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Abstract

We present a novel methodology for optimizing fiber optic network performance by determining the ideal values for
attenuation, nonlinearity, and dispersion parameters in terms of achieved signal-to-noise ratio (SNR) gain from digital
backpropagation (DBP). Our approach uses Gaussian process regression, a probabilistic machine learning technique, to
create a computationally efficient model for mapping these parameters to the resulting SNR after applyingDBP.We then
use simplicial homology global optimization to find the parameter values that yield maximum SNR for the Gaussian
process model within a set of a priori bounds. This approach optimizes the parameters in terms of the DBP gain at the
receiver.We demonstrate the effectiveness of ourmethod through simulation and experimental testing, achieving optimal
estimates of the dispersion, nonlinearity, and attenuation parameters. Our approach also highlights the limitations of
traditional one-at-a-time grid searchmethods and emphasizes the interpretability of the technique. Thismethodology has
broad applications in engineering and can be used to optimize performance in various systems beyond optical networks.

Impact Statement

This article presents a powerful methodology for optimizing fiber-optic communication systems that can greatly
impact various engineering applications. First, our methodology offers a highly efficient tool for optimizing
fiber-optic communication systems, which can lead to faster and more reliable communication in various
industries. Second, this approach has the potential to provide significant impact within other engineering
disciplines, enabling efficient, and interpretable system parameter optimization.

1. Introduction

Optical fiber communication networks are a vital component of the global internet, but they suffer from
nonlinear interference which reduces system capacity (Agrawal, 2019). Digital backpropagation (DBP) is
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a powerful technique for compensating for these nonlinear impairments, allowing lost capacity to be
recovered (Ip andKahn, 2008). However, to achieve high gain fromDBP, the physical layer parameters of
the system, such as fiber dispersionD, fiber nonlinearity coefficient γ, and fiber loss α, must be optimized
with respect to DBP gain. These parameters are uncertain, even at the beginning of the system’s life
(Pointurier, 2021), and can change with time due to the aging of system components (Pointurier, 2017).
Currently, these parameters are manually optimized for DBP using a time-consuming one-at-a-time grid
search process that does not guarantee optimality. This is not a suitable approach, as these parameters have
complex interdependencies.

Here, we present a method that uses Gaussian process (GP) regression (Rasmussen and Williams,
2006), a class of probabilistic machine learning (ML) models, and a powerful global optimizer,
simplicial homology global optimization (SHGO), to optimize these physical layer parameters with
respect to the DBP gain. This technique provides both systematic optimization of DBP gain and
estimation of the system physical layer parameters, which is beneficial for emerging applications such
as digital twins (Nevin et al., 2021) and reducing network margins. However, it should be noted that
the parameters that optimize the DBP gainmay differ from those that of the physical system (Fan et al.,
2020; Yi et al., 2021). Nevertheless, these estimates are useful for reducing network margins and for
building virtual systemmodels, in the absence of more accurate, time-consumingmeasurements using
dedicated equipment. Specifically, we optimize the fiber nonlinearity coefficient γ, fiber dispersionD,
and fiber loss α. Lumped parameters are estimated, rather than distributed ones, as these are sufficient
for the optimization of the DBP gain, which is the focus of this work. Extending this methodology to
consider distributed physical layer parameters forms part of the planned future work. We demonstrate
the effectiveness of our method through simulation, where we know the ground truth values of D, γ,
and α, before applying it to experimentally measured traces. We also provide parameter sweeps of the
learned GPmodels to aid in interpreting the surrogate model mapping fromD, γ, and α to the signal-to-
noise ratio (SNR) after DBP, and we use these models to highlight the limitations of using one-at-
a-time grid search to optimize the DBP parameters.

Our methodology has applications beyond optical networks and can be used to optimize perform-
ance in various systems. By leveraging GP regression and SHGO, we can optimize complex
parameters efficiently, providing valuable insights and improvements to engineering design and
optimization.

The remainder of this article is organized as follows. We present the theoretical background in
Section 2 followed by a review of existing work in Section 3. We present the proposed parameter
optimization methodology in Section 4. The experimental optical fiber communications system is
detailed in Section 5, followed by the parameter estimation results in simulation in Section 6 and
experiment in Section 7. Finally, we summarize the key conclusions and outline future work in
Section 8.

2. Background

This section describes the techniques referred in the study: the Split-step Fourier method (SSFM) for
modeling the physical layer of the optical network, the DBP technique for joint compensation of both
linear and nonlinear impairments in optical fibers, the Gaussian process regression (GPR) technique
for probabilistic supervised ML, and the Simplicial Homology Global Optimisation (SHGO) algo-
rithm for finding the global optimum of noncontinuous, nonconvex and nonsmooth functions. The
SSFM uses the Manakov equation, and GPR uses kernel methods and the squared exponential kernel
function.

2.1. Split-step Fourier method

In this work, we model the optical network physical layer using the Manakov equation, given by (Millar
et al., 2010)
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where β2 is the group velocity dispersion coefficient of the fiber, α is the fiber attenuation coefficient, t and
z denote the retarded time and the spatial coordinate along the direction of propagation respectively, EX

andEY are the electric field components along theX and Y axes, respectively, and γ is the fiber nonlinearity
coefficient, given by

γ=
2πn2
λAeff

, (2)

where Aeff is the fiber effective mode area, n2 is the nonlinear index coefficient, and λ is the center
operating wavelength. β2 relates to the dispersion coefficientD viaD = � 2πc

λ2
β2.Writing (1) in terms of its

constituent linear and nonlinear parts can be shown to yield an exact solution given by (Millar et al., 2010)
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where EH denotes the Hermitian transpose of E. We can then assume (Millar et al., 2010)
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E z,Tð Þ: (5)

In this work, we utilize the symmetric SSFM, which involves taking a dispersive step of size h
2, followed

by a nonlinear step of size h and an additional dispersive step of size h
2. This can be written as (Millar

et al., 2010; Agrawal, 2019)
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where Leff =
1�exp �αhð Þ

α is the fiber nonlinear effective length. It should be noted that here α is measured in
units of km�1, rather than dB km�1. Equation (6) can be solved iteratively using a fast Fourier transform to
obtain an approximate solution for the transmission in the fiber (Ip and Kahn, 2008).

We also simulate polarization mode dispersion (PMD) using the waveplate model for birefringent
fiber, such that each step of the SSFM includes a random polarization rotation and a frequency-dependent
birefringence. We obtain the differential group delay between fast and slow axes Δτp for a given fiber
PMD 〈Δτ〉 as (Poole and Favin, 1994)

Δτp =

ffiffiffiffiffiffiffiffiffiffi
3π
8nsps

s
〈Δτ〉, (7)

where nsps is the number of steps per fiber span. To include PMD, a randompolarization rotation is applied
at the start of each symmetric SSFM step and the differential group delay is then included as part of each
dispersive step of size h

2.
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2.2. Digital backpropagation

DBP is a technique for the joint compensation of both linear and nonlinear impairments that accumulate in
optical fibers. This is achieved by dividing the fiber link of interest up into small sectionsΔz and inversely
solving the nonlinear Schrödinger equation (NLSE) which governs the propagation of optical signals
through the optical fiber (Ip and Kahn, 2008). Specifically, we solve the Manakov equation using the
SSFM, with the sign of the physical layer parameters reversed, that is, α!�α, γ!�γ, and β2 !�β2.
Thus, we simulate the propagation of the signal in reverse, in order to estimate the linear and nonlinear
impairments accumulated in the span. We utilize a symmetric SSFM implementation, as outlined above.
In this work, we utilized DBPwith a fixed step size and a constant number of steps per span, although this
can be adapted whilst performing DBP to improve the computational efficiency (Shao et al., 2014). All
SSFM simulations, for both forward and reverse propagation, were performed with 100 steps per
fiber span.

2.3. Gaussian process regression

GP regression is a probabilistic supervised ML method. GPs leverage Bayesian statistics to find the
most likely function describing the relationship between a set of inputs and a set of outputs, given the
data and a set of priors (Rasmussen and Williams, 2006). GP regression is a nonparametric ML
method, meaning that rather than assuming a given parametric form and finding a set of parameters that
describe the mapping, the space of functions is searched directly in a probabilistic way. The main
benefit of using GPs over other supervised regression methods, such as neural networks (NNs), is that
GPs provide a rigorous prediction error, the predictive variance. This can be used to judge the level of
confidence associated with a given prediction, providing an extra layer of interpretability for the
model user.

GPs are kernel methods, meaning that a kernel function is used to model the covariance between the
data. Specifically, the kernel function specifies the covariance between the evaluation of the function
being learned by the GP f xð Þ at two input points (Rasmussen and Williams, 2006):

k xi,xj
� �

= cov f xið Þ, f xj
� �� �

: (8)

In this work, we use the squared exponential kernel function, defined as (Rasmussen andWilliams, 2006)
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� �

= h21 exp
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		 		2
2h22

 !
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where xi and xj are the input values of the points being compared, h1 and h2 are the hyperparameters of
the squared exponential kernel, δij is the Kronecker delta, that is, δij = 1 if i= j and 0 otherwise, and k � k
represents the Euclidean distance. It should be noted that h2 is a vector with the same number of
elements as the dimensionality of x, whereas h1 and h3 are both scalars, as the targets have a single
dimension. Commonly, the set of kernel hyperparameters are denoted by θ, meaning for equation (9)),
θ ≜ h1,h2,h3f g. h1 acts as a global covariance scale for the GP, as it affects the magnitude of the
covariances between all pairs of sample points xi,xj. The role of h2 is to scale the distance between
inputs xi,xj that will yield a large covariance cov f xið Þ, f xj

� �� �
, where each component of h2 scales a

given input dimension. Therefore, larger values of the correlation length indicate that the function f xð Þ
varies less with respect to changes in a given component of x, and vice versa. h3 represents the noise of
the observations—larger values of h3 indicate that the GP is interpretingmore of the variation in the data
as noise, rather than the underlying signal. Using a kernel function to compute inner products in the
original space is equivalent to using a large set of basis functions, facilitating efficient learning of
complex functions (Rasmussen and Williams, 2006). When we fit the GP to data, we do so by
maximizing the likelihood function with respect to the hyperparameters θ = h1, h2, and h3
(Rasmussen and Williams, 2006). This corresponds to maximization of the probability of the targets
given the data and hyperparameters—thus we find the underlying mapping between the inputs and
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targets in a probabilistic way. Specifically, this was achieved by computing the gradient of the log
marginal likelihood with respect to the hyperparameters and performing a gradient-basedmaximization
using the Limited memory Broyden–Fletcher–Goldfarb–Shanno Box constrained (L-BFGS) method
(Liu and Nocedal, 1989). This gradient is given by the expression (2.30) (Rasmussen and Williams,
2006, chap. 2):

∂

∂θj
logp yjX,θð Þ= 1

2
yTK�1 ∂K

∂θj
K�1y�1

2
tr K�1 ∂K

∂θj

� �
, (10)

where K is the matrix of the kernel evaluated at all pairs of input points and y is the vector of targets. An
in-depth discussion of this process is provided in Rasmussen and Williams (2006, chap. 5, 5.3–5.7).
Choosing a given kernel corresponds to making some assumptions about the data, as different kernels
result in a different prior distribution over functions. We choose equation (9) because we expect the
underlying functions to be well-described by a single-length scale with Gaussian noise, and we do not
expect the data to exhibit properties such as periodicity and decay that may require more complex
kernels (Rasmussen and Williams, 2006). We also tried using the more general Matérn kernel
(Rasmussen and Williams, 2006, chap. 4), but saw no improvement relative to equation (9), and
therefore we used the more simplistic kernel which was faster to fit. In this work, we utilize an
implementation provided by the Multi-Output Gaussian Process Emulator library (Daub and Barlow,
2021).

The GP used in this work is constructed using a zero mean function and the covariance function given
by equation (9). Therefore, we have a GP prior over our unknown function f �GP, and we can write the
prior over the function value at a specific input x as:

P f xð Þð Þ=N f xð Þ;0,Kð Þ, (11)

where P denotes a probability, N is a multivariate Gaussian distribution, and K is the kernel matrix,
such that Ki,j = k xi,xj

� �
. It should be noted that the majority of applications of GPs utilize a zero mean

function, as these models are able to learn a vast number of functions accurately within the range of
the measured data (Rasmussen and Williams, 2006). As we have strong a priori bounds on the range
over which we wish to make predictions, the incorporation of a specific mean function is not required.
This GP model was observed to be of sufficient complexity to act as a high-accuracy surrogate model
for this problem. For a detailed description of the theory of GPs, we refer the reader to Bishop (2006,
chap. 6) and Rasmussen and Williams (2006). Moreover, we note that relevance vector machines
(Candela and Hansen, 2004; Martino and Read, 2021) (RVMs) are very similar in formulation to GPs.
There is an inherent trade-off between these two approaches—RVMs offer greater flexibility in the
choice of basis functions than GPs, however, GPs have more interpretable predictive variance than
RVMs. Exploring the use of RVMs in this technique forms part of the planned future work.

2.4. Simplicial homology global optimization

SHGO is a general-purpose global optimization algorithm based on algebraic topology and simplicial
integral homology (Endres et al., 2018). SHGO has been chosen to optimize the function learned by the
GP in this work as it offers a number of theoretical and practical advantages. First, SHGO is theoretically
proven to find the global optimum, even for the highly general case of noncontinuous, nonconvex, and
nonsmooth functions (Endres et al., 2018). In addition, SHGO has been shown to be highly performant
compared to other state-of-the-art global optimization algorithms (Endres et al., 2018). Also, SHGO
accepts bounds on the variables being optimized, allowing us to input some a priori knowledge in the form
of broad parameter ranges derived from fiber specification sheets and the literature. Finally, SHGO does
not require the derivative of the objective function, eliminating an additional source of error given that the
objective function is in this case learned by the GP.We utilized the SciPy implementation of SHGO in this
work (Virtanen et al., 2020).
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3. Related Work

A number of previous works have considered ML approaches for the optimization of DBP. In Häger and
Pfister (2018), the similarities between the structure of split-step Fourier-method (SSFM)-based DBP and
NNs are leveraged to reduce the computational complexity of DBP. Here, NNs are used to perform DBP
and an interpretable approach is taken in which the chosen structure of the NN is informed by the structure
of traditional DBP. Such approaches are known as learned DBP. An extension of the learned DBP
approach to joint DBP and PMD has also been presented (Bütler et al., 2020). Further extensions include
learned DBP with polarization state rotation and state noise invariance (Bitachon et al., 2020). Moreover,
learned time-domain DBP (Sillekens et al., 2020) has also been proposed as a lower-complexity
alternative to standard learned DBP, in which nonlinearity compensation is done in the time domain
and chromatic dispersion is compensated in the frequency domain. Thus, repeated transforms between the
time and frequency domains via Fourier transform result in high computational complexity. Using the
time-domain learned DBP approach, it is possible to avoid this conversion by performing all compen-
sation in the time domain.

However, all DBP approaches require tuning of the physical layer parameters, specifically the
nonlinearity, attenuation, and dispersion coefficients, γ, α, and D. Errors in these parameters lead to
reduced DBP gain. These parameters are poorly known for deployed systems (Pointurier, 2021) and may
also change with time due to the aging of components (Pointurier, 2017). Thus, a number of techniques
have been proposed in the literature to perform data-driven estimation of these physical layer parameters.
A simple least-squares minimization technique leveraging the enhanced Gaussian noise model was
proposed (Ives et al., 2017). Moreover, other works have proposed to update the parameters of a
physics-based model based on monitoring data using a range of techniques, including maximum
likelihood estimation (Bouda et al., 2018), Markov chain Monte Carlo (Meng et al., 2017), and gradient
ascent (Seve et al., 2018). In each case, monitoring data is used to update the parameters in the physics-
based model based on measurements of the system QoT. An additional approach leveraging GP-driven
history matching for physical layer parameter estimation was presented in Nevin et al. (2022). Here, GPs
were utilized to learn a computationally cheap surrogate for a simulation of the forward channel based on
the SSFM, which was then used to perform history matching to find the most likely values for a set of
uncertain physical layer parameters.

In addition, a number of recent works have investigated how DBP can be utilized to estimate these
physical layer parameters. Sasai et al. (2020) used learned DBP based on NNs to estimate γ and the group
velocity dispersion β2 on a span-by-span basis, and demonstrated the detection of spans with excessively
high loss along a long-haul transmission link. The proposed method utilized gradient descent to minimize
the mean squared error (MSE) between the backpropagated signal and a reference signal, to find optimal
values for these parameters simultaneously. Optical attenuators were used to model points of excessive
loss along the link, which were detected using this scheme by comparing with the expected loss for a
normal state. An extension of this method was also applied to estimation of the loss profile and the
detection of frequency detuning in optical filters (Sasai et al., 2020). Self-phase modulation was exploited
to separate out the filter responses, which is not possible in the linear regime. Again, gradient descent was
utilized to estimate the parameters, and the detection of an anomalous optical filter was demonstrated.
Another work focused on using DBP to estimate the output power of an experimental cascade of EDFAs
(Tang et al., 2021), in order to help with power budget adjustment and detection of anomalous EDFA
behavior. Similarly, DBP has also been utilized for estimation of the power profile and gain spectra of
Raman amplifiers from the received signal traces (Sasai et al., 2021). Thus, DBP has proven useful in the
estimation of physical layer parameters at the receiver.

In this work, we propose a novel methodology that optimizes the physical layer parameters γ, α, and
D in terms of DBP gain. This is achieved by using a probabilistic MLmethod, GP regression, to learn the
functional mapping between the physical layer parameters and the DBP gain for a given received trace.
This functional mapping is then used to find the optimal parameters via SHGO (Endres et al., 2018). The
parameters that optimize DBP gain are found for this trace in a systematic way, which also provides a
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data-driven estimate of the parameters themselves, although it should be noted that the parameters that
optimize the DBP gain may differ from the physical characteristics of the equipment (Fan et al., 2020; Yi
et al., 2021).Moreover, the optimizer used returns local optima, which allows the user to avoid falling into
a single local optimum. We demonstrate how we can leverage a priori domain knowledge to select the
most likely estimates of the parameters. This methodology is of use for both learned and traditional DBP
techniques, as all require optimization of the physical layer parameters. It also provides a method for
estimation of the physical layer parameters from a single measured trace, thus it avoids incurring a
significant SNR penalty. Reducing the uncertainties for these parameters is crucial for reducing the errors
of physics-basedmodels of the system,which are used tomake network planning and operation decisions.
These uncertainties are typically accounted for with excessive margins, and thus more accurate parameter
estimates allow us to unlock extra capacity by reducing these margins. Also, the proposed method
provides an interpretable way to understand the parameter sensitivity of the DBP chain, via the trained GP
surrogate models.

We summarize our contributions relative to those in the literature here. We use a powerful global
optimizer that is theoretically proven to converge to the optimum, even for nonconvex, noncontinuous,
and nonsmooth functions (Endres et al., 2018). The problem is therefore reduced to finding a highly
accurate probabilistic surrogate model for the DBP chain, with a well-quantified predictive uncertainty.
Thus, we do not rely on gradient descent, as in some of the previous approaches, which can be prone to
finding a local optimum. Rather, we demonstrate how multiple sets of parameters can yield equivalent
DBP gain to within negligible tolerance, and demonstrate how to select the most likely parameter
estimates via application of tighter a priori bounds. Moreover, some methods require measurements
over a range of launch powers, which may incur significant SNR penalties, whereas we perform our
estimation at the receiver, from a single trace with maximum SNR penalty of 0.4 dB and a minimum
SNR penalty of 0 dB (i.e., using the optimum launch power). In addition, the proposed method is very
flexible with respect to the parameters being optimized—it is trivial to include any other parameter that
is set in the DBP chain, although it is likely that more samples will be required to learn an accurate
surrogate model in a higher-dimensional space. On the other hand, some of the previously proposed
methods are relatively inflexible, requiring significant modifications to estimate new parameters.
Finally, many of the previous parameter estimation approaches have been demonstrated on experi-
mental data only without a deterministic simulated ground truth comparison. In this work, we first
demonstrate the approach in simulation before moving on to experimental data, that is, we show that we
are able to accurately estimate a set of known, noiseless, ground truths, before applying the method to
experimental data.

4. Proposed Method

Here, we describe the proposed method for optimization of the parameters α, γ, and D in terms of the
DBP gain, given a set of received traces. First, we define a set of a priori ranges for the physical layer
parameters considered, obtained from component datasheets. Then, we sample from these ranges to
generate a set of input points for our training data, using a Latin hypercube design for efficient sampling
of the input space (Daub and Barlow, 2021). Given a single trace, we decode the trace using DBP for
each set of sampled inputs α, γ, and D and record the resulting SNR. These SNR values form the set of
targets for our training data, whilst the sampled inputs are the training data inputs. Also, we take
additional samples in order to perform validation of the GPmodel, again from a Latin hypercube design.
A GP is then trained to learn the mapping from the input space to the SNR yielded by DBP. It should be
noted that the GP is trained on SNR in linear units. This learned function is a computationally cheap
surrogate for the entire DBP chain. Having validated the accuracy of the GP by comparing its
predictions with the validation samples, we then use the SHGO algorithm to find the global and local
optima of the GP surrogatemodel, which correspond to the physical layer inputs that maximize the SNR
after DBP. This optimizer calls the GP model thousands of times. This method is described below in
Algorithm 1.
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Algorithm 1. DBP parameter optimization process

SET UP: Let X = Xi = x1,x2,…,xj,…,xm

 �

: jL ≤ xj ≤ jU ,1≤ i<∞,1≤ j≤m

 �

be the continuous
sample space containing the samples Xi consisting of a set of m physical layer parameters xj with
specified ranges bounded by upper and lower limits jU and jL, respectively.
Let PDBP be the launch power of the trace for which we perform the estimation, and Pp be the launch
power of the pth trace used in the validation of the estimated parameters.
Step 1: Draw training validation samples:
for k≔ 1,…,nsam½ � do

Draw sample Xk ≔LHD Xð Þ—draw training input samples using Latin hypercube design
SNRk ≔DBP Xk ,PDBPð Þ—compute SNR target for each sample using DBP chain

end for
for l≔ 1,…,nval½ � do

Draw sample Xl ≔LHD Xð Þ—draw validation input samples using Latin hypercube design
SNRl ≔DBP Xl,PDBPð Þ—compute SNR target for each sample using DBP chain

end for
Step 2: Fit GP hyperparameters via maximum likelihood using training data
Step 3: Validate GP—compare validation targets to GP predictions with error metrics:

MAE =
Pnval

l = 1∣SNRl�GP Xlð Þ∣
RMSE =

Pnval
l = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNRl�GP Xlð Þð Þ2

q
Step 4: Perform global optimization of GP inputs via SHGO to find optima X∗

1,…X∗
n, such

thatGP X∗ð Þ>GP Xð Þ∀X

5. Experimental System

5.1. Experimental setup

The experimental setup consists of transmission of a four-subcarrier 49.5 GBd polarization division
multiplexed DP-256QAM superchannel across 1,010.75 km using a recirculating fiber loop. The
experimental setup used is outlined in Figure 1.

Four external cavity lasers (ECLs) with <100 kHz linewidth and 50 GHz spacing were used as sources
for two odd and two even subcarriers, which were modulated by two separate dual-polarization IQ

Figure 1. Diagram of the experimental setup, consisting of a recirculating fiber loop that was used to
transmit a 4 × 49.5 GBd superchannel over 13 spans of length 77.75 km. DAC, digital-to-analog

converter; DP-IQ-MOD, dual-polarization IQmodulator; ECL, external cavity laser;MUX,multiplexer;
PS, polarization scrambler.
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modulators driven by two 33-GHz 92-GSa/s digital-to-analog converters (DACs). The 256-QAMdriving
signals were each spectrally shaped by matched root-raised cosine (RRC) filters with 1% roll-off. The
frequency response of the transmitter components was compensated by applying digital pre-emphasis to
the generated signals. The odd and even signals were modulated with independent data and combined
with a 3-dB coupler to form a 4 × 49.5 GBdDP-256QAM superchannel with 200GHz optical bandwidth.
The superchannel was then amplified and launched into a recirculating fiber loop, which comprised of a
polarization scrambler (PS), a span of 77.75 km of Corning® SMF-28® ULL fiber, two variable optical
attenuators (VOAs), three erbium-doped fiber amplifiers (EDFAs) with 4.5 dB noise figure and a 2 nm
optical bandpass filter to remove noise outside the signal bandwidth. The transmitted superchannel
circulated through the loop 13 times, corresponding to a total transmission distance of 1,010.75 km. It was
then mixed with a <100 kHz linewidth local oscillator (LO) laser using a 90° hybrid and detected by four
balanced photo-detectors with 100 GHz electrical bandwidth. Finally, the received signals were digitized
using a 256 GSa/s real-time digital sampling oscilloscope with 100 GHz analog electrical bandwidth.

The offline digital signal processing (DSP) chain was conducted as outlined inWakayama et al. (2019)
using QPSK pilot symbols. Specifically, the pilot symbols are used for equalization and frame synchron-
ization, as well as for carrier phase estimation (CPE). A block diagram of the DSP is given in Figure 2.
After the signal is received, it is converted to the electrical domain using an analog-to-digital converter
(ADC). It is then deskewed and normalized. Following this, if desired, DBP is performed on the entire
four-subcarrier superchannel. If we do not perform DBP, that is, to quantify the DBP gain, we perform
chromatic dispersion compensation (CDC) instead. Following either of these blocks, we then shift the
signal by 25 GHz to move the third subchannel to baseband. This is then followed by resampling to two
samples per symbol, RRC-matched filtering to extract the third subchannel, and then frame synchron-
ization. The filtered subchannel is equalized by an adaptive FIR filter, which utilizes two algorithms for

Figure 2. Schematic of the DSP chain, adapted fromWakayama et al. (2019). CDC, chromatic dispersion
compensation; CPE, carrier-phase estimation; DBP, digital backpropagation; FOE, frequency offset
estimation; GSOP, Gram–Schmidt orthogonalization procedure; LO, local oscillator; RPE, residual

phase estimation; RRC, root-raised cosine.
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training the equalizer filter weights; recursive least squares for coarse-tuning and least mean squares for
fine-tuning, which are both trained on the received pilot symbols (Wakayama et al., 2019). Having trained
the equalizer, the optimized filter weights are then used to equalize the payload symbols. The signal is then
demultiplexed into its two constituent orthogonal polarizations before we perform frequency offset
estimation and CPE. The CPE algorithm is implemented as a two-step process, consisting of initial linear
interpolation followed by more detailed residual phase estimation (RPE), as outlined in detail in
Wakayama et al. (2019). Following this, we apply the Gram–Schmidt organization procedure (GSOP)
and then estimate the SNR. This estimation consists of taking the noisy symbols outputted by the DSP
chain and calculating the SNR as

SNR=
E Xj j2
h i

E X�Yj j2
h i , (12)

where E �½ � denotes the expectation, X are the transmitted symbols, and Y is the received symbols after
DSP, and a k-means-based algorithm was used to extract the constellation centroid.

5.2. Experimental a priori knowledge

The data sheet of the Corning® SMF-28® ULL fiber used in this experiment provides us with some a
priori knowledge. First, α is stated to have a maximum value of 0.17 dB km�1. Thus, we consider a range
of α values between 0.14 and 0.17 dB km�1. As GPs are a kernel-based method, they estimate the
similarity between neighboring data to infer the underlying function. As a result, the model accuracy is
limited near the edge of the range of training data, as there are fewer neighboring data. Thus, we want to
avoid the ground truth value lying too close to the edge of the range, where the model accuracy will suffer.
If any of the estimated parameters were observed to fall close to any of the corresponding a priori bounds,
the bounds should be increased. The lower bound in this case is chosen to be lower than the world record
of 0.142 dB km�1 (Hasegawa et al., 2018), to avoid the estimated value falling too close to the lower
bound. It was observed that the upper bound was sufficiently conservative, such that the estimated values
were not close to this value. Additionally, this fiber type has a specified expected nonlinear refractive
index component value n2 = 2:1× 10�20, however, no range is given. Similarly, the expected fiber
effective area is given as 83 μm2, with no range or tolerance. However, the value of γ has significant
uncertainty for deployed fibers, which may suffer from aging effects, or in some cases, the fiber type may
even be unknown (Seve et al., 2019). Moreover, variations during the manufacturing process can modify
the value of γ: Thus, we define a broad range for γ, from 0.9 to 1.2 W�1km�1. As for the dispersion, we
have stronger a priori knowledge as it is possible to obtain a measured estimate of the dispersion from the
adaptive equalizer in the DSP chain (Corsini et al., 2013, eq. 4). Thus, we use a tight range around this
estimated value, from 15.9 to 16.1 ps nm�1km�1, to allow the SHGO optimizer to tweak the dispersion to
the value that yields optimal gain. It should be noted that, for deployed systems, the uncertainty
surrounding these parameters is significantly higher than in laboratory experiments (Pointurier, 2017,
2021).

Thus, as well as being a useful research tool that avoids time-consuming and nonoptimal grid search,
the proposed method provides a systematic way to obtain a high accuracy characterization of deployed
systems from broad a priori ranges. To demonstrate the feasibility of using this methodology in deployed
networks, we assume relatively broad a priori bounds, defined from our approximate a priori knowledge.

6. Parameter Estimation from Simulated Data

6.1. Parameter estimates

We first test the efficacy of this technique using simulated traces, generated for a simulated system using
the SSFM. This system was designed to emulate the experimental system outlined in Figure 1, with a
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superchannel consisting of four subcarriers which are used to transmit a 49.5 GBd DP-256QAM signal
over 13 spans of length 77.75 km, for a total transmitted distance of 1,010.75 km. As we know exactly the
parameters that we used to generate the traces, this provides uswith a ground truth that we can use to verify
the accuracy of the physical layer parameter estimation. The ground truth values ofD, γ, and α are shown
in Table 1, along with the a priori search ranges used. The same ranges were used for the experimental
traces. It should be noted that we model the effects of polarization mode dispersion (PMD) in our
simulation, as outlined above, using a value of 0.04 ps km�1

2. This value is the link design value taken from
the manufacturer specification sheet of the Corning® SMF-28® ULL fiber used in this experiment, a
statistical upper limit on the total link PMD.

During training of the GP, we take 100 additional samples from the parameter space and record the
SNR after application of DBP andDSP, for verification of the trainedmodels.We compare the predictions
of the GP models at launch powers of 1, 2, 3, and 4 dBm with the corresponding DBP chain SNRs. The
mean absolute error (MAE) values were 0.009, 0.016, 0.010, and 0.012 and the MSE values were 0.013,
0.022, 0.013, and 0.017, respectively for the traces at 1, 2, 3, and 4 dBm. As the GP is trained on SNR in
linear units, these errors are given in terms of linear SNR. This indicates that 500 samples are sufficient for
training a high-accuracy GP model, which learns the functional mapping from the physical layer
parameters to the SNR gain with a small prediction error. This is crucial, as the GP is used as a
computationally cheap surrogate model for the DBP chain, which is used by the SHGO optimizer to
find the parameters that maximize the DBP gain. Exploring the precise minimum number of samples
required for a good estimation forms part of the planned future work. It is important to note the motivation
for using the GP to learn a surrogate model for the SNR after DBP in conjunction with SHGO, rather than
simply using SHGO to optimize the SNR after DBP directly. Specifically, the bottleneck in terms of
performance is running the DBP chain. It was observed that training the GP surrogate model required
running the DBP chain 500 times, whereas SHGO required approximately 1,500 function evaluations to
converge. Thus, using SHGOdirectly on theDBP chainwould bemore computationally expensive, as the
DBP chain would need to be run a larger number of times. In addition, a trained GP surrogate model is
itself a useful tool, providing an interpretablemodel of the SNR as a function ofD, γ, and α that can be used
to perform a sensitivity analysis. This is explored further in Section 7.2.

We use the simulated traces at launch powers per channel of 1, 2, 3, and 4 dBm to perform the
estimation, and the optimal parameter values obtained are shown in Table 2. For the traces at 1, 2, and
3 dBm, one global optimum was found, whereas for the trace at 4 dBm two optima with equivalent

Table 1. A priori physical layer parameter ranges.

Parameter Simulated ground truth Range Unit

D 16.00 U 15:9,16:1½ � ps�nm�1km�1

γ 1.03 U 0:9,1:2½ � W�1km�1

α 0.156 U 0:14,0:17½ � dB�km�1

Table 2. Parameter estimates for simulated traces.

Power (dBm) D (ps nm�1km�1) γ (W�1km�1) α (dB km�1)

1 16.00 1.01 0.155
2 16.00 1.02 0.157
3 16.00 1.02 0.156
4 16.00 1.02 0.156
4 16.00 1.03 0.157
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performance were found. These traces were chosen as they correspond to the four values around the peak
in the experimental system after DBP is applied. We can see that we are able to correctly estimate the
ground truth value of D to a precision of 4 significant figures. Moreover, we are able to estimate γ with a
maximum error of 0.02 W�1km�1. As for α, the estimation is accurate to within an error of 0.001 dB
km�1. Thus, this technique is able to obtain highly accurate estimates of D, α, and γ from broad a priori
parameter ranges for a simulated system. Sources of error in the simulated system include PMD,
numerical errors introduced by the DSP and interpolation errors introduced by the GP surrogate model.
As a representative example, Figure 3 shows the comparison of the SNR after decoding the simulated
traces both with and without DBP for using the parameters D= 16:00 ps nm�1 km�1, γ= 1:02 W km�1,
and α= 0:156 dB km�1, estimated using the trace at 4 dBm. We show the achieved SNR in Figure 3a and
the SNR gain at each launch power in Figure 3b. The gain in maximumSNRwas 1.14 dBwith all five sets
of parameters found. Moreover, the sum of the gain for each trace, that is, the difference between the
performance with andwithout DBP for each trace, was 10.10 dB for the parameters found using all traces.
Thus, as expected, these parameter sets give practically equivalent performance.

6.2. GP model parameter sweeps

In order to further interpret the trained GP model, we perform parameter sweeps and plot the predictive
mean and predictive variance. Specifically, this is done by sweeping each parameter in turnwith the others
held fixed at the optimum found, for each of the GPmodels trained. The results of these sweeps are shown
for D, γ, and α in Figures 4–6, respectively. The ranges for each sweep are the same as those defined in
Table 1, meaning that we are sweeping across the full a priori search range learned by each GP. A
confidence region corresponding to one predictive standard deviation is also shown, where the predictive
standard deviation is simply given by the square root of the predictive variance of the GPmodel. From the
confidence bands, we can see that theGPmodel has the lowest uncertaintywith respect toD, followed by γ
and α. Additionally, from the variation of the predictivemean of the GP across the range, we can see thatD
has the largest effect on the SNR after DBP, followed by γ and then α. Specifically, the ranges of variation
are 0.58, 0.17, and 0.03 dB forD, γ, and α, respectively. We also consider these values as a fraction of the
DBP gain achieved for the trace used in the estimation. For the trace at 4 dBm shown, the ranges forD, γ,
and α correspond to 16.7, 4.8, and 0.8% of the achieved gain respectively. However, it is important to
contextualize these results—the objectives of this methodology are to estimate the parametersD, α, and γ
at the receiver, as well as to provide a methodology for systematically finding the optimal parameters in

Figure 3. Simulated traces comparison with andwithout DBP using parametersD = 16:00 ps nm�1km�1,
γ= 1:02 W�1km�1, and α= 0:156 dB km�1, estimated using Algorithm 1 using the simulated trace at a
launch power of 4 dBm. The SNR versus launch power curves with andwithout DBP are shown, as well as

the DBP gain at each launch power.
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Figure 4. D GP model sweep, in which we sweep D across the a priori search range with γ= 1:03
W�1km�1 and α= 0:156 dB km�1. The hyperparameters for this model are h1 = 21:5,

h2 = 0:01psnm�1km�1,0:84W�1km�1,0:11dBkm�1
� �

, and h3 = 0:01.

Figure 6. α GP model sweep, in which we sweep α across the a priori search range with D = 16:00 ps
nm�1km�1 and γ= 1:03 W�1km�1. The hyperparameters for this model are h1 = 21:5,

h2 = 0:01psnm�1km�1,0:84W�1km�1,0:11dBkm�1
� �

, and h3 = 0:01.

Figure 5. γ GP model sweep, in which we sweep γ across the a priori search range with D= 16:00 ps
nm�1km�1 and α= 0:156 dB km�1. The hyperparameters for this model are h1 = 21:5,

h2 = 0:01psnm�1km�1,0:84W�1km�1,0:11dBkm�1
� �

, and h3 = 0:01.
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terms of DBP gain. Even if the effect on the DBP is small for α and γ, estimating these parameters with
high accuracy is crucial for building high-accuracy network models, which in turn can be used to unlock
extra capacity by reducing network margins.

7. Parameter Estimation from Experimental Data

7.1. Parameter estimates

Having confirmed the efficacy of Algorithm 1 for simulated traces, we demonstrate the DBP parameter
estimation process for experimentally measured traces, using the experimental system outlined in
Figure 1. We perform the parameter estimation process outlined in Algorithm 1 for the experimental
tracesmeasured at launch powers 1.22, 2.27, 3.24, and 4.25 dBm, denotedP1,P2,P3, andP4, respectively.
These particular traces were chosen due to their proximity to the optimum launch power, once DBP is
applied.

In order to validate the GPmodel learned, we again draw an additional 100 validation samples from the
DBP chain and compare these samples to the predictions of the trained GP model at these sample inputs.
This yielded a linear SNR mean absolute error (MAE) of 0.015, 0.032, 0.012, and 0.010 for the GPs
trained on traces at P1, P2, P3, and P4, respectively. The corresponding linear SNR RMSE values were
0.020, 0.049, 0.019, and 0.013, respectively. Thus, the GP trained on the trace at P2 has the highest
validation error, whereas the model trained at P4 has the lowest validation error. The magnitude of the
validation errors are very small in practical terms, indicating that 500 samples is sufficient for the GP to
learn an accurate probabilistic mapping from D, γ, and α to the SNR after DBP.

In Figure 7, we show the estimation results for each trace. SHGO returned 10, 3, 2, and 2 local optima
respectively for the traces at P1, P2, P3, and P4. These local optima were observed to give equivalent
performance in terms of DBP gain, to within a maximum tolerance of 0.006 dB across all the experi-
mentally measured traces. Specifically, this tolerance was calculated by performing DBP for all the
experimental traces with each set of parameters and calculating the difference between the mean SNR
after DBP is applied for the best and worst-performing parameter sets. This highlights the limitations of
considering approaches such as gradient descent, which are prone to getting stuck in a given local optima.
It should be noted that D was estimated to be 16:05 ps nm�1km�1 for all optima using traces P2, P3, and
P4, whereasD = 16:06 psnm�1km�1 for all optima estimated using the tracemeasured atP1. It is clear that
there is a correlation between α and γ: we can achieve equivalent performance with higher γ if α is
increased, and vice versa. The reason for using a search range that extends down to 0.140 dB km�1 is that

Figure 7.Plot of local optima obtained from the experimental traces at launch powersP1 = 1:22,P2 = 2:27,
P3 = 3:24, andP4 = 4:25 dBm. All optima have equivalent performance in terms ofDBPgain, to amaximum
tolerance of 0.006 dB. For traces at P2, P3, and P4,D = 16:05 ps nm�1km�1, whereas for P1,D = 16:06 ps

nm�1km�1. The independently measured fiber loss of α > 0:156 dB km�1 is indicated on the plot.
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GPs are a kernel-based method. Thus, the accuracy of the model will be much lower at the boundaries of
the training data range, and so we want to avoid the optimum falling too close to the edge of the range,
where themodel accuracywill be reduced. If the optimum fell near the edge of the range, it would indicate
to the user that the a priori ranges should be increased, such that the optimum is not too close to the edge of
the range. In addition, we indicate that lower values of γ are more likely to reflect the true system values.
This is because the fiber specifications list an effective area of 83 μm and n2 = 2:1× 10�20, which
corresponds to γ= 1:03W�1km�1. Thus, we would expect parameter sets with a smaller deviation from
this value to be more likely. For clarity, we show the effective area values for each γ value on Figure 7.
Thus, we consider parameter sets with the lowest value of γ in the feasible α range to be the most likely
parameter estimates. For the traces measured at launch powers P2, P3, and P4, there is one clear choice for
the most likely set of parameters. For the trace measured at P1, there are three traces which we consider to
be equally likely. These parameter best estimates are shown in Table 3 for each of the traces, including the
three estimates from the trace at P1.

Additionally, estimated parameter values that aremore consistent acrossmultiple traces aremore likely
to be correct—we can see that a grouping of similar values emerges for all the traces in the range for γ
values from 1.07 to 1.10W�1km�1 and α values from 0.151 to 0.157 dBkm�1. In deployment, parameter
estimates from measurements of multiple lightpaths occupying the same fiber segment could be used to
cross-reference and identify more likely parameter estimates. We also notice that the number of local
optima is observed to increase as we decrease the launch power. This is due to the fact that, at higher
launch power, we havemore nonlinear interference noise. Thus, the sensitivity of the SSFM to γ increases,
making it easier to estimate, as fewer values of γ have equivalent performance. As a demonstrative
example, we performed the parameter estimation process using the trace measured at�9.75 dBm, which
returned 129 local optima. In this linear regime, γ has negligible effect, so SHGO finds a large number of
local optima with equivalent performance.

To consider how these parameters perform across all the experimentallymeasured traces, we record the
DBP gain, both in terms of the maximum SNR achieved and the SNR gain for each trace. All sets of
estimated parameters yield a gain in maximum SNR of 0.83 dB. As for the total gain, taken as the sum of
individual gain at each trace, gain values of 10.92, 10.95, 10.94, and 10.95 dB were achieved using the
parameters estimated using the traces at P1, P2, P3, and P4, respectively. Here, 10.92 dB was achieved for
each of the local optima estimated using the trace at P1. Thus, there is a small difference in the achieved
gain, with the parameters estimated using the P4 trace giving the highest gain, and the parameters
estimated using the trace at P1 giving the lowest gain. As an representative example, Figure 8 shows the
DBP gain given by the parameters estimated for the trace at P4, for each of the experimental traces. The
SNR achieved is comparedwith andwithout DBP in Figure 8a and the SNRgain is presented in Figure 8b.
As in simulation, sources of error include PMD, DSP errors, and inaccuracies in the GP surrogate model.
For the experimental case, there are additional sources of error arising from the nonideal nature of the
experimental components. These sources of error lead to increased variation in the estimation of the
physical layer parameters D, γ, and α, as compared to the simulated case. Moreover, due to these error

Table 3. Most likely parameter estimates for the experimental system.

Power (dBm) D (ps nm�1km�1) γ (W�1km�1) α (dB km�1)

1.22 16.06 1.09 0.152
1.22 16.06 1.09 0.151
1.22 16.06 1.10 0.151
2.27 16.05 1.10 0.157
3.24 16.05 1.09 0.152
4.25 16.05 1.07 0.153
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sources, in the experimental case we obtain multiple local optima with equivalent gain for all traces,
whereas in simulation, only one trace returned more than one optimum.

7.2. GP model parameter sweeps

We again perform parameter sweeps of the trained GP model for the experimental case, sweeping each
parameter in turn, with the other two parameters fixed at the optimal values. These sweeps are shown in
Figures 9–11 for D, γ, and α, respectively. The hyperparameters found to maximize the marginal
likelihood during the GP fitting process are also reported. As with the simulated traces, D has the largest
variation in SNR across the a priori search range, followed by γ and α. Thus, as in simulation,D is themost
important parameter in terms of maximizing the DBP gain, followed by γ and then α. Specifically, the
ranges found are 0.76, 0.13, and 0.02 dB for D, γ, and α, respectively. We also consider these values as a
fraction of theDBP gain achieved for the trace used in the estimation. For the trace at 4.25 dBm shown, the
ranges for D, γ, and α correspond to 22.4, 3.9, and 0.7% of the achieved gain respectively. Also, we
observe that the predictive variance is smallest for D, followed by γ, and then α. An intuitive explanation

Figure 8. Experimental traces comparison with and without DBP using parameters D= 16:05 ps
nm�1km�1, γ= 1:07 W�1km�1, and α= 0:153 dB km�1, estimated using Algorithm 1 using the experi-
mental trace at a launch power of 4.25 dBm. The SNR versus launch power curves with and without DBP

are shown, as well as the DBP gain at each launch power.

Figure 9. D GP model sweep, in which we sweep D across the a priori search range with γ= 1:07
W�1km�1 and α= 0:153 dB km�1. The hyperparameters for this model are h1 = 13:6,

h2 = 0:03psnm�1km�1,0:26W�1km�1,0:08dBkm�1
� �

, and h3 = 0:01.
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for this is that the larger the sensitivity of the SNR to a given parameter, themore confident theGPmodel is
in the learned underlying function.

GP sweeps can also be used to illuminate the issues associated with manually optimizingD, α, and γ in
terms of DBP. Crucially, if one ormore of the other parameters is set to a nonoptimal value, the sweeps can
change significantly, resulting in an incorrect optimum value. This is because α and γ jointly contribute to
the nonlinear noise, meaning that there will not be uniquely optimal values of α and γ with respect to the
SNR after DBP. This can be seen in Chen and Shieh (2010, eqs. 31–33). Thus, performing a one-at-a-time
grid search is likely to lead to an incorrect optimum. To demonstrate the benefits of the multi-parameter
optimization framework proposed as compared to single-parameter-at-a-time grid search, Figure 12
shows parameter sweeps over α for the 4.25 dBm experimental trace with γ set to the nonoptimal value of
γ= 1:00. We can see that for γ= 1:00W�1km�1, the optimum value of α occurs at 0.143 dB km�1, with a
lower maximum SNR than the global optimum reported in Table 3. This highlights the limitations of
doing a one-at-a-time grid search—the optimum found in one dimension is not in general independent of
the values of the other parameters.

Figure 10. γ GP model sweep, in which we sweep γ across the a priori search range with D= 16:05 ps
nm�1km�1 and α= 0:153 dB km�1. The hyperparameters for this model are h1 = 13:6,

h2 = 0:03psnm�1km�1,0:26W�1km�1,0:08dBkm�1
� �

, and h3 = 0:01.

Figure 11. α GP model sweep, in which we sweep α across the a priori search range with D = 16:05 ps
nm�1km�1 and γ= 1:07 W�1km�1. The hyperparameters for this model are h1 = 13:6,

h2 = 0:03psnm�1km�1,0:26W�1km�1,0:08dBkm�1
� �

, and h3 = 0:01.
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It is clear that having an incorrect value of γ results in an incorrect optimum at 0.143 dB km�1, at a
lower SNR than that obtained using SHGO.

8. Conclusions and Future Work

We propose a methodology for optimizing physical layer parameters in optical fiber communication
networks with respect to DBP gain, which has significant implications for improving system performance
and reducing networkmargins. By systematically and efficiently optimizing the physical layer parameters
with respect to the DBP gain, the proposed approach provides valuable insights into complex inter-
dependencies of the system whilst maximizing the SNR. The accuracy of this method was demonstrated
through simulation and experimental testing, achieving optimal values of dispersion, nonlinearity, and
attenuation parameters with maximum errors of 0:02W�1km�1 and 0:01dBkm�1, respectively. More-
over, the proposed methodology addresses the limitations of traditional one-at-a-time grid search and
gradient-based methods and emphasizes the interpretability of the technique. The potential impact of our
approach extends beyond optical networks and has applications in various engineering systems where
optimization of system parameters is required. Future work will focus on reducing offline computational
complexity and exploring how the method can be extended to consider finer-grain mapping of the
parameters. Specifically, the extension of this methodology to optimizing the distributed physical layer
parameters on a span-by-span basis will be considered. This will deliver insights about the variation of the
parameters along the link, at the cost of increasing the dimensionality of the GP surrogate model and the
SHGO optimization. In addition, the use of RVMs instead of GPs to learn the mapping from parameters to
SNRwill be explored. Specifically, the increased flexibility in basis functions will be weighed against the
associated cost of reduction of interpretability of the predictive variance.

Abbreviations

ADC analog-to-digital converter
CDC chromatic dispersion compensation
CPE carrier phase estimation
DAC digital-to-analog converter
DBP digital backpropagation
DP-IQ-MOD dual-polarization IQ modulator
DP-QAM duel polarization quadrature amplitude modulation
DSP digital signal processing

Figure 12. Demonstrative example α GP model sweep, in which we sweep α across the a priori search
range with D = 16:05 ps nm�1km�1 and γ= 1:00 W�1km�1

—a deliberately nonoptimal value. This
highlights the limitations of one-at-a-time grid search optimization: the optimal value for a single

parameter sweep depends on the values of the other parameters.
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ECL external cavity lasers
EDFA Ebrium-doped fiber amplifier
GP Gaussian process
GPR Gaussian process regression
GSOP Gram–Schmidt organization procedure
LO local oscillator
ML machine learning
MSE mean squared error
MUX multiplexer
NLSE nonlinear Schrodinger equation
NN neural network
PMD polarization mode dispersion
PS polarization scrambler
QoT quality of transmission
RPE residual phase estimation
RRC root-raised cosine
SHGO simplicial homology global optimization
SMF single mode fiber
SNR signal-to-noise ratio
SSFM split-step Fourier method
VOA variable optical attenuators
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