Martinez-Carrasco, Alejandro;
Real, Raquel;
Lawton, Michael;
Iwaki, Hirotaka;
Tan, Manuela MX;
Wu, Lesley;
Williams, Nigel M;
... Morris, Huw R; + view all
(2023)
Genetic meta-analysis of levodopa induced dyskinesia in Parkinson's disease.
npj Parkinson's Disease
, 9
(1)
, Article 128. 10.1038/s41531-023-00573-2.
Preview |
PDF
s41531-023-00573-2.pdf - Published Version Download (2MB) | Preview |
Abstract
The genetic basis of levodopa-induced-dyskinesia (LiD) is poorly understood, and there have been few well-powered genome-wide studies. We performed a genome-wide survival meta-analyses to study the effect of genetic variation on the development of LiD in five separate longitudinal cohorts, and meta-analysed the results. We included 2784 PD patients, of whom 14.6% developed LiD. We found female sex (HR = 1.35, SE = 0.11, P = 0.007) and younger age at onset (HR = 1.8, SE = 0.14, P = 2 × 10-5) increased the probability of developing LiD. We identified three genetic loci significantly associated with time-to-LiD onset. rs72673189 on chromosome 1 (HR = 2.77, SE = 0.18, P = 1.53 × 10-8) located at the LRP8 locus, rs189093213 on chromosome 4 (HR = 3.06, SE = 0.19, P = 2.81 × 10-9) in the non-coding RNA LINC02353 locus, and rs180924818 on chromosome 16 (HR = 3.13, SE = 0.20, P = 6.27 × 10-9) in the XYLT1 locus. Based on a functional annotation analysis on chromosome 1, we determined that changes in DNAJB4 gene expression, close to LRP8, are an additional potential cause of increased susceptibility to LiD. Baseline anxiety status was significantly associated with LiD (OR = 1.14, SE = 0.03, P = 7.4 × 10-5). Finally, we performed a candidate variant analysis of previously reported loci, and found that genetic variability in ANKK1 (rs1800497, HR = 1.27, SE = 0.09, P = 8.89 × 10-3) and BDNF (rs6265, HR = 1.21, SE = 0.10, P = 4.95 × 10-2) loci were significantly associated with time to LiD in our large meta-analysis.
Type: | Article |
---|---|
Title: | Genetic meta-analysis of levodopa induced dyskinesia in Parkinson's disease |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41531-023-00573-2 |
Publisher version: | https://doi.org/10.1038/s41531-023-00573-2 |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Genome-wide association studies, Neurological disorders, Risk factors |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Movement Neurosciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/10176313 |
Archive Staff Only
View Item |