the input of a MG power

spectra. These are computed using MGCAMB2 a modified

FIG. 3. The scale-independent growth functions DðzÞ and fðzÞ
are shown for the fiducial base ΛCDM model (in black), the
nDGP model N1 (in blue) and the scale-dependent growth
functions shown for the fðRÞmodel F5 (where colors correspond
to scales k in the colorbar) and the red line shows the effective
growth functions at a scale of k ¼ 2π=12 hMpc−1.

1https://camb.readthedocs.io/. 2Made available to us by Hans Winter.
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version of CAMB used to compute power spectra for a range
of MG models. The second step requires the precalculation
of growth functions. Rather than hard code this procedure
into our pipelines, we compute growth functions com-
pletely numerically from linear power spectra evaluated at
many redshifts. The linear scale-dependent growth function
is calculated by taking

Dðk; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðk; 0Þ
Pðk; zÞ

s
; ð14Þ

and the logarithmic growth function computed by numeri-
cal differentiation,

fðk; zÞ ¼ d logDðk; zÞ
d log a

: ð15Þ

Note, for the above we first interpolate Dðk; zÞ onto a
regular log a grid using a cubic spline, since numerical
differentiation performs best on a regular grid. For the
scale-independent case we take the mean of k above
superhorizon scales, i.e., 0.01 < k < 10 hMpc−1 (since
we are using the linear power spectra the inclusion of
nonlinear scales has no effect on the linear growth functions

except to provide more stable and accurate results). In
Fig. 3 we show the numerically calculated growth functions
for nDGP (scale-independent) and fðRÞ (scale-dependent).
The steps to produce constrained realizations for MG

follow the procedure outlined for ΛCDM with some
important differences, such as the use of MG power spectra
and numerically computed growth functions. Note,
for fðRÞ we input growth functions at a single scale,
k ¼ 2π=12 hMpc−1, since scale-dependent growth func-
tions are currently not implemented in ICeCoRe. This
choice of scale is motivated by the effective smoothing of
the Wiener filter reconstruction (of the density field) from
peculiar velocities which is roughly on the scale of
12 h−1Mpc. The other additional change we make is to
rescale the CR densities to the IC redshift using scale-
dependent growth functions via FFT, which is implemented
outside of ICeCoRe.

D. Constrained and random simulations

To test the effect of applying constraints for different
models we also construct initial conditions with the same
random seeds with the corresponding ΛCDM or MG
power spectra. Once these are produced we then use the
initial condition particles to run COLA simulations using

FIG. 4. The WF reconstruction of the density field from peculiar velocity data from CosmicFlows-2 is shown for ΛCDM on the
bottom left, the N1 nDGP model on the bottom middle and the F5fðRÞ model on the bottom right panel. In the top panels we show
deviations of the WF reconstruction of N1 (middle) and F5 (right) from ΛCDM. The WF recovers the linear density field extrapolated to
the present epoch, hence the unphysical values below −1. The maps are shown with respect to the supergalactic x (SGX) and y (SGY)
coordinate axis for a slice of width 20 h−1 Mpc in the supergalactic z axis (i.e., −10 ≤ SGZ ≤ 10 h−1 Mpc), The WF reconstruction
show fairly consistent structures with the strongest deviations seen for F5.
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MG-PICOLAwhich implements the COLA method for the
MGmodels of nDGP and fðRÞ [22]. To be able to construct
halo catalogs from COLA requires that the particle-mesh
grid be a factor of> 3 times the number of particles along a
single axis. For most of the simulations our initial conditions
are generatedwith 5123 particles over a 500 h−1 Mpc box, so
for added validity and due to the relative inexpensive
computation cost of running COLAwe use a particle-mesh
grid size of 20483. For each model we produce five con-
strained initial conditions and five random initial conditions
with the same random seeds. Constrained simulations are
then computed with MG-PICOLA for each model. For MG
models these are run from both ΛCDM and MG initial
conditions. In total this means the construction of 30 initial
conditions from which 50 simulations were produced.

IV. RESULTS

In this section we compare results obtained from con-
strained initial conditions from ΛCDM and MG models
nDGP and fðRÞ; including the WF reconstruction and
COLA simulation outputs and statistics.

A. Comparing Wiener filtered reconstruction

The WF reconstruction of the density field computed by
ICeCoRe is shown in Fig. 4. We see the fields are strikingly

similar, with the differences originating from differences in
the model’s power spectra and correlation functions (shown
in Figs. 1 and 2, respectively). For nDGP the variations
appear equal in amplitude throughout the volume, perhaps
unsurprising given the differences between the power spectra
ofΛCDMcan be described by an effective amplitude shift on
all scales. For fðRÞ the differences to ΛCDM are strongest
closer to the observer, showing a strong relation to the
amplitude of the density field.

B. Comparing COLA simulation statistics

To test the validity of the constrained simulation meth-
odology for MG we began by comparing the power spectra
and halo mass functions computed from the simulations.
These were found to be completely consistent between
constrained and random simulations. Since these statistics
are insensitive to phases, this result is not surprising and we
move on to comparisons of the density and velocity fields.
In Fig. 5 we compare the constrained simulation density

fields for the first realization. Particles within�10 h−1Mpc
from SGZ ¼ 0 at redshift z ¼ 0 are used to construct a
two-dimensional projection of the density on a slice of
width 100 h−1Mpc around the origin. The simulations
show that the different models and choice of initial
conditions have small yet subtle effects, with structures
between simulations seeming to be rather similar. To aid the

FIG. 5. The density of constrained simulations for ΛCDM and MG are shown in a region of 100 h−1 Mpc around the observer. On the
bottom panels are constrained simulations all generated with ΛCDM ICs while on the top are generated with MG ICs. The difference
between the structures from different models is hard to distinguish by eye; for visual comparisons we indicate the differences between
positions of matched particles with respect to ΛCDM with arrows/quivers.

KRISHNA NAIDOO et al. PHYS. REV. D 107, 043533 (2023)

043533-8



eye we indicate the differences between matched particles
from ΛCDM to MG simulations with arrows/quivers. For
the ΛCDM ICs the MG simulations show more extreme
features, i.e., denser clusters and more empty voids; an
effect driven by the larger clustering properties for these
models. However, for the MG ICs the differences are
not as trivial, with small displacements near clusters
but large displacements between structures. We interpret
this as the constraints dictating the final location of
the main structures; leading to differences in the field
between structures owing to the models’ different forma-
tion histories.
To get a better comparison we compute the density and

velocity field on a 2563 grid using the triangular-shaped-
cloud particle mass-assignment scheme. We then isolate the
cells within a 30 h−1Mpc radius [similar to [32] ] and
compare the densities and radial velocities cell-by-cell
shown in Fig 6. Constrained simulation in ΛCDM, follow-
ing the procedure in this paper, have previously been shown
to be consistent with input peculiar velocities (see [32]).
Therefore, by comparing to the ΛCDM peculiar velocities
and density fields we can test the accuracy of the MG
constrained simulations.
For MG constraints simulations produced with ΛCDM

ICs we find the density and radial velocities to be
systematically shifted with low variance. For the nDGP
simulations produced with MG ICs we find consistent
radial velocities with ΛCDM. For fðRÞ, with MG ICs, we
see a strong negative correlation between radial velocities.
Since the input are peculiar velocities we expect these

values to be consistent between models. This shows the
MG ICs for nDGP are performing as we expect and this
method can be used for future nDGP constrained simu-
lations produced at higher resolution. However, for fðRÞ
we find large discrepancies between the simulations pro-
duced with MG ICs and find more consistent radial
velocities with ΛCDM ICs, although the latter comes at
the cost of a systematic shift. Since on large scales fðRÞ has
as consistent growth functions as ΛCDM this result shows
that, in hindsight, our choice of scale was slightly mis-
guided and that we ought to have chosen a value at a larger
scale, which more closely reflects the scales that are more
influential in structure formation. For the time being,
constrained simulations for fðRÞ are better produced with
ΛCDM ICs rather than the approximate methods currently
used for MG ICs.

V. CONCLUSIONS

In this paper, we extend the methodology for construct-
ing constrained simulations of the local Universe in ΛCDM
to the MGmodels nDGP and fðRÞ. We begin by describing
the formal extensions to the methodology; the input of
different power spectra, correlation functions, and the
numerical calculation of growth functions. We use the
ICeCoRe package [19], previously used by CLUES [6]
and HESTIA [8], for constructing the initial conditions for
constrained simulations in ΛCDM. Our implementation
makes use of the modular procedures to incorporate steps
for MG. However, while this implementation is completely

FIG. 6. The density (top) and radial velocity (bottom) fields are compared between MG and ΛCDM constrained simulations with MG
ICs (left) and ΛCDM ICs (right). The density and velocity fields are computed on a 2563 grid using the triangular-shaped-cloud mass-
assignment scheme and compared within a radius of 30 h−1 Mpc from the origin i.e., where most of the CF2 constraints are located. On
the y-axis we show the difference in densities between ΛCDM and MG on the top row and radial velocities on the bottom row.
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compatible with the scale-independent growth functions of
nDGP, the implementation for fðRÞ is incomplete. This is
due to the scale dependence of the growth functions which
are currently not implemented in ICeCoRe. This issue
arises due to a design choice in ICeCoRe to constrain the
density field from the displacement field and not the
peculiar velocities directly. The conversion from velocity
to displacement includes a division by the logarithmic
growth function; for the scale-independent case this is a
simple conversion but for fðRÞ this multiplication needs to
be carried out in Fourier space. For the peculiar velocity
constraints applying this conversion is impractical and
since conducting this in a fully self-consistent way would
require rewriting significant portions of ICeCoRewe have
opted for an approximate scheme; taking an effective f at
a scale of k ¼ 2π=12 hMpc−1 (a real space scale of
R ¼ 12 h−1Mpc) roughly corresponding to the smoothing
incurred from reconstructing the density from peculiar
velocities assuming linear theory.
We construct WF reconstructions of the density field

from the CF2 peculiar velocities for ΛCDM and MG nDGP
and fðRÞ models—the first such construction for non-
ΛCDM models. The WF reconstruction, on the whole,
shows very similar features with subdominant variations
owing to differences in the MG linear power spectra; in
nDGP features are more prominent at all scales while for
fðRÞ this is limited to the largest amplitude features closest
to the origin (i.e., Local Group).
ICs for five constrained realizations were then generated

with corresponding ICs for random realizations with
matching seeds. The WF reconstruction of the mean
density field show very similar reconstructions with sub-
dominant variations owing to differences in the MG linear
power spectra. COLA MG simulations were generated
using both the ΛCDM and MG ICs.
Comparisons of the density field show that using ΛCDM

ICs will generate structures for MG that are more clustered
and voids that are emptier, this is incompatible with the
constraints from peculiar velocity data and shows the
necessity for generating self-consistent MG ICs. Here we
show that the nDGP MG ICs reproduce consistent radial

velocities with ΛCDM; a property we expect since the
constraints are from peculiar velocities. For fðRÞ the MG
ICs are not fully self-consistent due to the scale dependence
of the growth functions and the approximations used. As a
result the fðRÞ simulations with MG ICs produce radial
velocities that are inconsistent with ΛCDM. For fðRÞ we
find greater consistency with ΛCDM ICs. A result showing
that our choice of scale for the approximation of the growth
functions should have been larger, to reflect the scales
which are more important for structure formation. For the
time being this means that constrained simulations for fðRÞ
are more consistently produced with ΛCDM ICs until
a fully self-consistent scale-dependent method can be
constructed.
In this paper we have extended the methodology for

constructing constrained simulations to MG. We have
shown the importance of conducting this in a fully self-
consistent way (rather than using ΛCDM ICs), since MG
implies subtle but important differences in the recon-
structed WF field and imply different growth histories.
Future work will look to extend this formalism to fully
incorporate the scale dependence of models such as fðRÞ
without the need to assume effective values for the growth
rate. This will facilitate the future production and study of
high-resolution and hydrodynamic MG simulations ena-
bling the study of MG on properties of the local Universe
on small scales.
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