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Abstract: This paper presents a novel algorithm for microgrid energy management based on
a differentiable learning-based Model Predictive Control (MPC) for jointly optimising profiles
prediction and control performance. Specifically, we propose an algorithm for the online training
of a Neural Network (NN) that predicts the unknown parameters of the MPC optimisation
problem during control operation. Since the training is performed online at each time step
the controller adapts to possible changes in the system parameters, while avoiding the offline
training phase. Differently to standard methods in the literature, the proposed NN is trained
by minimising a performance-based loss, i.e. the total cost of the energy trading with the utility
grid. Simulation results show that the proposed approach outperforms the traditional approach
minimising an estimation-only MSE loss, both when the model parameters are perfectly known
and when they are uncertain.
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1. INTRODUCTION

A microgrid Energy Management System (EMS) is the
controller that computes the power flows to provide stable
delivery of power to loads, while guaranteeing a cost-
effective microgrid operation and other operational goals.
One of the main challenges that arise in the design of an
EMS is dealing with the uncertainty of electricity prices,
renewable power production and load demand profiles.
The standard approach to solve this problem is to first
predict the unknown profiles, and secondly to compute
the microgrid power scheduling solving an optimisation
problem. In contrast to this, we take inspiration from the
performance-based approach where the NN is trained by
minimising the ultimate criterion the model is evaluated
on. In the scheduling context, this means that optimisation
objective is used to compute the loss function used for
the NN training. Such performance-based approach has
proved its effectiveness for scheduling problems in finance
(Bengio (1997)) and offline battery management (Donti
et al. (2017)). In order to train a NN embedding an opti-
misation problem, it is necessary to compute the gradients
of its output (the optimal value) with respect to the NN
parameters. Recent papers (for example Agrawal et al.
(2019)) show that this can be done by implicitly differen-
tiating the optimality conditions for convex optimisation
problems. Starting from these results, the main contribu-
tion of this paper is an algorithm that allows to adopt
the performance-based approach in an online way (i.e.

⋆ This work has been supported by the UK Engineering and Phys-
ical Sciences Research Council (grant reference: EP/R513143/1,
EP/W024411/1).

in real-time at each time step) to schedule the microgrid
power flows and learn from the efficacy of the past control
actions. The method combines MPC and differentiable
optimisation layers for energy management purposes in
the case of unknown/uncertain future power profiles and
electricity price. In particular, we propose an appropriate
loss function for this scope and we develop an algorithm
that allows to online train the obtained NN based on the
optimality of the past decisions. We then apply such algo-
rithm to a microgrid EMS and we show its superior perfor-
mance with respect to the standard approach minimising a
profile prediction loss. The advantages of this method are
twofold: it takes advantage of NNs that have the ability
to approximate functions with high accuracy (Ljung et al.
(2020)) and exploits the MPC algorithm to compensate
for system uncertainty and enforce constraints. We now
provide a brief literature review to frame our work.

Learning-based MPC Machine learning methods can be
used to improve the performance of a MPC (Al-Saadi
et al. (2023)). In this paper, differentiable optimisation
layers (Agrawal et al. (2019)) are exploited to improve
the MPC by embedding the optimisation problem in a
NN and training it end-to-end (E2E). The advantages of
differentiating through an implicit optimisation problem
have been explored in the MPC setting for the controller
auto-tuning problem in Agrawal et al. (2021); Amos et al.
(2018), where the MPC policy is trained by minimising an
imitation loss, given an expert system running alongside.
Conversely, in this paper we propose an algorithm that
learns from the optimality of its past control actions
without the necessity of an expert system and hence can
be run in real-time.
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the controller adapts to possible changes in the system parameters, while avoiding the offline
training phase. Differently to standard methods in the literature, the proposed NN is trained
by minimising a performance-based loss, i.e. the total cost of the energy trading with the utility
grid. Simulation results show that the proposed approach outperforms the traditional approach
minimising an estimation-only MSE loss, both when the model parameters are perfectly known
and when they are uncertain.

Keywords: Model predictive control, Microgrid, Energy management, Convex optimisation,
Energy systems, Learn-based control, Neural-network

1. INTRODUCTION

A microgrid Energy Management System (EMS) is the
controller that computes the power flows to provide stable
delivery of power to loads, while guaranteeing a cost-
effective microgrid operation and other operational goals.
One of the main challenges that arise in the design of an
EMS is dealing with the uncertainty of electricity prices,
renewable power production and load demand profiles.
The standard approach to solve this problem is to first
predict the unknown profiles, and secondly to compute
the microgrid power scheduling solving an optimisation
problem. In contrast to this, we take inspiration from the
performance-based approach where the NN is trained by
minimising the ultimate criterion the model is evaluated
on. In the scheduling context, this means that optimisation
objective is used to compute the loss function used for
the NN training. Such performance-based approach has
proved its effectiveness for scheduling problems in finance
(Bengio (1997)) and offline battery management (Donti
et al. (2017)). In order to train a NN embedding an opti-
misation problem, it is necessary to compute the gradients
of its output (the optimal value) with respect to the NN
parameters. Recent papers (for example Agrawal et al.
(2019)) show that this can be done by implicitly differen-
tiating the optimality conditions for convex optimisation
problems. Starting from these results, the main contribu-
tion of this paper is an algorithm that allows to adopt
the performance-based approach in an online way (i.e.
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ical Sciences Research Council (grant reference: EP/R513143/1,
EP/W024411/1).

in real-time at each time step) to schedule the microgrid
power flows and learn from the efficacy of the past control
actions. The method combines MPC and differentiable
optimisation layers for energy management purposes in
the case of unknown/uncertain future power profiles and
electricity price. In particular, we propose an appropriate
loss function for this scope and we develop an algorithm
that allows to online train the obtained NN based on the
optimality of the past decisions. We then apply such algo-
rithm to a microgrid EMS and we show its superior perfor-
mance with respect to the standard approach minimising a
profile prediction loss. The advantages of this method are
twofold: it takes advantage of NNs that have the ability
to approximate functions with high accuracy (Ljung et al.
(2020)) and exploits the MPC algorithm to compensate
for system uncertainty and enforce constraints. We now
provide a brief literature review to frame our work.

Learning-based MPC Machine learning methods can be
used to improve the performance of a MPC (Al-Saadi
et al. (2023)). In this paper, differentiable optimisation
layers (Agrawal et al. (2019)) are exploited to improve
the MPC by embedding the optimisation problem in a
NN and training it end-to-end (E2E). The advantages of
differentiating through an implicit optimisation problem
have been explored in the MPC setting for the controller
auto-tuning problem in Agrawal et al. (2021); Amos et al.
(2018), where the MPC policy is trained by minimising an
imitation loss, given an expert system running alongside.
Conversely, in this paper we propose an algorithm that
learns from the optimality of its past control actions
without the necessity of an expert system and hence can
be run in real-time.

Microgrid EMS Uncertainty is one of the main challenge in
the EMS, which requires the prediction of unknown future
profiles such as load, renewable power and electricity price.
Many prediction tools have been used to deal with it: in
Parisio et al. (2014) the unknown profiles are estimated
using SVM regression, in Guo et al. (2015) a seasonal auto
regressive moving average method is used, in Hans et al.
(2015) Monte Carlo simulations are used to generate a set
of future possible scenarios in the stochastic MPC frame-
work. NNs have also been broadly used to predict unknown
profiles, for example in Motevasel and Seifi (2014); Solanki
et al. (2015); Wang et al. (2019). The main issue of the
aforementioned methods is that the training is performed
offline before the deployment of the controller, hence they
do not take into account possible changes in the system. In
order to overcome this limitation, Reinforcement Learning
(RL) algorithms have been proposed for energy manage-
ment, for example in Venayagamoorthy et al. (2016), Ji
et al. (2019) and Liu et al. (2018). However there are some
issues in the deployment of a RL algorithm in real systems
since exploration can lead to unsafe situations and hence
it requires a simulation environment with a lot of available
data. Finally, performance-based E2E learning have been
used for battery scheduling purposes in Donti et al. (2017)
and it shows its superior performance with respect to
networks trained by minimising the prediction error (MSE
loss). In that paper, the NN is trained offline on a large
dataset and it is then used to schedule the battery charge
for the next 24 hours. In contrast to this approach, in this
paper we propose an algorithm that can be trained online
performing a training step at each time step, hence it does
not require an offline dataset and the parameters can be
adapted to a possibly time-varying system.

Contributions In this paper we propose an EMS that
schedules the microgrid operation using a differentiable
NN-based MPC algorithm. We introduce a novel algorithm
to online train the NN and define a loss function. In
particular, we make use of a performance-based (or task-
based) loss and we show its advantages with respect to
a standard MSE loss. The effectiveness of the proposed
method is proved through extensive simulation results.
Moreover, we test the algorithm in the case of uncertain
model parameters. Specifically, we assume we do not know
precisely the self-discharge rate and energy conversion
efficiency of the battery. Simulation results show that the
performance drop (compared to the completely known
parameters scenario) is smaller when the performance-
based loss is used with respect to an MSE loss. Preliminary
results are presented in Casagrande and Boem (2023),
where we assume to know the future power profiles of
renewable generators and loads and we consider an exact
model of the storage system. In this paper we further
investigate the proposed method under storage system
parameters uncertainty and including the estimation of
the future renewable and load power profiles.

The rest of the paper is organised as follows. In Section
2 we outline the proposed learning-based MPC algorithm,
the training procedure and the required dataset. In Section
3 we describe the microgrid model and we tailor the
proposed method for the energy management problem. In
Section 4 we show the results of the simulations and in
Section 5 we draw the conclusions.

Notation The transpose operator is denoted by the super-
script ⊤, for example the vector v⊤ is the transpose of the
vector v. We use the subscript to denote time instants, i.e.
vt is the vector v at time t. We denote the value of the
variable v, k steps ahead of the time step t (i.e. at t + k)
as vk|t. The estimation of the variable v, available at time
t, k steps ahead of the time step t (i.e. at t+ k) is denoted
as v̂k|t. We use bold variables to denote time sequences
of N samples, namely vN |t = {vk|t}k∈{0,...,N−1} is the v
sequence computed at time t for the next N steps.

2. LEARNING-BASED MPC

Background. Optimisation is used in many decision-
making applications, however some of the parameters of
the problems are often uncertain. Formally, given an opti-
misation problem

min
ξ

f(ξ, ω) (1a)

s.t. ξ ∈ C(ω), (1b)

where ξ is the decision variable, ω is an unknown pa-
rameter vector, f is the objective function and C is the
constraint set, the optimal solution ξ∗(ω̂) depends on the
available estimation ω̂ of the unknown parameters and
may not match the solution ξ∗(ω) based on the actual
value of the unknown parameters. In some cases the un-
known variable can be estimated from data, i.e. if a dataset
X = {ψi, ωi}Ni=1 of input features ψi and corresponding
parameter ωi is available, then a statistical method can be
used to estimate ω̂ (for example a NN trained minimising
the MSE loss). In this context a two-stage approach can
be used where estimation and optimisation are separately
executed: first the unknown parameters are estimated,
then such estimation is used in the decision-making opti-
misation problem (Mandi and Guns (2020)). In the Predict
and Optimise framework (Kotary et al. (2021)), the goal
is to used supervised learning to compute the estimate ω̂
so optimise ξ∗(ω̂) with respect to the optimisation prob-
lem cost function f . This is done by introducing a regret
function as Mandi and Guns (2020):

L(ω̂, ω) = fω̂(ξ
∗(ω̂))− fω(ξ

∗(ω)), (2)

where the first term is the optimal cost obtained using the
estimate ω̂ and the second term is the optimal cost com-
puted using the actual value ω. The first challenge of the
performance-based approach is the implicit differentiation
of the optimisation problem (1a)-(1b) required to find the
gradients of the loss with respect to the network param-

eters θ (∂L∂θ = ∂L
∂ξ∗

∂ξ∗

∂ω̂
∂ω̂
∂θ ) and the solution is provided in

literature for various types of problems (Amos and Kolter,
2017; Elmachtoub and Grigas, 2021; Ferber et al., 2020).
The second challenge is the online implementation, since
the future values of the parameter ω are not known in
advance, thus not making possible to calculate the regret
or loss function (2). In this paper we propose a solution to
this second challenge.

Algorithm overview. We consider a scheduling problem
solved by an MPC algorithm. The MPC optimisation
problem is formulated as follows:
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Microgrid EMS Uncertainty is one of the main challenge in
the EMS, which requires the prediction of unknown future
profiles such as load, renewable power and electricity price.
Many prediction tools have been used to deal with it: in
Parisio et al. (2014) the unknown profiles are estimated
using SVM regression, in Guo et al. (2015) a seasonal auto
regressive moving average method is used, in Hans et al.
(2015) Monte Carlo simulations are used to generate a set
of future possible scenarios in the stochastic MPC frame-
work. NNs have also been broadly used to predict unknown
profiles, for example in Motevasel and Seifi (2014); Solanki
et al. (2015); Wang et al. (2019). The main issue of the
aforementioned methods is that the training is performed
offline before the deployment of the controller, hence they
do not take into account possible changes in the system. In
order to overcome this limitation, Reinforcement Learning
(RL) algorithms have been proposed for energy manage-
ment, for example in Venayagamoorthy et al. (2016), Ji
et al. (2019) and Liu et al. (2018). However there are some
issues in the deployment of a RL algorithm in real systems
since exploration can lead to unsafe situations and hence
it requires a simulation environment with a lot of available
data. Finally, performance-based E2E learning have been
used for battery scheduling purposes in Donti et al. (2017)
and it shows its superior performance with respect to
networks trained by minimising the prediction error (MSE
loss). In that paper, the NN is trained offline on a large
dataset and it is then used to schedule the battery charge
for the next 24 hours. In contrast to this approach, in this
paper we propose an algorithm that can be trained online
performing a training step at each time step, hence it does
not require an offline dataset and the parameters can be
adapted to a possibly time-varying system.

Contributions In this paper we propose an EMS that
schedules the microgrid operation using a differentiable
NN-based MPC algorithm. We introduce a novel algorithm
to online train the NN and define a loss function. In
particular, we make use of a performance-based (or task-
based) loss and we show its advantages with respect to
a standard MSE loss. The effectiveness of the proposed
method is proved through extensive simulation results.
Moreover, we test the algorithm in the case of uncertain
model parameters. Specifically, we assume we do not know
precisely the self-discharge rate and energy conversion
efficiency of the battery. Simulation results show that the
performance drop (compared to the completely known
parameters scenario) is smaller when the performance-
based loss is used with respect to an MSE loss. Preliminary
results are presented in Casagrande and Boem (2023),
where we assume to know the future power profiles of
renewable generators and loads and we consider an exact
model of the storage system. In this paper we further
investigate the proposed method under storage system
parameters uncertainty and including the estimation of
the future renewable and load power profiles.

The rest of the paper is organised as follows. In Section
2 we outline the proposed learning-based MPC algorithm,
the training procedure and the required dataset. In Section
3 we describe the microgrid model and we tailor the
proposed method for the energy management problem. In
Section 4 we show the results of the simulations and in
Section 5 we draw the conclusions.

Notation The transpose operator is denoted by the super-
script ⊤, for example the vector v⊤ is the transpose of the
vector v. We use the subscript to denote time instants, i.e.
vt is the vector v at time t. We denote the value of the
variable v, k steps ahead of the time step t (i.e. at t + k)
as vk|t. The estimation of the variable v, available at time
t, k steps ahead of the time step t (i.e. at t+ k) is denoted
as v̂k|t. We use bold variables to denote time sequences
of N samples, namely vN |t = {vk|t}k∈{0,...,N−1} is the v
sequence computed at time t for the next N steps.

2. LEARNING-BASED MPC

Background. Optimisation is used in many decision-
making applications, however some of the parameters of
the problems are often uncertain. Formally, given an opti-
misation problem

min
ξ

f(ξ, ω) (1a)

s.t. ξ ∈ C(ω), (1b)

where ξ is the decision variable, ω is an unknown pa-
rameter vector, f is the objective function and C is the
constraint set, the optimal solution ξ∗(ω̂) depends on the
available estimation ω̂ of the unknown parameters and
may not match the solution ξ∗(ω) based on the actual
value of the unknown parameters. In some cases the un-
known variable can be estimated from data, i.e. if a dataset
X = {ψi, ωi}Ni=1 of input features ψi and corresponding
parameter ωi is available, then a statistical method can be
used to estimate ω̂ (for example a NN trained minimising
the MSE loss). In this context a two-stage approach can
be used where estimation and optimisation are separately
executed: first the unknown parameters are estimated,
then such estimation is used in the decision-making opti-
misation problem (Mandi and Guns (2020)). In the Predict
and Optimise framework (Kotary et al. (2021)), the goal
is to used supervised learning to compute the estimate ω̂
so optimise ξ∗(ω̂) with respect to the optimisation prob-
lem cost function f . This is done by introducing a regret
function as Mandi and Guns (2020):

L(ω̂, ω) = fω̂(ξ
∗(ω̂))− fω(ξ

∗(ω)), (2)

where the first term is the optimal cost obtained using the
estimate ω̂ and the second term is the optimal cost com-
puted using the actual value ω. The first challenge of the
performance-based approach is the implicit differentiation
of the optimisation problem (1a)-(1b) required to find the
gradients of the loss with respect to the network param-

eters θ (∂L∂θ = ∂L
∂ξ∗

∂ξ∗

∂ω̂
∂ω̂
∂θ ) and the solution is provided in

literature for various types of problems (Amos and Kolter,
2017; Elmachtoub and Grigas, 2021; Ferber et al., 2020).
The second challenge is the online implementation, since
the future values of the parameter ω are not known in
advance, thus not making possible to calculate the regret
or loss function (2). In this paper we propose a solution to
this second challenge.

Algorithm overview. We consider a scheduling problem
solved by an MPC algorithm. The MPC optimisation
problem is formulated as follows:
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min
uT |t

T−1∑
k=0

J(xk|t, uk|t, ω̂k|t) (3a)

s.t. xk+1|t = Axk|t +Buk|t (3b)

xk|t ∈ X,uk|t ∈ U (3c)

x0|t = xt (3d)

where T is the prediction horizon, xt ∈ Rn is the system
state, ut ∈ Rm is the system input, X ⊂ Rn is the state
constraint set, U ⊂ Rm is the input constraint set and
ω̂k|t ∈ Rp is the estimation of the unknown parameter
ωk|t. We assume the cost function is affine and constraints
are convex leading to a convex optimisation problem. In
a traditional MPC framework, at time t, Problem (3a)-
(3d) is firstly solved to find the optimal sequence solution
u∗
T |t(ω̂T |t), then the input to the system is defined as

ut = u∗
0|t. At time step t + 1 the optimisation is repeated

updating the current state value (3d). In the performance-
based framework the optimisation problem (3a)-(3d) is
included as the last layer of a NN employed to jointly
estimate the unknown parameters of the problem. We
consider a look-back time window of length L, and the
number F of input features. The input feature tensor
at time t is denoted as ψt ∈ RL×F which includes the
sequence of all the possible features that are used to
compute the optimal solution of the optimisation problem
uT |t. Input features may include the past values of the
unknown parameter ωL|t−L and past state observations
xL|t−L. The input ψt and predicted ω̂ samples in the
forward pass (i.e. the computation of the output of the NN
given the input tensor) are highlighted in red in the upper
part of Fig. 1. The data collected during the controller
operation is then used to improve the future controller
performance. We define the following loss function:

L(ω̂T |t−T ,ωT |t−T ) =
T−1∑
k=0

[
J(u∗

k|t−T (ω̂T |t−T ), ω̂k|t−T )−

J(u∗
k|t−T (ωT |t−T ), ωk|t−T )

]
(4)

where the first term is computed using the NN with input
feature tensor ψt−T and the second term is computed
by solving the optimisation problem (3a)-(3d) using the
actual past values of the unknown parameter ωT |t−T .
Hence, the dataset used to train the network at time step t
is Xt = {ψt−T ,ωT |t−T }. The samples used for the training
step are highlighted in blue in the lower part of Fig. 1.
Each training step can be seen as a mini-batch update of
the network, hence performances will not be good for some
initial iterations.

time

t t+ Tt− L

t− Tt− T − L

L T

TL

ω̂T |tψt

ψt−T
ωT |t−T

Forward pass

Backward pass

Fig. 1. Data structure for online training. In this example,
L = 5 and T = 3.

3. MICROGRID ENERGY MANAGEMENT

In this Section we describe the microgrid model and the
architecture of the EMS shown in Fig. 2.

3.1 Microgrid model

We consider a microgrid model similar to Casagrande et al.
(2022a,b). We consider 4 types of agents connected to the
microgrid: (i) load; (ii) renewable generator; (iii) energy
storage system; (iv) connection to the utility grid. Loads
and renewable generators are power sinks and power
sources in the microgrid and they are both characterized
by a power profile, P̄ l

t and P̄ r
t respectively. We denote such

profiles as external power profiles since they cannot be
changed nor controlled. We model the storage system as in
Parisio et al. (2014) as a first order linear system denoting
the level of charge of the storage as st:

st+1 = (1− σ)st + ηTsP
s
t (5)

where σ ∈ [0, 1] is the self-discharge decay, η ∈ [0, 1] is the
energy conversion efficiency, Ts is the controller sample
time and P s

t is the power exchanged with the microgrid.
Such power is limited as:

−P̄ s ≤ P s
t ≤ P̄ s (6)

and it is positive when it flows from the microgrid to the
storage system. The limits on the storage capacity are
denoted as s and s̄:

s ≤ st ≤ s̄ (7)

The microgrid exchanges with the utility grid an amount
of power denoted by P g

t . The power balance constraint is
used to ensure that power that is injected in the microgrid
is equal to the power that is drawn from the grid at each
time step:

P g
t + P s

t = P̄ r
t − P̄ l

t (8)

One goal of the EMS is to ensure the economically efficient
operation of the microgrid, i.e. we want to minimise the
cost of buying energy from the utility grid. The total cost
is expressed as:

∞∑
t=0

−ptP
g
t (9)

where pt is the electricity price and the minus sign is
necessary since the power is assumed to be positive when
it is sold to the utility grid. It is not possible to use
(9) as an objective function for the controller, since the
resulting optimisation problem would be intractable and
the future electricity price is not known in advance, hence
Eq. (9) will only be used to compare the performance of
different controllers. In the proposed MPC framework such
objective is approximated by a finite horizon cost:

T−1∑
k=0

−p̂k|tP
g
k|t (10)

where p̂k|t denotes the k steps ahead prediction of the
electricity price computed at time t.

3.2 Prediction of the external power profiles

By external power profiles we mean the load and renewable
generation power profiles. These profiles are not known
in advance and need to be estimated. Tools used in the

literature to estimate these profiles include support vector
machines or NNs (Yafeng et al. (2008); Parisio et al.
(2014)). Since we are considering Eq. (8), we are only
interested in the estimation of P̄ d

t = P̄ r
t −P̄ l

t . In this paper,
we adopt recurrent NNs due to their efficacy and ease
of use. The network developed to predict the disturbance
power has a standard LSTM architecture: (i) LSTM layers;
(ii) dense layer. The main hyperparameters are the number
of LSTM layers and the dimension of the hidden state
which are chosen making a trade-off between complexity
and estimation results as explained in Section 4.

Forward pass: the network is fed at each time step with
the past values of the disturbance power profile Pd

L|t−L

and it predicts its future values P̂d
T |t. Such values are used

to solve the scheduling optimisation problem (12a)-(12f).

Backward pass: at each time step the NN is trained using
the method described in Section 2. The input feature
tensor is composed of the past disturbance profile samples
in the look-back window Pd

L|t−T−L. The network is trained

by minimising the MSE loss between the predicted and
true profile:

LMSE =
1

T

T−1∑
k=0

[
P d
k|t−T − P̂ d

k|t−T

]2
(11)

Power
scheduling

Microgrid
system

Disturbance
prediction

P s
t P g

t

Pd
L|t−L

pL|t−L

sL|t−L

P̂d
T |t

Fig. 2. Architecture of the EMS.

3.3 Power scheduling

Since the unknown parameters of the optimisation prob-
lem are time series we use an LSTM-based network
designed as follows: (i) LSTM layers; (ii) dense layer;
(iii) convex optimisation layer. Given an input tensor ψt ∈
RL×F , the last LSTM layer outputs a tensor of dimension
ht ∈ Rnh where nh is the hidden state dimension. The
dense layer applies to such vector a linear transformation
and outputs p̂T |t. This estimate is then passed to the
convex optimisation layer that computes the power profile
for the storage system and the connection to the utility
grid. The problem solved at each time step is:

min
Ps

t ,P
g
t

T−1∑
k=0

−p̂k|tP
g
k|t (12a)

s.t. sk+1|t = (1− σ)sk|t + ηTsP
s
k|t (12b)

− P̄ s ≤ P s
k|t ≤ P̄ s (12c)

s ≤ sk|t ≤ s̄ (12d)

P g
k|t + P s

k|t = P̂ d
k|t (12e)

s0|t = st (12f)

where (12a) is the finite horizon cost (10), (12b) represents
the dynamics of the system as in Equation (5), (12c)
(12d) are the constraints on the storage power and charge,

respectively and (12f) is the current state. The power
balance constraint (12e) uses the prediction of the future
disturbance profiles obtained by the network described
in Section 3.2. We point out that the disturbance power
profile is a parameter for the optimisation problem, hence
it could be jointly estimated with the price profile using
a performance-based approach. However, since this power
profile estimate appear as a constraint in the problem,
this approach could lead to feasibility issues. Therefore we
propose to estimate this profile only using the MSE loss.
We assume to know the current value of the disturbance
profile P̂ d

k|t = P̄ d
t

Forward pass: the network is fed with the input tensor
ψt composed of the past electricity prices and the battery
charge over the look-back window ψt =

[
pL|t−L sL|t−L

]
.

The network then computes the power schedule for the
battery and the electricity grid connection. Once the
optimal solution Ps,∗

T,t,P
g,∗
T,t is found, the control law is

defined as P s
t (p̂T,t) = P s,∗

0|t and P g
t (p̂T,t) = P g,∗

0|t . At the

next time step, t + 1 the network is fed with the tensor
ψt+1 and the optimisation problem is updated with the
new feedback measurement st+1 in (12f).

Backward pass: We denote the NN weights at time step t
as θt and train the NN using a performance-based loss as
in Eq. (2). In particular, we define the performance-loss
for the energy management problem as:

Ltask
t = Pg

T |t−T (pT |t−T )p
⊤
T |t−T −Pg

T |t−T (p̂T |t−T )p̂
⊤
T |t−T

(13)
where Pg

T |t−T (pT |t−T ) is the solution of (12a)-(12f), de-

fined at t − T , computed at time step t when the
full sequence of the electricity price is known and
Pg

T |t−T (p̂T |t−T ) is the output of the NN with weights θt
and input tensor ψt−T .

4. NUMERICAL RESULTS

We now present the results obtained by applying the
proposed method to a microgrid composed of a load, a
renewable generator, a storage system and a connection
to the utility grid. We considered site 15 of the EMSx
benchmark dataset (Le Franc et al. (2021)). This dataset
contains historical data of renewable energy production
and load demand. The electricity price profile has been
downloaded from the ENTSO-E Transparency Platform
(ENTSO-E, 2008), described in Hirth et al. (2018), in
particular we considered the IT-Centre-North bidding
zone in 2017. The profiles are shown in Fig. 3. We simulate
the controller using three different loss functions to train
the NN: (i) the MSE loss (11) denoted as “MSE”; (ii) the
performance-based loss (13) denoted as “task”; (iii) the
hybrid loss defined as:

Lhybrid
t = w1Ltask

t + w2LMSE
t (14)

where w1, w2 ∈ R. In this paper we tuned the hyperparam-
eters of each network considering combinations of the fol-
lowing: (i) LSTM number of layers nl ∈ {1, 2}; (ii) hidden
dimension of LSTM layers nh ∈ {2, 10}; (iii) weight w1 and
w2 of (14), (w1, w2) = {(1, 0), (0, 1), (1, 1), (10, 1), (0.1, 1)}.
In Casagrande et al. (2023) we further investigate the
online learning algorithm and we address the problem of
hyperparameters optimisation. We then selected the best
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literature to estimate these profiles include support vector
machines or NNs (Yafeng et al. (2008); Parisio et al.
(2014)). Since we are considering Eq. (8), we are only
interested in the estimation of P̄ d

t = P̄ r
t −P̄ l

t . In this paper,
we adopt recurrent NNs due to their efficacy and ease
of use. The network developed to predict the disturbance
power has a standard LSTM architecture: (i) LSTM layers;
(ii) dense layer. The main hyperparameters are the number
of LSTM layers and the dimension of the hidden state
which are chosen making a trade-off between complexity
and estimation results as explained in Section 4.

Forward pass: the network is fed at each time step with
the past values of the disturbance power profile Pd

L|t−L

and it predicts its future values P̂d
T |t. Such values are used

to solve the scheduling optimisation problem (12a)-(12f).

Backward pass: at each time step the NN is trained using
the method described in Section 2. The input feature
tensor is composed of the past disturbance profile samples
in the look-back window Pd

L|t−T−L. The network is trained

by minimising the MSE loss between the predicted and
true profile:

LMSE =
1

T

T−1∑
k=0

[
P d
k|t−T − P̂ d

k|t−T

]2
(11)

Power
scheduling

Microgrid
system

Disturbance
prediction

P s
t P g

t

Pd
L|t−L

pL|t−L

sL|t−L

P̂d
T |t

Fig. 2. Architecture of the EMS.

3.3 Power scheduling

Since the unknown parameters of the optimisation prob-
lem are time series we use an LSTM-based network
designed as follows: (i) LSTM layers; (ii) dense layer;
(iii) convex optimisation layer. Given an input tensor ψt ∈
RL×F , the last LSTM layer outputs a tensor of dimension
ht ∈ Rnh where nh is the hidden state dimension. The
dense layer applies to such vector a linear transformation
and outputs p̂T |t. This estimate is then passed to the
convex optimisation layer that computes the power profile
for the storage system and the connection to the utility
grid. The problem solved at each time step is:

min
Ps

t ,P
g
t

T−1∑
k=0

−p̂k|tP
g
k|t (12a)

s.t. sk+1|t = (1− σ)sk|t + ηTsP
s
k|t (12b)

− P̄ s ≤ P s
k|t ≤ P̄ s (12c)

s ≤ sk|t ≤ s̄ (12d)

P g
k|t + P s

k|t = P̂ d
k|t (12e)

s0|t = st (12f)

where (12a) is the finite horizon cost (10), (12b) represents
the dynamics of the system as in Equation (5), (12c)
(12d) are the constraints on the storage power and charge,

respectively and (12f) is the current state. The power
balance constraint (12e) uses the prediction of the future
disturbance profiles obtained by the network described
in Section 3.2. We point out that the disturbance power
profile is a parameter for the optimisation problem, hence
it could be jointly estimated with the price profile using
a performance-based approach. However, since this power
profile estimate appear as a constraint in the problem,
this approach could lead to feasibility issues. Therefore we
propose to estimate this profile only using the MSE loss.
We assume to know the current value of the disturbance
profile P̂ d

k|t = P̄ d
t

Forward pass: the network is fed with the input tensor
ψt composed of the past electricity prices and the battery
charge over the look-back window ψt =

[
pL|t−L sL|t−L

]
.

The network then computes the power schedule for the
battery and the electricity grid connection. Once the
optimal solution Ps,∗

T,t,P
g,∗
T,t is found, the control law is

defined as P s
t (p̂T,t) = P s,∗

0|t and P g
t (p̂T,t) = P g,∗

0|t . At the

next time step, t + 1 the network is fed with the tensor
ψt+1 and the optimisation problem is updated with the
new feedback measurement st+1 in (12f).

Backward pass: We denote the NN weights at time step t
as θt and train the NN using a performance-based loss as
in Eq. (2). In particular, we define the performance-loss
for the energy management problem as:

Ltask
t = Pg

T |t−T (pT |t−T )p
⊤
T |t−T −Pg

T |t−T (p̂T |t−T )p̂
⊤
T |t−T

(13)
where Pg

T |t−T (pT |t−T ) is the solution of (12a)-(12f), de-

fined at t − T , computed at time step t when the
full sequence of the electricity price is known and
Pg

T |t−T (p̂T |t−T ) is the output of the NN with weights θt
and input tensor ψt−T .

4. NUMERICAL RESULTS

We now present the results obtained by applying the
proposed method to a microgrid composed of a load, a
renewable generator, a storage system and a connection
to the utility grid. We considered site 15 of the EMSx
benchmark dataset (Le Franc et al. (2021)). This dataset
contains historical data of renewable energy production
and load demand. The electricity price profile has been
downloaded from the ENTSO-E Transparency Platform
(ENTSO-E, 2008), described in Hirth et al. (2018), in
particular we considered the IT-Centre-North bidding
zone in 2017. The profiles are shown in Fig. 3. We simulate
the controller using three different loss functions to train
the NN: (i) the MSE loss (11) denoted as “MSE”; (ii) the
performance-based loss (13) denoted as “task”; (iii) the
hybrid loss defined as:

Lhybrid
t = w1Ltask

t + w2LMSE
t (14)

where w1, w2 ∈ R. In this paper we tuned the hyperparam-
eters of each network considering combinations of the fol-
lowing: (i) LSTM number of layers nl ∈ {1, 2}; (ii) hidden
dimension of LSTM layers nh ∈ {2, 10}; (iii) weight w1 and
w2 of (14), (w1, w2) = {(1, 0), (0, 1), (1, 1), (10, 1), (0.1, 1)}.
In Casagrande et al. (2023) we further investigate the
online learning algorithm and we address the problem of
hyperparameters optimisation. We then selected the best
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Fig. 3. Price, load and renewable generator profiles.

network for each loss type and ran the simulations to
assess the controller. The obtained results are assessed on
the last 200 steps of the simulation on the basis of three
performance indicators: (i) memory cost, i.e. the memory
required to store the network weights; (ii) MSE of the
price profiles prediction; (iii) total electricity cost of the
microgrid as in Eq. (9). The required memory is a measure
of the network complexity, a network with less parameters
is preferred since it requires less memory to store the
weights and less computational power (Casagrande et al.,
2021). The price estimation MSE is computed as:

MSE =
1

200

1000∑
t=800

(
pt+1 − p̂1|t

)2
. (15)

The electricity cost is computed using Eq. (9) as:

Cost =
1000∑
t=800

−ptP
g
t . (16)

The other parameters are set as Ts = 1h, T = 12, L = 24,
s = 0kWh, s̄ = 400 kWh, P̄ s = 100 kW, σ = 0.0042,
η = 0.95. Finally, we considered two scenarios: (i) in the
first the controller has a perfect knowledge of the battery
model (5), i.e. constraint (12b) is implemented with the
real values of σ and η; (ii) in the second, the controller uses
an approximated battery model by setting σ = 0 and η = 1
in (12b). We denote as “Prescient” the controller that has
a perfect knowledge of the model parameters, as well as of
all the profiles, and computes the control actions by solving
the optimisation problem (12a)-(12f) and we use this
controller as a benchmark. Fig. 4 shows the results of the
simulations for different hyperparameters combinations
and adopted loss functions comparing the energy cost
and MSE. On the left we consider the controller with no
uncertainty on battery parameters whereas on the right
the controller uses given incorrect values of σ and η. On
the x-axis there is the required memory size in kilobytes of
the trained network. As expected we see that the network
trained with MSE loss has the lowest MSE, however
networks trained with task and hybrid loss have a lower
energy cost. We further analyse the best network for each
loss denoted by a square in Fig. 4. We ran 10 experiments
(with different random seed) for the best network obtained
for each loss, which all have 2 LSTM layers and 10 hidden
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Fig. 4. Electricity cost, memory and price prediction MSE
obtained for different hyperparameters. The total cost
of the prescient controller is −8.83 e.

units. Results are shown in Table 1. We see that in the case
of model uncertainty overall performance is worse than the
prescient case for all the controllers and especially for the
controller trained with the MSE-based loss. We see that
the latter controller achieves a lower price prediction MSE
but a higher electricity cost. Indeed, controllers trained
with hybrid and task-based loss functions allow to achieve
better performance in terms of electricity cost even though
the MSE on the price profile is higher. In the case of
exact battery model knowledge the controller trained with
hybrid loss achieves the lowest cost and lowest variability
over different runs. In the case of model uncertainty the
same controller achieves the best performance however it
has a high variability. We point out that by using our
method it is not necessary to specify which parameters
of the system are uncertain: the network adapts the price
prediction in order to maximise the control performance.

Loss No model uncertainty

w1 w2 MSE Cost

MSE 0 1 99.15± 14.64 28.00± 13.02

task 1 0 143.78± 33.57 23.79± 7.00

hybrid 10 1 141.21± 29.27 21.69± 5.36

Uncertain battery model

w1 w2 MSE Cost

MSE 0 1 104.53± 19.86 33.10± 10.23

task 1 0 134.40± 36.30 24.62± 4.05

hybrid 0.1 1 126.98± 23.11 22.84± 11.44

Table 1. Results of 10 runs for each controller.

5. CONCLUSION

In this paper we presented a novel algorithm to online train
a NN embedding a MPC controller together with profiles
prediction for the microgrid energy management problem.
Such method is based on differentiable optimisation layers,
hence the network is trained E2E based on the perfor-
mances of the past control actions. The network is trained
online so a dataset for training prior to the deployment

of the controller is not required. The network parameters
are adapted online to maximise the control performance.
Simulation results show that taking into account the per-
formance of the controller in the loss function allows to
outperform the MSE loss both, with perfect knowledge of
the battery model and in the case of model uncertainty.
As a future work, we will consider robustness and stability
properties of the controller, taking into account the uncer-
tainty on the estimates of the unknown parameters.

REFERENCES

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S.,
and Kolter, J.Z. (2019). Differentiable convex optimiza-
tion layers. Advances in neural information processing
systems, 32.

Agrawal, A., Barratt, S., and Boyd, S. (2021). Learning
convex optimization models. IEEE/CAA Journal of
Automatica Sinica, 8(8), 1355–1364.

Al-Saadi, M., Al-Greer, M., and Short, M. (2023). Re-
inforcement learning-based intelligent control strategies
for optimal power management in advanced power dis-
tribution systems: A survey. Energies, 16(4), 1608.

Amos, B., Jimenez, I., Sacks, J., Boots, B., and Kolter,
J.Z. (2018). Differentiable mpc for end-to-end planning
and control. Advances in neural information processing
systems, 31.

Amos, B. and Kolter, J.Z. (2017). Optnet: Differentiable
optimization as a layer in neural networks. In In-
ternational Conference on Machine Learning, 136–145.
PMLR.

Bengio, Y. (1997). Using a financial training criterion
rather than a prediction criterion. International journal
of neural systems, 8(04), 433–443.

Casagrande, V. and Boem, F. (2023). Model predictive
control based on differentiable optimisation layers for
microgrid energy management. In 2023 European Con-
trol Conference (ECC) (Accepted). IEEE.

Casagrande, V., Fenu, G., Pellegrino, F.A., Pin, G., Sal-
vato, E., and Zorzenon, D. (2021). Machine learning
for computationally efficient electrical loads estimation
in consumer washing machines. Neural Computing and
Applications, 33(22), 15159–15170.

Casagrande, V., Martin, F., Rodrigues, M., and Boem,
F. (2023). An online learning framework for microgrid
energy management control. In 2023 Mediterranean
Conference on Control and Automation (MED) (Sub-
mitted). IEEE.

Casagrande, V., Prodan, I., Spurgeon, S.K., and Boem,
F. (2022a). Resilient distributed mpc algorithm for
microgrid energy management under uncertainties. In
2022 European Control Conference (ECC), 602–607.
IEEE.

Casagrande, V., Prodan, I., Spurgeon, S.K., and Boem,
F. (2022b). Resilient microgrid energy management
algorithm based on distributed optimization. IEEE
Systems Journal.

Donti, P.L., Amos, B., and Kolter, J.Z. (2017). Task-based
end-to-end model learning in stochastic optimization.
arXiv preprint arXiv:1703.04529.

Elmachtoub, A.N. and Grigas, P. (2021). Smart “predict,
then optimize”. Management Science.

ENTSO-E (2008). Transparency platform. URL <
https://transparency.entsoe.eu >.

Ferber, A., Wilder, B., Dilkina, B., and Tambe, M. (2020).
Mipaal: Mixed integer program as a layer. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, 1504–1511.

Guo, Y., Xiong, J., Xu, S., and Su, W. (2015). Two-stage
economic operation of microgrid-like electric vehicle
parking deck. IEEE Transactions on Smart Grid, 7(3),
1703–1712.

Hans, C.A., Sopasakis, P., Bemporad, A., Raisch, J.,
and Reincke-Collon, C. (2015). Scenario-based model
predictive operation control of islanded microgrids. 2015
54th IEEE conference on decision and control (CDC),
3272–3277.

Hirth, L., Mühlenpfordt, J., and Bulkeley, M. (2018). The
entso-e transparency platform–a review of europe’s most
ambitious electricity data platform. Applied energy, 225,
1054–1067.

Ji, Y., Wang, J., Xu, J., Fang, X., and Zhang, H. (2019).
Real-time energy management of a microgrid using deep
reinforcement learning. Energies, 12(12), 2291.

Kotary, J., Fioretto, F., Van Hentenryck, P., and Wilder,
B. (2021). End-to-end constrained optimization learn-
ing: A survey. arXiv preprint arXiv:2103.16378.

Le Franc, A., Carpentier, P., Chancelier, J.P., and De Lara,
M. (2021). Emsx: a numerical benchmark for energy
management systems. Energy Systems, 1–27.

Liu, W., Zhuang, P., Liang, H., Peng, J., and Huang, Z.
(2018). Distributed economic dispatch in microgrids
based on cooperative reinforcement learning. IEEE
transactions on neural networks and learning systems,
29(6), 2192–2203.

Ljung, L., Andersson, C., Tiels, K., and Schön, T.B.
(2020). Deep learning and system identification. IFAC-
PapersOnLine, 53(2), 1175–1181.

Mandi, J. and Guns, T. (2020). Interior point solving for
lp-based prediction+ optimisation. Advances in Neural
Information Processing Systems, 33, 7272–7282.

Motevasel, M. and Seifi, A.R. (2014). Expert energy
management of a micro-grid considering wind energy
uncertainty. Energy Conversion and Management, 83,
58–72.

Parisio, A., Rikos, E., and Glielmo, L. (2014). A model
predictive control approach to microgrid operation opti-
mization. IEEE Transactions on Control Systems Tech-
nology, 22(5), 1813–1827.

Solanki, B.V., Raghurajan, A., Bhattacharya, K., and
Canizares, C.A. (2015). Including smart loads for opti-
mal demand response in integrated energy management
systems for isolated microgrids. IEEE Transactions on
Smart Grid, 8(4), 1739–1748.

Venayagamoorthy, G.K., Sharma, R.K., Gautam, P.K.,
and Ahmadi, A. (2016). Dynamic energy management
system for a smart microgrid. IEEE transactions on
neural networks and learning systems, 27(8), 1643–1656.

Wang, T., He, X., and Deng, T. (2019). Neural net-
works for power management optimal strategy in hybrid
microgrid. Neural Computing and Applications, 31(7),
2635–2647.

Yafeng, Y., Yue, L., Junjun, G., and Chongli, T. (2008).
A new fuzzy neural networks model for demand fore-
casting. In 2008 IEEE International Conference on
Automation and Logistics, 372–376. IEEE.



	 V. Casagrande  et al. / IFAC PapersOnLine 56-2 (2023) 7954–7959	 7959
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are adapted online to maximise the control performance.
Simulation results show that taking into account the per-
formance of the controller in the loss function allows to
outperform the MSE loss both, with perfect knowledge of
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properties of the controller, taking into account the uncer-
tainty on the estimates of the unknown parameters.

REFERENCES

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S.,
and Kolter, J.Z. (2019). Differentiable convex optimiza-
tion layers. Advances in neural information processing
systems, 32.

Agrawal, A., Barratt, S., and Boyd, S. (2021). Learning
convex optimization models. IEEE/CAA Journal of
Automatica Sinica, 8(8), 1355–1364.

Al-Saadi, M., Al-Greer, M., and Short, M. (2023). Re-
inforcement learning-based intelligent control strategies
for optimal power management in advanced power dis-
tribution systems: A survey. Energies, 16(4), 1608.

Amos, B., Jimenez, I., Sacks, J., Boots, B., and Kolter,
J.Z. (2018). Differentiable mpc for end-to-end planning
and control. Advances in neural information processing
systems, 31.

Amos, B. and Kolter, J.Z. (2017). Optnet: Differentiable
optimization as a layer in neural networks. In In-
ternational Conference on Machine Learning, 136–145.
PMLR.

Bengio, Y. (1997). Using a financial training criterion
rather than a prediction criterion. International journal
of neural systems, 8(04), 433–443.

Casagrande, V. and Boem, F. (2023). Model predictive
control based on differentiable optimisation layers for
microgrid energy management. In 2023 European Con-
trol Conference (ECC) (Accepted). IEEE.

Casagrande, V., Fenu, G., Pellegrino, F.A., Pin, G., Sal-
vato, E., and Zorzenon, D. (2021). Machine learning
for computationally efficient electrical loads estimation
in consumer washing machines. Neural Computing and
Applications, 33(22), 15159–15170.

Casagrande, V., Martin, F., Rodrigues, M., and Boem,
F. (2023). An online learning framework for microgrid
energy management control. In 2023 Mediterranean
Conference on Control and Automation (MED) (Sub-
mitted). IEEE.

Casagrande, V., Prodan, I., Spurgeon, S.K., and Boem,
F. (2022a). Resilient distributed mpc algorithm for
microgrid energy management under uncertainties. In
2022 European Control Conference (ECC), 602–607.
IEEE.

Casagrande, V., Prodan, I., Spurgeon, S.K., and Boem,
F. (2022b). Resilient microgrid energy management
algorithm based on distributed optimization. IEEE
Systems Journal.

Donti, P.L., Amos, B., and Kolter, J.Z. (2017). Task-based
end-to-end model learning in stochastic optimization.
arXiv preprint arXiv:1703.04529.

Elmachtoub, A.N. and Grigas, P. (2021). Smart “predict,
then optimize”. Management Science.

ENTSO-E (2008). Transparency platform. URL <
https://transparency.entsoe.eu >.

Ferber, A., Wilder, B., Dilkina, B., and Tambe, M. (2020).
Mipaal: Mixed integer program as a layer. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, 1504–1511.

Guo, Y., Xiong, J., Xu, S., and Su, W. (2015). Two-stage
economic operation of microgrid-like electric vehicle
parking deck. IEEE Transactions on Smart Grid, 7(3),
1703–1712.

Hans, C.A., Sopasakis, P., Bemporad, A., Raisch, J.,
and Reincke-Collon, C. (2015). Scenario-based model
predictive operation control of islanded microgrids. 2015
54th IEEE conference on decision and control (CDC),
3272–3277.

Hirth, L., Mühlenpfordt, J., and Bulkeley, M. (2018). The
entso-e transparency platform–a review of europe’s most
ambitious electricity data platform. Applied energy, 225,
1054–1067.

Ji, Y., Wang, J., Xu, J., Fang, X., and Zhang, H. (2019).
Real-time energy management of a microgrid using deep
reinforcement learning. Energies, 12(12), 2291.

Kotary, J., Fioretto, F., Van Hentenryck, P., and Wilder,
B. (2021). End-to-end constrained optimization learn-
ing: A survey. arXiv preprint arXiv:2103.16378.

Le Franc, A., Carpentier, P., Chancelier, J.P., and De Lara,
M. (2021). Emsx: a numerical benchmark for energy
management systems. Energy Systems, 1–27.

Liu, W., Zhuang, P., Liang, H., Peng, J., and Huang, Z.
(2018). Distributed economic dispatch in microgrids
based on cooperative reinforcement learning. IEEE
transactions on neural networks and learning systems,
29(6), 2192–2203.

Ljung, L., Andersson, C., Tiels, K., and Schön, T.B.
(2020). Deep learning and system identification. IFAC-
PapersOnLine, 53(2), 1175–1181.

Mandi, J. and Guns, T. (2020). Interior point solving for
lp-based prediction+ optimisation. Advances in Neural
Information Processing Systems, 33, 7272–7282.

Motevasel, M. and Seifi, A.R. (2014). Expert energy
management of a micro-grid considering wind energy
uncertainty. Energy Conversion and Management, 83,
58–72.

Parisio, A., Rikos, E., and Glielmo, L. (2014). A model
predictive control approach to microgrid operation opti-
mization. IEEE Transactions on Control Systems Tech-
nology, 22(5), 1813–1827.

Solanki, B.V., Raghurajan, A., Bhattacharya, K., and
Canizares, C.A. (2015). Including smart loads for opti-
mal demand response in integrated energy management
systems for isolated microgrids. IEEE Transactions on
Smart Grid, 8(4), 1739–1748.

Venayagamoorthy, G.K., Sharma, R.K., Gautam, P.K.,
and Ahmadi, A. (2016). Dynamic energy management
system for a smart microgrid. IEEE transactions on
neural networks and learning systems, 27(8), 1643–1656.

Wang, T., He, X., and Deng, T. (2019). Neural net-
works for power management optimal strategy in hybrid
microgrid. Neural Computing and Applications, 31(7),
2635–2647.

Yafeng, Y., Yue, L., Junjun, G., and Chongli, T. (2008).
A new fuzzy neural networks model for demand fore-
casting. In 2008 IEEE International Conference on
Automation and Logistics, 372–376. IEEE.


