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g r a p h i c a l a b s t r a c t
� A techno-economic surrogate

model for supercritical water

gasification is created.

� Model predicts the LCOH for

different biomass compositions,

scales, and locations.

� RF, SVR, and ANN algorithms were

compared for the surrogate model.

� ANNs achieved the highest pre-

diction accuracy during cross-

validation.

� Final model is published to facili-

tate early-stage feedstock

evaluation.
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a b s t r a c t

Supercritical water gasification is a promising technology for renewable hydrogen pro-

duction from high moisture content biomass. This work produces a machine learning

surrogate model to predict the Levelised Cost of Hydrogen over a range of biomass com-

positions, processing capacities, and geographic locations. The model is published to
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AD Anaerobic Digestion
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CCS Carbon Capture and Storage
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EIA Energy Information Administr
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HHV Higher Heating Value

HTS High Temperature Shift

LCA Life Cycle Assessment
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LTS Low Temperature Shift
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ML Machine Learning

MSP Minimum Selling Price

RF Random Forests
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SCWG Supercritical Water Gasificatio
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SMR Steam Methane Reforming

SVR Support Vector Regression
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facilitate early-stage economic analysis (doi.org/10.6084/m9.figshare.22811066). A process

simulation using the Gibbs reactor provided the training data using 40 biomass composi-

tions, five processing capacities (10e200 m3/h), and three geographic locations (China,

Brazil, UK). The levelised costs ranged between 3.81 and 18.72 $/kgH2 across the considered

parameter combinations. Heat and electricity integration resulted in low process emissions

averaging 0.46 kgCO2eq/GJH2 (China and Brazil), and 0.37 kgCO2eq/GJH2 (UK). Artificial

neural networks were most accurate when compared to random forests and support vector

regression for the surrogate model during cross-validation, achieving an accuracy of MAPE:

<4.6%, RMSE: <0.39, and R2: >0.99 on the test set.

© 2023 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
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1. Introduction

Supercritical Water Gasification (SCWG) combines thermal

decomposition and reforming by using supercritical water as

the solvation and reaction medium, thereby converting

various biomass feedstocks to syngas (H2, CH4, CO2 and CO)

whilst minimising char formation. SCWG provides advan-

tages for processing wet feedstocks over other bioenergy

generation approaches (e.g. direct combustion and conven-

tional gasification) such as energy savings by avoiding the

need to pre-dry the feedstock, lower operating temperatures,

shorter reaction times and tuneable gas compositions [1].
A surrogate model for th
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The past decade has seen an increased focus on experi-

mental investigations of hydrogen production via SCWGusing

various types of plant-based biomass feedstocks, such as

sugarcane bagasse, stillage, and black liquor [2]. To under-

stand the economic potential of a feedstock it is necessary to

conduct a Techno-Economic Analysis (TEA). Several TEAs

have been undertaken using SCWG for renewable hydrogen

production from specific feedstocks including the valorisation

of digested sewage sludge [3], black liquor [4], and soybean

straw [5]. However, detailed TEAs are time consuming and

require engineering knowledge and economic modelling

expertise [6]. This hinders the creation of TEA models by non-

experts i.e. experimentalists and industrialists. Moreover, TEA

models are most often specific to a particular process, scale,

feedstock, and cost base, limiting the ability to generalise

effectively from existing models. Without understanding how

operating conditions, feedstock sources, and cost consider-

ations impact on the overall investment case, targeted

experimental research is impeded, which is detrimental to

subsequent commercialisation. Therefore, it is desirable for

TEA practitioners to create flexible TEAmodels that generalise

effectively to a wide range of opportunities and for these

models to be independent of specialised software tools.

Surrogate models map inputs to outputs of more complex

processes. Machine learning (ML) is often used to create these

correlations and is increasingly being used for modelling,

optimising, and monitoring thermal conversion processes [7].

However, surrogate modelling for SCWG has focused on pre-

dicting process outputs such as hydrogen or syngas yields

[8e10]. Several studies have used these to suggest optimal

processing parameters [8], screen catalysts [9], or create

interpretable models to better understand the relationship

between process parameters and biomass characteristics on

gas yields [10]. Feedstock-specific surrogate models have also

been developed to predict hydrogen yields for SCWG. For

example, Shengagaraj et al. (2021) used an Artificial Neural

Network (ANN) to predict the syngas yields from food waste

biomass [11]. Similarly, Khan et al. (2023) created a model for

the SCWG of sewage sludge, where they created a graphical

user interface of their ML model. The model predicts the H2

yield based on the proximate and ultimate analysis of the

sample, as well as the input of gasification conditions [12]. In

addition, F�ozer et al. (2021) created an ANN surrogatemodel of
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a microalgae SCWG reactor and used it within their economic

and environmental analysis for methanol production [13].

In the broader context of hydrogen production and gener-

ation, ML has been widely applied to determine and develop

efficient processes [14]. For example, Yahya et al. (2021) used

an ANN coupled with a genetic algorithm and response sur-

face methodology to optimise the production of hydrogen via

steam reforming of toluene, finding the ANN to be a more

robust predictor than response surface methodology [15].

Kargbo et al. (2023) utilised a bootstrapped aggregated neural

network to represent waste wood gasification in their

hydrogen production optimisation study [16]. Regarding pre-

dicting hydrogen production rates, Sultana et al. (2023)

developed a Bayesian algorithm and Support Vector Regres-

sion (SVR) model to predict the hydrogen and methane yield

via dark fermentation [17]. Model inputs included the pre-

treatment duration, feedstock concentration, and pH. Sezer

et al. (2021) created an ANN model of an Aspen Plus simula-

tion, representing a bubbling fluidised bed gasifier for

hydrogen production [18]. The ANN was trained to predict the

exergy value of the produced syngas based on the biomass’

elemental composition, gasifier temperature, steam flowrate

and fuel flowrate.

Outside of hydrogen production,ML surrogatemodels have

been applied to a limited number of studies within TEA and

Life Cycle Assessments (LCAs). Liao et al. (2020) developed a

combined ML and kinetic-based process simulation to assess

the Greenhouse Gas (GHG) emissions, energy, and product

consumption of producing activated carbon from 73 different

woody biomasses under different operating conditions [19].

Olafasakin et al. (2021) investigated replacing first principles

modelling of pyrolysis kinetics with a Kriging-based reduced

order model for predicting the pyrolysis yields of 314 feed-

stocks, where the model outputs were used within a bio-

refinery processmodel to predict the correspondingMinimum

Selling Price (MSP) and GHG emissions [20]. Whilst Liao et al.

(2020) and Olafasakin et al. (2021) both used ML to create

surrogate process models for use within TEAs and LCAs,

additional detailed process modelling was still required to use

the surrogate model predictions. Therefore, the use of these

models still requires user expertise, making such models

ineffective for decision-making by most experimentalists and

industrialists. In contrast, Huntington et al. (2023) presented

an auto-ML approach for generating a process model surro-

gate of a fixed lignocellulosic bioethanol process flowsheet for

use within a TEA, where the surrogate model mapped 21 key

operating and cost parameters to the MSP [6]. Notably, these

operating parameters allowed adjustment of the plant

throughput, the feedstock composition, conversion effi-

ciencies, and cost considerations. Their method used the

Tree-Based Pipeline Optimisation Tool considering four

ensemble regression models, Random Forests (RF), Stacking,

Extra Trees, and Gradient Boosting. Their approach provided

direct TEA outputs, negating the need for modelling expertise

or further incorporation of the surrogate models within a

broader modelling framework.

This study uses ML to create a surrogate model for the TEA

of renewable hydrogen production from low-temperature

SCWG (380e500 �C). The Gibbs reactor in Aspen HYSYS is

used as the simulation basis. The carbon footprint of the
Please cite this article as: Rodgers S et al., A surrogate model for th
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proposed process is verified alongside the TEA results for the

range of biomass feedstock compositions and processing ca-

pacities in three different geographic locations. The biomass'
ultimate analysis, processing capacity, and geographic loca-

tion for the facility are the surrogate model inputs and the

model outputs are the nominal and 70% probability band for

the Levelised Cost of hydrogen (LCOH). Three ML algorithms

were investigated for the surrogatemodel: RF, SVR, and ANNs,

as these algorithms have been previously investigated for

predicting hydrogen production via SCWG [9,10]. Additionally,

a reliability measure was developed to evaluate the confi-

dence in the surrogate model's predictions for new biomass

feedstocks inputted by a user. The novelty of this work lies in

the creation of anML surrogatemodel representing the TEA of

hydrogen production via SCWG. Whilst surrogate models

have been previously developed for SCWG for hydrogen pro-

duction [8e13], this is the first study to create a surrogate

model representing a TEA of the process. The best performing

surrogate model has been made publicly available (doi.org/

10.6084/m9.figshare.22811066). The purpose of the published

model is to provide indicative production costs, enabling re-

searchers and manufacturers to quickly determine the eco-

nomic potential of feedstocks and facilitate comparisons with

other hydrogen production technologies.
2. Methodology

A data-set of 40 biomass feedstocks was collected from

experimental literature investigating low-temperature SCWG

(380e500 �C). The ultimate analysis (carbon (C), hydrogen (H),

oxygen (O) and nitrogen (N)) of each of these feedstocks was

collated. A process simulation of the low-temperature SCWG

and purification to renewable hydrogenwas created for each of

the biomass compositions in Aspen HYSYS. The simulation

was based on a fixed SCWG temperature at 430 �C. This was

selected owing to the economic benefit of low-temperature

SCWG which reduces the energetic burden required to pre-

heat the feedstock [1], and the recent experimental study into

the SCWG of biomass wastewaters by Lee et al. (2023) which

was conducted at this temperature [2]. A conservative resi-

dence time of 5 min was assumed, thereby providing sufficient

residence time for the equilibrium as predicted by the Gibbs

reactor to be attained. This was selected to exceed the resi-

dence times used experimentally for continuous low-

temperature SCWG, where a 20s residence time achieved a

total organic carbon reduction efficiency of 53.9e55.7% [2] and

88.4%at 150s [21]. A feedstock concentration corresponding to a

Chemical OxygenDemand (COD) of 75 g/LCODwas also selected.

Two hundred process simulations were created for the

range of collected biomass compositions and five processing

capacities (10, 20, 50, 100, and 200 m3/h). These processing

capacities were selected to allow for comparison to other low-

carbon hydrogen technologies and represent realistic point

source waste stream availability. A TEA and LCA was under-

taken on each of the resulting simulations in three

geographical locations (China, Brazil, and the UK) producing

600 data points. These geographic locations were selected as

case studieswith abundantwet wastes suitable for SCWG, i.e.,

Black liquor in China, vinasse in Brazil, and distillery
e economic evaluation of renewable hydrogen production from
ational Journal of Hydrogen Energy, https://doi.org/10.1016/
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Table 1 e Descriptive statistics of the biomass
compositions collected from experimental literature for
the SCWG of real biomass compounds.

Descriptive Statistic Ultimate analysis (wt%)

C H N O

Mean 47.82 6.11 1.98 32.39

Standard Deviation 17.69 3.06 1.77 17.05

Minimum Value 18.94 0.75 0.00 0.20

25th Percentile 38.01 4.43 0.70 16.97

50th Percentile 43.52 5.98 1.26 36.51

75th Percentile 57.39 6.65 3.19 46.83

Maximum Value 84.74 14.90 6.27 55.80

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( x x x x ) x x x4
wastewater in the UK. Thesewaste streams are also later used

as case studies to compare the produced LCOH to alternative

low carbon hydrogen production technologies. Furthermore,

the selected three locations provide global coverage with

differing economic inputs.

The TEA results are presented as the nominal LCOH

($/kgH2) and the LCA results as the process' GHG emissions

(kgCO2eq/GJH2) for each combination of feedstock, process-

ing capacity, and geographic location. A Monte Carlo simu-

lation for each parameter combination was undertaken to

illustrate the relative uncertainty around the nominal LCOH.

The economic and environmental impact of transporting

wastes to a larger capacity facility was also investigated.

Finally, a ML surrogate model was created to predict the

nominal, lower (5th), and upper (75th) LCOH computed from

the TEA and Monte Carlo simulation using the feedstock's
ultimate analysis, capacity, and geographic location as

model inputs. Owing to the low utility usage of the SCWG

process, the variability in GHG emissions between feedstocks

was minimal. As such, the surrogate model was not trained

to predict process emissions.

2.1. Data collection and pre-processing

The ultimate analysis consisting of the weight percent of C, H,

O, and N was collected for each of the 40 biomass feedstocks

and converted onto a 100% C, H, O, N basis. The compositions

collected from literature are presented in the Supplementary

Information, Table S1. Descriptive statistics of the data-set are

presented in Table 1. The biomass feedstocks were selected to

obtain a range of compositions to produce a generalisable

surrogate model that can predict the LCOH for unseen, user

inputted, biomass feedstocks.

The biomass’ Ratio of Moles of Oxygen (RMO) to moles of

oxidisable compounds (mol/mol) was calculated to determine

the weight percent required for each feedstock to yield a COD

of 75 g/LCOD. The RMO is the required amount of oxygen to

fully oxidise a compound to CO2, H2O and NH3 as expressed in

Eq. 1. Eq. 2 defines the theoretical COD, where W (g/L) repre-

sents the solids concentration of oxidisable compound andMr

(g/mol) is the molecular mass of oxidisable compound.

CnHaObNc þ
�
nþa

4
� b
2
�3
4
c

�
O2 / nCO2 þ

�
a
2
�3
2
c

�
H2Oþ cNH3

(1)

COD¼ W
Mr

*

�
nþa

4
�b
2
� 3
4
c

�
*32 (2)

The COD was used as the model basis as it is a required

measurement of effluent streams and represents the stream's
reduction potential, i.e. reducing power. Effluent streamswith

the same COD possess the same theoretical potential to pro-

duce H2 regardless of composition, where more reduced

compounds require a lower solids concentration than more

oxidised compounds to attain the same COD. In contrast, the

solids concentration also includes inorganic matter which

does not contribute to the production of H2. By using the COD

as the model basis, the economic potential of the organic

biomass content is easily interpreted.
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2.2. Process simulation

A temperature of 430 �C was used for the SCWG, owing to the

economic benefit of low-temperature SCWG [1]. The COD for

each biomass feedstock was fixed at 75 g/LCOD. For the

considered biomass feedstocks, this translates to 5 wt% solids

on average, though the actual content varies depending on the

reduction potential of the biomass. This concentration was

selected as low solids concentrations lead to increased

hydrogen production through enhancing steam methane

reforming and water gas shift reactions [1]. However, from an

economic standpoint the solids concentration directly affects

the energy balance, with more dilute feedstocks requiring

greater energy to heat to supercritical conditions. The con-

centration was selected as a trade-off between these two

factors. This consideration may require evaporation or dilu-

tion of the actual feedstock being evaluated but is not factored

into the TEA or LCA as different dilution and evaporation re-

quirements would vastly increase the model complexity.

Costs and emissions associated with evaporation or dilution

to the 75 g/LCOD necessitates external quantification by the

user.

A TEAwas undertaken on the process simulation using five

different processing capacities (10, 20, 50, 100, and 200 m3/h).

This led to 200 process simulations, considered over three

geographical locations (China, Brazil, and the UK), resulting in

600 economic analyses. The TEA results were presented as the

nominal LCOH.

The 50 and 100 m3/h capacities yield between 7.5-10 and

15e20 MW of hydrogen, respectively. These results are

directly comparable to green electrolysis LCOH prices pro-

duced by BEIS (10 MW) [22]. Furthermore, the range of capac-

ities investigated represent realistic effluent production rates

for the considered countries. For example, Brazil's Sebigas

plant processing vinasse has a capacity of 500 tnCOD/day,

corresponding to 277 m3/h of wastewater at 75 g O2/L COD

concentration [23]. In addition, a 200 m3/h throughput scale

corresponds to a modest-sized pulp mill with a processing

capacity of approximately 12,000 ADt/yr of pulp, based on 10 t

black liquor/tADt pulp [24]. By comparison, China's largest pulp

mill produces 1.2 million ADt/yr [25]. With regards to distillery

wastewater, pot ale and wet draff are produced at rates of

7.9 L/Lalcohol and 2.55 kg/Lalcohol [26]. Using both these waste

streams, the processing capacities explored in this study

correspond to a distillery capacity between 5 and 104 million
e economic evaluation of renewable hydrogen production from
ational Journal of Hydrogen Energy, https://doi.org/10.1016/
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litres/yr, noting that the largest operational Scottish Distillery

is 100 million litres [27]. Considering anaerobic digestate as a

feedstock, the 10 m3/h throughput scale corresponds to

approximately 500 kg/h of dry solids based on a 5 wt% solids

concentration and digestate production at 0.87 kg/kgfeedstock
[28]. This is equivalent to an anaerobic digestion (AD) facility

capacity of 100 kt/yr, where currently 20 facilities in the UK

operate at a capacity >96 kt/yrdigestate.

2.2.1. Gasification
The SCWG reaction was modelled in Aspen HYSYS using a

conversion reactor to decompose the unconventional biomass

compound into its base compounds (H2, O2, N2 and C). As such,

only the ultimate analysis was required to represent each

considered biomass compound. The stochiometric co-

efficients for the decomposition reaction in the conversion

reactor were modified for each biomass sample using a

MATLAB script. This was followed by a Gibbs reactor to predict

the gasifier effluent assuming full conversion to gaseous

products and the attainment of equilibrium at the specified

temperature and pressure. This is a common approach in

techno-economic studies of SCWG [29]. For example, this

method has been used previously for the valorisation of black

liquor [4], digested sewage sludge [3], and soybean straw [5].

The simulation considers the achievement of thermodynamic

equilibrium and complete biomass conversion to gaseous

products. It is recognised that equilibriummay not be reached

in industrial conditions and achieved gas yields may differ

from those predicted by the Gibbs reactor. Also, formation of

solid by-products, such as tar and char, may not be negligible.

However, in the absence of extensive complete conversion

data for low-temperature SCWG, the approach enables the

evaluation of different feedstocks on an equivalent basis. As

such, the results represent the economic potential for a

biomass feedstock. Moreover, the continuous SCWG reactor is

sized based on a relatively conservative residence time of

5 min, translating to an additional capital expense. This resi-

dence time was selected to exceed the reported experimental

results for continuous low-temperature SCWG where a 20s

residence time achieved a total organic carbon reduction ef-

ficiency of 53.9e55.7% [2] and 88.4% at 150s [21].

An additional reactor was used to convert 100% of the fuel

bound nitrogen to NH3, similarly to Ref. [3]. Most of the NH3 is

removed with the high-pressure water flash after the SCWG

reactor and it is assumed no further separation is required. The

formation of sulphur compounds and ashwere not considered.

In practicality sulphur would form H2S during gasification

whichwould be removedalongwith CO2 duringH2 purification.

The formation of ash would be removed with any char formed

during gasification and be subsequently combusted.

To satisfy the simulation's energy balance, the heats of

formation for the hypothetical biomass compounds were

estimated by subtracting the heat of combustion of the free

elements (carbon (�393.15 kJ/mol) and hydrogen (285.83 kJ/

mol)) from the biomass' Higher Heating Value (HHV) [30]. A

correlation was used to estimate the HHV for each biomass

based on its elemental composition. The correlation created

by Huang & Lo (2020) was used to estimate the feedstock's
HHV given the correlation was established using a large

number and range of biomass feedstocks [31].
Please cite this article as: Rodgers S et al., A surrogate model for th
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2.2.2. Syngas upgrading
The Gibbs reactor model predicts a higher methane fraction in

the product gas at temperatures around 400 �C compared to

temperatures above 500 �C, as shown in Table S2 in the Sup-

plementary Information. At lower temperatures, the formation

of hydrogen through endothermic gasification reactions is

inhibited, while the exothermic reactions that form methane

are favoured [32,33]. The observed trend in increasedmethane

fractions at lower temperatures therefore aligns with ther-

modynamic principles. Whilst the focus of this study is

hydrogen production, higher reaction temperatures are

heavily disadvantaged from an economic perspective owing to

the higher energy burden required to heat the gasifier feed [1].

By shifting thismethane fraction to hydrogen post-gasification

using mature chemo-catalytic technology, the economic

benefit of low-temperature SCWG can be exploited whilst still

maximising hydrogen production.

To shift the reactor effluent towards hydrogen, the mature

Steam Methane Reforming (SMR), High-Temperature Shift

(HTS) and Low-Temperature Shift (LTS) technologies were

employed. A fraction of the SCWG effluent was directed to-

wards combustion to support the endothermic SMR reaction,

ensuring the process remained energetically self-sufficient.

The operating conditions and kinetics used to model the

SMR, HTS and LTS reactors are presented in Table 2. The

hydrogen produced was then recovered using a primary

amine stripper employing monoethanolamine (MEA) as a

mass separating agent to absorb the CO2.

A process flow diagram of the evaluated hydrogen pro-

duction process is presented in Fig. 1. After reducing the tem-

perature of the SCWG effluent to sub-critical conditions and

flash drum separation, a turbo-expander recovers the energy

from the vapour as electricity. In addition, electricity is

generated upon letting down the spent flue gas after it has

been used for steam generation. Most of the generated elec-

tricity is utilised within the process. However, the unused

fraction is exported for sale to the grid as renewable electricity.

2.2.3. Automation
The ActiveX function in MATLAB was used to automate the

input of the different biomass compounds. The biomass

properties were transferred from MS Excel to Aspen HYSYS

via a MATLAB script. To ensure each feedstock was evaluated

on the same basis, a set of constraints was defined to be

adhered to by all simulations. Owing to the different feedstock

compositions, each simulation required manual adjustments

to achieve these same constraints.

� Split between combustion and SMR adjusted to maintain

energetic self-sufficiency

� Steam to carbon ratio maintained at 5.5 mol/mol by

adjusting water flowrate to SMR

� MEA flowrate adjusted to achieve hydrogen purity >99.5%
v/v

� Temperatures adjusted to prevent temperature crosses in

heat exchangers

2.2.4. Techno-economic analysis
The LCOH was computed for each biomass composition,

processing capacity, and location combination. This was
e economic evaluation of renewable hydrogen production from
ational Journal of Hydrogen Energy, https://doi.org/10.1016/
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Table 2 e Operating conditions and modelling parameters used in the process simulation.

Parameter Value Comments

SMR temperature (�C) 1000 Kinetics based on a commercial Ni/a-Al2O3 catalyst [34].

SMR pressure (kPa) 1000

Steam/carbon ratio (mol/mol) 5.5 To avoid carbon formation on the catalyst.

HTS temperature (�C) 420 Power law kinetics) for a commercial iron-based catalyst [35].

LTS temperature (�C) 200 Power law kinetics for a commercial Sud-Chemie Cu/ZnO/Al2O3 catalyst

[36].

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( x x x x ) x x x6
calculated from the discounted cash flow analysis across the

considered 25-year plant life. The costing models and invest-

ment analysis parameters as used in the authors' previous
workwere used for the TEA, summarised in Tables S3e4 in the

Supplementary Information [24,37]. An 8% discount rate was

used in line with Europe's hurdle rates for electricity genera-

tion costs from biomass sources, e.g. 8.3% for AD and 7.9% for

dedicated biomass (5e100 MW) and energy from waste

(combined heat and power) [38]. The economic models were

created for three geographic locations (China, Brazil, and the

UK). As such, different location factors, operator salaries, and

renewable electricity prices were used between the techno-

economic models. These are summarised in Table 3.

2.2.5. Feedstock cost
A universal method for computing the utility value of the

feedstock was developed based on the HHV of the biomass

relative to natural gas. Methane production from AD is an

alternative treatment method for dilute biomass feedstocks.

However, AD can only exploit the Biological Oxygen Demand

of a feedstock, whereas SCWG exploits the COD. An efficiency

factor of 70% was thus applied to the calculated HHV,

reflecting a high Biological Oxygen Demand to COD ratio [44].

The feedstock's price was then computed based on the

adjusted HHV relative to the HHV of natural gas and using the

EIA's price projections [45].

2.2.6. Uncertainty analysis
An uncertainty analysis was undertaken on the LCOH for each

biomass composition, processing capacity, and location
Fig. 1 e Process flow diagram of the low-temperature SCWG o
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considered. A Monte Carlo analysis was conducted

comprising 2,000 simulations where the fixed capital (80%e

150%), variable operating (80%e200%), feedstock cost (90%e

130%), and renewable electricity prices (80%e200%) were sto-

chastically varied using a uniform distribution of the outlined

ranges. This produced a probability distribution of the LCOH

for each parameter combination. The calculated 5th and 75th

percentiles from the Monte Carlo simulations were predicted

along with the nominal LCOH by the surrogate model. This

provided the 70% probability band of the LCOH for the inves-

tigated feedstock, capacity, and geographic location.

2.3. Life cycle assessment model

A cradle-to-gate LCA was undertaken for each biomass feed-

stock for the two products, hydrogen and renewable elec-

tricity. The considered functional units were 1 GJ of hydrogen

(GJH2) and 1MWhof renewable electricity. The emissions were

allocated between these two products using energy allocation.

As themodel was created for waste biomass feedstocks, no

feedstock emissions were allocated. Furthermore, the CO2

emitted is of biogenic origin and so does not contribute to the

overall GHG emissions. Carbon capture units were not

considered owing to the uncertainty around storage arrange-

ments for small production streams, such as those generated

in this study. The products were compared to other hydrogen

production methods and each country's respective electricity

grid emissions. The GHG emissions for MEA and water were

obtained from the ecoinvent 3.7 inventory [46]. Emissions for

transportation were considered using EURO 6 freight lorries of
f biomass feedstocks for renewable hydrogen production.
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Table 3 e Location factors, operator salaries, and renewable electricity selling price for the different global locations
considered for the TEA. For comparison, the values are converted to 2022 US$ and presented in brackets.

Geographic
Location

Location
Factor

Average Operator
Salary (yr) [39]

Renewable electricity
price (kWh)

Currency
conversion [43]

China 0.66 ¥ 172,172 ($ 24,104) ¥ 0.75 ($ 0.105) [40] 0.14

Brazil 1.06 R$ 81,840 ($ 15,550) R$ 0.315 ($ 0.059) [41] 0.19

UK 1.04 £ 33,776 ($ 41,207) £ 0.126 ($ 0.154) [42] 1.22

i n t e r n a t i o n a l j o u r n a l o f h y d r o g en en e r g y x x x ( x x x x ) x x x 7
16e32 tn capacity. A full life cycle inventory can be found in

Table S5 in the Supplementary Information. Whilst cooling

and process water were assigned emissions, the emissions

associated with dilution or evaporation of feedstocks to the

75 g/LCOD were not considered.

2.4. Transportation

In the TEA and LCA, each feedstockwas assessed at its point of

origin, meaning no transportation costs or emissions were

included. However, as the impact of capacity on processing

costs is assessed, an investigation into of the impact of

transporting localised waste streams to larger facilities is

warranted. This analysis was undertaken on distillery

wastewater in the context of the UK. The cost of transporting

the feedstocks was taken as £ 0.25 t/km based on costs for

digestate transportation [47] and updated using the ratio of UK

diesel prices in 2022 to 2016. The waste transportation ca-

pacity was selected based on the evaluated facility sizes (10,

20, 50, 100 and 200 m3/h). Thereby, a 100 m3/h facility could be

located at a facility producing a waste stream of either 100, 50,

20, or 10 m3/h, necessitating the additional waste to achieve

the 100m3/h capacity to be transported to it. A nominal 30 km

transport distance was selected.

2.5. Surrogate model

For each feedstock, six input variables were provided to each

model, including the weight percentage of C, H, O, and N

(descriptive statistics of the biomass compositions are pre-

sented in Table 1), processing capacity (10, 20, 50, 100 or

200 m3/h), and geographic location (China, Brazil, or the UK).

The geographic location was defined as 1 (China), 2 (Brazil), or

3 (the UK) to input into the model. The outputs of the model

were the nominal LCOH and corresponding 5th and 75th

percentiles, representing the 70% probability band. Due to

minimal variability in the process emissions across different

feedstocks and capacities, the surrogate model was not

trained to predict the process emissions. ThreeML algorithms,

RF, SVR, and ANNs, were investigated for the surrogatemodel,

as they have been previously considered for predicting

hydrogen production via SCWG [9,10].

2.5.1. Model optimisation and evaluation
The 600 TEA combinations were split into training, valida-

tion, and test sets. As the hydrogen yield varied between

biomass feedstocks, the feedstocks were distributed among

these sets. Thereby, if a biomass feedstock was placed in the

test set, the entire set of parameter combinations for that

feedstock, i.e. processing capacities and geographic location,

was also included in the test set. This approach ensured that
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the model was trained to generalise across feedstock com-

positions rather than capacity and location and supports the

goal of developing a generalisable model to evaluate the

economic potential of hydrogen production from different

biomass feedstocks. The data-set was split into a training set

of 360, a validation set of 120, and a test set of 120 parameter

combinations. Distributing the biomass feedstocks among

the sets resulted in 24 biomass feedstocks in the training set,

8 in the validation set, and 8 in the test set. The best-

performing hyperparameters were selected based on cross-

validation performance, ensuring that the test set's perfor-

mance indicated the model's generalisation potential for

user input feedstocks. To optimise each ML algorithm a 4-

fold cross-validation procedure was undertaken on the

combined training and validation sets using an exhaustive

grid search. The hyperparameters that were optimised for

each algorithm are presented in Table 4. GridSearchCV from

scikit-learn was used to determine optimal hyperparameters

for each ML algorithm [48]. During the cross-validation pro-

cess, the Root Mean Squared Error (RMSE) was used as the

performance metric for each algorithm and as the loss

function in the ANN.

An ensemble of predictions is produced by the RF algo-

rithm, with the final output being the average of each decision

tree's prediction. Ensemble methods typically have higher

prediction accuracy because they reduce dispersion error and

bias by averaging model predictions. They have previously

shown improved prediction performance for hydrogen pro-

duction via SCWG [10]. Consequently, an ensemble approach

was also applied to ANNs, which randomly initialise starting

weights and biases. This diversity allows each model to cap-

ture different aspects of the data. The average prediction from

ten ANN models using the optimised hyperparameters was

used to evaluate the algorithm's performance. Unlike ANNs,

SVR does not contain random elements during model

training, so an ensemble of SVR using optimised hyper-

parameters was not implemented.

After determining the optimal hyperparameters for each

algorithm, it was evaluated on the test set to provide an

indicative performance measure of the model's general-

isability to unseen feedstocks. Three performance metrics

were used to assess the model's prediction accuracy: RMSE,

Mean Absolute Percentage Error (MAPE), and the determina-

tion coefficient (R2). Each metric has different advantages:

RMSE measures the standard deviation of the prediction er-

rors, penalising large errors and making it more sensitive to

outliers; MAPE measures the absolute error between the true

and predicted values and presents them as a percentage,

being less sensitive to larger errors than RMSE; and R2 repre-

sents the fitness of the model to the true values and provides

an intuitive result, with a value of 1 representing a perfect fit.
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Table 4 e Hyperparameters and ranges considered for each algorithm during the cross-validation grid search procedure.

Random forests Support vector regression Artificial neural network

Number of trees (10e500) L2 Regularisation penalty (1.1e1000) Number of layers (1e3)

Maximum number of features for split (1e6) Kernel type (linear, polynomial,

radial basis function, sigmoidal)

Neurons in each layer (2e256)

Maximum depth of the tree (10e500) Kernel coefficient (0.01e100) L2 Regularisation penalty (0.00001e0.1)

Minimum number of samples before split (1e10) Degree (for polynomial kernel

function only)

(1e3)

Learning rate (0.00001e0.1)

Minimum data in a leaf (1e10) Epsilon (0.001e10) Epochs (1000e10,000)

Bootstrap sampling (with or without replacement) Batch size (2e256)

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( x x x x ) x x x8
Eqs (3)e(5) present these metrics, where N is the number of

datums, yj is the true value, ŷt is the predicted value, and yM is

the mean value. The published surrogate model was trained

on the entire data-set using the algorithm and hyper-

parameter set that produced the most accurate predictions

during the cross-validation procedure.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
t¼1

�
yj � byt

�2

vuut (3)

MAPE¼ 1
N

XN
t¼1

yj � byt

yj
(4)

R2 ¼
PN
t¼1

�
yj � yM

�2

PN
t¼1

�byt � yM

�2 (5)

2.5.2. Feature importance
ML models are often referred to as “black box” models due to

the complexity of their internal workings, which are not easily

interpretable. To address this interpretability challenge,

feature importance methods are employed. One such method

is SHapley Additive exPlanation (SHAP) values. These values

assign a contribution score to each feature, indicating its

importance in the model's output. By utilising SHAP values,

users can gain a better understanding of the relationships

between input features and model outputs [49]. In previous

studies, SHAP values have been applied to identify redundant

input data, thereby reducing the computational cost of ML

models [9]. However, in this work, SHAP values are used to

highlight the relative importance of the input features. The

SHAP values were obtained for the best-performing MLmodel

using the SHAP library in Python.
3. Results and discussion

The TEA and LCA results are presented for the 600 parameter

combinations (biomass composition, capacity, and

geographic location). The impact of feedstock transportation

is also presented and discussed. The production costs and

process emissions are compared to both MW-scale electrol-

ysis using renewable electricity and SMR with CCS (Carbon

Capture and Storage). The performance of the three ML algo-

rithms is also presented and compared.
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3.1. Techno-economic analysis

The LCOH for the 600 techno-economic parameter combina-

tions were computed, achieving levelised costs of 1.66e11.89

$/kgH2 (China), 2.61e16.82 $/kgH2 (Brazil), and 2.46e18.73

$/kgH2 (UK). Different feedstock compositions and capacities

led to significant variations in the economic outcome.

3.1.1. Location
Fig. 2 presents the LCOH for the 600 techno-economic

parameter combinations. Fig. 2a presents the results for

China, 2b for Brazil, and 2c for the UK. The geographic location

produces a considerable difference in the LCOH. The UK pro-

duced the highest prices, followed by Brazil and then China.

The higher prices for both the UK and Brazil are attributed to

higher capital and operating costs (Table 3).

3.1.2. Processing capacity
The capacity of the SCWG facility is shown to have a sub-

stantial impact on the LCOH (Fig. 2aec). As the scale increases,

the LCOH decreases following an inverse power law relation-

ship. The observed power law relationship is likely because

most equipment cost correlations follow power law relation-

ships. Furthermore, in capital cost estimation the ‘six-tenths

rule’ can be applied to update the capital cost of a plant or

processing equipment based on the cost of the same item at a

different capacity by using a 0.6 exponent (average for the

chemical industry) [50]. Applying a power law to the average

LCOH for each geographic location gives rise to three different

correlations, each with an R2 > 0.93 and exponents ranging

between �0.48 and �0.58. However, these correlations repre-

sent the average LCOH and the correlation for each biomass

composition and corresponding location would be different

(Fig. 2aec). This prevents the use of a simple correlation to

predict the LCOH for different feedstocks and illustrates the

utility of a TEA surrogate model applicable to a wide range of

inputs.

3.1.3. Uncertainty analysis
A Monte Carlo simulation comprising 2,000 simulations was

undertaken on each of the 600 techno-economic scenarios by

varying the fixed capital, variable operating, feedstock, and

renewable electricity costs within the uncertainty ranges

summarised in Section 2.2.6 Uncertainty Analysis. All pa-

rameters were varied stochastically using a uniform distri-

bution between the defined ranges. The LCOH for each

stochastic parameter combination was computed and the 5th,
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Fig. 2 e aec: LCOH ($/kgH2) for different processing capacities (m3/hr). a) Presents the results for China, b) presents the results

for Brazil, and c) presents the results for the UK. Each location has 40 data points representing the biomass feedstocks and is

presented using the same y-axis.
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25th 50th, 75th, and 95th percentiles were calculated. The 5th

and 75th percentiles represent the 70% probability band for

the LCOH. On average, this probability band displayed a �13%

and þ28% deviation from the nominal value for all parameter

combinations. The deviations were similar for all cases,

ranging from �22% to þ32%. The greater positive variability

observed is attributed to the larger upward deviations

assigned to the uncertainty parameters.

3.1.4. Gate fee
Some feedstocks could command a gate fee to handle their

disposal, forming an additional source of revenue. For example,

the median gate fees in the UK for AD and energy from waste

disposal options are £30/t and £95/t, respectively [51]. Food

waste is a typical AD feedstock [47] and is used here to illustrate

the impact of including a gate fee for SCWG in the UK. Gate fees

of £10/t, £20/t, and £30/t ($12/t, $24/t, and $37/t), up to and

equalling that of AD, were selected (Fig. 3). Notably, the inclu-

sion of a gate fee significantly reduces the LCOH, creating
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economically viable solutions at smaller capacities. At a ca-

pacity of 10m3/h, a gate fee of $37/t (equalling that of AD) leads

to an LCOH of $4.82/kg, comparable to MW-scale electrolysis

using renewable electricity, which ranges from $4.81/kg to

$6.31/kg [22]. However, at a capacity of 20 m3/h, a gate fee of

only $12/t is required to achieve a comparable LCOH, and a gate

fee of $37/t results in a negative LCOH. At capacities >50 m3/h,

the addition of a gate fee results in a low or even negative LCOH

(Fig. 3), demonstrating the technology's potential to outperform

AD as a waste treatment option and the economic potential of

valorising waste streams at these capacities.

3.2. Life cycle assessment

The range in cradle-to-gate GHG emissions of the evaluated

feedstocks in Brazil and China was 0.32e0.65 kgCO2eq/GJH2

(0.038e0.078 kgCO2eq/kgH2) with an average of 0.46 kgCO2eq/

GJH2 (0.055 kgCO2eq/kgH2). In the UK, the GHG emissions

ranged between 0.25 and 0.52 kgCO2eq/GJH2 (0.031 and 0.063
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Fig. 3 e Impact of the inclusion of a $12/t, $24/t and $37/t gate fee on the LCOH for food waste biomass.
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kgCO2eq/kgH2) with an average of 0.37 kgCO2eq/GJH2 (0.044

kgCO2eq/kgH2). The difference between countries is due to the

use of global emission factors for both Brazil and China and

European emission factors for the UK. The low overall emis-

sions are attributed to its energetic self-sufficiency of the

SCWG process, negating the need for external energy sources.

The only utilities used throughout the process are MEAmake-

up to account for losses during CO2 removal and deionised

water for both cooling and water make-up in the stripper. The

GHG emission ranges for all feedstocks considered comfort-

ablymeet the EuropeanUnion CertifHy scheme for low carbon

hydrogen (�36.4 kgCO2eq/GJH2) based on a 60% reduction in

emissions from SMR [52]. In contrast, SMR with CCS produces

8 kgCO2eq/GJH2, at 90% capture efficiency [53]. However,

including emissions associated with natural gas leakage in-

creases this estimate to 21 kgCO2eq/GJH2 [53], over an order of

magnitude higher than estimates for SCWG.

The emissions attributed to the exported renewable elec-

tricity were also minimal, with an average of 0.04 kgCO2eq/

MWh for Brazil and China and 0.03 kgCO2eq/MWh for the UK.

This is in comparison to the grid intensity of China, Brazil, and

the UK being 850 kgCO2eq/MWh [54], 292 kgCO2eq/MWh [54],

and 194 kgCO2eq/MWh [55], respectively.

3.3. Transportation impact

The impact of transporting wastes to a larger facility was

investigated for both the economics and process emissions

and is presented in Fig. 4a and b for distillery wastewater in

the UK. Due to the dilute nature of pot ale, only draff (solids

content 21.6 wt% [26]) was considered for transportation in

this analysis.

Transporting draff to a different distillery for processing

demonstrates a decrease in the LCOH compared to solely
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processing point source distillery waste (Fig. 4a). For

example, a distillery producing 10m3/h of wastewater at 75g/

LCOD yields a LCOH of $15.37/kg by processing only point

source waste. However, transporting enough draff to operate

a SCWG facility of 50 m3/h (located at the same distillery

producing 10 m3/h) leads to a decrease in the LCOH to $8.26/

kg. This decreasing trend in LCOH is demonstrated for all

point source feedstock processing capacities between 10 and

50 m3/h. The observed decrease is due to the capital and

operating cost intensity decreasing more appreciably than

the added cost of transportation. Conversely, at a point

source of 100 m3/h of wastewater, the transportation of draff

to support a 200 m3/h SCWG plant increases the LCOH from

$3.51/kg to $3.78/kg.

Regarding process emissions (Fig. 4b), any transportation

of waste proves detrimental to the GHG emissions. In all

cases considering draff transportation the transport emis-

sions dominate the overall process emissions. However, the

emissions are still well below SMR with CCS, which are 8

kgCO2eq/GJH2 (excluding emissions associated with natural

gas leakage) [53].

It is important to note that the transportation of biomass is

logistically challenging. Studies considering large capacity

plants often explore decentralised supplies that enable satel-

lite pre-processing or combine multiple modes of trans-

portation, depending on the transportation distance [56]. The

assumptions made for this analysis do not consider these

complexities, and further investigation should be undertaken

for specific feedstocks, alongside the actual transport dis-

tances required. In addition, biomass compositions may be

more or less dilute than considered here. This would change

the associated transport costs, as evaporation would occur at

the point of origin, and dilution would occur at the point of

processing.
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Fig. 4 e aeb: Impact of transporting distributed waste streams to larger processing facilities on the LCOH ($/kgH2) (4a) and

process emissions (kgCO2eq/GJH2). (4b). Analysis results are for distillery wastewater in the UK.
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3.4. Comparison to alternative low carbon hydrogen
production

Hydrogen production costs are significantly impacted by

capital costs, technology efficiency, capacity factors, energy
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costs, and the plant location [57]. Fig. 5 presents the 70%

probability band of the LCOH at the considered SCWG capac-

ities for black liquor in China, vinasse in Brazil, and distillery

wastewater in the UK. These biomass feedstocks were

selected as they represent feedstocks readily available in
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Fig. 5 e Comparative LCOH for MW-scale electrolysis using renewable electricity, SMR with CCS, and SCWG for black liquor

in China, vinasse in Brazil, and distillery wastewater in the UK. The displayed results exclude transportation or gate fee

considerations.
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these countries. The resulting LCOH's are compared to each

country's cost estimates for alternative low carbon hydrogen

production methods, namely, hydrogen production via MW-

scale electrolysis using renewable electricity and SMR with

CCS. Estimates are obtained from the IEA for China [58,59] and

Brazil [60], and BEIS for the UK [22].

In all countries, at a SCWG capacity of 50 m3/h, the LCOH

(2.76e4.21 $/kgH2 for China, 3.41e5.07 $/kgH2 for Brazil,

4.31e6.62 $/kgH2 for the UK) is cost competitive with hydrogen

production via MW-scale electrolysis using renewable elec-

tricity (3.10e6.70 $/kgH2 for China, 3.70e5.90 $/kgH2 for Brazil,

and 4.81e6.31 $/kgH2 for the UK). This demonstrates the po-

tential for isolated feedstock valorisation using low-

temperature SCWG at capacities >50 m3/h. Additionally, in

China SCWG capacities >50 m3/h are comparable to SMR with

CCS (2.00e3.80 $/kgH2) and in the UK, the 200 m3/h SCWG

capacity achieves a similar LCOH (2.36e3.92 $/kgH2) to SMR

with CCS (1.74e3.40 $/kgH2). However, SMR with CCS is

notably cheaper than even the largest SCWG facility size in

Brazil. As SMR is the dominant commercial hydrogen pro-

duction technology globally, the lower production costs for

SMR with CCS are unsurprising.

Importantly, SCWG is ideally suited to wet feedstocks that

are uneconomical for use via conventional energy recovery

methods. Therefore, valorising these feedstocks via SCWGhas

limited resource competition and represents a renewable

hydrogen source from otherwise under-utilised resources. In

contrast, MW-scale electrolysis and SMR utilise renewable

electricity and natural gas, both of which have numerous

alternate uses and competition. As such, electrolysis and SMR

are subject to price fluctuations in world energy markets. This

means that changes in global energy markets directly affect

the predicted prices in Fig. 5. A timely example is natural gas
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prices, which averaged $6.45/MMBTU in 2022, up from $2.03/

MMBTU in 2020 [61].

3.5. Surrogate model

The optimal hyperparameters obtained during the 4-fold

cross validation procedure are presented in Table 5. Table 6

illustrates the performance metrics for the ML models using

the optimal hyperparameters for the nominal LCOH on both

the validation and training sets. Overall, ANN's achieved the

highest model performance for both the validation and test

sets, achieving accuracy values of MAPE: <4.6%, RMSE: <0.39,
and R2: >0.99 on the test set. This is likely due to their ability to

combine inputs into new features and thus utilise the rela-

tionship between inputs. A parity plot of the ANN's perfor-

mance on the test set is presented in Fig. S1 in the

Supplementary Information. Owing to the comparison of

models, optimisation of hyperparameters, exhaustive grid

search, and 4-fold cross validation procedure the outcome

reflects the final accuracy of the ML task. Since the hyper-

parameters have been selected based on the validation set

and the training, validation, and test sets were segregated

based on biomass composition, the models' performance on

the test set is a robust indicator of generalisation to new,

unseen, biomass feedstocks. This is important as it represents

the model's accuracy when utilised by researchers assessing

their feedstock compositions.

The relative feature importance for the ensemble of ten

ANN models is presented using SHAP values in Fig. 6. Fig. 6a

presents the absolute significance of each feature, larger

values indicate a greater impact on the model output (LCOH).

Regarding the relative importance, the processing capacity

was the dominant feature for the ML models. This is
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Table 5 e Optimal hyperparameters determined during the 4-fold cross-validation grid search.

Random forests Support vector regression Artificial neural network

Number of trees: 100 L2 Regularisation penalty: 100 Number of layers: 1

Maximum number of features for the split: 2 Kernel type: radial basis functionþ Neurons in each layer: 64

Maximum depth of the tree: 100 Kernel coefficient: 4 L2 Regularisation penalty: 0.001

Minimum number of samples before split: 2 Degree (for polynomial kernel function only): N/A Learning rate: 0.001

Minimum data in a leaf:1 Epsilon: 0.5 Epochs: 5000

Bootstrap sampling: without replacement Batch size: 16
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unsurprising considering the substantial variability in LCOH

observed across different capacities, as shown in Fig. 2.

Geographic location was the second most important feature,

attributed to the different economic inputs (Table 3) producing

different LCOH's for the same biomass composition and pro-

cessing capacity combinations. Among the biomass compo-

sition features, the hydrogen content demonstrated the

greatest impact. Fig. 6b displays the impact of each feature

using a bee swarm plot, where negative values indicate a

negative impact on the model output (LCOH). The feature

value scale from pink (high) to blue (low) indicates the feature

input value. For example, a high processing capacity (coloured

in pink), has a negative impact on the model output, thereby

reducing the LCOH. It is also evident that higher H wt% leads

to a reduction in the LCOH. This is to be expected as biomass

with a higher hydrogen content yields more hydrogen,

thereby lowering the LCOH. Increases in the other composi-

tion features all had a positive impact on the model output,

indicating that higher C, N, and O wt% leads to an increase in

the LCOH. This can be attributed to a greater wt % of these

elements reducing the H wt%, subsequently decreasing the

hydrogen yield obtained from the biomass.

The published model uses an ensemble of ten ANNs

trained using the entire data-set of 600 TEAs using the

optimal hyperparameters determined during the cross-

validation procedure. The model inputs are the biomass' ul-
timate analysis, the processing capacity, and the geographic

location. The nominal, lower (5th), and upper (75th) LCOH are
Table 6 e Performance metrics for the ML algorithms. Metrics
best performing model for each metric is presented in bold.

Prediction Data-set Evaluation me

Nominal Validation RMSE

MAPE

R2

Testing RMSE

MAPE

R2

5th percentile Validation RMSE

MAPE

R2

Testing RMSE

MAPE

R2

75th percentile Validation RMSE

MAPE

R2

Testing RMSE

MAPE

R2

Please cite this article as: Rodgers S et al., A surrogate model for th
biomass feedstocks via supercritical water gasification, Intern
j.ijhydene.2023.08.016
the model outputs. The surrogate model was trained using

data from five specific processing capacities (10, 20, 50, 100,

and 200 m3/h). However, the model is intended to predict the

LCOH for the range of capacities 10e200 m3/h. To demon-

strate the model's ability to interpolate between the capac-

ities used for training, Table S6 in the Supplementary

Information presents a comparison between the model pre-

dictions with simulated results for an unseen biomass

sample in Brazil. Processing capacities of 10, 15, 20, 35, 50, 75,

100, 150 and 200 m3/h were considered for the comparison.

All the model predictions achieved a percentage error less

than the MAPE of 4.42% obtained over the test set when

compared to the simulated results. This low percentage dif-

ference highlights the model's capability to accurately pre-

dict beyond the specific training capacities used during its

development, thus demonstrating its predictive ability.

Extrapolation beyond the scales considered during model

development (10e200 m3/h) is not permitted by the model

and is therefore not demonstrated.

3.5.1. Model uncertainty
The accuracy of a ML model's prediction on new, unseen in-

puts depends on this data's similarity to the model's training

data. A method to estimate model uncertainty can be used to

determine when this new data deviates significantly from the

training set. This can be used to estimate when the models

produce unreliable predictions. This is important for pre-

dictions made using new biomass samples inputted by the
are displayed for both the validation and testing sets. The

tric RF SVR ANN

0.414 1.321 0.197

3.39% 19.7% 1.56%

0.989 0.885 0.998

0.303 1.898 0.291

4.00% 39.3% 4.42%

0.994 0.761 0.994

0.332 1.170 0.166

3.16% 20.5% 1.47%

0.990 0.881 0.998

0.264 1.758 0.279

0.041 0.425 4.58%

0.994 0.731 0.993

0.532 1.664 0.236

3.45% 17.6% 1.63%

0.988 0.885 0.998

0.394 2.313 0.389

4.07% 35.4% 4.43%

0.994 0.777 0.994
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Fig. 6 e aeb: Feature importance of the model inputs on the LCOH Predictions using SHAP values. a) Absolute importance of

input features on model output. b) Impact of input features on the model output. High feature values (inputs) are displayed

in pink and low feature values are displayed in blue.
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end user. In the ensemble approach, each ANN has different

weights and biases owing to random initialisation. The di-

versity between each model will be greater in regions that

were less well represented in the training data. Therefore,

greater variance between themodel predictions is observed in

these regions. As such, the variance between the ensemble of

predictions gives an indication of the model's uncertainty,

with larger variations between predictions suggesting greater

model uncertainty [62]. By setting a threshold for the allow-

able variance between predictions, unreliable predictions can

be identified. This approach is similar to anomaly detection

using autoencoders where an anomaly threshold is set by a

reconstruction error [63].

For the published model, the permissible uncertainty

threshold was set as the maximum variance observed for the
Please cite this article as: Rodgers S et al., A surrogate model for th
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nominal predictions during a 5-fold validation procedure on

the entire data-set (600 parameter combinations). I.e. the

ensemble models were trained on 80% of the data and 20% of

the data was held back from training (the validation set). This

was repeated five times for different folds in the data. The

maximum variance observed on the validation sets was used

as the uncertainty threshold. As an additional indication of

uncertainty, it is known that the lower, nominal, and upper

LCOH should be predicted in ascending order. In instances

where this is not upheld, the model inputs represent an area

poorly represented during model development.

To illustrate this principle, Table 7 presents the model

predictions for three fictitious biomass compositions at

different capacities and locations. The predictions are classi-

fied as anomalous if the prediction variance exceeds the
e economic evaluation of renewable hydrogen production from
ational Journal of Hydrogen Energy, https://doi.org/10.1016/
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Table 7 e Surrogate model predictions for fictitious biomass compositions at different processing scales and geographic
locations. The predictions are classified as anomalous if the prediction variance exceeds the variance threshold, and
implausible if the predicted lower, nominal, and upper LCOH are not in ascending order.

Fictitious biomass
composition

Scale
(m3/hr)

Location LCOH ($/kgH2) Anomalous
prediction

Implausible
prediction

C H N O Lower Nominal Upper

35 15 15 35 15 China 6.85 8.19 9.12 ✓ 7

35 3.57 4.16 3.18 ✓ ✓

150 2.46 2.54 2.02 ✓ ✓

40 15 5 40 5 Brazil 12.71 14.3 18.14 7 7

150 2.33 2.37 3.52 7 7

250 2.43 2.17 3.1 7 ✓

40 21 0 39 20 UK 6.06 6.23 8.35 7 7

80 2.24 2.09 2.67 ✓ ✓

110 1.81 1.63 2.62 ✓ ✓
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uncertainty threshold, and implausible if the lower, nominal,

and upper LCOH are not predicted in ascending order. All

predictions for the first composition trialled were deemed

anomalous. This is attributed to the unrealistic biomass

composition, as the high nitrogen and hydrogen content is

unlike the compositions used for training. Despite this, in two

out of three instances the model produced plausible pre-

dictions, i.e. the lower, nominal, and upper predictions were

in ascending order. Contrastingly, for the second biomass

composition, all predictions were below the uncertainty

threshold and not deemed anomalous. This composition was

representative of a realistic biomass composition, and there-

fore likely represented by the training set. However, at a scale

of 250 m3/h themodel prediction was implausible but was not

detected as an anomaly. This capacity exceeded the range

used during model training (10e200 m3/h). Therefore, the

implausible prediction is attributed to model extrapolation

beyond the region used during training. The final biomass

composition trialled also represents a realistic biomass com-

pound. However, the prediction was deemed anomalous and

implausible for two out of three predictions. This result

demonstrates the utility of the uncertainty threshold as

despite the input representing a reasonable biomass compo-

sition, the model demonstrates high variability which should

be brought to the user's attention when using the prediction.

Based on the results in Table 7, the published model con-

tains user warnings and restrictions to prevent its misuse.

Firstly, the range of capacities are limited to those used during

model training (10e200 m3/h), preventing model extrapola-

tion. Secondly, the user is warned if the prediction contains

high variability i.e. the variance threshold is exceeded.

Thirdly, if the variance is not exceeded, but the biomass

composition is outside of the range of compositions used

during training the user is warned. In both these instances the

prediction is provided alongside the warning. Finally, no pre-

diction is provided, and the user is warned if an implausible

prediction is produced.
4. Study limitations

The Gibbs model is a valuable tool for simulating gasification,

as it eliminates the need for defining complex equations. The
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biomass feedstocks via supercritical water gasification, Intern
j.ijhydene.2023.08.016
model ensures that the mass and energy balance of the sys-

tem is maintained, making it useful for initial process evalu-

ations [29]. In TEA studies, the Gibbs model is widely

employed to model SCWG [3e5]. One significant advantage of

using the Gibbs model in an economic analysis is its ability to

evaluate different feedstocks on an equivalent basis, avoiding

biases that may arise from using experimental data obtained

under varying conditions or levels of experimental rigour.

However, it is important to note that the Gibbs reactor as-

sumes the full conversion to gaseous products the attainment

of thermodynamic equilibrium, which may not always hold

true in an industrial setting. As a result, the gas composition

may deviate from the predictions of the Gibbs model.

The Gibbs reactor's ability to model thermodynamic equi-

librium in SCWG has been validated using high temperatures

(600e900 �C) [64e67]. At elevated temperatures, reactions

occur at faster rates, increasing the likelihood of attaining

thermodynamic equilibrium at low residence times. A com-

parison between experimentally reported gas compositions

and predictions from the Gibbs reactor for low-temperature

SCWG (380e500 �C) are presented in Fig. S2 in the Supple-

mentary Information. The experimental results of Louw et al.

(2016), Osada et al. (2012), Yamaguchi et al. (2019), and

G€okkaya Selvi et al. (2020) align reasonably well with the

predictions of the Gibbs reactor [68e71]. However, the most

notable deviation is observed betweenmethane and hydrogen

concentrations. This is most prominent in the results exper-

imental by Lu et al. (2019), where significantly higher con-

centrations ofmethane and lower concentrations of hydrogen

are predicted by the Gibbs model [72]. The discrepancy be-

tween hydrogen and methane concentrations has been re-

ported previously at lower SCWG temperatures [65,66]. Higher

methane formation is thermodynamically anticipated at

lower temperatures owing to methanation entailing

exothermic formation reactions [32,33]. As such, the differ-

ences between the Gibbs and experimental results suggest

that the experimentally obtained SCWG gas compositions

were not at equilibrium. To account for the assumption that

thermodynamic equilibrium is obtained in this TEA study, a

conservative 5-min residence time was considered for the

continuous SCWG. This residence time is greater than previ-

ously investigated for continuous SCWG [2,21], and translates

to an additional capital burden by oversizing the gasifier.
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Table 8 e Sensitivity of the LCOH to the residence time assumed for SCWG. Biomass sample: chicken manure [73].

Processing capacity (m3/hr) Levelised cost of hydrogen ($/kg)

5 min 10 min 15 min 20 min

10 14.60 (þ0%) 15.64 (þ7%) 16.57 (þ13%) 17.43 (þ19%)

20 8.21 (þ0%) 9.04 (þ6%) 9.80 (þ11%) 10.51 (þ16%)

50 4.67 (þ0%) 5.33 (þ5%) 5.94 (þ9%) 6.52 (þ13%)

100 3.55 (þ0%) 4.11 (þ4%) 4.65 (þ8%) 5.16 (þ11%)

200 3.05 (þ0%) 3.55 (þ3%) 4.03 (þ7%) 4.50 (þ10%)
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As full conversion and the attainment of thermodynamic

equilibrium using the assumed residence time is yet to be

confirmed, a sensitivity analysis around this parameter has

been conducted considering the impact of a 10, 15, and 20-min

residence time on the LCOH for chickenmanure [73] in the UK.

The results of this analysis are presented in Table 8. A fourfold

increase in residence time (20 min) led to a 10%e19% increase

in the LCOH, with the greatest impact observed at the smallest

processing capacity. This represents a relatively minor impact

on the overall process economics and falls within the 70%

probability band obtained from the Monte Carlo uncertainty

analysis (þ28%, on average). As such, the potential increased

capital requirement to attain full conversion and thermody-

namic equilibrium is comfortably captured within the consid-

ered probability band predicted by the ML surrogate model.

It is important to emphasise that the surrogate model

predictions represent the economic potential of a feedstock

considering full conversion to gaseous products and the

attainment of thermodynamic equilibrium using continuous

SCWG at 430 �C followed by SMR, HTS, and LTS. The predicted

costs should therefore serve as a guide for identifying prom-

ising feedstocks based on their composition, location, and

processing capacity. This allows for prioritisation of future

research and development. Notably, the identification of a

promising feedstock would still necessitate the optimisation

of experimental conditions, i.e. residence time, catalyst type,

and catalyst concentration as is undertaken in experimental

studies such as [2].
5. Conclusion

A machine learning surrogate model has been created to pre-

dict the LCOH from low-temperature SCWG using different

feedstock compositions, processing capacities, and geographic

locations. This type of early-stage economic analysis tool helps

to inform targeted research directions and investment de-

cisions. A data-set of 600 process simulations using the Gibbs

reactor provided the data to train the surrogate model. Three

algorithms were investigated: RF, SVR, and ANNs. The highest

prediction accuracy during cross-validation was by ANNs,

achieving a test set accuracy of<4.6% (MAPE), RMSE:<0.39, and
R2: >0.99. The published surrogate model is trained on the

entire dataset: doi.org/10.6084/m9.figshare.22811066.
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[14] Bilgiç G, Bendes E, €Oztürk B, Atasever S. Recent advances in
artificial neural network research for modeling hydrogen
production processes. Int J Hydrogen Energy
2023;48(50):18947e77.

[15] Yahya HSM, Abbas T, Amin NAS. Optimization of hydrogen
production via toluene steam reforming over NieCo
supported modified-activated carbon using ANN coupled GA
and RSM. Int J Hydrogen Energy 2021;46(48):24632e51.

[16] Kargbo HO, Zhang J, Phan AN. Robust modelling
development for optimisation of hydrogen production
from biomass gasification process using bootstrap
aggregated neural network. Int J Hydrogen Energy
2023;48(29):10812e28.

[17] Sultana N, Hossain SMZ, Aljameel SS, Omran ME, Razzak SA,
Haq B, Hossain MM. Biohydrogen from food waste: modeling
and estimation by machine learning based super learner
approach. Int J Hydrogen Energy 2023;48(49):18586e600.

[18] Sezer S, €Ozveren U. Investigation of syngas exergy value and
hydrogen concentration in syngas from biomass gasification
Please cite this article as: Rodgers S et al., A surrogate model for th
biomass feedstocks via supercritical water gasification, Intern
j.ijhydene.2023.08.016
in a bubbling fluidized bed gasifier by using machine
learning. Int J Hydrogen Energy 2021;46(39):20377e96.

[19] Liao M, Kelley S, Yao Y. Generating energy and Greenhouse
gas inventory data of activated carbon production using
machine learning and kinetic based process simulation. ACS
Sustainable Chem Eng 2020;8(2):1252e61.

[20] Olafasakin O, Chang Y, Passalacqua A, Subramaniam S,
Brown RC, Wright MM. Machine learning reduced order
model for cost and emission assessment of a pyrolysis
system. Energy Fuels 2021;35(12):9950e60.
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