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We propose a new approach to identify geographical clustering and inequal-
ity hotspots from decadal census data, with a particular emphasis on the
method itself. Our method uses diffusion mapping to study the 181 408
output areas in England and Wales (EW), which enables us to decompose
the census data’s EW-specific feature structures. We further introduce a
localization metric, inspired by statistical physics, to reveal the significance
of minority groups in London. Our findings can be adapted to analogous
datasets, illuminating spatial patterns and differentiating within datasets,
especially when meaning factors for determining the datasets’ structure
are scarce and spatially heterogeneous. This approach enhances our ability
to describe and explore patterns of social deprivation and segregation
across the country, thereby contributing to the development of targeted
policies. We also underscore the method’s intrinsic objectivity, guaranteeing
its ability to offer comprehensive and unbiased analysis, unswayed by
preconceived hypotheses or subjective interpretations of data patterns.
1. Introduction
Understanding the demographic and socio-economic characteristics that
shape society is critical. However, extracting meaningful insights from scale-
relevant and spatially heterogeneous collections of social, and potentially
biological or physical variables, is challenging. The distribution of social classes
and groups significantly impacts regional stability, social welfare and economic
potential [1–3]. For example, [4] shows in some cities, the number of university
students and social deprivation are paramount in explaining other social
variables in census statistics. Other research illuminates the impact of
social, economic and ethnic attributes on regional disparities, such as energy
burdens in households [5], heterogeneity in epidemic vulnerability [6] and
environmental inequality [7].

Census data, or similar datasets, often group a large number of social vari-
ables collected from small areas across an entire country into spatial
distributions of a few independent composite indices [8]. Nevertheless, due
to the scale and complexity of these datasets, there are practical challenges.
These include the selective processing of social variables on a large spatial
scale or using a full collection of social variables for only a small region [9].

We posit that deriving these social variables or spatial regions from census
data can compromise objectivity. For example, defining geographical clustering
of social groups for statistical analysis requires aggregating regions into specific
areas. However, the modifiable areal unit problem (MAUP) [10–13] challenges
the possibility of such spatial aggregations being consistent across different
social issues. Also, heterogeneity of the social variables across cities creates a
gap between local studies and the general significance of these features.
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Furthermore, researchers’ differing perspectives on nominal
attributes like race or religion can lead to a lack of consensus
on these features’ significance. These issues make synthesiz-
ing findings from different studies to identify critical socio-
economic characteristics challenging [10].

To effectively analyse census data and overcome the
inherent challenges, the diffusion maps (DMs) manifold
learning method has proven to be a valuable tool. This
method captures the interplay of social indicators by repre-
senting the social identities of different locations as
branches in the data manifold. Previous studies, such as [4],
have demonstrated the effectiveness of DMs in dissecting
and identifying key social indicators within similar cities, suc-
cessfully transforming complex, high-dimensional census
data into more understandable components, as evidenced
in the cases of Bristol and Edinburgh.

However, while successful in these applications, it
remains crucial to ensure these methodologies are compre-
hensive and accurately represent the entire population of
England and Wales (EW). Recognizing the need to identify
globally consistent contributors while also respecting the
unique characteristics of small communities, our study
applies DMs to the complete census data of EW. The goal
is to uncover geographical clustering and inequality hotspots,
thereby ensuring a more detailed understanding of the
nation’s demographics. By combining the capacity to analyse
large-scale patterns with the ability to identify localized spe-
cifics, our approach provides a nuanced and accurate
depiction of demographic patterns.

In this work, we employ a two-stage process: initially, we
form clusters of observed values for multiple sociodemo-
graphic variables based on their similarities; subsequently,
we scrutinize these clusters for discernible local patterns,
thus addressing both traditional clustering and the identifi-
cation of local ‘hotspots’ as described in spatial analysis
literature [14,15]. Our study uses DMs to analyse the census
data of EW and identify geographical clustering and hotspots
of inequality. The goal is to decompose high-dimensional
social variables into branched, interdependent social factors,
revealing patterns in space that would otherwise go unrecog-
nized. A new method, the correlation table, is proposed to
explain the derived social dynamics and provide a standard
for structuring and analysing any spatial collection of features
while minimizing pre-assumed spatial correlations in large
study areas, such as a densely organized country. Addition-
ally, we introduce a localization metric to reveal the critical
features of specific cities. Our method provides a comprehen-
sive view of the descendingly important features of EW and
tracks where these features are locally highlighted. By com-
bining the DMs method with the correlation table and
localization metric, our study offers a powerful set of tools
for understanding demographics and uncovering patterns
in social and economic data.
2. Method and data
2.1. The census data
The 2011 UK Census, conducted by the Office for National
Statistics of the United Kingdom (https://www.ons.gov.
uk/census), presents a thorough delineation of the popu-
lation and households in EW. This rich dataset, consisting
of over 1000 social variables or features, is organized across
181 408 compact, locally homogeneous output areas (OAs).
These OAs, designed to encompass between 125 and 650
households, represent the smallest geographical units used
in the census. The area of an OA can vary significantly: In
the London area, the average size of an OA is approximately
0.0655 km2, derived from dividing the city’s total area of
1572 km2 by its approximately 24 000 OAs; across EW, the
size of an OA would similarly be determined by the total
land area of approximately 151 174 km2 and the total
number of OAs (181 408). This gives a rough average size
of an OA as approximately 0.83 km2. Despite the wealth
of information encapsulated within this data, the sheer
volume can hinder the extraction of meaningful insights.
Our research navigates this challenge by employing DMs.
This methodology allows for a decomposition of the
high-dimensional social variables into branched social fac-
tors, unveiling concealed spatial patterns and intricate
relationships among the local values of these factors.

2.2. Diffusion maps
Diffusion mapping is a nonlinear dimensionality reduction
technique that leverages a random walk process on a sparse
network of data points to uncover the structural differen-
tiation within data. In urban sciences, it is a sensible
approach based on the idea that locations are clusters of simi-
lar individuals. Hence, the similarity of locations is strongly
associated with their distances to each other in the data
space, which can further be used to define the network top-
ology. This method allows for a local perspective to be
integrated into a broader understanding of urban dynamics,
making it an ideal tool for our study.

The constructions of the DM are performed as follows.
Suppose for each of the N OAs, x is a M-dimensional
vector whose entries are the social variables. Here, M is the
dimensionality of social variables in the census dataset, and
N is the total number of data points. To leverage the distri-
bution heterogeneity of different social variables, we
measure the similarity s(x, y) of the OA pair x, y through
their Spearman rank correlation. Notably, this correlation is
not based directly on geographical proximity but on the
ranks of the M-dimensional vectors of social variables.

rx,y ¼
RxRy �N2=4

kRx � n=2k � kRy � n=2k ,

for each pair (x, y) in {1, …, N}, where Rx is a vector that
each of its entries is the rank of x for a social variable. We
denote S as the rank correlation matrix, where each of its
elements Sx,y ¼ rx,y is the correlation of the corresponding
data points x and y. The elements of S are thus all valued
between −1 and 1. Nearby points in the data space have
ρx,y close to 1 following a framework in [16]. To emphasize
the structure of the most important links connecting most
similar data points, we define an alternative matrix eW keep-
ing only k largest elements in each row of S and set the rest of
elements be zero. Here, we choose k = 10 that barely keeps the
network connected; that is, from each data point there exists
at least one route to every other data point in the network.
Next, we define a N ×N normalization matrix D whose diag-
onal elements are the row sums of S. Then, we compute the
eigenvalues and right eigenvectors of the following normal-
ized Laplacian matrix A ¼ I �D�1 eW . A can be regarded as a
Markovian transition matrix for a random walk process over

https://www.ons.gov.uk/census
https://www.ons.gov.uk/census


Table 1. The maximum-likelihood fitting methods combined with
goodness-of-fit tests (based on the Kolmogorov–Smirnov statistic and
likelihood ratios) of Gk’s degree distribution. Columns α and xmin represent
the estimation of the power-law degree distribution of the census network
of OAs with the form pðkÞ ¼ k�a=

P1
n¼1ðnþ xminÞ�a, where xmin is

the minimum degree, and α is the power-law exponent. R is the likelihood
ratio test comparing the fit of the power laws curve and the log normal
curve. A more positive R indicates a better fit of the power-law curve to
the degree distribution over the log normal curve. Finally, the p column is
the p-value of the confidence of the power-law distribution.

k α xmin R p-value

10 2.890 16 0.933 1.846 × 10−9

20 2.877 30 0.0385 9.367 × 10−1

30 2.878 44 −2.726 1.381 × 10−1

40 2.875 58 −9.835 4.938 × 10−3

50 2.867 73 −27.09 3.493 × 100
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data points. The randomwalk process converges to a continu-
ous time diffusion process as N→∞ and a small k over the
observable data manifold. The low-order eigenvectors of A
are then an approximate parametrization of the underlying
manifold that hints at the actual urban dynamics.

Our choice to use rank correlation over direct correlation
brings several advantages. It provides a robust measure of
association that minimizes the impact of extreme values
and imbalanced distributions, generating a comparable data
space. The rank of locations in certain social variables deter-
mines their linkage, enabling the model to handle both
vertical (among different variables) and horizontal (across
different locations) dimensions. This sets our approach
apart from more conventional clustering methods such as k-
means, principal components analysis (PCA) and factor
analysis. Unlike k-means, our method incorporates both ver-
tical and horizontal dimensions. PCA offers a global metric
and is not equipped to handle geographical heterogeneity,
while factor analysis, when faced with the high dimensional-
ity of our data space, becomes impractical due to its need for
a predefined target.

As presented in [4], the social features can be represented
by the linear combination of the leading eigenvectors. The
complete set of eigenvectors ηj correspond to an increasing
sequence of A’s eigenvalues l0 � l1 � � � � � lN�1, and each
of ηj corresponds to a relatively independent dynamical vari-
able, whose nonlinear combinations are explicit in the census
as social variables. We then colour-code the OAs according to
their corresponding elements in each eigenvector ηj, and
generate maps to visualize the spatial configurations of the
dynamical variables.

In order to make sense of the dynamical variables ident-
ified through the eigenvectors, we perform a backward
calculation to investigate the correlation between the eigen-
vectors ηj and the census social variables. By identifying the
social variables that are most positively and negatively corre-
lated with a given eigenvector ηj, we can gain valuable
insights into the significance of the corresponding eigenvec-
tors. This information, in combination with the visual
representation of the eigenvectors through their spatial
plots (i.e. maps), enables a comprehensive analysis of the
underlying dynamics.
2.3. Virtual similarity networks versus social hierarchy
In our use of DM, we frame the census dataset as a weighted
sparse network composed of 181 408 OAs in a 1450-dimen-
sional space, with the ‘similarity’ of OAs acting as the
weights of the connections. The sparsity of this census data
network is needed to uncover the central structure of the fea-
ture’s synthetic structure, rather than being dominated by a
few highly heterogeneously distributed social variables. The
next logical question becomes how sparse the network
should be to recover the inherent structures and properties
of the census data, such as social hierarchy and criticality
[17]. Therefore, our discussion on whether there are signifi-
cant cross-scale features in the census data helps to validate
our proposed network, which is grounded in local metrics.

We approach the sparsity problem by making the
assumption that the census data network should exist in a
state of most informative criticality. The notion of ‘criticality’
comes from the widely accepted view of society as a complex
system that operates in a state of balance between order and
disorder, or stability and instability, much like the concept of
criticality in physics and ecology [18].

As the census data network is formed by finding the
k-most similar OAs (in terms of census statistics) for each of
the OAs, the sparsity of the network can then be determined
through the value of k: a larger (smaller) k represents stronger
(weaker) network connectivity, and denote Gk as the network
of connectivity k.

To define the census data network’s criticality, we specifi-
cally consider the degree distribution of the census data
network for different network sparsity [19]. Table 1 shows
that as the similarity network Gk is defined as more sparse
(i.e. smaller k), the likelihood of Gk’s degree distribution
being more similar to a power-law distribution increases.
This suggests that as the adjacency threshold and network
connectivity decrease, the network’s power-law character-
istics become more prominent. The analysis in this paper
thus chooses k = 10 to maximize the likelihood for the data
network to be power-law-like.
2.4. Localized inverse participation ratio
The diffusion mapping eigenvectors are globally consistent
features of significant importance in the distribution of various
social variables found in census data. Dominant factors
undoubtedly contribute to the society of EW, but less domi-
nant ones can also have regional significance. As in the
example of Bristol and Edinburgh, the number of university
students may carry higher socio-economic weight than social
deprivation. However, the spatial distribution of the eigenvec-
tors, as depicted by η3 (the prison establishments, elaborated in
the following section), are discontinuous because the similarity
of OAs is defined through the ranks of census social variables.
Consequently, traditional hotspot detection methods relying
on spatial autocorrelations may fail to reveal the localized
importance of these eigenvectors in specific cities.

In this context, we highlight the importance of understand-
ing how globally significant factors, represented by leading
DM eigenvectors, localize within specific cities. For this
purpose, we introduce a new metric, the local inverse partici-
pation ratio (LIPR), enabling us to trace the localization of an
eigenfeature (a specific factor encapsulated by an eigenvector)



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230081

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 S

ep
te

m
be

r 
20

23
 

into a given city. We argue this is crucial as it aids in identify-
ing cities with special importance for certain factors. While
numerous metrics for analysing local spatial properties exist,
including Anselin’s local indicators of spatial association [20],
Lloyd’s local models for spatial analysis [21], Local Moran I
and Getis–Ord indices [22,23], few methodologies are avail-
able that specifically measure the local and spatially
discontinuous characteristics of global features. We plot the
maps of Getis–Ord Index and Local Moran I of the top 20
DM eigenvectors in the electronic supplementary material
[26], from which identifying significant patterns revealing
socio-economic properties is difficult. Hence, the necessity of
introducing a new localization index such as LIPR.

The LIPR is an extension from the metric inverse partici-
pation ratio (IPR) from statistical physics [24], defined as

IPRi ¼
XN
k¼1

ðhk
i Þ4PN

j¼1ðh j
i Þ2

, ð2:1Þ

where N is the number of ηi’s entries thus the number of OAs,
and hi ¼ ðh1

i , . . . ,h
N
i ÞT . Here, if a feature appears in one

single area, i.e. ηi = (0,…, 0, 1, 0,…, 0)T, the corresponding
IPRi = 1; for another limiting case, if a feature is uniformly
distributed in all the areas, hi ¼ ð1= ffiffiffiffi

N
p

, . . . , 1=
ffiffiffiffi
N

p ÞT , the
corresponding IPRi = 1/N, which diminishes as N grows. So
a highly localized pattern corresponds with a large value of
the IPR. The LIPR does not inherently incorporate geographi-
cal proximity, in the traditional sense, into its calculation.
Instead, it emphasizes the intensity of an eigenfeature in a
certain area. Therefore, two regions receiving high weights,
even if far apart geographically, may indeed have the same
LIPR score as two geographically adjacent areas with similar
high weights. This potentially allows for the identification of
areas of significance for a particular factor, irrespective of
their geographical distribution. Building on the distinction
between detection of clusters and detection of clustering that is
made in [14], the LIPR metric, in this context, leans more
toward detection of clustering. It suggests locality in terms of
eigenfeature intensity, rather than geographical proximity.

To capture whether an indicator clusters in an area, we
extend the IPR to LIPR of area X,

LIPRX
i ¼

P
j[Xðh j

i Þ4

khik2
 !, P

jðh j
i Þ4

khik2
 !

¼
P

j[Aðh j
i Þ4P

jðh j
i Þ4

: ð2:2Þ

It is intended to be large when the distribution of eigenvector
i is highlighted in the city A. A region with a high LIPR indi-
cates the spatial clustering of small communities, which
supports similar social groups across the country, and is
mainly localized in some individual cities.

The LIPR metric can be used to understand how localized
an eigenvector is in a certain city. We give two examples to
illustrate how the metric works in two limiting cases. In the
first case, an eigenvector highlights only one area in
London and assigns it a value of 0.1, while assigning 0 to
all other areas. The corresponding LIPR in this case would
be a relatively high value of 0.001. In the second case, if an
eigenvector does not highlight any specific areas in London
and assigns all 10 000 areas a value of 0.0001, the correspond-
ing LIPR would be a near-zero value of 10−8. We explain that
in general, a highly localized eigenvector would have a larger
LIPR value and that the metric can be used to pinpoint mean-
ingful communities in more than one city.
3. General dominant features
We begin at the smallest positive, thus the most important
Laplacian eigenvectors of the EW diffusion mapping. A
map can associate each of the eigenvectors, which is colour-
coded from the most negative to the most positive entries,
representing the exposures of each OA to the corresponding
demographic context.
3.1. Urbanization properties
The first eigenvector, η1 can be used to identify patterns of
urbanization in EW (figure 1a,b). η1’s negative values are
localized in the main cities of the country, and it highlights
not only the largest cities such as London, Liverpool and
Manchester, but also smaller central places surrounded by
forest and mountains in the form of a continuous patch of
OAs represented by Porthmadog, Tregaron and Newport.
By analysing only London entries of η1, we find working-
class residential areas expanding along the River Thames,
with a relatively north–south symmetrical pattern from
west to east until the Blackwall tunnel neighbourhood,
where tunnels replace the walkable bridges as the connection
between the riversides. We conclude that residential urban
area is continuously defined as walkable neighbourhood,
which is the most explanatory feature of the 2011 census.
We recall the diffusion mapping results inputting the city-
level census data in [4] that highlight universities and poverty
as the dominant features of Bristol and Edinburgh. The eigen-
vector η1 exhibits a more globalized spatial distribution
of urbanization.

A natural question to follow is what element from the
census perspective determines the shape of a city identified
by η1. To this end, we compute the correlation of η1 with
all the census social variables. We find that the most nega-
tively correlated census variables of η1 on the distribution
of all OAs in EW (and the corresponding correlations) are:
living in a couple: Married or in a registered same-sex civil partner-
ship (−0.82), two cars or vans in household (−0.80), Married
(−0.78), Occupancy rating (rooms) of +2 or more, i.e. at least 2
rooms more than the basic standard (−0.78); Meanwhile, η1
is also highly correlated with particular races and religions
(Black African/Caribbean/Black British: African −0.58, Muslim
−0.57). These social variables capture the typical community
in a city in EW. We note that urbanization is the most impor-
tant dimension in census, and urbanization is largely
explained by the percentage of marriage and civil partner-
ships, vehicles ownership and occupancy status of the
households in a neighbourhood.

Eigenvector η2 highlights similar areas as those identified
by η1 but exhibits a milder aggregation with many cluste-
red areas in medium-level regional centres (figure 1c,d ).
Generally, η2 picks all the important airports in EW with
the highest entries, in addition to a general mapping of the
working class in most cities and lower-level central places.
We conclude that η2 is mostly associated with the skilled
occupations, which can also be validated statistically by its
most correlated census variables of degrees and diplomas:
Degree (for example BA, BSc), Higher degree (for example
MA, PhD, PGCE), 0.85, two+ A levels/VCEs, 4+ AS levels,
Higher School Certificate, Progression/Advanced Diploma,
Welsh Baccalaureate Advanced Diploma (0.81), Highest level
of qualification: Level 4 qualifications and above (0.81). η2’s



(a)

(b) (d )

(c)

Figure 1. The eigenvector map of η1 and η2, the representative eigenvectors, that shows global properties. The colours are assigned by the entries of an eigen-
vector, from the most positive (red) to the most negative (blue). Here, η1 highlights the main cities; η2 pinpoints the most skilled workers, which are mostly
concentrated in the main airports. The label a in (b) is the Blackwell tunnel from where the symmetric pattern is broken between either sides of Thames; In
(d ), a, b and c are Hammersmith Hospital, Heathrow Airport and HM Prison Isis, respectively.
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high correlation with education and its appearance at
the second most dominant eigenvector indicate that edu-
cation is one of the most clustering feature of EW, that
widely explains other socio-economic properties underlying
census data.

We then wonder what areas are ‘most educated’. Zoom-
ing in on London, η2 separates the city from Northwestern
to Southeast, similar to what is usually believed as the separ-
ation of Old and New London. The most highlighted areas of
η2 in London are the Hammersmith Hospital. However, η2
surprisingly finds HM Isis Prison. We referred to the prison
website and Wikipedia and learned that this prison provides
education and vocational training in partnership with
Kensington and Chelsea College.
Beyond educations, η2 is highly negatively correlated with
Routine occupations (−0.75), No British identity (−0.60) and Bad
health (−0.59). These features indicate that education is one of
the most important determinations of household gathering fea-
tures as the education-related eigenvector appears to be as η2.
Here, we compare the spatial distribution of η2 and η6 because
visually η6 finds almost every university in EW. We conclude
that η2 is more about where the university graduates settle
and work, while the positive entries of η6 find most of the uni-
versity campuses. The population composition of η6’s most
correlated with the racial census variables are White: English/
Welsh/Scottish/Northern Irish/British (0.57), No religion (0.55) and
Born in UK (0.53). These features can be linked to the typical
features of the university neighbourhood of EW.



Figure 2. The eigenvector η6 zoomed in London, which finds A, University of east London; B, Queen Mary’s Hospital; C, University of Greenwich; D, Brunel Uni-
versity; E, Smart College UK; F, The London College; G, Goldsmiths, University of London; H, Lewisham College; I, Harrow School; J, Northwick Park Hospital; K, King’s
College London Guy’s Campus; L, Imperial College; M, Chelsea and Westminster Hospital; N, University of Roehampton London; O, Richmond University; P, Kingston
University; Q, St Mary’s University Twickenham London; R, Croydon College; S, Northumbria University, London etc.
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3.2. University neighbourhoods
The spatial pattern of variable η6 (figure 2) is associated with
universities, which is not expected to be related to ethnicities.
However, statistical analysis reveals differences in correlation
with various ethnicities. The correlation coefficient between
η6 and the ethnic group of White: English/Welsh/Scottish/
Northern Irish/British is high at 0.570, while it has a negative
correlation with British only identity, self-employed individuals
and the African language group of Somali. These correlations
are probably due to historical factors, as universities were
established at a time when fewer immigrants came to the
UK for education, and university communities tend to be
selective or stable, with many graduates having a strong
emphasis on education and research.

At a finer level of correlation, η6’s correlation with
individuals who identify as having No religion is 0.546. This
can be explained by the high proportion of non-religious
researchers in scientific or social studies, as well as the
high proportion of non-religious international students in
university-related areas. Other social variables that have
correlations with η6 that are greater than 0.50 include Born
in the UK (0.530), Europe: Total (0.508) and No British identity
(0.502). Census data were collected at the household level
to identify households with pure British or foreign back-
grounds in the highly correlated social variables. This
household composition is representative of the typical
characteristics of university staff and students, including
middle-aged families established prior to recent globalization
and young students in shared tenancy arrangements.
3.3. Social stability: prisons and military installations
Eigenvector η3 was found to have a high correlation with
prison installations, as evidenced by its strong association
with the social variable Other establishment: Prison Service
and Other establishment: Detention Centers and other detention
(correlation coefficient valued 0.855). This correlation
suggests that areas with similar population compositions to
prisons are characterized by a unique pattern that may reflect
societal instability.

To further validate this association, we examined the
correlations of other social variables with η3. Our analysis
revealed that several factors, including race, education
and health, contribute to an area’s stability. Specifically, we
found that η3 was positively correlated with White: English/
Welsh/Scottish/Northern Irish/British (correlation coefficient
valued 0.128), No qualifications (0.125), Routine occupations
(0.124), Fair health (0.107) and Last worked before 2001 (0.103).

Of these social variables, health was found to have a par-
ticularly interesting relationship with η3. Our analysis
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showed that medium health conditions, rather than very good,
good, bad or very bad health, were largely positively related
to η3. This result is intuitive as individuals in perfect health
are likely to have adequate income and those in poor health
are less likely to commit a crime. Taken together, these find-
ings provide further support for the hypothesis that η3 is a
marker of societal instability, and suggest that the distribution
of population characteristics related to race, education and
health may play a role in shaping the spatial pattern of
crime and prison. These implications are useful for policy-
makers and researchers seeking to understand and address
the root causes of instability in society.
 if

J.R.Soc.Interface
20:20230081
4. Feature localization into cities
Our analysis of the 2011 UK Census data revealed substantial
city-based heterogeneity among the myriad of social vari-
ables. Though these variables hold global importance, they
manifest distinct local characteristics that can offer critical
insights into city-specific dynamics. It is worth noting
that the original definition of OAs from the census was
intended to demarcate areas of local homogeneity, designed
to be different from their neighbours. However, tradition-
al methods of analysis may not effectively represent the
degree of a feature’s localization within a city, especially
when high and low values of these features form distinct,
non-overlapping spatial clusters. To bridge this gap and illu-
minate the complexity of social patterns at the city level, we
propose the use of the LIPR, as detailed in the Methods sec-
tion. This approach enables us to more accurately capture the
nuances of spatially localized social phenomena. Note that
further spatial clustering analyses, employing techniques
such as Getis–Ord and local Moran I tests, have been
included in the electronic supplementary material.

To comprehend the concept and implications of the LIPR
more intuitively, we show the aggregated histograms of the
entries corresponding to leading eigenvectors η1, η2 and η3,
along with selected eigenvectors η13, η16 and η18 in
figure 3a. These eigenvectors were selected due to their dis-
tinct patterns of localization in the cities under study. The
entries are categorized by cities according to the 2011 local
authorities’ definitions. From the presented data, η1 and η3
are interpreted as non-localized eigenvectors for London.
This conclusion is based on our LIPR analysis, which reveals
a distribution of entries for London that are predominantly
centred around zero. In stark contrast, eigenvectors η13, η16
and η18 present high LIPR values for London, suggesting sig-
nificant localization of these eigenfeatures within the city.
This observation is corroborated by the distributions specific
to London, which are markedly flatter and broader than
those corresponding to other cities. Consequently, this
graphical representation provides compelling visual evidence
of the utility of LIPR in discerning and comprehending
the localization of global factors within distinct urban
regions. Figure 3b shows the correlations between the original
census social variables and the aforementioned eigenvectors.
Each non-diagonal subplot represents the correlation between
a social variable vector and a particular eigenvector i or j. A
unique pattern, distinct from the homogeneous correlations
seen in PCA, emerges. The relatively limited number of
social variables demonstrating strong correlation with eigen-
vector η3 further underscores the value of our LIPR analysis
for comprehending the multifaceted relationships between
eigenvectors and social variables.

We investigate London to show how the LIPR is used.
First we determine the study set of the first 20 eigenvectors,
to pinpoint some of the properties that are important aggre-
gation of social variables valid for the whole EW. Then
for each of the eigenvectors, we query the entries that corre-
spond to the OAs in London and further compute the LIPR
for the eigenvector–city pair (table 2). A benchmark for
LIPRLondon values is the uniform distribution, where a
feature takes the same value of 1=

ffiffiffiffi
N

p
in all the OAs in EW,

where N = 181 408. In the Greater London region, there are
NLondon = 24 927 OAs, and the corresponding ‘neutral’ LIPR
value is LIPR* = 24 927/181 408 = 0.137408. For an eigen-
vector ηi, if its LIPRiLondon is greater than LIPR*, it can be
referred to as a localized feature in London; otherwise, if
LIPRiLondon is smaller than LIPR*, ηi is not a localized feature
in London (either not localized at all, or localized in other
cities). A localized feature in London refers to a unique and
distinguishable community that is highly concentrated
within the city of London, setting it apart from its surround-
ing neighbourhoods. Specifically, if an eigenvector has a high
inverse participation ratio (IPR) but a low LIPR, it means the
corresponding feature is globally significant but not localized
in the city. On the other hand, if a feature (such as prisons)
has a high IPR and a low LIPR of a city, the feature usually
corresponds to those rarely seen but essential elements for
every city thus infrastructures.

The LIPR-ranking approach allows for a systematic investi-
gation of the small social groups in the country who gather in
London and have a significant impact. The top localized fea-
tures in London are LIPR13 = 0.74, LIPR18 = 0.72, LIPR16 =
0.56, LIPR2 = 0.30, LIPR11 = 0.29, LIPR1 = 0.27, LIPR17 = 0.26,
LIPR19 = 0.26, LIPR14 = 0.18 and LIPR12 = 0.14 (in descending
order). The rest of the eigenvectors may not be localized in
London, but could be localized in other cities.

The correlation analysis of localized features in London
reveals that η13 and η18 (figure 4) are highly associated with
central gas heating, highest level of education and house-
holds consisting of three or more adults with no children.
The correlation coefficients of these features with η13 and
η18 are around 0.25, which highlights the demographic com-
position of the typical Londoner. Central heating is more
prevalent in newer and more expensive homes, and these
homes are more likely to be occupied by higher-educated
and childless individuals. The concentration of such house-
holds in the affluent suburbs of London is consistent with
the trend of urban gentrification and high demand for
modern and comfortable living environments in urban
areas. Our findings suggest that this demographic is charac-
terized by well-educated individuals living in new build
properties with central gas heating. The spatial distribution
of η13 highlights the affluent suburbs of London, which
suggests that this area is perceived as desirable by wealthy
families in business. This finding is supported by previous
research studies [25], which have demonstrated a positive
relationship between education level, household compo-
sition, and central heating system with wealth and urban
development.

The third highest localized feature in London, η16, is associ-
ated with social variables related to the Tamil community and
Yiddish, Israeli and Hebrew speakers, as shown in figure 5.
Negative entries of η16 indicate the presence of the Tamil
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Figure 3. (a) Histograms of the values of η1, η2, η3, η13 and η16 are grouped by cities, defined according to the 2011 local authorities as listed in the legend. The
distribution of η1 and η3 values for London are concentrated around zero, indicating that these eigenvectors are not localized for London. Conversely, η2, η13 and
η16 display a higher concentration of extreme values in London, resulting in higher LIPR values. These distributions for London are noticeably flatter and broader,
highlighting the localization of these eigenfeatures. (b) The correlations between the original census social variables and pairs of the five leading eigenvectors are
illustrated. Each non-diagonal subplot, indexed by (i, j ), depicts points whose coordinates represent the correlations between a social variable vector and either
eigenvector i or j. This pattern contrasts with the more uniform distribution of correlations in PCA, where each principal component typically represents a broad
spectrum of the original variables.
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Table 2. The ranked LIPRs of eigenvectors restricted in London. The larger LIPR of an η indicates that the feature is more localized in London. Generally, the
features with small LIPRs are infrastructures, while the features with larger LIPRs are the superlinear urban indicators.

indices of
η LIPR interpretation

3 0.010373 prison service

8 0.011114 educational establishment

4 0.022512 defence establishment

9 0.026599 retirement

10 0.030878 defence

7 0.058357 full-time employee

5 0.064503 one person household/household spaces with no usual residents (tourist)

15 0.066020 multi-person household: all full-time students averaged household spaces

6 0.077067 University

0 0.138103 —

12 0.143874 one car or van in household/lower supervisory and technical occupations

14 0.179744 owned: owned with a mortgage or loan/economically active: employee: full-time

19 0.261445 one family only: married or same-sex civil partnership couple: all children non-dependent/other households: three or more

adults and no children

17 0.264369 intermediate occupations/multiple types of central heating

1 0.274687 marriage/many vehicles/redundant rooms

11 0.295386 skilled trades occupations/lower supervisory and technical occupations/caring, leisure and other service occupations

2 0.303946 higher degree (finance and technology)

16 0.567684 Tamil/opposite: Yiddish/Israeli

18 0.716807 gas central heating/solid fuel

13 0.743838 gas central heating, three or more adults and no children, highest level of education

(a)

(c)

(d )(b)

Figure 4. The most localized features in London, η13 and η18 for typical lifestyles. Here, (a) and (b) are the spatial map of η13 for England and Wales, and London,
respectively; (d ) and (c) are the spatial map of η18 for England and Wales, and London, respectively.
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community near the Tamil Community Housing Association,
which supports refugees from Sri Lanka. The Tamil commu-
nity in London has been growing since the Sri Lankan Civil
War and is becoming distinct, as evidenced by high academic
performance of Tamil children and a preference for having
only children. Meanwhile, positive entries of η16 mark areas
with high concentrations of Yiddish, Israeli and Hebrew
speakers in Stamford Hill, North London. These areas tend
to be isolated, as seen in the distribution of Yiddish news-
papers aimed at audiences in Leeds, Manchester and
Gateshead, rather than being clustered in a distinct Yiddish
neighbourhood.



(a) (b)

Figure 5. The spatial clustering of Tamil-related people found by η16 of England and Wales (a) and London (b). Here, (a) is Tamil Community Housing Association,
and (b) is Tamil Association of Brent. The darkest red regions are however the clusters of Yiddish and Hebrew speakers.

(a) (c)(b)

Figure 6. Three of the most globalized eigenvectors: (a) η3 maps prison installations; (b) η8 maps educations before college; and (c) η4 highlights the military
camps.
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The two eigenvectors, η2 and η11, provide insight into
the occupational landscape of London. η2 is highly positively
correlated with areas that demand degrees and higher edu-
cation, such as BA, BSc, MA, PhD and PGCE, with a
correlation coefficient of 0.85. This indicates a strong presence
of professional and highly educated individuals in these
areas. On the other hand, η11 marks communities with a
higher concentration of lower supervisory and technical occu-
pations, including mechanics, chefs, train drivers, plumbers
and electricians, with a correlation coefficient of 0.33. These
are typically considered higher grade blue-collar jobs that
require specialized skills.

It is worth noting that η2 also has a negative correlation
with South Asian language speakers, specifically those who
speak Pakistani Pahari, Mirpuri and Potwari, indicating a
lack of assimilation into London’s societies. This may suggest
a potential barrier for these individuals in accessing higher
education and professional opportunities.

The eigenvectors identified by η3, which highlight
prison installations (figure 6a), are not unique to London,
but can also be found in other cities. This eigenvector has the
highest level of non-localization among the first 20 (with a cor-
relation coefficient of 0.010373), indicating that these features
may be associated with broader infrastructure elements, such
as η8 for education (figure 6b) or η4 for national defence
(figure 6c). This highlights the importance of considering the
broader contextual factors that influence local patterns and
structures in cities, beyond just their specific local features.
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5. Discussion
In this article, we applied DMs to analyse the synchronized
variations in the census responses of EW. Our study rep-
resents a novel attempt to decompose the British census as
a whole, not just in urban areas. The results of our work
demonstrate the effectiveness of DMs in uncovering the
underlying social structures in bulk, publicly accessible
data. Our method ranks the relative importance of different
features by themes and highlights the continuity of
social aspects, such as educational levels, in the form of
continuous indices.

The complex nature of demographic features calls for an
efficient and scalable data analysis approach that can
handle multiple scales and themes. Manifold learning
methods, such as DMs, are ideal for this purpose as they
focus on local structures while preserving global information.
To adapt the DMs method to the bulk census data of EW, we
developed several techniques, including the preservation of a
limited number of correlations that ensure connectedness and
the use of Spearman Rank Correlation to measure the high-
dimensional census data and account for heterogeneity in
the distribution of social variables.

The diffusion mapping eigenvectors shed light on the
urban structures of EW and their impact on the cross-scaled
behaviours of British society. For example, at a global level,
the DM reveals general patterns of social deprivation and
the spatial distribution of various social variables across the
whole of EW led by urbanization from η1. At a local level,
our method identifies specific clues of connected urban
areas of walkable neighbourhood in η1. Further, we identified
small-scale hotspots of inequality, small-scale characteris-
tics of a feature localized in big cities, and spatial clustering
of small communities. These local insights contribute to
a detailed understanding of demographic variations,
thus capturing both the broad strokes and fine details of
societal structure.

Our method uses a heuristic definition of the k nearest
neighbour network to ensure that these characteristics are
globally sensible and applicable to all areas, not just cities.
Furthermore, the LIPR is used to discern features as sublinear
or superlinear urban indicators using only one input dataset.
Therefore, our approach can manage large cross-scale
problems by revealing both the general picture and local
nuances within one unified model.
The proposed LIPR is a method for identifying and char-
acterizing small-scale characteristics of a feature (such as
minority groups, prison establishments etc.) in urban areas.
The LIPR measures the concentration of a given feature in a
specific region compared with its distribution across the
entire urban area. It calculates the fraction of total variation
in a feature that is captured by a limited number of OAs.
The LIPR values of each feature allow us to categorize the fea-
tures as either sublinear or superlinear urban indicators.
Features with high LIPR values are considered highly concen-
trated in one region and classified as superlinear indicators,
while features with low LIPR values are considered widely
distributed and classified as sublinear indicators.

Our findings extend the existing knowledge that some
urban indicators, such as the number of university students,
can be infrastructural in some cities but are urban outputs
in the others. The LIPR provides valuable insights into the
distributional patterns of demographic features in urban
areas and can reveal the unique social, economic and cultural
characteristics of highly concentrated minority groups and
their relationship to the broader urban population.
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