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Abstract 

South America has a unique geobiological history that is at heightened risk 

from the current climate emergency. Its fossil record provides empirical 

evidence of long-term interactions between biodiversity and climate, but our 

understanding of South America’s faunal evolution is still in its infancy. 

Applying subsampling and Bayesian approaches to a comprehensive 

dataset of South American terrestrial eutherian mammal fossil occurrences, 

I demonstrate increases in diversity throughout the Paleogene, resulting 

from several intervals of high speciation rate. The remainder of the 

Cenozoic is characterized by greater variability, including a diversity peak 

in the late Miocene and pulses of heightened extinction rate in the Plio-

Pleistocene. These results suggest that the present-day latitudinal 

biodiversity gradient first appeared in South America in the Plio-Pleistocene, 

at a similar time as proposed for North American mammals. This appears 

to have been driven by a decline in mean annual temperatures at higher 

latitudes in South America, in tandem with an increase in precipitation at 

lower latitudes that might have been accentuated by Andean uplift in the 

Pleistocene. Although the Great American Biotic Interchange played a role, 

Andean uplift appears to have been the primary underlying mechanism 

driving eutherian diversity patterns in the Cenozoic, radically reshaping the 

continent’s climate and habitats. 

 

Impact Statement 

South America is one of the most affected continents from the ongoing 

climate crisis and biodiversity loss. It also has a unique geobiological 

history, with the evolution of the Andes greatly influencing regional climate 

and reshaping habitats, as well as a 55 million-year-long isolation from all 

neighbouring landmasses, until the formation of the Isthmus of Panama in 

the Neogene. The continent’s mammalian fauna, one of the most diverse 

today, also mirrors its unique geological and climatic history. It is composed 

of endemic groups that evolved during its long isolation (including 

xenarthrans: armadillos, anteaters and sloths), groups that arrived in the 
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Paleogene (caviomorph rodents, including capybaras, and platyrrhine 

monkeys), as well as North American emigrants, including mammoths 

(proboscideans), alpacas, and llamas (artiodactyls), which reached the 

continent with the formation of the Isthmus of Panama during the Great 

American Biotic Interchange in the Neogene. South America is an amazing 

case study of the long-term interactions of biodiversity with climate and 

habitat changes. However, only a few studies focus on that, especially 

compared to other continents like North America, that are well studied. 

Major knowledge gaps still exist, including the impact of geologically long-

term climatic change on the continent’s mammals. 

This thesis aims to fill some of those knowledge gaps and sheds light on the 

interaction of biodiversity and environment in the last 66 million years. This 

is done using one of the most comprehensive, and highly curated datasets, 

that includes the majority of published fossil eutherian mammal occurrences 

from across South America, and updated geological formation and South 

American Land Mammal ages, at the time of the analyses. I also utilised 

palaeoenvironmental data produced by some of the latest versions of the 

HadCM3 climate models, developed by the UK Meteorological Office. A 

combination of novel analyses is used to explore the macroevolutionary 

patters through time and space. The results provide points of comparison 

with biodiversity patterns of other continents, and can reinforce notions I 

already had formed regionally, like the appearance of the present-day 

latitudinal biodiversity pattern that was found likely taking place almost 

parallel in South America and the neighbouring North America. This thesis 

also highlights the importance of South American eutherian mammals, that, 

while representing important stages of eutherian evolution, are not well 

known to the public, even on that continent (often overshadowed by the 

popularity of dinosaurs). This thesis provides a narrative of their evolution, 

that can prove useful for scientific outreach, and public engagement on 

topics such as evolution, and past climate crises. 

The fossil record provides the only empirical evidence of the biodiversity-

climate link, and thus these results are relevant not only inside, but outside 

the academic world. This thesis provides context for the current climate and 

biodiversity crisis, something that is important for better informed decision-
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making, and policy-designing to tackle the current and future climate crisis 

and biodiversity loss. Something that cannot be done without the 

collaboration between the academic and non-academic world. 
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Introduction 

We are in the midst of a human-induced global climate and environmental 

emergency, in which many species are experiencing substantial population 

declines (Almond et al., 2020; Ceballos et al., 2017) with extinction rates 

notably higher than those of the past (Barnosky et al., 2011; Ceballos et al., 

2015; Pimm et al., 2014).  

Species are threatened to extinction, or have already gone extinct locally or 

worldwide (IUCN, 2020; Wiens, 2016). The impact of global change can 

also be seen in shifts in the distribution and phenotypes of living organisms 

in land and water (Blois & Hadly, 2009; Kannan & James, 2009; Parmesan, 

2006; Parmesan & Yohe, 2003). In Antarctica, one of the fastest warming 

places on Earth, ice sheet decrease has led to a chain reaction: a decrease 

of ocean ice algae led to a decline in krill populations which in turn radically 

affected the modern distribution of their larger predators (like whales) 

(Atkinson et al., 2019). In the lower latitudes, the shift of tropical habitats 

towards more temperate regions (Rajaud & Noblet-Ducoudré, 2017) has led 

to migrations of tropical insects and birds towards more temperate regions 

(Paulson, 2001) or to higher elevations respectively (Freeman et al., 2018) 

in the expense of the faunas already occupying those regions. 

Predicted temperature increases of 2–5°C over the next 100 years (IPCC 

(Intergovernmental Panel Climate Change) Core Writing Team, 2021) 

reinforces the importance of understanding how biodiversity will respond to 

climatic changes in order to take appropriate conservation measures. 

Although these long-term biodiversity responses can be modelled, only the 

fossil record provides empirical evidence of this relationship between 

biodiversity and climate (Blois & Hadly, 2009). Climate change is common 

in Earth’s history and some periods are potentially analogous to those of 

today e.g. the early Eocene (~50 millions ago; Ma) and the middle Pliocene 

warm period (~3.3-3 Ma) (Burke et al., 2018). The fossil record is thus 

especially pertinent given that the accelerating present-day biodiversity 

crisis will have an impact that extends millions of years into the future (Davis 

et al., 2018).  
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Mammals are a taxonomically and morphologically diverse group, with a 

wide range of sizes, from the Etruscan shrew (weighing only 1.8gr) 

(Jürgens, 2002) to the largest mammal, the blue whale (~30m in length and 

weighting ~136,000 kg) (Sears & Calambokidis, 2002). They also take up 

various important ecological roles in ecosystems (predators, scavengers, 

seed dispersers etc.) all around the world (Archibald & Rose, 2005; Blois & 

Hadly, 2009).  

Mammals occupy essential roles in ecosystems worldwide but 32% of the 

5969 species are in population decline, with 30% identified as at risk of 

extinction (IUCN, 2020). In particular, ecologically specialised (Brodie et al., 

2021) and large-bodied mammalian species (Tilman et al., 2017) are 

thought to be at highest risk. Climate is thought to have played an important 

role in the 150 million year (Myr) evolutionary history of eutherian mammals, 

the group that includes extant placentals, as documented by their 

remarkable fossil record (Blois & Hadly, 2009; Brodie, 2018; Figueirido et 

al., 2012; Madden, 1995; Theodoridis et al., 2020).  

Of all the continents today, the ongoing climate emergency has the largest 

documented impact on Central and South American vertebrates, with 94% 

of species showing population declines over the last five decades (Almond 

et al., 2020). South America has an exceptional geobiological history, which 

includes the formation and uplift of the Andes, the longest mountain chain 

on Earth today, affecting the entire continent’s climate, habitats, and likely 

driving numerous diversification events over the last 80 Myr (Boschman, 

2021; Boschman & Condamine, 2022; Hoorn, Wesselingh, ter Steege, et 

al., 2010). The continent’s ~55 Myr-long isolation from all neighbouring 

landmasses (Livermore et al., 2005; Wilf et al., 2013) has led to the evolution 

an endemic fauna consisting of xenarthrans (sloths, armadillos, anteaters 

etc.), the now extinct South American Native Ungulates (SANUs), as well 

as the Paleogene introduction of caviomorph rodents and platyrrhine 

monkeys, potentially through transoceanic rafting (Antoine et al., 2012; 

Bond et al., 2015). Isolation ended with the formation of the Isthmus of 

Panama and the invasion of North American emigrants (including species 

that are now considered characteristic to the continent, like alpacas and 

llamas), during the Great American Biotic Interchange (GABI) in the 
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Pliocene (Carrillo et al., 2020; Cione et al., 2015a; Domingo et al., 2020; 

Marshall et al., 1982; Morgan, 2008; Soibelzon et al., 2019; Webb, 1976; 

Woodburne et al., 2006). 

Despite South America’s grave present-day situation and exceptional 

geobiological history, our knowledge of the continent’s faunal evolution is 

still in its infancy, limiting our understanding of how the present-day 

distribution of biodiversity was assembled. Major knowledge gaps still exist, 

including the impact of geologically long-term climatic change on the 

continent’s mammals.  

Most groups of South American mammals are characterized by a latitudinal 

biodiversity gradient (LBG), in which species richness increases towards 

the Equator (Fergnani and Ruggiero, 2015; Kaufman, 1995; Stevens et al., 

2019; this thesis [Supplementary Information or SI section 14]). 

Understanding what drives this global, first-order pattern remains one of the 

great challenges of macroecology. However, a modern-type gradient has 

not always been present in geological time (e.g. Mannion et al., 2014; 

Marcot et al., 2016), and it remains unclear when the LBG formed in South 

America. Consequently, the relative roles of climate, Andean uplift, and the 

GABI on shaping South America’s LBG have never been tested, but could 

illuminate our understanding of its emergence. These will be the points of 

focus of this thesis. 

 

Eutherian mammals 

Eutheria (including Placentalia) is the most abundant mammalian group 

today, the others being Metatheria (including Marsupialia) and Prototheria 

(including Monotremata) (McKenna & Bell, 1997; Novacek, 1992) (Figure 2 

and 3). The definitions of these names have been modified through time but 

more recently, authors consider Placentalia to include all extant placentals 

and their most recent common ancestor, whereas Eutheria includes 

Placentalia and the rest of the extinct mammals sharing a more common 

ancestor with placentals than with metatherians (Novacek, 1992; Archibald, 

2001; Ji et al., 2002; Luo et al., 2011; O’Leary et al., 2013)).  
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Eutherians differ from the other groups with their relatively long gestation 

periods and birth of their offspring in a late stage of development (Archibald, 

2001). Archibald & Rose (2005) noted that: “Although evolutionary success 

is a difficult if not impossible concept to define, we believe we know it when 

we see it. This is the case with the placentals, the clade of mammals to 

which we belong.” In order to understand how climate influences faunas 

worldwide, eutherians are a great case to study.  

 

 

Figure 1: Mammaliaform topology and stratigraphic distribution (bars) of mammals based 

on figure 1 of (Luo, 2007) except for the first appearance of eutherians and metatherians 

where the later discovery of Juramaia sinensis pushed the groups back to the Jurassic  

(Luo et al., 2011). L =  Late, M = Middle, E = Early 

Today’s diversity is just a small part of the group’s evolutionary history. The 

origin of eutherians and placentals has been pushed back in time with new 

fossil discoveries (Figure 1 and 2). It was previously thought that the first 

eutherians dated to the Late Cretaceous with, for example, the discovery of 

an eutherian-dominated fauna in Uzbekistan (Archibald et al., 1998). 

However, the first appearance of eutherians has been pushed further back 

with the discovery of eutherian mammal remains from the Early Cretaceous 

of China (e.g. Bi et al., 2018; Hu et al., 2010; Ji et al., 2002)) and Mongolia 

(Rougier et al., 1998). Finally, the discovery of the eutherian Juramaia 
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sinensis, a fossil specimen dating to 160 Ma from China, pushed back the 

first appearance of the group to the Late Jurassic (Luo et al., 2011) (Figure 

1). Molecular studies showed older divergence times between metatherians 

and eutherians (e.g. van Rheede et al. (2006), but more recent studies show 

that Eutheria first appeared 168–178 Ma (dos Reis et al., 2012), thus 

making molecular results in closer accordance with fossil data. We might 

still have a long way to go about learning about the first appearance of 

eutherians; however, we know that eutherian mammals had reached the 

whole world by the K/Pg boundary, 66 Ma (except Australasia and 

Antarctica, although these might represent sampling failures, rather than 

true absences) (Archibald & Rose, 2005).  

Similarly, the age of the first placental eutherians has also been a subject 

to debate. Beck and Lee (2014) put the appearance of placentals in the Late 

Jurassic to Early Cretaceous, an age considerably earlier than that 

proposed by other molecular or fossil-based studies. Kumar and Hedges 

(1998) and Murphy et al. (2001) also put the origin of placentals before 100 

Ma. On the other side of the spectrum, O’Leary et al. (2013) propose a post 

K/Pg origination of placentals (Figure 1 and 2). However, most studies 

propose a Late Cretaceous origin for placentals, more or less close to the 

K/Pg boundary (examples Archibald (1996), Springer et al. (2003), Bininda-

Emonds et al. (2007), Kitazoe et al. (2007), Wible et al. (2007), dos Reis et 

al. (2012) and Upham et al. (2019)). In any case, at 65-45 Ma most placental 

orders appeared and by the early Eocene all modern placental orders (along 

with their various functional adaptations) were already established (dos Reis 

et al., 2012; Rose, 2006). 

In South America in particular, we have fossil remains of mammaliaforms 

and mammals from Chubut, like the ichnofauna from Santa Cruz, dating 

back to the Middle Jurassic (Casamiquela, 1961), as well as Asfaltomylos 

and Henosferus (Martin & Rauhut, 2005; Rauhut et al., 2002; Rougier et al., 

2007) and Condorodon (Gaetano & Rougier, 2012) dating back to the Late 

Jurassic. Numerous other similar fossils from the Jurassic and Cretaceous 

have been located around the continent (see Rougier et al. (2021) for a 

comprehensive review), like the non-therian mammal Vincelestes 

neuquenianus (advanced pre-tribosphenic mammal) from the Early 
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Cretaceous (Bonaparte, 1986), and some dryolestoids endemic to the 

continent (Pascual & Ortiz-Jaureguizar, 2007).  

 

Figure 2: Phylogenetic relationships between Eutheria, and their stratigraphic ranges 

(bars). The topology of extant placentals follows the molecular analysis of O’Leary et al. 
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(2013), except for the placental root that was taken from Halliday et al. (2017). According 

to the latter (morphological analyses with molecular constraints), the early placental split 

between Atlantogenata and Boreaotheria is supported (instead of an 

Epitheria/Exafroplacentalia split with a xenarthran root, supported by O’Leary et al. (2013)). 

The position of the extinct placental clades follows Halliday et al. (2017) except for South 

American ungulates (grouping Notoungulata, Litopterna and Astrapotheria, sister group of 

Perissodactyla), the position and topology of which comes from Welker et al. (2015). 

Stratigraphic ranges of eutherian mammals: For extant groups, the first appearance in the 

fossil record comes from O’Leary et al. (2013) (for those, black and grey indicate the 

stratigraphic range of the crown and stem of the group). Stem eutherians last appearance 

takes place in the Paleogene (Paleobiology Database) but their stratigraphic range might 

have also extended in the Neogene. The stratigraphic range of Arctostylopidae comes from 

Cifelli et al. (1989). Apheliscidae have a Paleocene to Eocene distribution Zack et al. (2005) 

and others. Creodonta (including Oxyaenidae and Hyaenodontidae) have a Paleocene to 

late Miocene distribution (Gunnell, 1998). Mioclanidae is considered a synonym of 

Hyopsontidae according to Rose et al. (2012) and the latter have a Paleocene to Eocene 

distribution (Paleobiology Database). Pleuraspidotheriidae, Phenacodontidae, 

Palaeanodonta (Paleobiology Database), Pantodonta (Halliday et al., 2017) and 

Mesonychia (Morlo et al., 2013) also have a Paleocene-Eocene distribution. Triisodontidae 

and Periptychidae have a Paleocene distribution (Paleobiology database and McKenna 

and Bell (1997)). 

 

The end of the Mesozoic era 

The end of the Mesozoic era, 66 Ma (Renne et al., 2015; Schulte et al., 

2010) was marked with the fifth mass extinction (Alroy, 2010c; Benton, 

1985; Foote, 2000; Raup & Sepkoski, 1982). Prior to the event, there were 

no universal diversity patterns: a small decline in diversity was found in 

pterosaurs (Butler et al., 2013; Longrich et al., 2018), lissamphibians (Close 

et al., 2020a) and crocodylomorphs (de Celis et al., 2019; Mannion et al., 

2015, 2019); however, no similar pattern was found for dinosaurs 

(Chiarenza et al., 2019; Fastovsky et al., 2004; Mannion et al., 2011; 

Upchurch et al., 2011). The fossil record of other groups, such as 

lepidosaurs, is not good enough to permit robust inferences of diversity 

shifts (Cleary et al., 2018).  

During this extinction event, non-avian dinosaurs, pterosaurs, plesiosaurs 

and mosasaurs went extinct, along with ammonoids, belemnites and other 
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important invertebrate groups (Archibald, 1996; Bambach, 2006; Macleod 

et al., 1997; Novacek, 1999). As for the groups that persisted into the 

Cenozoic, some declined in diversity – for example squamates (Longrich et 

al., 2012), insects (Labandeira et al., 2002) and plants (Vajda & Bercovici, 

2014; Wilf & Johnson, 2004). Others seem to have been less affected – for 

example turtles (Ferreira et al., 2018; Lyson et al., 2011) and 

crocodylomorphs (Brochu, 2003; Mannion et al., 2015).  

Eutherians and metatherians increased in diversity worldwide, relative to 

other mammalian groups, in the last stages of the Cretaceous (Bennett et 

al., 2018; Grossnickle & Newham, 2016; Grossnickle & Polly, 2013; Halliday 

& Goswami, 2016; Williamson et al., 2014; Wilson, 2013; Wilson et al., 

2012). This seems to have been followed by a decline in mammalian 

diversity through the K/Pg boundary (Alroy, 1999; Longrich et al., 2016; 

Wilson, 2013). 

That time was characterised by Pangean breakup, and a series of land 

bridges connected some of the continents during the Late Cretaceous 

(Figure 3). South America was still connected to North America (as well as 

Antarctica and Australia) (Wilf et al. (2013) and references therein). Two 

migration episodes took place in the continent, with a ~9 million year (Myr) 

gap in between, during the latest Cretaceous and earliest Paleogene: the 

“Gondwanan episode” including very brief non therian radiations, and the 

following “South American episode” (Pascual & Ortiz-Jaureguizar, 2007).  

Although there has been some older evidence of therian and tribosphenic 

mammals in the continent (Ameghinichnus paragonicus from the Late 

Jurassic, found along with fossils of the oldest found tribosphenic mammal 

in the continent (Rauhut et al., 2002), it is considered that the first therian 

mammals reached South America during the latter event, reaching the 

continent through North America. This event has also been called the ‘First 

American Biotic Interchange’ (FABI) (Goin, et al., 2012a) (Figure 6), and 

probably included multiple immigration events and a subsequent radiation 

(Gelfo et al., 2009) that resulted in the decline of all non-therian mammals 

present there (Goin, et al., 2012a), although some survived until later, e.g., 

Greniodon from the early-middle Eocene of Chubut (Goin, et al., 2012b) and 
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Necrolestes from the early-middle Miocene (Averianov et al., 2013; 

Chimento et al., 2012; Rougier et al., 2012) 

South America became isolated from North America swiftly after the event, 

while it remained connected to Antarctica (and Australia) until the formation 

of the Drake Passage in the Eocene (see dedicated section). The South 

American faunas evolved in this isolation until the reconnection with North 

America via the Isthmus of Panama, when the Great American Biotic 

Interchange (GABI) took place ~ 5 Ma (see dedicated section). 

 

The onset of the Cenozoic 

The Cenozoic has also been considered as the “age of mammals” because 

of the explosive radiation and diversification of mammals characterising that 

era (Marshall, 1982; Rose, 2006; Simpson, 1937). More specifically, a very 

important eutherian diversification took place during the early Cenozoic, 

with the occupation of niches previously taken by dinosaurs, but recently 

vacated following the K/Pg mass extinction event (Kemp, 2005; Luo, 2007). 

An exceptional increase in eutherian diversity, body size and functional 

adaptations of eutherians took place during the Paleocene (Alroy, 1999; 

Archibald & Deutschman, 2001; Benson et al., 2016; Close et al., 2017; 

Emerling et al., 2018; Grossnickle & Newham, 2016; Halliday et al., 2016, 

2019; Halliday & Goswami, 2016; O’Leary et al., 2013).  

While the Cretaceous had higher concentrations of CO2, a warmer climate 

(Beerling et al., 2002; Royer, 2006) and a weak latitudinal temperature 

gradient (Huber et al., 2002; Wolfe & Upchurch, 1987), the Cenozoic (~66 

Ma till today) is characterised by climate cooling that followed the 

Paleocene-Eocene Thermal Maximum (PETM; see dedicated section), and 

the transition from a greenhouse world to an icehouse world that started 

during the Eocene-Oligocene (~33.9 Ma) with the formation of permanent 

ice-sheets in both poles (Westerhold et al., 2020; Zachos et al., 2008) 

(Figure 3). 
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The Paleocene/Eocene Thermal Maximum (PETM) 

At the Paleocene/Eocene boundary, 56 Ma, a negative excursion of δ18O, 

shifts in Mg/Ca ratios recorded in benthic and planktonic foraminifera and 

biomarkers (e.g. leaf margins and oxygen isotopes on fish scales and 

mammal teeth) show a rapid global warming event of ~5-8 o C leading to a 

temperature maximum (of the whole Cenozoic, worldwide). This event is 

called the Paleocene-Eocene Thermal Maximum (PETM) (Fricke & Wing, 

2004; Sluijs et al., 2006; Tripati & Elderfield, 2005; Weijers et al., 2007; 

Westerhold et al., 2020; Zachos et al., 2003, 2006, 2008) (Figure 3). This 

was coupled with a carbon cycle perturbation (McInerney & Wing, 2011) 

and with the lowest equator-to-poles temperature gradient of the past 55 

Myr (Moran et al., 2006; Westerhold et al., 2020). This event was relatively 

short (Jaramillo et al., 2010; Westerhold et al., 2009), ~150-170 kyrs 

warming event. A longer 5 Myr max warm period – sometimes called Early 

Eocene Climatic Optimum or EECO followed (Kennett & Stott, 1991; 

Mudelsee et al., 2014; Stott et al., 1990).  

A gradual global cooling followed the EECO event (Passchier et al., 2013; 

Westerhold et al., 2020; Zachos et al., 2008) and was marked with the 

replacement of early Cenozoic mammal faunas with “modern” ones, from 

the Paleocene to the Eocene transition (Janis, 1993; Prothero, 1994) 

(Figure 3). The Eocene is characterised by two phases of cooling separated 

by the Middle Eocene Climatic Optimum (MECO) that took place ~ 40 Ma 

(Miller et al., 1987; Mudelsee et al., 2014; Tripati et al., 2005) (Figure 3).  

Intense global cooling continued at the Eocene/Oligocene boundary (see 

examples of local studies: Schouten et al. (2008); Hren et al., 2013)), in 

parallel to the forming of the Drake Passage 41 (Scher & Martin (2006); see 

dedicated section and Figure 3), but also the Tasmanian Passage 33.5 Ma 

(Kuhnt et al., 2004), resulting in formerly isolated deep cold Arctic waters 

entering the Atlantic (Potter & Szatmari, 2009). The continuing global 

cooling is also linked with the appearance of permanent ice-sheets in 

Antarctica (Miller et al., 1987; Mudelsee et al., 2014; Prothero et al., 2003). 

This event includes the Early Oligocene Glacial Maximum (EOGM) that took 

place ~33.7 Ma and was followed by a partial recovery period of relative 

warm conditions (Zachos et al., 1996).  
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The fossil record shows evidence that this abrupt and short global warming 

event, as well as the following cooling, had an impact on the faunas and 

floras of that time globally (e.g. Wing et al. (2005) for plants, and Currano et 

al. (2008) for insects). Unfortunately, while the fossil record indicates the 

appearance of modern mammalian clades like Artiodactyla, Perissodactyla, 

and Primata, and important dispersions during that time (Blois & Hadly, 

2009; Gingerich, 2006), our knowledge is mostly restricted to the northern 

hemisphere, as the southern hemisphere fossil record is scarce (Gingerich, 

2006; Rose, 2006).  

 

The formation of the Drake Passage separating South 

America and Antarctica 

The terrestrial fossil record is scarce in Antarctica; however, there is 

evidence that South America and Antarctica were linked landmasses 

(Lawver et al., 1992) through the Weddelian isthmus (Reguero et al., 2014) 

and that it served as an evolutionary centre as well as a stepping stone 

towards Australia, until its disconnection (Vizcaíno et al., 1998).   

Ice-sheets were not present in all of Antarctica either (Dingle et al., 1998; 

Dutton et al., 2002) and especially the lower latitudes were mostly ice-free 

till the middle Eocene (Ehrmann & Mackensen, 1992). Barreda and 

Palazzesi (2007) and Francis et al. (2007), studying the palaeoflora found 

evidence of a climatic deterioration of Antarctica through the Paleogene and 

Vizcaíno et al. (1997) show that by the middle Eocene and until the 

Oligocene, the habitat should have still been suitable for mammals. 

All this permitted the dispersion of mammals from South America to 

Antarctica (and some to Australia as well) (Olivero et al., 1991; Reguero et 

al., 2002; Reguero & Marenssi, 2010). Most terrestrial mammal fossil 

remains are found in the La Meseta Formation on Seymour Island and come 

from the early Eocene (see Carlini et al. (1990); Reguero et al. (2002); Bond 

et al. (2011) for the first placentals) – the oldest mammal fossil dating from 

~55.3 Ma (Gelfo et al., 2015). This fauna is found closely related to that of 

Patagonia (Reguero et al., 2002; Reguero & Marenssi, 2010) but shows 

high endemicity (Vizcaíno et al., 1998). Marsupials reached Australia via 
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Antarctica during the time these continents were linked (Woodburne & 

Case, 1996) and there is evidence of the South American origin of 

Australian marsupials (see for example Kirsch et al. (1991); Arnason et al. 

(2002); Meredith et al. (2008)). 

Patagonia (southern South America) transformed from a shallow sea, due 

to an Atlantic transgression (Scasso et al., 2012; Spalletti & Franzese, 

2007), to a series of caldera-lakes, due to the intensified volcanism linked 

to the later formation of the Drake Passage. The formation of the Drake 

passage resulted in the separation of South America and Antarctica – the 

sea floor extension begun ~55 Ma with the gradual transformation of land 

to a shallow sea, an increase in separation rate ~50 Ma (Livermore et al., 

2005) and the complete formation happened ~36 Ma (Barker & Burrell, 

1977; Dalziel & Elliot, 1982; Diester-Haass & Zahn, 1996; Ehrmann & 

Mackensen, 1992; Lawver et al., 1992; Woodburne & Zinsmeister, 1984) 

(Figure 4 and 5). The Drake Passage led to the development of the 

Circumpolar current (Livermore et al., 2004) that enhanced the existing 

cooling, aridification and the rapid expansion of ice-sheets on Antarctica 

(Goin, et al., 2012a; Passchier et al., 2013). The halt of mammalian 

dispersion should have followed the early stages of the Drake passage 

formation (Reguero et al., 2014). On the other side, Antarctica and Australia 

were separated ~30 Ma (Veevers, 1991) (Figure 4 and 5). 

 

The end of the Paleogene and “the Patagonian Hinge” 

The Paleogene/Eocene cooling has been linked to a faunal turnover event 

called the Terminal Eocene Event or TEE (Blois & Hadly, 2009) that is more 

traditionally known from Europe and Asia, with studies referring to it as the 

“Grande Coupure” (“Great Cut”) in Europe (Agusti & Antón, 2002; Kemp, 

2005; Prothero, 1994; Rose, 2006) as well as the “Mongolian Remodelling” 

(Meng & McKenna, 1998). There is evidence of this event also taking place 

in South America, and it is named “the Patagonian Hinge” (bisagra 

patagonica, hinge referring to the fauna shift) (Goin et al., 2010) (Figure 4). 

This is mostly known from the South American marsupial fossil record, from 

localities such as Gran Barranca in Patagonia (Abello et al., 2018; Goin et 



19 
 

al., 2016; Goin, et al., 2012b), where faunas shifted from an omnivorous, 

insectivorous, frugivorous diet towards herbivory, especially granivory (Goin 

et al., 2010). 

 

Figure 3: (A) Palaeotopographic maps, constructed in R using Scotese’s Digital Elevation 

Models (DEM) for every 5 Myr (Scotese, 2001). These models are calculated projections 

in the past, and can overestimate topography or present more errors, the more those 

projections go back in time (as seen here for example with the overestimation of altitude in 
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the Andean region 55Ma). Key palaeogeographic events of the Cenozoic are shown: the 

Beringia and Thulean route is shown on the map of 55 Ma, the opening of the Drake 

passage on the map of 40 Ma, the opening of the Tasmania passage on the map of 30 Ma, 

the Indonesian gateway restriction on the map of 25 Ma, the closure of the South-East 

Mediterranean seaway at 10 Ma and the formation of the Panama Isthmus possibly around 

(or after) 5 Ma. Blue hues represent bodies of water (with colour getting darker with depth) 

and orange/red hues represent land (with red representing higher altitudes). Brikiatis 

(2014) reviewed the multiple hypotheses on the presence and timing of land bridges and 

suggested that two land bridges were present during the PETM: the Thulean route 

(connecting Europe with North America via Greenland) and the Beringia route (connecting 

East Asia and North America) and  the presence of which is also accepted by (Prothero, 

1994; Ting, 1998; Agusti and Antón, 2002; Kemp, 2005) and others. The De Geer route 

linking Greenland with Fennoscandia during the Late Cretaceous, and at the K/Pg 

boundary the Beringia linking East Asia and North America (Brikiatis, 2014)) between 

Laurasian palaeocontinents and the beginning of collision of India to Eurasia (Seton et al., 

2012). (B) International chronostratigraphy (ICS, 2020) in Ma. (C) A summary of the 

climatic changes (Zachos et al. 2008; Westerhold et al., 2020) that took place worldwide 

during the Cenozoic. All are mentioned throughout the text along with their citations. 

The Paleogene ended with the ongoing climate cooling in the Oligocene 

(Lear et al., 2004; Lyle et al., 2008; Miller et al., 1987; Westerhold et al., 

2020; Zachos et al., 2001) and a second glaciation step (or strong 

glaciation) at the Oligocene/Miocene boundary where the Antarctic ice-cap 

has already fully formed (Miller et al., 1991; Mudelsee et al., 2014; 

Shevenell & Kennett, 2007) (Figure 4). The restriction of the Indonesian 

Gateway (between Borneo and New Guinea connecting Pacific to Indian 

ocean) took place 25 Ma (Kuhnt et al., 2004) (Figure 5). Now that there is 

some context on the South American landmass geological and climatic past, 

it is time to mention more about the actual South American eutherian 

mammals that are the focus of this thesis. 

 

South American eutherian mammals 

The continent’s extended isolation led to the evolution of an endemic fauna. 

The fossil record in scarce on the continent at the beginning of the Cenozoic, 

it includes, however, key representatives for placental evolution, like the 

basal pantodont Alcidedorbignya inopinata from the early Paleocene of 

Bolivia (de Muizon et al., 2015). There were two main endemic placental 
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mammal groups, that existed along marsupials that were also endemic to 

South America throughout the Cenozoic. Those two placental groups were 

Xenarthra and Meridiungulata or South American Native Ungulates or 

SANUs (Figure 4). 

South American Native Ungulates (SANUs) 

Meridiungulata groups all South American ungulates (hooved mammals), of 

which no representative survives today (Figure 4). This group has been 

initially thought of as monophyletic (McKenna, 1975; McKenna & Bell, 

1997), including the groups Notoungulata, Litopterna, Astrapotheria, 

Pyrotheria and Xenungulata. However, it is now considered most probably 

polyphyletic (O’Leary et al., 2013). This group was diverse, comprising a 

variety of forms such as hippo-like taxa (Toxodontidae (Notoungulata)), 

animals with a proboscis (Astrapotherium (Astrapotheria)) and animals 

adapted to cursoriality (Macrauchenia (Litopterna) (Bond et al., 2001)). 

However, most groups go extinct in the first half of the Cenozoic. 

Xenungulates are less known from the fossil record, some of the oldest 

remains coming from the middle Paleocene (Simpson, 1935), and some of 

the last in the early Eocene (Villaroel, 1987). Astrapothere fossils come from 

localities dating from the early Eocene (Kramarz & Bond, 2013; Kramarz et 

al., 2017; Soria, 1987; Soria & Powell, 1981; Woodburne, Goin, Bond, et al., 

2014; Woodburne, Goin, Raigemborn, et al., 2014) to the middle Miocene 

(Goillot et al., 2011; Johnson, 1984; Johnson & Madden, 1997; Vallejo-

Pareja et al., 2015). Astrapotheres (as well as pyrotheres) show adaptations 

towards large body sizes during that time (Goin, et al., 2012a). 

On the other hand, litopterns and notoungulates reach the late Pleistocene, 

when they go extinct during the megafaunal extinctions of that time (Croft 

et al., 2020; Goin, et al., 2012a). Litopterns are found in the fossil record 

from the early Paleocene (de Muizon & Cifelli, 2000; Gelfo et al., 2009), 

similarly to notoungulates (de Muizon & Cifelli, 2000; Gelfo et al., 2009; 

Woodburne, Goin, Bond, et al., 2014). Both groups become more abundant 

in later stages, with last forms like the litoptern Macrauchenia (Bond et al., 

2001) and the notoungulate Toxodon (Barnosky & Lindsey, 2010; Cione et 

al., 2003) getting extinct in the Late Pleistocene. 
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Xenarthra 

Xenarthra, as the name suggests (strange joints in Greek), differs from the 

other groups by having more articulated vertebral joints and a very low 

metabolism (Elgar & Harvey, 1987; Lovegrove, 2000) as well as the 

presence of osteoderms in some groups (Fernicola et al., 2021). It is one of 

the earliest diverging placental groups (Meredith et al., 2011), with first 

representatives dating back to the latest Cretaceous (Delsuc et al., 2016; 

Gibb et al., 2016; Meredith et al., 2011). Xenarthrans include three main 

groups: Vermilingua (including extant anteaters), Folivora (including extant 

sloths), and Cingulata (including extant armadillos). However, today’s 

representatives are just the remnants of a once more diversified group 

(Figure 4).  

Vermilingua are poorly known from the fossil record, with some of the oldest 

fossils coming from the early Miocene (Carlini et al., 1992), with fossil 

families Adiastaltidae and Anathitidae represented by very few and 

fragmentary fossils and so are considered junior synonyms of 

Myrmecophagidae by McDonald et al. (2008). 

Folivora includes arboreal and terrestrial sloths. Today, only two genera 

survive, Bradypus (three-fingered sloth) and Choloepus (two-fingered 

sloths), all small and arboreal. Their fossil record is much more diverse, with 

fossils dating back to the Oligocene (McKenna et al., 2006). However, their 

largest diversity comes from the Pliocene and Pleistocene, including giant 

and small terrestrial forms like Megatherium (including Megatherium 

americanum that was weighing >4 tonnes) (Ameghino, 1889; Pujos, 2006; 

Pujos & Salas, 2004; Saint-André & de Iuliis, 2001). 

Cingulata are characterized by having a dorsal carapace made by 

osteoderms that are usually characteristic of the genus or species 

(Fernicola & Porpino, 2012). They date back to the early Eocene, with 

fossils like Riostegotherium yanei from Brazil (Oliveira & Bergqvist, 1998) 

and Noatherium emilioi from Argentina (Fernicola et al., 2021). However, as 

with folivores, the group is mostly known from the Neogene and Quaternary, 

showing a vast diversity of sizes and specialisations like the heavily 
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armoured glyptodonts, that have been the focus of studies for over two 

centuries (Ameghino, 1889; McKenna & Bell, 1997). 

 

Figure 4: (A) Phylogenetic relationships of Xenarthra, South American Native Ungulates 

(SANUs), Caviomorpha and Platyrrhini. Xenarthra: The general distinction of xenarthrans 

in Cingulata and Pilosa (including Folivora and Vermilingua) as well as the internal topology 
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of Cingulata comes from Engelmann (1985); Gaudin (2003); Hill (2005). Topology within 

Folivora (else called Tardigrada or Phyllophaga) comes from molecular analyses of extinct 

and extant sloths (Delsuc et al., 2019). Vermilingua (anteaters) are poorly known from the 

fossil record; fossil families Adiastaltidae and Anathitidae are represented by few and 

fragmentary fossils and so are considered junior synonyms of Myrmecophagidae by 

McDonald et al. (2008). South American native ungulates: the relative position of 

Astrapotheria, Litopterna and Notoungulata comes from the molecular analyses of Welker 

et al. (2015). However, this excludes the Astrapotheria group. De Muizon et al. (2015) 

support a position of Astrapotheria in closed relation to Notoungulata. Astrapothere internal 

topology comes from Cifelli (1993), according to which Trigonostylopidae with the addition 

of Eoastrapostylopidae was the stem group of Astrapotheriidae. Only litoptern 

monophyletic families were included (Carrillo et al., 2018; Cifelli, 1983; Cifelli, 1993; 

Forasiepi et al., 2016; Schmidt, 2015). The topology within Notoungulata and the inclusion 

of Pyrotheria follows Billet (2011). Xenungulata is a poorly known group and only the 

families Cardodniidae (Simpson, 1935) and Etayoidae (Villaroel, 1987) are known. 

Platyrrhini: The topology of the extant families comes from Wang et al. (2019) molecular 

analyses. The position of the extinct families was inferred from Kay (2015). Caviomorpha: 

the topology of extant clades comes from the molecular (Bayesian) analyses of Álvarez et 

al. (2017). The position of Eocardiidae (stem group of Caviidae crown group) comes from 

Pérez (2010) and the other extinct clades from Arnal & Vucetich (2015). (B) Stratigraphic 

ranges (bars) of South American endemic eutherian mammals: The stratigraphic 

ranges are based on first and last appearances of the group. The oldest Folivora fossil is a 

sloth from the early Oligocene (Tinguirirican) (McKenna et al., 2006). The earliest 

Vermilingua fossil comes from the late Oligocene to early Miocene (Colhuehapian) (Carlini 

et al., 1992). The oldest cingulate fossils are from the late Paleocene - early Eocene 

(Itaboraian) (Oliveira & Bergqvist, 1998). Astrapotheres are found from the early Eocene 

(Itaboraian)(Goillot et al., 2011; Johnson & Madden, 1997; Soria & Powell, 1981; Vallejo-

Pareja et al., 2015) to the middle Miocene (Laventan) (Goillot et al., 2011; Johnson, 1984; 

Johnson & Madden, 1997; Vallejo-Pareja et al., 2015). Litopterns are found in the fossil 

record from the late Paleocene (Peligran) (Gelfo et al., 2009), but most probably being 

present from the Tiupampan (de Muizon & Cifelli, 2000) whereas their last appearance 

takes place in the late Pleistocene (Bond et al., 2001). Notoungulates are recorded from 

the early Paleocene (Tiupampan) (de Muizon & Cifelli, 2000; Gelfo et al., 2009; 

Woodburne, Goin, Raigemborn, et al., 2014) until the late Pleistocene (Barnosky & 

Lindsey, 2010; Cione et al., 2003). The oldest xenungulate fossil comes from the middle 

Paleocene (Simpson, 1935) and the last known fossil is from the early Eocene (Villarroel, 

1987). The oldest age of caviomorph rodents in South America comes from Cachiyacuy 

contamanensis from the middle Eocene (~41 Ma) (Antoine et al., 2012). Finally, the oldest 

platyrrhine fossil comes from the late Eocene (Perupithecus at ~35-36 Ma) (Bond et al., 

2015). 
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Paleogene arrival of Caviomorpha and Plattyrhini 

Caviomorph rodents (including extant guinea pigs, chinchillas and 

capybara) as well as platyrrhine monkeys (including extant capuchins, 

marmosets and spidermonkeys) are an important part of South America’s 

fauna today. However, these two groups were later introductions to the 

continent (Campbell et al., 2021; Seiffert et al., 2020) (Figure 4 and 5), 

presumably reaching South America by rafting across the Atlantic Ocean 

from Africa (Antoine et al., 2012; Bond et al., 2015; Goin, et al., 2012a).  

The introduction of these two groups had been thought to have taken place 

either as a two-wave radiation with rodents arriving around 34 Ma and 

primates (Platyrhini) around 28.5 Ma, or as one radiation event (Goin, et al., 

2012a; Poux et al., 2006). However, new discoveries have pushed back the 

first appearance of those groups in South America, with fossils like the 

caviomorph Cachiyacuy contamanensis from ~41 Ma (middle Eocene) from 

Peru (Antoine et al., 2012), and the platyrrhine Perupithecus ucayaliensis 

from ~35 Ma (late Eocene) from Peru, making the dispersion parallel to the 

MECO (Bond et al., 2015). 

 

South American Land Mammal Ages (SALMA) 

The long isolation and unique geological history of South America, as well 

as the unique evolution of endemic faunas and floras throughout most of 

the Cenozoic era, has made it difficult to correlate South American 

biostratigraphy with that of the rest of the world (Flynn & Swisher III, 1995). 

However, the high endemicity of those faunas, especially those of placental 

and marsupial mammals, has been proven useful for biostratigraphic 

correlations within the continent (Flynn & Swisher III, 1995). These are 

called South American Land Mammal Ages (SALMAs), are local 

stratigraphic units that cover most of the Cenozoic era, and that are defined 

using changes in mammalian faunas (Figure 5B and C). Most of these Ages 

are informal biochronological units, dated by direct dating of fossils or 

sediments, and with relating chronostratigraphic sequences in different 

parts of South America. Their dates have been changed, some more 

considerably than others, with new studies and methods, allowing updated 
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datings. A more extended literature review of the most up-to-date SALMA 

limits is found in the SI section 1 of this thesis, and is shown in Figure 5C. 

In order to make the results of this thesis more comparable to 

macroevolutionary patterns taking place in other continents, I have 

“translated” the ages in my dataset, to international chronostratigraphic 

stages (ICS; see Material and Methods section). 
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Figure 5: (A) International Chronostratigraphic stages (B) older datings of the South 

American Land Mammal Ages (SALMA) based on (Flynn & Swisher III, 1995), and currently 

still in use in the Paleobiology Database (C) updated datings of the SALMA (see SI section 

1 of this thesis for the extended bibliography for these dates) (D) A summary of the climatic 

changes (Zachos et al. 2008; Westerhold et al., 2020) during the Cenozoic along with 

palaeogeographic and biotic events relevant to South America. All are mentioned 

throughout the text along with their citations. 

 

Neogene climate cooling and aridification 

The Neogene spans from 23 to 2.6 Ma and includes the Miocene (23–5.3 

Ma) and the Pliocene epochs (5.3–2.6 Ma; Figure 3 and 5). The increased 

relative concentration of continents in higher latitudes during the Neogene 

cooling, coupled with the ongoing climate cooling, assisted the global 

already present from the Eocene (for example Miller et al. (1987); Wright & 

Miller (1992); Zachos et al. (2001) and Potter & Szatmari (2009)). 

Subsequently, the intensification of glaciation followed with the forming of 

glaciers in Greenland (Thiede et al., 1998) and the westward expansion of 

the East Antarctic ice sheet (Mercer, 1983). For example, Passchier et al. 

(2013) found that the inferred mean temperature and precipitation changes 

in Antarctica coincided with those inferred by vegetation indices and showed 

a >8 oC cooling from the Eocene till the middle Miocene. 

Notable climatic changes took place in the middle Miocene (Flower & 

Kennett, 1994; Westerhold et al., 2020; Zachos et al., 2001) and, most 

importantly, a relatively warm period 17-15 Ma called the Middle Miocene 

Climatic Optimum (MMCO) (Westerhold et al., 2020; Zachos et al., 2001, 

2008) and its subsequent cooling event, the Middle Miocene Climatic 

Transition (Flower & Kennett, 1994; Mudelsee et al., 2014) (Figure 3 and 5). 

During the MMCO there is evidence of a less prominent latitudinal 

temperature gradient (Bruch et al., 2004, 2007). The MMCO signalled an 

intermediate time of climatic change that was followed by faunal changes 

worldwide (Blois & Hadly, 2009). 

The second half of the Neogene is characterised by the restart of the global 

cooling trend (Costeur et al., 2007; Legendre et al., 2005; Miller et al., 1991) 

and Antarctic ice expansion (Shevenell & Kennett, 2007), leading to drier 
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climates (e.g. van Dam (2006); Potter & Szatmari (2009)) (Figure 3 and 5). 

The closing of the Mediterranean seaway from the collision of Arabia and 

Asia took place 10 Ma (Rogl, 1999) (Figure 3).  

The last stage of the Miocene, the Messinian (7.2–5.3 Ma), is characterised 

by the intensification of climate cooling and aridification continued and the 

Mediterranean salinity or Messinian crisis took place, in which the 

Mediterranean lost contact with the Atlantic 5.6-5.3 Ma because of the brief 

closing of the Gibraltar passage, thus becoming a hypersaline ‘lake’ (Hsü et 

al., 1973, 1977; Krijgsman et al., 1999) (Figure 3). The Pliocene (5–3 Ma) 

had a relative warm period (Maslin et al., 1998; Shackleton et al., 1988) until 

the onset of the Northern Hemisphere Glaciation (NHG) ~3.2 Ma (Poore & 

Sloan, 1996) or earlier, ~3.6 Ma (Mudelsee & Raymo, 2005) (Figure 3). 

Further cooling led to a period with successive glacial and inter-glacial 

periods (that went on and became the main characteristic of the Pleistocene 

and Holocene periods) (de Schepper et al., 2014; Hepp et al., 2006). The 

formation of the Isthmus of Panama resulted in the disappearance of the 

Equatorial flow that further intensified the global cooling trend (Potter & 

Szatmari, 2009). By the end of the Neogene, the final environmental, 

climatic and tectonic changes took place that shaped the world to what we 

see today – with the exception of the glacial and interglacial iteration of the 

Pleistocene (Potter & Szatmari, 2009) (Figure 3 and 5). 

 

Habitat shift towards grasslands 

Due to the ongoing climate cooling, and potentially the emergence of land 

during low sea levels (MacFadden et al., 1992), there has been a worldwide 

expansion of grasslands over tropical and temperate forests (Medeanic, 

2002; Retallack, 2001; Velichko, 2005). This has been evidenced by the 

gradual diet shift in mammal herbivores, containing more and more C4 

grasses, and less C3 type forest plants ~8–6 Ma, as shown by mostly tooth 

enamel studies (Cerling et al., 1997; MacFadden et al., 1992). In other 

words, the gradual replacement of browsers with grazers (i.e. herbivores 

whose diet includes more than 60% monocotyledonous grasses (Gagnon & 

Chew, 2000)) takes place, and this was coupled with herbivore immigrations 
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on most continents like Eurasia (Badgley et al., 2005; Fortelius et al., 2006; 

van Dam, 2006), North America (Barnosky, 2001; Barnosky & Carrasco, 

2002; Hopkins, 2007; Janis et al., 2004), Africa (Bobe, 2006), and South 

America (Flynn et al. (2003); Pascual (2006); see also the Great American 

Biotic Interchange section, and Figure 3 and 5).  

Further increased aridity and continuation of the expansion of grasslands 

affected Eurasian faunas in the late Neogene (Cano et al., 2014; Cerling et 

al., 1998; Fortelius et al., 2006; Janis, 1993; van der Made et al., 2006), 

sometimes in the form of diversity losses (Costeur & Legendre, 2008; van 

Valkenburgh, 1999), but also dispersions such as the immigration of 

hippopotamoids, cercopithecoid monkeys and gerbils from Africa to Europe 

(Agusti, 1999; Agustí et al., 2006; Azzaroli & Guazzone, 1979; García-Alix 

et al., 2016). 

The aforementioned diet shift towards grazing was also coupled with a trend 

towards hypsodonty (i.e. the presence of high-crowned teeth), that provided 

increased resistance to dental wear during consumption of more abrasive 

food, like grasses (Billet et al., 2009; Madden, 2015). Hypsodonty appeared 

in various placental groups worldwide, like equids and proboscideans in 

North America, antelopes, hippos, giraffids in Africa, hypsodont deer, hippos 

and giraffids in Eurasia  (Damuth & Janis, 2011; Jernvall & Fortelius, 2002; 

Kemp, 2005; MacFadden & Ceding, 1994; Strömberg, 2006), as well as 

notoungulates and rodents in South America (Carlini et al., 2006; Cifelli & 

Villarroel, 1997). In fact, hypsodonty appeared in South America around 10 

Myrs earlier than in the rest of the world, among notoungulate groups of the 

Paleocene (Gomez Rodrigues et al., 2016; Jardine et al., 2012; 

MacFadden, 2000; Madden, 2015; Pascual & Ortiz-Jaureguizar, 1990; 

Stebbins, 1981). It has also been hypothesized that the presence of 

hypsodonty in South American groups is also linked with the evolution of 

the Andes, and the increased presence and deposition of detritic particles 

on plants consumed by these animals (Dunn et al., 2015; Kohn et al., 2015; 

Strömberg et al., 2013). 

While the Plio-Pleistocene also includes further diet shifts (DeSantis et al., 

2009), faunal turnovers (Bobe & Behrensmeyer, 2004; Vrba, 1995; 

Wesselman, 1995) and migrations between continents (Kemp, 2005), the 
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most notable event of this time was the “Great American Biotic Interchange” 

(GABI), the exchange of mammalian faunas between South and North 

America with the formation of the Isthmus of Panama (see dedicated 

section) (Figure 5).  

 

The reconnection with North America, and the 

arrival of North American emigrants 

The South American isolation ended when North and South America were 

joined by the formation of the isthmus of Panama and the “Great American 

Biotic Interchange” (GABI) took place (Simpson, 1980; Stehli & Webb, 

1985). There have been numerous studies trying to understand the timing 

and forming of the Panama isthmus. Jaramillo (2017) summarized the main 

stages in the evolution of the Panama isthmus, starting by the emergence 

of an “island” in the late Eocene, the product of intraplate Pacific volcanoes 

in the southern part of the Caribbean plate (Buchs et al., 2011). This was 

followed by a second terrestrial landscape development in the early 

Miocene, product of the collision between Panama and South America 

(Farris et al., 2011) and this region seemed to be connected with North 

America (Kirby & Macfadden, 2005; MacFadden, 2006; MacFadden et al., 

2014) and dominated by tropical rainforest, its presence continuing through 

the Miocene (Jaramillo et al 2014). In the late Miocene (12–10 Ma) the full 

closure of the Central America Seaway (CAS) took place (Montes et al 

2015) but while the deep water exchange ceased, the shallow sea water 

exchange continued until the end of the Pliocene (Coates et al., 2004). The 

last stage that followed consisted of the cessation of shallow sea water 

exchange and the full and continuous emersion of the isthmus of Panama.  

Most studies seem to accept this sequence of events, however the timing 

and importance of those – and especially that of the complete forming of the 

Panama isthmus – are in debate. Some studies show evidence of a “late” 

complete formation of the Panama isthmus in the late Pliocene at 2.8 Ma 

(O’Dea et al., 2016), ~2.5-3.0 Ma (Bartoli et al., 2005), 3 Ma (Jackson & 

O’Dea, 2013), 3.1 Ma (Keigwin, 1978), 3.1-3.5 Ma (Coates & Obando, 

1996), 3.5 Ma (Jaramillo, 2017) and 3.5-4.2 Ma (Jaramillo et al., 2017). 
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Other studies show an earlier formation of the isthmus in the Miocene at 6-

10 Ma (Bacon et al., 2015), 13-15 Ma (Bacon et al., 2016; Montes et al., 

2015) and from at least 17.5 Ma (Bacon et al., 2013). Finally, Montes et al. 

(2012) argue for the initial formation of the isthmus in the middle 

Eocene/Oligocene. 

These researchers debate over the different methods used, but also (maybe 

more importantly) two key issues exist: the first has to do with the definition 

of an isthmus and the second about how essential an isthmus is for a faunal 

exchange to happen. The definition of an isthmus states that it is a 

continuous strip of land surrounded by water connecting two larger areas of 

land (Cambridge Academic Content Team, 2020). The problem is that the 

fossil record does not preserve the whole geological history and does not 

provide a good temporal and spatial resolution of the events. Because of 

this, it is very difficult to see the difference between an 

uninterrupted/continuous strip of land or its occasional interruption by 

shallow sea water through geologic time. For example, Jaramillo (2017) and 

Jaramillo et al. (2017) argue that there have been periods of complete 

absence of shallow sea water in the Panama region and thus argue for an 

early isthmus formation whereas (O’Dea et al., 2016, 2018) argue that there 

was a continuous interruption of land by shallow seas until the end Pliocene 

when the isthmus properly emerged. 

The other important point of discussion is that a completely emerged strip 

of land is not a prerequisite for a faunal dispersal to happen. There are 

numerous examples of animals and plants colonising close regions 

separated by water, islands being one example. Consequently, evidence of 

animals crossing between North and South America is not necessarily 

evidence for a completely formed isthmus (continuous uninterrupted land) 

(Bacon et al., 2016; O’Dea et al., 2018), as some studies (e.g., Bacon et al. 

(2013, 2015)) seem to imply. In any case, the above studies seem to accept 

the presence of terrestrial animal immigrations before ~3 Ma (with or without 

the presence of a fully formed isthmus) and the intensification of the 

interchange after that point in time (Figure 5). 
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The Great American Biotic Interchange (GABI)  

Isolation ended with the formation of the Isthmus of Panama and the 

invasion of North American groups in South America during the Great 

American Biotic Interchange (GABI) in the Neogene (Carrillo et al., 2020; 

Cione et al., 2015a; Domingo et al., 2020; Marshall et al., 1982; Morgan, 

2008; Soibelzon et al., 2019; Webb, 1976; Woodburne et al., 2006). The 

GABI has been considered the most important biogeographic link between 

South and North America by many and has been studied for a long time 

(Marshall, 1988; Marshall et al., 1982; Morgan, 2008; Simpson, 2005; 

Simpson, 1953; Stehli & Webb, 1985; Webb, 1976, 1985; Woodburne et al., 

2006). More recent works have tried to offer a more reliable and better 

resolution by dating important layers containing the different stages of the 

GABI. During the GABI, North American groups moved into South America 

and South American groups moved into North America – however it was an 

asymmetric event. The majority of endemic South American groups that 

reached Central America became extinct (although few radiated towards 

North America surviving till the Pleistocene period (2.6-0.01 Ma, Prado et 

al. (2015)). On the contrary, most North American groups that reached 

South America survived and diversified. Additionally, the interchange was 

found to be asynchronous for mammals and plants – with floral exchanges 

predating the mammalian ones (Cody et al., 2010).  

Marshall et al. (1982) distinguished two groups of mammalian immigrants, 

the first one being late Miocene immigrants that dispersed sporadically – via 

island arcs or non-continuous land bridge in time – as there are gaps with 

no arrivals at all, the number of concurrent arrivals is very limited and finally 

the immigrants seem to be good swimmers/floaters (Webb, 1985, 2006). 

However, this interpretation depends on how complete we take the fossil 

record of that time to be (Webb, 2006). The second group of immigrations 

comprised the main GABI event and was more intense than the first one 

(GABI 1-4; see section “GABI immigration waves”). 
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Pre-GABI sporadic immigrations 

Cione et al. (2015b) summarizes the climatic cooling taking place in South 

America, based on information from Tonni et al. (2008); Madden et al. 

(2010a). South and Central America developed drier, colder and more 

fragmented habitats through the Miocene and into the Pliocene (Ortiz-

Jaureguizar, 1998). It also provided a variety of ecological opportunities, 

especially with the diverse topography of the evolved Andes (Burnham & 

Graham, 1999; Flynn & Swisher III, 1995). In the early Miocene, Patagonia 

accommodated a variety of habitats like wet forests, palm-tree habitats, 

flooded areas and restricted grasslands and the Andes were not blocking 

the wet winds from the Pacific (Madden et al., 2010). In the early Miocene, 

Central American habitats were tropical (Graham & Dilcher, 1998). In the 

middle Miocene, Patagonia went through an aridification phase – for which 

the formation of the Andes is considered the main driver (Pascual & 

Odreman-Rivas, 1973). Open habitats expanded (hosting more cursorial 

animals) while forests would be found in valleys of the rising Andes (hosting 

primates and erethizontes) (Cione et al., 2015a). The habitat and climatic 

changes affected some groups more than others (for example Folivora were 

more sensitive than Cingulata) (Cione et al., 2015a). Carrillo et al. (2015) 

showed an important distinction of mid and late Miocene faunas between 

temperate and tropical ones. 

The earliest South American groups reaching North America seem to be 

Pliometanastes and Thinobadistes (megalonychid and mylodontid sloths) 

8.5-9.0 Ma (Morgan, 2008). Additionally, the earliest record of 

Megatheriidae in Central America took place 5.8 Ma (Rincón et al., 2020). 

This seems consistent with the fact that most GABI South American groups 

were xenarthrans (Woodburne, 2010). The earliest North American group 

to South America were of the genera Cyonasua (procyonid carnivorans) at 

7.3 Ma and sigmodontine or cricetid rodents around 6 Ma (Cione et al., 

2007). Mustelids have been considered to have also entered South America 

by (Verzi and Montalvo, 2008) but the taxonomic classification of the fossil 

remains was criticised by Prevosti and Pardiñas (2009).  

In the late Miocene and the boundary with the Pliocene, cooling continued, 

rainforests got disrupted (Lourens et al., 2004) by the extension of open 



34 
 

environments (including savannas) and dry seasons (Cione et al., 2015a). 

In the Pliocene, palynological studies also show climatic cooling and further 

Andean uplift (Andriessen et al., 1993; Quattrocchio et al., 1988). South 

American xenarthran (Scillato‐Yané et al., 1993) and octodontid rodent 

diversity shifts (Montalvo & Verzi, 2004) also showed a change in habitats 

that confirmed this cooling and showed that the habitat deterioration was 

gradual. 

The next grouping of sporadic emigrations was at 5.0-4.7 Ma with Titanis 

(terror bird – otherwise endemic to South America) crossing northward 

(MacFadden et al., 2007) and Plaina and Glossotherium (a pampatheriid 

and mylodontid sloth) crossing northward to Central America (Flynn et al., 

2005). The sporadic immigrations at 3.9-3.1 Ma include the northward 

crossing of Glyptotherium (glyptodont sloth), Neochoerus (hydrochoerid 

rodent) (Flynn et al., 2005) and Pampatherium (pampatheriid xenathran) 

(Woodburne et al., 2006) along with the southward crossing of Tayassuidae 

(artiodactyl peccaries) (Cione et al., 2007). Lastly, Lama (camelid 

artiodactyls) reached South America (Cione et al., 2007; Cione & Tonni, 

1995, 2005). The timing of the first arrival of murid rodents in South America 

has been proposed to be late Pliocene (Marshall, 1979) but others argue for 

a later arrival because of the dubious stratigraphic provenance and age of 

the remains in question (Webb, 2006). 

It is important to note that some South American groups that reached 

Central America dispersed further North later on: Glossotherium passes to 

the US significantly later (Flynn et al., 2005) and persists in the US for longer 

(McDonald & Naples, 2008). Also, Neochoerus reaches South Carolina at 

~3 Ma (Sanders, 2002) and persisted in Florida and Arizona at least until 

2.6 Ma (Bell et al., 2004; Morgan, 2005) and even more in coastal areas of 

North America (Morgan, 2008). These are good examples of what 

(Woodburne, 2010) calls “holding pen” groups, groups that occur earlier in 

a given location only to be significantly later in an adjacent location. 

GABI immigration waves 

The second group of immigrations (as distinguished by Marshall et al. 

(1982)) that followed comprised the main GABI event and was more intense 

than the first one. According to Woodburne et al. (2006), Cione et al. (2007), 
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Woodburne (2010) and Goin, Gelfo, et al. (2012), it consisted of multiple 

immigration waves (GABI 1-4) during which intensified exchanges took 

place. Arrivals still took place during the intervals between the waves but 

these were significantly less frequent. 

GABI 1 took place 2.6-2.4 Ma with the southward dispersal of Erethizon 

(porcupine) (Reguero et al., 2007), mustelids, perissodactyls and 

gomphotheriid proboscideans (López et al., 2001) and the northward 

dispersal of Dasypus, Pachyarmatherium (glyptodontid) and Eremotherium 

(Bell et al., 2004; Morgan, 2005) along with the “holding pen” groups 

Pampatherium and Holmesina (pampathere edentates) and Neochoerus 

reaching even more northern areas into the US via Mexico (Flynn et al., 

2005; Morgan & Hulbert, 1995).  

GABI 2 took place ~1.8 Ma and includes mostly southward dispersals of 

ursides, felid cats (Felis, Puma, Panthera), peccaries (Catagonus), camels, 

cervids, tapirs and gomphotheriid proboscideans (Stegomastodon and 

Cuvieronius) (Cione & Tonni, 1995, 2005; MacFadden, 2000; Pomi & 

Prevosti, 2005; Soibelzon et al., 2005). However, it is important to note that 

Paramylodon (Morgan, 2005) and Myrmecophaga (Morgan, 2008; Shaw & 

McDonald, 1987) reached the US during that interval.  

In the beginning of the Pleistocene, high altitude plants are reported to have 

descended in lower altitudes (Andriessen et al., 1993) and precipitation is 

evidenced to have declined substantially (Piperno, 2006). Some also argue 

for a total expansion of savanna-like habitats from Central America to 

Argentina by the time the GABI 2 wave happened (in addition to noting the 

absence of tropical-adapted northward immigrants) (Webb, 1991; 

Woodburne, 2010). The first participation in the GABI of animals adapted to 

colder habitats also took place (probably because they were previously 

blocked by the prevalent rainforest (Webb & Perrigo, 1984). However, 

Colinvaux (1997) argues for the presence of sporadic rainforests in Central 

America during the Pleistocene. Additionally, from the Early Pleistocene, 

frequent glaciations are recorded in Patagonia (Singer et al., 2005) and the 

subsequent glacial advance (McCulloch et al., 2000) is thought to have 

shaped habitats to accommodate megaherbivores and their predators 

(Cione et al., 2015a; Tonni et al., 2003).  
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GABI 3 takes place at 1.0-0.8 Ma and is more of a symmetrical exchange 

than GABI 2. It includes the southward dispersal of carnivores and 

artiodactyles and the northward dispersal of the opossum Didelphis (Bell et 

al., 2004; Morgan, 2005). The modern Central American lowlands must 

have formed by the end of the Pleistocene and the Holocene (10.5 ka BP) 

(Leyden, 1984). Savanna-type habitats were not wide-spread (Behling et 

al., 2010) but South American coasts must have kept a savanna-type 

habitat similar to those in Central America (Graham & Dilcher, 1998). This 

has been hypothesized to have permitted the next immigration wave 

(Woodburne, 2010). GABI 4 takes place 0.125 Ma and is characterized by 

only southward dispersals of carnivores (including Canis, Leopardus) and 

equids (Carlini et al., 2008; Cione & Tonni, 1995, 2005; Hulbert & Pratt, 

1998; Prevosti, 2006). 

Post-GABI 

There has been some evidence of an increased diversity in South America 

right after the GABI, taking into account the fossil record at face value (Cody 

et al., 2010; Marshall et al., 1982; Webb, 1976), and Carrillo et al. (2015) 

found an important increase of North American first appearances in South 

American faunas around 4-5 Ma with a peak in the Pleistocene. Webb 

(2006) calculated that diversification rates of procyonids, felids, tayassuids 

and camelids were moderate whereas those of canids, mustelids, cervids 

and murids were significantly high. North American immigrants were found 

to occupy a variety of South American habitats like temperate grasslands, 

cold winter deserts and mountain systems (Marquet & Cofre, 1999). 

However, Domingo et al. (2020) found that in time, rodents, notoungulates 

and pilosanes switched from a C3 to a C4-plant dominated diet whereas 

litopterns and cingulates remained in a C3 diet. This could indicate that the 

expansion of C4 grasslands resulted in the presence of new niches and thus 

the decrease in competition (Domingo et al., 2020). On the other hand, they 

found gomphotheres, equids and camelids (North American groups) to 

show a variable diet including both C3 and C4 plants – an adaptation that 

might have helped them establish themselves in the newly found South 

American habitats. Finally, in carnivoran mammals, sparassodonts seemed 
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to prefer preying on C3 eating herbivores while carnivores preferred 

herbivores of a mixed C3 – C4 diet. 

In any case, the GABI left South America changed, as the continent’s faunal 

composition postdating the GABI resembled more that of North America 

than that of South American predating the GABI (Simpson, 1950; Vrba, 

1992; Webb, 2006). Half of today’s South America’s fauna consists of North 

American descendants (Webb, 2006). On the other hand, diversity in North 

America seems to have only slightly increased after the GABI (Stigall et al., 

2017). Webb (1991) comparing the diet of immigrants from Central and 

South American, noted that they both had grazers, browsers or mixed 

feeders.  

Symmetricity of GABI 

While the more sporadic immigrations predating 6 Ma were found to be 

symmetrical between continents (Bacon et al., 2015), the later and main 

phase of the GABI was asymmetrical, with North American groups 

dominating South America, compared to the low number of South American 

groups in North America (Bacon et al., 2015; Carrillo et al., 2020; Faurby & 

Svenning, 2016; Marshall et al., 1982; Webb, 2006; Webb & Marshall, 

1982). This asymmetry has been a key characteristic of the GABI and has 

been noted from the first studies on the interchange where, e.g. Marshall et 

al. (1982) noted the apparent symmetrical exchange (the number of families 

existing before and after the GABI was very similar) but the number of North 

American immigrants was double that of South American immigrants. 

Carrillo et al. (2020) summarized the potential causes of this phenomenon. 

The asymmetry could be the result of a higher dispersal rate from North to 

South America, higher speciation rates of North American groups in South 

America, higher extinction rates of South American native mammals, or 

equal dispersal rates but larger number of North American groups reaching 

South America. Testing these hypotheses, they concluded that there were 

no significant differences in diversification and dispersal rates of South 

American versus North American immigrants. However, South American 

native mammals in South America had significantly higher extinction rates 

during the GABI. This has led to fewer potential South American immigrants 

towards North America, and thus led to the asymmetry of the GABI. 
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Different theories exist that try to decipher this asymmetry. The high number 

of Northern immigrants to South America could have been linked to the 

larger area from which they originated (Webb, 1991), as well as the fact that 

North America was not isolated, unlike South America. North America was 

also linked with Europe and Asia at different points in the Cenozoic while 

South America was isolated, and multiple interchanges took place between 

Asia and North America via the Bering Strait (Tedford et al., 2004; 

Woodburne & Swisher III, 1995); for example, the middle Miocene arrival of 

gomphotherids or the late Miocene arrival of felid cats, mustelids etc. to 

North America. Most North American immigrants reaching South America 

had previous evolutionary records of long-distance dispersals and this could 

have been linked to their GABI success (Webb, 2006). They were also more 

“evolutionary tested” coming into contact with various competitors, diseases 

(Wilson, 1992), and habitats, especially savannas and temperate areas 

(Jetz & Fine, 2012). These would potentially increase their capability to 

colonize new locations and occupy new niches there (Wilson, 1992). 

There are different hypotheses concerning the high extinction rates of South 

American native mammals in South America. One was that the extinction 

was linked with increased competition, as SANU diversity decline coincides 

with the appearance of the numerous North American ungulate immigrants 

(artiodactyles mostly) (Webb, 2006), and thus a replacement phenomenon 

could be implied (Webb, 1976). However, raw taxon counts have shown that 

meridiungulates and marsupial carnivores had already started to decline 

before the GABI (Kemp, 2005). SANU’s decline could have been intensified 

due to competition with artiodactlyles (Webb, 1976) or due to higher 

susceptibility to predation from placental carnivores (Faurby & Svenning, 

2016; Patterson & Pascual, 1968), that surpassed marsupial carnivores 

(sparrassodonts) in numbers (Prevosti & Forasiepi, 2018). 

Another hypothesis was that the extinction was triggered by environmental 

change towards a colder and drier climate  (Alberdi et al., 1995), as 

described in previous sections of this thesis. Carrillo et al. (2020) also note 

that most of the South American native mammal diversity at the time comes 

from the La Pampas formation, where a meteoric impact has been 

evidenced ~3.3 Ma (Schultz et al., 1998; Vizcaíno et al., 2004). Finally, 
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another theory suggests a synergetic effect of environmental changes, 

ecological opportunism and biotic interactions (Marshall, 1988; Stehli & 

Webb, 1985; Vrba, 1992, 1993; Webb, 1991, 2006).  

Selectivity of the GABI 

Different hypotheses have been made on the nature of the timing and 

selectivity of the immigrations. It has been noted that most animals crossing 

have been assumed to have been savanna-adapted (Stehli & Webb, 1985; 

Webb, 1985, 1991, 2006; Woodburne, 2010) and that the Panama habitats 

were also savanna-like (Piperno, 2006; Piperno & Jones, 2003) and some 

have implied that habitat preference played a key role (Stehli & Webb, 1985; 

Webb, 1985, 1991, 2006). 

Additionally, McDonald (2005) and McDonald & Naples (2008) noted a diet-

linked advantage in xenarthrans: glyptodont immigrants reaching 

Central/North America were smaller, generalists and their diet was 

comparable to that of non-ruminant artiodactyls (signalled by the absence 

of a caecum) and so liberated them from competition with the ruminant 

artiodactyls and proboscideans. According to these studies, this was also 

heightened by the lower metabolic rate of xenarthrans. All this potentially 

played a key role in the high participation of xenarthrans in the GABI as well 

as in their colonisation of Central and North American habitats. 

Multiple studies have also argued that the climate cooling played a key role 

in the initiation and regulation of the interchange (Cione et al., 2015a; 

Marshall, 1985; Marshall et al., 1979, 1982; Molnar, 2008; Webb, 1978, 

1985, 1991, 2006; Woodburne, 2010) by rendering regions suitable for 

animals to cross (thus working as corridors) or unsuitable (biogeographic 

barriers) (Webb, 1991; Woodburne, 2010). Sea level might have also played 

an important role in the dispersion control as the low sea levels at 2.5, 1.9, 

1.6, 0.7, 0.1 Ma seem to coincide with the dispersals (Woodburne, 2010). 

The evolution of the Panama isthmus (presence or absence of a continuous 

strip of land etc.) must have played a key role as well, however, other 

variables must have played a more important role controlling the directions, 

timing and speed of the interchanges (Jaramillo, 2017). The evolution of the 

Andes (extending N-S long in SA; see also dedicated section) (Boschman, 
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2021; Ramos, 1999)) has been suggested as another factor controlling 

dispersals within South America, as they reached today’s elevations during 

or soon after the late Miocene (Mora et al., 2010) and may have constituted 

a colonization corridor during the GABI (Patterson et al. (2012) and refs 

therein). 

There is still no consensus, and of course, more than one factor is expected 

to have driven the GABI and the diversity shifts. However, Bacon et al., 

2015) found that taxa variability and dispersal time were not explained by 

intrinsic factors (like dispersal ability, biome and elevation preference). 

Additionally, Bacon et al. (2016) specify that within the potential extrinsic 

factors, climatic and environmental factors were key while geologic factors 

did not play a significant role. Vrba (1992) also noted the importance of 

environmental changes over biotic interactions as the major cause of biotic 

event. 

Preservation issues 

The issue with the majority of GABI studies, hypotheses and interpretations 

is that they heavily rely on raw diversity counts. This means that fossil biases 

could actually have an enormous effect on raw diversity and so make those 

interpretations invalid. This has been brought to attention from the early 

studies like Marshall et al. (1982) that pointed out that the late Cenozoic 

South American mammalian record mostly comes from Argentina – but it is 

safe to assume that what took place there must have taken place in the rest 

of South America. Webb (2006) also mentioned the “Central America 

paradox”: it refers to the fact that while Miocene Central America faunas 

showed no similarity with South American faunas (Ferrusquía-Villafranca, 

2003; Webb & Perrigo, 1984), today’s faunas and floras are similar to those 

of South America. This is coupled with a lack of intermediate fossils. This is 

of course, a fossil record bias, especially concerning Pliocene and 

Pleistocene fossils from Central America. (Goin, et al., 2012a) stated that 

the radiations and distribution patterns of South American mammals “offer 

a narrative framework for considering the mammalian successions in South 

America, hoping that future tests of [their] model will confirm, clarify, and 

extend its applicability, causes, and consequences”. These kinds of 

quantitative studies exist (e.g. Bacon et al. (2015)) but are still scarce. One 
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such example is Carrillo et al. (2020), using a large dataset and advanced 

statistical techniques, such as Bayesian methods, to take into consideration 

fossil bias. Carrillo et al. (2015) also tried to bypass the issue of uneven 

sampling between high and low altitudes when looking at the similarity 

between different faunal assemblages, but still states that fossil biases 

could impact their results.  

 

The effect of the Andean orogeny on South 

American climate and habitats 

Due to their complexity, mountains generally provide a broad range of 

habitats, and are thus linked with high diversity (Badgley et al., 2017; Hoorn 

et al., 2018; Perrigo et al., 2020). They can work as cradles, nursing a 

diversity of taxa in these “endemic” micro-habitats (Hughes & Atchison, 

2015), as bridges or barriers of taxon dispersal, as well as refuges for taxon 

diversity (Perrigo et al., 2020). Mountains influence climate as well as close 

and distant habitats, being the start point of river systems, and sediment 

generation and transportation (Finarelli & Badgley, 2010; Hoorn et al., 2018; 

Hoorn, Wesselingh, Hovikoski, et al., 2010). 

Today, the Andes Mountains are one of the globe’s biodiversity hotspots, 

hosting the highest number of vertebrate and plant species (Myers et al., 

2000), and its evolution is thought to have played an important role in this 

richness (Antonelli et al., 2018; Boschman & Condamine, 2022; Hoorn, 

Wesselingh, ter Steege, et al., 2010; Pérez-Escobar et al., 2022), as well as 

in transforming the South American continental habitats and climate, 

working in tandem with the already existing global climate cooling.  

The evolution of South American climate and habitats started to diverge  

from the global palaeoclimatic and palaeoenvironmental trend, because of 

the formation of the Andes. The evolution of the Andes has been the most 

(or one of the most) important factor driving the evolution of the Amazonian 

habitats and ecosystems via its direct impact on the topographic evolution 

but also indirectly via its influence on the local climate (Hoorn, Wesselingh, 

ter Steege, et al., 2010). More specifically, intense tectonic changes – 
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specific to South America – took place in the end Cretaceous and first half 

of the Cenozoic that resulted in extensive tectonic pressure and subsequent 

deformation of the Northern and Central regions of South America (Pan-

Amazonia) – including the formation of the Andes (Hoorn, Wesselingh, ter 

Steege, et al., 2010; Isacks, 1988). Andean uplift has been diachronous 

ever since (Boschman, 2021; Figure 5D), as the mountain range’s different 

parts have been subject to different tectonic forces (Gianni et al., 2018; 

Pérez-Escobar et al., 2022; Schepers et al., 2017).  

The end Cretaceous and Paleogene was characterised by relatively low 

Andean uplift rates, which primarily occurred in the central and northern 

parts of the mountain range (Boschman, 2021; Boschman & Condamine, 

2022). The Cretaceous Pan-Amazonia hosted vast river and lake systems 

of which a substantial number of rivers had a westward flow (opposite to 

what exists today) (Mapes, 2009). These shifted to low altitude regions 

(Hoorn, Wesselingh, ter Steege, et al., 2010), having a mix of marginal 

marine embayments  (Roddaz et al., 2010) and drainage systems flowing 

both eastward and westward (Figueiredo et al., 2009) during the first half of 

the Cenozoic. At the end of the Paleogene, drainage systems changed 

(Sena Costa et al., 2000) with the direction of flow towards the northwest 

(Hoorn, Wesselingh, ter Steege, et al., 2010), while dense forests started 

getting replaced by open shrublands (Dunn et al., 2015).  

An intensification of Andean uplift took place in the Neogene, with mountain 

building taking place mainly in Northern and most notably East-Central 

Andes (Boschman, 2021; Boschman & Condamine, 2022; Tournier et al., 

2020). More specifically, Andean uplift showed a peak in the early Miocene 

~23 Ma (Hoorn, Wesselingh, ter Steege, et al., 2010), but its most intense 

mountain building events took place in the late middle Miocene ~12 Ma and 

Pliocene 4.5 Ma (Mora et al., 2010).  

In the regions of the Pan-Amazonia, the environment shifted to a complex 

of vast shallow lakes and swamps around 23-10 Ma (Hoorn, Wesselingh, 

ter Steege, et al., 2010). These disappeared and fluvial systems took their 

place (Hoorn, Wesselingh, Hovikoski, et al., 2010; Hovikoski et al., 2007; 

Latrubesse et al., 2010), starting resembling its present form (Mora et al., 

2010). River flow shifted from westward to eastward permanently ~7 Ma 
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and that is when the Amazon drainage system got fully established (and is 

unchanged till today) (Figueiredo et al., 2009). Additionally, to the 

topography-related changes, the evolution of the Andes influenced the 

South American climate (Insel et al., 2010; Poulsen et al., 2010).  

With the extensive mountain uplifting, the Andes formed a barrier that 

extended from the continent’s highest to lowest altitudes. This prevented 

Pacific humid winds from reaching the central and eastern parts of the 

mountain chain, thus promoting aridification in those regions (in conjunction 

with the ongoing global aridification and cooling), while increasing 

precipitation in the western side of the mountain range (Cione et al., 2015b; 

Figueiredo et al., 2010; Hoorn, Wesselingh, ter Steege, et al., 2010; Insel et 

al., 2010; Ortiz-Jaureguizar & Cladera, 2006; Pascual & Odreman-Rivas, 

1973; Poulsen et al., 2010; Quattrocchio et al., 2003; Rech et al., 2006).  

 

 

 

The Latitudinal Biodiversity Gradient (LBG) 

Most groups of South American mammals are characterized by a latitudinal 

biodiversity gradient (LBG) today, as are most extant groups. The LBG is 

the fundamental macroecological pattern that describes the distribution of 

diversity today and it refers to the increase of the number of species towards 

the equator (Fergnani and Ruggiero, 2015; Kaufman, 1995; Stevens et al., 

2019; this thesis [Supplementary material or SI section 14]; Figure 6).  

Understanding what drives this global, first-order pattern remains one of the 

great challenges of macroecology (Pontarp et al., 2019). Mittelbach et al. 

(2007) reviewed the two main hypotheses for the origin of the LBG: (1) the 

time and area hypothesis according to which tropical habitats are older and 

taxa accumulated there over a longer period compared to higher latitudes 

and (2) the diversification rate hypothesis according to which taxa in tropical 

regions diversify faster. They concluded that a greater amount of evidence 

(both palaeontological and modern) supports the diversification rate 

hypothesis (Jablonski et al., 2006; Mittelbach et al., 2007; Schumm et al., 
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2019; Wiens & Donoghue, 2004). In other words, lower diversity in higher 

latitudes would be the result of lower diversification rates. Dispersal must 

have also played a role in shaping the LBG pattern, and climatic factors 

have been key drivers of diversification and dispersal rates (Meseguer & 

Condamine, 2020).  

The interplay of mechanisms behind this diversification differences between 

high and low latitudes are not yet clear (Arita & Vázquez-Domínguez, 2008): 

three possible patterns were summarised in Arita and Vázquez-Domínguez 

(2008):  

- The “tropics as cradle” model in which origination rates increase 

towards the tropics while extinction rates remain constant with latitude 

(Chown & Gaston, 2000; Krug et al., 2009; Mittelbach et al., 2007) 

- The “tropics as museums” model in which origination rates remain 

constant with latitude but extinction rates decrease towards the tropics 

(Chown & Gaston, 2000; Krug et al., 2009; Mittelbach et al., 2007; Weir 

& Schluter, 2007) 

- The “out of the tropics” model in which origination rates increase and 

extinction rates decrease towards the tropics and dispersal from low to 

high latitudes plays an important role (Jablonski et al., 2006, 2013) 

Multiple studies have found higher speciation rates towards the tropics 

(Allen et al., 2006; Allen & Gillooly, 2006; Jablonski, 2008; Jablonski et al., 

2006; Kiessling et al., 2010; Krug et al., 2009; Krug, Jablonski, et al., 2007; 

Krug, Patzkowsky, et al., 2007; McKenna & Farrell, 2006) and, more 

recently, Saupe, Myers, et al. (2019) concluded that high tropical diversity 

resulted primarily from higher speciation, and that dispersal towards higher 

latitudes was important, thus supporting the “out of the tropics” hypothesis. 

However, aspects of these models have been questioned. For example, 

Weir and Schluter (2007) found that origination and extinction rates 

decrease towards the tropics, and Krug et al. (2010) found higher extinction 

rates towards the poles. Wiens et al. (2006), Mittelbach et al. (2007), Arita 

and Vázquez-Domínguez (2008), Soria-Carrasco and Castresana (2012), 

among others, found no change in diversification rates by latitude. Rabosky 

et al. (2018) showed a higher speciation rate of fish in higher latitudes. 

Pontarp et al. (2019) stated that this large number of studies, hypotheses 
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and conflicting results comes from the failure to link ecological and 

evolutionary processes with the LBG.  

Other studies have tried to explore different aspects of the LBG. Kinlock et 

al. (2018) showed that the present-day LBG is stronger in the western 

hemisphere, Silvestro, Castiglione, et al. (2019) found that extinction rate 

decreases with species age and this age-dependent extinction pattern is 

stronger towards the Equator. Schumm et al. (2019) showed that tropical 

faunas have higher functional richness but lower functional evenness than 

temperate faunas. Castro-Insua et al. (2018) observed a link between 

species range shape and latitude. 

The present-day LBG pattern did not always exist (Mannion et al. (2014) 

and references therein). Equator-to-pole diversity gradients have been 

observed during the Palaeozoic era (Alroy et al., 2008; Jablonski et al., 

2013; Krug, Patzkowsky, et al., 2007) as well as in the last ~30 Myr (Marcot 

et al., 2016; Yasuhara et al., 2012). Mannion et al. (2014) pointed out that 

the presence of a LBG coincided with periods where the Earth presented 

permanent ice sheets at both poles (icehouse intervals). On the other hand, 

instances of flat or temperate-peak LBGs (Archibald et al., 2010; Kiessling 

et al., 2012; Mannion et al., 2012; Rose et al., 2011; Smith et al., 2012; 

Yasuhara et al., 2012) seem to exist during warm periods like greenhouse 

intervals or interglacial periods (Mannion et al. (2014); Jones et al. (2019); 

but see also Kiessling et al. (2012) for a different view). Climate change was 

found to drive the LBG patterns through time (Meseguer & Condamine, 

2020). 

The evolution and causes of the present-day LBG have been the focus of 

multiple studies; nevertheless, it is a phenomenon that remains poorly 

understood – and like other similar diversity patterns of the past, it is 

important to take into account the fact that they can be obscured by 

geological and human-related biases (Benson & Upchurch, 2013; Smith & 

McGowan, 2007; Upchurch et al., 2011). Some studies suggest the modern-

LBG first appeared around 30 Ma (Mannion et al. (2014) and references 

therein). On the other hand, based on their study on North American 

mammals, Marcot et al., 2016), suggested that this was formed only 4 Ma. 

The understanding of the formation and causes of the present-day LBG is 
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essential in comprehending the link between climate and biodiversity, as 

well as predicting how biodiversity will respond to future global warming. 

The appearance of the present-day LBG has not been extensively explored 

in South America either. Consequently, the relative roles of climate, Andean 

uplift, and the GABI on shaping South America’s LBG have never been 

tested, but could illuminate our understanding of its emergence. 

 

Figure 6: The present-day distribution of terrestrial vertebrate diversity follows the present-

day Latitudinal Biodiversity Gradient, figure from Mannion et al. (2014). Red indicates 

higher diversity and blue hues indicate lower diversity. 

 

Fossil record bias 

The fossil record is valuable for understanding the past – it is however 

biased and the biological signal we want to study gets distorted (Allison & 

Briggs, 1993; Alroy et al., 2008; Forey et al., 2004; Peters & Foote, 2001; 

Raup, 1972, 1976; Sepkoski et al., 1981; Smith & McGowan, 2007, 2011). 

Past biological signals (e.g. diversity or diversification rate shifts) get 

obscured/distorted through the taphonomical/geological processes but also 

sampling effort (Alroy et al., 2001; Benton, 2008b, 2008a; Forey et al., 2004; 

Marx & Uhen, 2010; Peters, 2005; Peters & Foote, 2001; Raup, 1972, 1976; 

Smith, 2001; Smith & Benson, 2013; Smith & McGowan, 2011; Tarver et al., 

2011; Uhen & Pyenson, 2007) (Figure 7). 
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Taphonomical/geological biases refer to the fact that not everything that 

dies becomes a fossil and survives the tectonic and geological processes 

until the present day (Figure 7). This can be due to the organism’s 

composition (organisms with hard parts like bone get fossilized substantially 

more), its living habitat (some habitats have higher preservation capability 

than others like lakes with still water and high sediment flux), the geological 

processes acting on the area (extreme deformation or metamorphism can 

destroy fossils) and its subsequent position today (due to tectonism 

fossiliferous rocks can end up in the surface thus getting exposed to erosion 

or in big depths thus being inaccessible).  

Sampling biases refer to the fact that not everything that becomes a fossil 

gets discovered, studied and published (Figure 7). There is a significant 

variation in sampling effort depending on the cultural and economic situation 

of each country or region (the presence of universities and museum 

institutions etc.) with an extreme high in the US. Finally, there is a significant 

variation in sampling effort depending on the organism group, with some 

groups (e.g. dinosaurs) being very popular and thus more intensely sampled 

and less popular groups like invertebrates or plants being undersampled.  

For example, numerous studies have found correlations between observed 

(= ”raw”) vertebrate diversity and sampling (Barrett et al., 2009; Benson et 

al., 2016; Butler et al., 2011; Cleary et al., 2018; Close et al., 2020a; Close 

et al., 2017; Dunne et al., 2018). Peters and Foote (2001) found that 

variation of marine diversity is an artefact of variation in rock availability and 

Kalmar and Currie (2010) showed that the marine record is far more 

complete than the terrestrial one. The early tetrapod fossil record is 

represented by few localities, the distribution of which is totally different 

between time periods, according to Benton (2015). Additionally, Tennant et 

al. (2018) showed that our understanding of dinosaur evolution changed 

throughout historical time, while Hunter and Donovan (2005) and Forcino 

and Stafford (2020) noted the presence of biases in the way 

palaeontologists collect/sample fossils. Finally, Riddle and Jezkova (2019) 

mentioned that within Mammalia, there is a publication bias towards papers 

on rodents. 
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Older studies evaluated the fossil record at face value, like for example 

Sepkoski et al. (1981), Benton (1995) and Sepkoski (1997). The issue of 

fossil biases first was first evaluated 50 years ago, with Raup (1972, 1976) 

arguing that taxonomic diversity fluctuations follow sedimentary fluctuations 

or sampling effort. Koch (1978) mentioned a bias in the published fossil 

record. Raup (1972, 1979) introduced the “Pull of the Recent” effect; he 

originally described this as the phenomenon according to which the better 

sampling of extant taxa results in the extension of the stratigraphic ranges 

of their most close fossil relatives to the present. On the contrary, this cannot 

be done for older taxa, therefore this can lead to an artificial diversity 

increase towards the present. However, this effect has mostly been used as 

a more general term to describe the increase of raw diversity towards recent 

time intervals because of the higher potential of sampling fossils in these 

more recent beds. Pease (1985) tried to amend this issue by introducing the 

“duration truncation” mechanism. Benton et al. (2000) showed that fewer 

fossils are found in older rocks and proposed that a temporal and taxonomic 

scaling is applied in order to uniform the documentation of life in the past. 

Signor and Lipps (1982) pointed out that because the fossil record is biased, 

it is unlikely that the first and last appearances of fossil species represent 

the true first and last appearances of the group in reality, a fact that 

complicates studying mass extinctions for example (the Signor-Lipps 

effect).  

Early studies have tried to take into account and amend for fossil biases by 

looking at the relation of sediment and taxonomic fluctuation (Allison & 

Briggs, 1993; Sepkoski et al., 1981) or predicting the true diversity (Foote & 

Sepkoski, 1999). Later, a variety of methods has been developed in order 

to reconstruct the real biological signal accounting for fossil biases. Those 

include the use of sampling proxies, completeness metrics as proxies and 

subsampling methods. 

The use of sampling proxies consists of the correction of fossil bias with the 

use of proxies like fossil-bearing formation or collection counts or a residual 

method described by Smith and McGowan (2007). Various studies have 

used that (Barrett et al., 2009; Butler et al., 2013; Mannion et al., 2011; 

Smith & McGowan, 2007). In the regional scale of New Zealand, Crampton 
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et al. (2003) found that outcrop area seems a reliable proxy for rock volume 

– but not formation count. However, Dunhill et al. (2012, 2014) argues that 

sampling proxies only partially represent fossil biases and should thus be 

avoided. 

Another way studies have tried to take into account fossil bias is with the 

use of completeness metrics as proxies for preservation bias (Beardmore 

et al., 2012; Beardmore & Furrer, 2016; Brocklehurst et al., 2012; 

Brocklehurst & Fröbisch, 2014; Cleary et al., 2015; Dean et al., 2016; 

Mannion & Upchurch, 2010). There is a causal link between completeness 

metrics and diversity as more complete specimens are needed in order for 

a taxonomic identification to happen (Benton et al., 2013). On the other 

hand, Mannion and Upchurch (2010) argue that completeness metrics 

should not be used as bias proxies and the study of Cleary et al. (2015) also 

support that view. 

Finally, the use of subsampling methods has been more recently used to 

estimate diversity through time taking into account fossil biases (Alroy, 

2010b; Benson et al., 2016; Brusatte et al., 2015; Mannion et al., 2012, 

2015; Nicholson et al., 2015). Two main subsampling methods have been 

used in the literature. The earlier one has been Classic Rarefaction (CR) 

(Miller & Foote, 1996; Raup, 1975) according to which random samples of 

individuals (individual-based) or groups of individuals (sample-based) are 

drawn for the whole occurrence dataset in order to generate an expected 

taxa count according to sampling intensity level CR  and multiple studies 

have used that (Alroy et al., 2001, 2008; Fastovsky et al., 2004; Mannion et 

al., 2011; Raup, 1972, 1979). Later, a more sophisticated sample-

standardising method came out by Alroy (2010b), called Shareholder 

Quorum Subsampling (SQS) and this is the primary method that is going to 

be used to estimate past diversity in this thesis. 
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Figure 7: Schematic presentation of the different types of fossil biases. Biological biases 

refer to the difference preservation potential due to animal size and tissue composition 

(those with ossified parts fossilize substantially better), abundance and 

geographical/temporal range (those with a large abundance and range have more 

probability of getting fossilised). Environmental biases are due to environments and 

ecosystems having different preservation potential. Geological biases come from the long 

processes of the Earth like sediment/rock deformation (faulting, folding etc.), magmatism 

and metamorphism (that destroy fossils) and erosion of the rocks and fossils that come out 

on the surface. Finally, anthropogenic biases refer to the spatially uneven potential of fossil 

discovery and research (because of the uneven spatial distribution of funding and/or 

expertise), the favouritism towards some fossil groups (like dinosaurs) and the 

inaccessibility of an important part of the Earth’s surface because it is occupied for other 

uses. Biological and environmental processes are “quick” (taking from days to decades at 

a point in time in the past) compared to geological processes (taking Myrs). 
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Aims of this thesis 

Despite South America’s present-day biodiversity emergency and 

exceptional geobiological history, our knowledge of the continent’s faunal 

evolution is still in its infancy, limiting our understanding of how the present-

day distribution of biodiversity was assembled. Major knowledge gaps still 

exist, including the impact of geologically long-term climatic change on the 

continent’s mammals, and the appearance of the present-day LBG on the 

continent. In this thesis, I evaluate spatiotemporal fluctuations in diversity 

and diversification dynamics of South American terrestrial eutherian 

mammals during the Cenozoic (66 to 0.012 Ma) including testing the 

potential roles of palaeoclimatic, palaeoenvironmental and tectonic drivers 

in shaping these patterns. I apply a novel combination of quantitative 

methods that accounts for uneven temporal and spatial sampling to a near-

comprehensive fossil occurrence dataset from the Paleobiology Database, 

and utilise model-induced palaeoenvironmental data local to South 

America. I compare these results to biodiversity patterns of metatherian 

mammal and other terrestrial vertebrate groups present on the continent. 

Finally, I evaluate the probable causes and timing of the emergence of the 

present-day terrestrial LBG in South America. 
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Material and Methods 

Occurrence dataset 

An important part of my work consisted of data entering in the Paleobiology 

Database (PBDB). This is an online, collaborative and open database 

storing fossil occurrences and information on their taxonomy, as well as 

stratigraphical and geographical position; paleocoordinates of fossil 

occurrences (along with position, size and form of the continents in the past) 

are sourced from Paleomap Project by Christopher R. Scotese 

(http://www.scotese.com) – paleogeographic rotation models. PBDB 

enterers first add a “reference” (i.e. a publication such as a scientific paper, 

book section, etc.) and from there they extract information on the taxonomy 

of the fossils mentioned (i.e. “authority” data and “opinion” data) as well as 

on the “collection” (i.e. the locality the fossil(s) were found, like age, geology 

and stratigraphy). This is where the occurrence(s) are added afterwards. It 

is not a quick process, but it ensures that all the information get stored in a 

concise way and that they are more easily accessible to more researchers.  

I compiled an occurrence dataset of Cenozoic South American terrestrial 

mammals in the Paleobiology Database (PBDB; https://paleobiodb.org/), 

having entered 1654 new fossil occurrences from 450 collections and 168 

references (that is ~25% of the dataset used in this thesis). In addition, I 

manually checked the validity of all existing occurrences in the PBDB, and 

where necessary, I updated their taxonomy and stratigraphy based on the 

latest literature. To detect possible spatiotemporal occurrence errors, I used 

the CoordinateCleaner R package ver. 2.0.2 (Zizka et al., 2019). This 

identified 246 possible outliers (0.04% of the total occurrences), which I 

evaluated and corrected where necessary. Following these additions and 

revisions, the PBDB includes a spatiotemporally and taxonomically up-to-

date representation of the published literature on Cenozoic South American 

terrestrial mammals, as of the 3rd February 2021. 

For my analyses, I downloaded all South American mammal occurrences 

from the PBDB on the 21st March 2021, with non-body fossils (e.g. trace 

fossils), marine and volant species (i.e. Chiroptera) excluded. Collections 

http://www.scotese.com/
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identified in the PBDB as having a poor spatial resolution (i.e. local area and 

basin-level) were also excluded as such data lack specific geographic 

coordinates. Similarly, temporally unconstrained occurrences with an age 

range greater than the largest time bin in my thesis (i.e. the Ypresian, 

spanning 8.2 Myr) were also excluded. The final dataset comprises 6463 

fossil occurrences of South American terrestrial eutherian mammals, 

representing 1325 genera and 1630 species, as well as 804 fossil 

occurrences of South American metatherians, representing 244 genera and 

281 species. 

 

Collection stratigraphic ages and time binning  

A large proportion of the fossil occurrences in the PBDB are assigned to 

South American Land Mammal Ages (SALMA), some of which are currently 

out-of-date in the PBDB. Therefore, following the dataset download and 

before assigning time bins, I updated the SALMA’ maximum and minimum 

age limits for each collection according to the latest published literature (see 

SI section 1). 

To account for the age uncertainty of the fossil occurrences and the discord 

between SALMA and international chronostratigraphic stages (see SI 

section 1), I generated random absolute ages for each fossil collection by 

sampling a uniform distribution, defined by the collection’s maximum and 

minimum age range. Using these generated ages, I subsequently binned 

occurrences into my time bins. This process was repeated 100 times (i.e. 

100 occurrence datasets were generated), using the extract.ages() R 

function from pyrate_utilities.r (Silvestro et al., 2014). 

To test the sensitivity of my results to the time binning protocol, I performed 

preliminary analyses with three different schemes, in the first year of this 

project, but no notable differences to the overall results were found, and 

herein I present results from stage-level analyses, which maximise the 

amount of stratigraphically resolved data. Because of their short duration, I 

combined stages of the Pleistocene (2.588–0.012 Ma) into a single time bin. 
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Latitudinal binning 

For the latitudinal analyses, I binned occurrences into 15° latitudinal bins, 

following several other palaeobiological studies (Jones et al., 2021; Kröger, 

2017; Mannion et al., 2012; Nicholson et al., 2016). During preliminary 

analyses, 10º latitudinal bins were also considered, however, they proved 

too fine scale to provide meaningful results, with insufficient sample sizes in 

each bin. Occurrences were temporally binned into the following time bins: 

Paleocene (66–56 Ma), Eocene (56–33.9 Ma), Oligocene (33.9–23.03 Ma), 

early (23.03–15.97 Ma), middle (15.97–11.63 Ma) and late Miocene (11.63–

5.33 Ma), Pliocene (5.33–2.58 Ma), and Pleistocene (2.58–0.01 Ma). 

Preliminary analyses were also conducted at stage level; however, limited 

data availability prevented the production of meaningful results (SI section 

12). Although some of the chosen temporal bins are of long duration, they 

capture substantial shifts in the Earth’s climate system, tracking the 

transition from greenhouse to icehouse conditions (Inglis et al., 2015; 

Thomas, 2008; Zhang et al., 2019). 

To compare past eutherian latitudinal diversity trends with those of extant 

members of the clade, I downloaded placental mammal occurrences from 

the Global Biodiversity Information Facility database (gbif.org; dataset DOI: 

10.15468/dl.sex4w9), removing marine and volant species, as well as any 

occurrences representing fossil remains. I then binned these extant 

occurrences into 15° latitudinal bins and calculated counts of families, 

genera, species, and localities (SI section 14).  

 

Palaeoenvironmental and topographic datasets 

Stage-level climate and topography simulations for the Cenozoic were 

carried out using the HadCM3BL-M2.1aD model, a version of the Bristol 

HadCM3BL coupled atmosphere-ocean general circulation model (Valdes 

et al., 2017). The HadCM3L model used here has a horizontal resolution of 

2.5° x 3.75° in the atmosphere and ocean, with a vertical resolution of 19 

levels in the atmospheric component, and 20 levels (5550 m depth) in the 

oceanic component (Valdes et al., 2017). HadCM3BL has been shown to 

perform well in reproducing average global and regional scale climate 

https://doi.org/10.15468/dl.sex4w9
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patterns recorded in proxy data (Farnsworth, Lunt, O’Brien, et al., 2019; 

Saupe, Farnsworth, et al., 2019; Sellwood and Valdes, 2006; Valdes et al., 

2017), and has recently been used in a number of palaeobiological studies 

(e.g. Chiarenza et al. (2019); Dunne et al. (2020); Saupe, Farnsworth, et al. 

(2019); Waterson et al. (2016)). For the stage-level climate simulations, the 

CO2 concentration was held constant at 1,120 ppmv for the Paleogene and 

Eocene, 560 ppmv for the Oligocene, and 400 ppmv for the Neogene and 

Pleistocene. Model boundary conditions (topography, bathymetry, and ice 

sheet configurations; at 0.5 x 0.5° resolution and downscaled to model 

resolution) for each geologic stage following the methods of Lunt et al. 

(2016). Stage-specific solar luminosity was calculated using the methods of 

(Lunt et al., 1981). 

Each palaeoclimatic simulation was initialised from a set of stage-level 

simulations from Farnsworth, Lunt, O’Brien, et al. (2019) that was already 

spun-up for 10,422 years. A new implementation of the ozone scheme in 

HadCM3BL was adopted that dynamically identifies the height of the 

tropopause whose height can increase higher into the troposphere in 

warmer climates such as those during the Paleogene. The new scheme also 

makes sure that stratospheric ozone cannot penetrate into the troposphere, 

which would be unphysical. The 3-D ozone distribution scheme was 

therefore replaced by the Meteorological team in Bristol with a simple 

dynamic one in which ozone is coupled to the model's tropopause height 

and use constant values for the troposphere (0.02 ppm), tropopause (0.2 

ppm), and stratosphere (5.5 ppm). This change makes a negligible 

difference to the global mean surface temperature but does have a small 

impact on the stratospheric temperature (~-6 °C in the pre-industrial 

simulation) and winds (~-8 m/s for the pre-industrial). These simulations 

were run by the team for a further 6,000 years to ensure full surface and 

deep ocean equilibrium. Experience has shown it can take many thousands 

of model years (sometimes upwards of 104 years to fully equilibrate to all of 

the model boundary conditions, particularly in the deep ocean. This is 

essential so that model atmosphere and ocean circulation is representative 

of stage-level boundary conditions.  
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From the palaeoclimatic simulations, I extracted near-surface (1.5 m above 

ground) mean annual temperature and precipitation for the South American 

continent. Using these data, I calculated the mean, minimum, and maximum 

values of temperature and precipitation for each stage-level bin, and each 

latitudinal bin (15°). Stage-level topographic data for the South American 

continent were extracted from Getech’s digital elevation models (DEMs), 

which provide gridded (0.5° x 0.5°) representations of the Earth’s 

topography and bathymetry. These DEMs serve as the boundary conditions 

for the climate simulations (Markwick, 2019; Markwick & Valdes, 2004), and 

provide explicit data for when the configuration of the continents were 

different from today. These models have been used in a number of recent 

deep-time climate niche studies (Dean et al., 2019; Jones et al., 2021; 

Lyster et al., 2020; Saupe et al., 2020). 

I also extracted global palaeotemperature proxies from Westerhold et al. 

(2020), which is based on global δ18O isotope reconstructions from benthic 

foraminifera. I used the mean of these values for each of my time bins. 

Lastly, data on Andean topography were extracted from Boschman (2021) 

and Boschman and Condamine (2022). These are estimates of 

palaeoelevation of the Andean region throughout the last 88 Myr. I used the 

mean of these values for each of my time bins. The Andean uplift was 

diachronous, with different regions of the Andes having different pulses of 

uplift during the Cenozoic (Boschman, 2021). Although the use of mean 

Andean uplift does not allow us to evaluate regional variation in the 

influence of Andean uplift on diversification of eutherian mammals, it is a 

useful proxy to evaluate the relationships between orogeny, fossil sampling, 

and eutherian mammal diversification at a continental scale, which is the 

focus of this thesis. 

 

Raw taxonomic counts, sampling, and alpha 

diversity 

Given that genus-level analyses enable the inclusion of a greater amount of 

data (i.e. specifically indeterminate remains can be retained), and that fossil 

species identification is more prone to taxonomic bias, I restrict most of my 
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analyses to genus-level (see alpha diversity below for an exception). 

Furthermore, a Spearman’s correlation test showed a statistically 

significant, strong positive correlation between mean counts of genera and 

species (Rho = 0.931; p < 0.001). 

For each time bin, I calculated the mean of counts of sampling proxies 

(collections, formations, occupied equal area grid cells, and reference 

counts) from dataset replicates (n = 100). Occupied equal-area grid cells 

were generated using the dggridR R package ver. 2.0.4 (Barnes & Sahr, 

2017), with 100 km spacings. To evaluate the influence of sampling on 

observed diversity trends, I calculated the Spearman’s correlation 

coefficient between mean counts of each sampling proxy and mean counts 

of genera. 

I estimated alpha diversity (local richness) by counting the number of 

eutherian mammal species per fossil locality (= PBDB fossil collection, 

which is a specific geographic point and stratigraphic level). To compliment 

these estimates, I also calculated ‘cryptic’ diversity by including specifically 

indeterminate occurrences in each collection that potentially represent 

additionally distinct species. Despite its potential to be informative, and 

enabling the inclusion of a greater amount of fossil data, cryptic diversity 

has been largely overlooked in palaeobiodiversity analyses, with few 

exceptions (Close et al., 2019; Dunne et al., 2018; Mannion et al., 2011).  

I calculated cryptic alpha diversity using two methods, which I refer to as the 

‘relaxed’ and the ‘conservative’ approach. The ‘relaxed’ approach is 

comparable to recent work, in which it was termed ‘indeterminate richness’ 

(Close et al., 2019; Dunne et al., 2018). Under this approach, alpha diversity 

equals the number of unique occurrence names in any given collection, with 

all specifically indeterminate occurrences (e.g. Genus sp. or Family indet.) 

counted as distinct species. The second method, the more ‘conservative’ 

approach, is analogous to that applied by Mannion et al. (2011). Under this 

protocol, specifically indeterminate occurrences are considered distinct only 

if they belong to a higher taxonomic level (e.g. order) not already 

represented in the collection. This is best illustrated with an example of a 

hypothetical fossil locality that contains the following four occurrences: 

Macrauchenidae indet., Toxodontia indet., Macrauchenia patagonica, and 
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Macrauchenia sp. (SI section 2). Alpha diversity, calculated in the standard 

approach, for that locality would be equal to one, as the only recognised 

species for this collection would be Macrauchenia patagonica. However, 

under the conservative protocol, cryptic alpha diversity for the same 

collection would equal two, with the recognition of the additional distinct 

species, Toxodontia indet. Finally, under the relaxed protocol, cryptic alpha 

diversity would equal four, with Macrauchenia sp. and Macrauchenidae 

indet. also recognised as distinct species. To evaluate whether these two 

measures of cryptic alpha diversity scale with standard alpha diversity, I 

carried out Spearman’s rank correlation coefficient tests. 

 

Sampling-corrected diversity and diversification 

rates 

To calculate diversity, as well as rates of speciation and extinction through 

time and space, accounting for sampling biases, I used two methods with 

different computational approaches: coverage-based rarefaction and 

PyRate. Plots of my results were produced with the ggplot2 R package 

ver.3.3.5 (Wickham, 2016), and the geological timescale was added with 

the deeptime R package ver. 0.2.2 (Gearty, 2020). 

 

Coverage-based rarefaction 

Coverage-based rarefaction (Chao & Jost, 2012), or Shareholder Quorum 

Subsampling (SQS) as it is more commonly known amongst 

palaeobiologists (Alroy, 2010a), is a widely applied subsampling approach 

used to account for uneven sampling in the fossil record (e.g., Close et al., 

2020a; Close et al., 2018; Dunne et al., 2018). SQS calculates diversity 

between bins in an objective, frequency-dependant way that is not driven 

by sampling (Chao & Jost, 2012). For each bin, it calculates taxon 

frequencies, i.e. the proportion of occurrences of each taxon relative to the 

total (Alroy, 2010c). Taxa are then sampled and their frequencies summed 

to calculate a coverage value. Sampling stops when a desired level of 

coverage (= quorum) is reached. The quorum level is adjusted for each time 
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bin via Good’s u (a value between 0 and 1), which is an estimate of sampling 

quality that corresponds to the proportion of occurrences of non-singleton 

taxa (Alroy, 2010b, 2010c). Therefore, each time bin can be subsampled to 

a maximum coverage, until the Good’s u value is reached. As such, it is 

more robust than other subsampling methods, such as classical rarefaction, 

that tend to flatten the estimated diversity curves (Alroy, 2010c; Close et al., 

2018). 

Coverage-based rarefaction, along with all data manipulation, was 

performed in R ver. 4.1.0 (R Core Team, 2021), using the tidyverse R 

package ver. 1.3.1 (Wickham et al., 2019). Eutherian and metatherian 

diversity were independently calculated with estimateD() from the iNext R 

package ver. 2.0.2 (Hsieh et al., 2020). This approach implements SQS 

based on the equations of Chao and Jost (2012), and extrapolation is based 

on the Chao1 estimator. Data were rarefied by collections and extrapolated 

estimates were limited to twice the sample size (as recommended in Hsieh 

et al. (2016). For the temporal analyses, diversity estimates were generated 

under three quorum levels (0.4, 0.6, and 0.8) as relative and rank-order 

diversity can vary depending on elected quorum level. In addition to 

generating diversity estimates for all terrestrial eutherian mammals, I also 

calculated SQS diversity of the main eutherian groups that comprise most 

of my dataset: caviomorph rodents, xenarthrans, and SANUs. Latitudinal 

analyses were incompatible with diversity estimates at higher quorum levels 

due to low sample size. I therefore focused my analyses on latitudinal 

diversity estimates under a quorum level of 0.4. 

As variability in spatial sampling has the potential to bias reconstructions of 

global and latitudinal biodiversity trends (Close et al., 2020b; Flannery-

Sutherland et al., 2022; Jones et al., 2021), I implemented a grid-cell 

rarefaction (GCR) approach (e.g. Close, Benson, Alroy, et al. (2020); Jones 

(2020) to test the impact on my continental diversity estimates. For each of 

the dataset replicates, and for each time bin, I randomly sampled (without 

replacement) five occupied equal-area grid cells (with 100 km spacings; 

Barnes and Sahr (2017)). Subsequently, I performed SQS (as described 

above) on collections intersecting with sampled cells. For each of the 100 

dataset replicates, this process was repeated 100 times, and the mean of 
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means was computed. This analysis found no considerable difference 

between continental biodiversity trends when analyses were conducted with 

and without GCR, and therefore I focus my results on those without GCR 

implemented (SI section 4). 

 

PyRate 

PyRate is an approach to estimating speciation, extinction, and preservation 

rates from fossil occurrence data, and has been implemented in a growing 

number of palaeobiological studies (e.g. Bacon et al. (2015); Carrillo et al. 

(2020); Huang et al. (2017); Pimiento et al. (2017); Silvestro, Castiglione, et 

al. (2019)). It applies Bayesian algorithms on occurrence datasets and 

calculates three sets of parameters, for every 1 Myr. Firstly, preservation 

rates (i.e. fossilization and sampling rates) are calculated based on the 

expected fossil occurrence count per sampled lineage per time unit. 

Secondly, based on these rates, speciation and extinction times are 

calculated for each taxon, which is important given that the true temporal 

extent of a species will almost certainly exceed its sampled (i.e. observed) 

range (Lee & Stenseth, 2007; Signor & Lipps, 1982). Finally, diversification 

rates are calculated, expressed as speciation and extinction rates (i.e. the 

expected number of speciation and extinction events per lineage per time 

unit), along with their temporal shifts. This is implemented with a birth-death 

model and can have temporal variability (i.e. rates can change for all groups 

at estimated times of rate shift) and taxon variability (i.e. rates can vary 

among taxa). PyRate then calculates the support of the different birth-death 

models on the data by calculating each model’s maximum likelihoods and 

comparing them using Bayes factors (Kass & Raftery, 1995).  

Information on whether a taxon is extant is also required for PyRate – this 

information was extracted from the PBDB and validated based on the 

available literature. I chose a time-variable Poisson Process model of 

preservation, as this was the best-fitting model for my data according to the 

built-in command -PPmodeltest (SI section 4-5). I coupled this with a 

Gamma model to describe rate heterogeneity through time across taxa 

(using the -pP command). I also calculated individual lineage rates (using 
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the -mG command), in addition to the rates of the whole dataset. I ran the 

PyRate analysis for 10,000,000 Reversible-Jump Markov Chain Monte 

Carlo generations (Green, 1995), sampling every 1000 generations, and I 

applied this to each of the 100 dataset replicates. I combined the resultant 

log files using the -combLogRJ and -combLog commands to obtain 

diversification and preservation rates, after removing the first 1000 

generations as a burn-in period. PyRate analyses were performed on 

University College London’s Myriad cluster, using PyRate ver. 0.5.0 in 

Python ver. 3.0 (Python Software Foundation, 2021). 

 

Correlation tests 

I tested for correlations between variables using ordinary least-square 

(OLS) regressions fitted by maximizing the log-likelihood and using the lm() 

function from base R. More specifically, I evaluated the contribution of 

individual eutherian groups (caviomorphs, xenarthrans, SANUs) on total 

eutherian diversity patterns through time. Similarly, I tested the correlation 

between subsampled eutherian and metatherian diversity through time, as 

well as the effect of global and regional palaeoenvironmental variables and 

Andean topography on sample-standardised eutherian diversity and 

diversification rates through time and space.  
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Results and Discussion 

Observed diversity patterns 

Cenozoic South American terrestrial eutherian mammal fossil occurrences 

are consistently rare at lower latitudes (although they are less rare in the 

Pleistocene), and the fossil record in the tropics is generally scarce (Figure 

8A). Counts of observed genera and species have a strong, positive, 

statistically significant correlation with one another and with sampling 

proxies (i.e. number of occupied cells, collections, formations, and 

references; R>0.9, p<0.001). There are observed diversity and sampling 

peaks in the Bartonian (middle Eocene), Burdigalian (early Miocene), 

Tortonian (late Miocene), Zanclean (early Pliocene), and, most prominently, 

the Pleistocene (Figure 8C). There is also a strong, positive, statistically 

significant correlation between numbers of observed genera and Andean 

topography (R = 0.84; p<0.001). This potentially suggests that mountain 

building increases preservation potential, and that peaks in observed 

diversity might be artefacts of factors such as increased erosion during 

heightened orogenic activity. Sampling therefore appears to drive observed 

temporal and spatial diversity patterns, underlying the importance in 

accounting for it.  

The three alpha diversity metrics produce broadly congruent results (SI 

section 2), and I herein discuss patterns based on the conservative cryptic 

approach (Figure 8B). Alpha diversity increases through time, but outliers 

(i.e. collections with exceptional diversity) are not exclusive to Recent times. 

For example, the middle Eocene Colhué-Huapi, the late Oligocene Cabeza 

Blanca, and the early Miocene Gran Barranca localities (all found at high 

latitudes) have a similar diversity as the early Pliocene Farola Monte 

Hermoso and Pleistocene Tarija localities (Figure 8B). Latitudinally, the 

highest alpha diversity levels are recorded in collections at high 

paleolatitudes (approximately 45–50°S), with an equatorward decline in 

alpha diversity, the exception to this is the Pleistocene where alpha diversity 

is more evenly distributed with latitude (Figure 8B). These results highlight 

the issue of uneven spatial fossil sampling across the continent, with 
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Patagonian localities more numerous and richer in fossils, and with a longer 

history of collection and studies. 

 

 

Figure 8: Spatio-temporal variation of fossil sampling and alpha diversity of eutherian 

mammals in South America. (A) Raw counts of different proxies of fossil sampling through 

time (B) cryptic alpha diversity (size of circles indicates cryptic diversity values) through 

time and latitude, and (C) Spatial distribution of fossil occurrences through time. 

 

Sampling-corrected diversity patterns 

A subtly different evolutionary history emerges after considering uneven 

sampling through time and space. Sample-standardised eutherian diversity 
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shows a continuous rise throughout the Paleogene. The exception appears 

to be the Priabonian (late Eocene), but the exceptionally low extrapolated 

diversity for this time interval almost certainly reflects this stage’s poor fossil 

record (Figure 9; SI section 5). Diversification rates initially increased and 

overall remained positive, with peaks in speciation rate occurring in the late 

Paleocene, Bartonian (middle Eocene), and early Oligocene (Figure 9). 

These results appear to reflect the initial arrival and subsequent radiation of 

eutherian mammals in South America in the aftermath of the 

Cretaceous/Paleogene mass extinction, 66 Ma, which has been termed the 

First American Biotic Interchange (Goin, et al., 2012a). Much of this initial 

radiation pertains to SANUs (Croft et al., 2020), with xenarthrans and 

caviomorph rodents increasingly contributing to South American diversity 

from the middle–late Eocene (Goin, et al., 2012a). The later Paleogene 

speciation peak likely reflects the ‘Patagonian Hinge’, a faunal turnover 

documented in the southern part of South America that has been linked with 

climate cooling (Goin et al., 2010). The end of the Paleogene is 

characterised by a diversification decline, resulting from an increase in 

extinction rate. 

During the earliest Neogene, there is a subsequent peak in diversification, 

resulting from a rise in speciation rate in the Aquitanian and Burdigalian 

(early Miocene). Speciation and extinction are largely constant throughout 

the remainder of the Miocene, but there is a diversity decline in the first 

middle Miocene, reaching the lowest value of the Neogene (Figure 9). The 

Tortonian (early late Miocene) and early Pliocene are characterized by high 

eutherian diversity, with a decline in the latest Miocene (Messinian); see 

also Carrillo et al. (2020). Extinction rates spike in the late Pliocene and the 

late Pleistocene, producing a diversity decline towards the Recent (Figure 

9).  

SANUs, xenarthrans, and caviomorphs all peak in diversity in the 

Oligocene, with SANUs reaching their zenith (Figure 9). This is followed by 

a decline in all groups, until the late middle Miocene and a recovery in the 

late Miocene. The decline in SANU diversity results from the disappearance 

of Pyrotheria in the late Oligocene, and Astrapotheria in the middle Miocene 

(Croft et al., 2020). The late Miocene recovery in SANU diversity is driven 
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by Notoungulata and Litopterna, prior to the total extinction of SANUs, with 

the last representatives (including the litoptern Macrauchenia and 

notoungulate Toxodon) part of the late Pleistocene megafaunal extinctions 

(Croft et al., 2020; Goin, et al., 2012a). Xenarthrans show their highest 

diversity in the late Pliocene but decline afterwards (Figure 9), representing 

one of the most affected groups in the megafaunal extinctions in South 

America (Barnosky & Lindsey, 2010). Caviomorphs are the only major 

South American eutherian group whose diversity recovers in the 

Pleistocene, which is reflected by the relatively high proportion the group 

represents in present-day South American ecosystems (Vucetich et al., 

2015). 

Some of the overall eutherian diversity patterns are similar to those of other 

vertebrate groups in South America. Turtle diversity patterns are broadly 

similar to those of eutherians, with the exception that the former group’s 

diversity increased in the Pleistocene (Vlachos et al., 2018). Crocodylian 

diversity peaked in the middle–late Miocene on the continent, before 

declining thereafter (Mannion et al., 2015; Scheyer et al., 2013). However, 

whereas fluctuations in crocodylian diversity seem to correspond with the 

evolution of the western Amazonia Pebas mega-wetland system (Salas-

Gismondi et al., 2015), no such clear link has been found for eutherians 

(Antoine et al., 2017). By contrast, metatherians show an overall decline in 

diversity during the Cenozoic (SI section 11; Bennett et al. (2018); Tarquini 

et al. (2022)), leading to their relatively low representation in present-day 

South American ecosystems. In general, metatherians have low diversity 

wherever they are found with eutherians, probably due to the former group’s 

developmental characteristics that renders them less energy-efficient and 

less adaptable (Bennett & Goswami, 2013; Goin et al., 2016; Goswami et 

al., 2016).  
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Figure 9: Eutherian mammal diversity and environmental changes in South America 

through time.  (A) extinction, speciation and diversification rates, calculated by PyRate - 

the arrows indicate instances of rate shifts supported by a strongly significant posterior 

probability of rate shift (logBF > 6 ). Shaded area represents confidence intervals. (B) 

Coverage-based diversity for all eutherian mammals (for quora 0.4, 0.6, and 0.8), and for 

(C) the main eutherian groups Notoungulata (here indicated by a litoptern illustration), 
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Xenarthra (here illustrated by a glyptodont illustration), and caviomorph rodents (here 

indicated by a Phoberomys illustration), for quorum level 0.4. (D) South American mean 

annual temperature and precipitation (both calculated using the HadCM3 models) and 

mean Andean uplift, based on Boschman (2021) and Boschman & Condamine (2021). 

Shaded area represents maximum and minimum values. (E) Elevation maps of South 

America for 66, 55, 34, 20, 15, 10, and 5Ma. Andean topology from Boschman (2021). 

Marine incursions based on Wesselingh & Hoorn (2011) and Hernandez et al. (2005) for 

Amazonia and south-eastern South America respectively. River system illustrated in 55 

and 34Ma maps are strictly speculative, used to illustrate direction of drainage. The 

Amazonian river system in 5Ma map is based on the present-day. C: central, N: northern, 

E: eastern, W: western parts of the Andes. 

 

Tectonic, environmental, and biotic drivers 

I found no statistically significant correlation between sample-standardised 

diversity through time and any of the tested palaeoenvironmental variables, 

including continental-scale topography (SI section 9). However, Andean 

topography is significantly correlated with eutherian sample-standardised 

diversity through time (slope = 0.012, p = 0.0169, Adjusted R2 = 0.2975; 

Figure 9). Coupled with the positive correlation with observed diversity (see 

above), this suggests that mountain building acts as a ‘common cause’ on 

land (sensu Peters, 2005), shaping both my sampling of diversity, as well 

as diversity itself. When this correlation is evaluated individually for each of 

the three main groups of South American eutherians (Adjusted R2 = 

0.7577), I recover positive, but statistically non-significant correlations for 

xenarthrans (slope = 26.11, p = 0.056) and caviomorphs (slope = 32.06, p 

= 0.213), but a significant negative correlation between Andean topography 

and sampling-standardised diversity of SANUs through time (slope = -65.8, 

p = 0.004). 

The lack of recovery of a statistically significant correlation between 

continental-scale South American topography and temporal diversity could 

be because it was topographical changes in the Andean region only, and 

not the whole of the continent, that drove diversity shifts (SI section 9). On 

the other hand, the lack of correlation between the tested 

palaeoenvironmental variables and temporal diversity patterns does not 

necessarily reject climate as a driver of South American eutherian diversity. 
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The formation of the Andes played a key role in transforming the South 

American continental climate, working in tandem with global climate cooling 

(Palazzesi et al., 2014). More specifically, the Andes formed a barrier that 

extended from the continent’s highest to lowest altitudes; this prevented 

Pacific humid winds from reaching the central and eastern parts of the 

mountain chain, thus promoting aridification in those regions, while 

increasing precipitation in the western side of the mountain range (Cione et 

al., 2015a; Figueiredo et al., 2009; Hoorn, Wesselingh, ter Steege, et al., 

2010; Insel et al., 2010; Ortiz-Jaureguizar & Cladera, 2006; Pascual & 

Odreman-Rivas, 1973; Poulsen et al., 2010; Quattrocchio et al., 2003; Rech 

et al., 2006). It is likely that the palaeo-temperature and -precipitation 

variables do not adequately capture these regional, albeit key, climatic shifts 

for South America, because of their coarser scale.  

Mountains generally provide a broad range of habitats, and are linked with 

high diversity (Badgley et al., 2017; Hoorn et al., 2018; Perrigo et al., 2020). 

Today, the Andes Mountains are one of the globe’s biodiversity hotspots, 

hosting the highest number of vertebrate and plant species (Myers et al., 

2000), and its evolution is thought to have played an important role in this 

richness (Antonelli et al., 2018; Boschman & Condamine, 2022; Hoorn, 

Wesselingh, ter Steege, et al., 2010; Pérez-Escobar et al., 2022). Andean 

uplift has been diachronous (Boschman, 2021; Figure 9E), and sections of 

the mountain range have been subject to different tectonic forces (Gianni et 

al., 2018; Pérez-Escobar et al., 2022; Schepers et al., 2017). The overall 

early rise in South American eutherian diversity coincides with relatively low 

Andean uplift rates, which primarily occurred in the central and northern 

parts of the mountain range (Boschman, 2021; Boschman & Condamine, 

2022). During this interval, west-central regions of the mountain chain that 

had been marine basins (Boschman, 2021) became low-altitude terrestrial 

regions (Hoorn, Wesselingh, ter Steege, et al., 2010).  

Eutherian mammals experienced increased extinction rates, that could 

potentially be linked with the habitat changes that took place at the end of 

the Paleogene, as South America experienced a >5 oC drop in temperature, 

dense forests started to be replaced by open shrublands in the southern 

parts of the continent (Dunn et al., 2015), and drainage systems changed in 
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northern and central South America, with east-west flowing rivers shifting to 

a northwest flow direction (Figueiredo et al., 2009; Hoorn, Wesselingh, ter 

Steege, et al., 2010; Sena Costa et al., 2000). Mountain building intensified 

in the Miocene onwards, occurring mainly in the northern and, most notably, 

east-central Andes (Boschman, 2021; Boschman & Condamine, 2022; 

Tournier et al., 2020), coinciding with overall positive diversification rates in 

the Miocene, the exception being the Langhian (middle Miocene), a period 

characterised by extensive marine transgressions in South America 

(Hernández et al., 2005; Wesselingh & Hoorn, 2011), and during which 

eutherians experienced an extinction rate peak.  

The late Miocene eutherian diversity peak coincides with an estimated 

elevation increase of ~2500m between 9.1 and 3.8 Ma, with mountainous 

forests characterised by high precipitation in the central parts of the Andes 

(Martínez et al., 2020). It is also synchronous with the initial development of 

the Amazonian river system in northern-central South America (Bicudo et 

al., 2020; Figueiredo et al., 2009; Mora et al., 2010; Sacek, 2014), as well 

as the emergence of primarily open grassland habitats in the Patagonian 

region (Dunn et al., 2015; Palazzesi & Barreda, 2012; Strömberg et al., 

2013). Carrillo et al. (2020) recovered a similar late Miocene diversity peak, 

which they attributed primarily to fossil occurrences emanating from the 

Ituzaingó formation (Brunetto et al., 2013; Cione et al., 2000). Although 

those authors considered the possibility that this might be a sampling 

artefact, these results support their preferred interpretation that the late 

Miocene represents a genuine diversity increase in South American 

eutherian mammals (e.g. caviomorphs; see below). 

The eutherian diversity decline in the Pliocene onwards took place during a 

more intensified phase of Andean uplift, including a north-eastward 

(Ecuador) and central-westward uplift migration, reaching the Sub-Andean 

and Sierras Pampeanas regions (Boschman, 2021; Boschman & 

Condamine, 2022), habitat shifts (including the appearance of more puna-

like ecosystems; Martínez et al., 2020), and an important climate shift: 

South American mean annual temperature reached its lowest value around 

that time, dropping from 26 °C in the late Pliocene to 23 °C in the Pleistocene 

(Figure 9). Similarly, mean annual precipitation reached its highest late 
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Cenozoic value (probably related to the appearance of high precipitation 

mountainous areas in central Andes; Martínez et al., 2020), increasing from 

2.7 kg/m2/s in the late Pliocene to 3.4 kg/m2/s in the Pleistocene (Figure 9).  

Although my analyses do not directly test the effect of the GABI, with its 

main phases taking place in the Pliocene and Pleistocene (Carrillo et al., 

2020), broad patterns can be observed. The diversity decline of South 

American mammals occurred primarily in southern South America (Carrillo 

et al., 2020), and has been attributed to stresses induced by the GABI 

arrivals (e.g. competition, higher susceptibility to predation, transmission of 

pathogens), as well as from ongoing climatic changes (Carrillo et al., 2020; 

Faurby & Svenning, 2016; Morgan, 2008; Webb, 1985; Woodburne, 2010). 

Caviomorph diversity was in decline during the Pliocene (Figure 9), 

including the loss of lineages belonging to Dinomyidae, Echimyidae, 

Erethizontidae, as well as the extinction of Neoepiblemidae (Vucetich et al., 

2015). On the other hand, xenarthran diversity peaked in the Pliocene. The 

group’s resilience to North American newcomers (as well as their own 

dispersal success into North America) has been attributed to their unique 

characteristics, including their flexible and expanded diet, resulting from 

their dental complexity (Castro et al., 2015; Ciancio et al., 2014; Vizcaíno, 

2009), as well as their relatively low metabolic rates (McNab, 1985). 

Xenarthrans also evolved a high diversity of gigantic forms in the Pliocene, 

including sloths, glyptodonts and pampatheres, that could have rendered 

them more resilient towards predation and competition with the new GABI 

arrivals (Faurby & Svenning, 2016), although they went extinct in the 

Pleistocene megafaunal extinctions (Patterson et al., 2013), possibly as a 

result of human predation (e.g. Carlini et al. (2022)). 

The reasons leading to the extinction of the last SANUs in the Pleistocene 

are still unclear. Previous studies have pointed to the rise of competition due 

to the arrival of Proboscidea, Perissodactyla and Artiodactyla from North 

America during the GABI (Webb, 1976), and/or their increased susceptibility 

to predation by newly arrived carnivorans (Carrillo et al., 2020; Faurby & 

Svenning, 2016; Patterson & Pascual, 1968). However, these hypotheses 

cannot explain the long-term decline of SANUs from the late Oligocene 

onwards (Figure 9). The results of this thesis suggest that Andean uplift, 
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and its concomitant dramatic habitat reshaping, was the key factor in their 

long-term decline. The highly unusual morphologies of SANUs, like the 

earlier appearance of hypsodonty (potentially linked with the evolution of the 

Andes (Dunn et al., 2015; Kohn et al., 2015; Strömberg et al., 2013)), in 

conjunction with their overall lower diversity (compared to xenarthrans and 

caviomorphs), might have led to a greater susceptibility of some clades to 

rapid habitat changes. For example, sedimentological and bone 

microstructural evidence support a semi-aquatic habitat for astrapotheres 

(Carrillo et al., 2018; Houssaye et al., 2016), and it is likely that changes in 

the drainage pattern of the Pebas mega-wetland system contributed to their 

extinction in the middle Miocene (Antoine et al., 2017; Hoorn, Wesselingh, 

ter Steege, et al., 2010). Interestingly, Andean uplift has also been proposed 

as one of the key factors driving the decline of sparassodont metatherians 

in the second half of the Cenozoic (Pino et al., 2022; Tarquini et al., 2022). 

It has also been suggested to have acted as the driver of the deep-time high 

diversification of some amphibian and reptile groups in the Paleogene and 

Neogene (Boschman & Condamine, 2022). 

 

The emergence of the present-day latitudinal 

biodiversity gradient 

Sample-standardised eutherian diversity is reconstructed as highest at mid-

latitudes (30° to 45° S) during the Paleogene and early–middle Miocene 

(Figure 10). In the late Miocene, diversity is highest in the 15° to 30° S 

latitudinal band. Although the Pliocene record is not rich enough at low 

latitudes to reconstruct a diversity gradient, sample-standardised eutherian 

diversity is highest at 0° to 15° S in the Pleistocene. Fossil sampling is 

generally patchy in lower latitudes of South America (Carrillo et al., 2015), 

and thus is difficult to compare diversity between tropical and temperate 

latitudes with confidence. However, focusing on the better sampled 

latitudinal bands, diversity declines within high latitudes from the early–

middle Miocene, to the Recent (Figure 10). Sampling improves towards the 

Recent (Carrillo et al., 2015), suggesting that these results have less 

probability of being artefacts of the uneven preservation of  fossils 
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latitudinally. My results suggest that the South American terrestrial LBG was 

potentially flatter than the present-day during the early Cenozoic. They 

suggest that the LBG began to steepen in the late Miocene, with the 

present-day gradient forming at some point during the Plio-Pleistocene, i.e. 

in the last 5 Myr. This is broadly congruent with the emergence of the 

present-day LBG in continental North America, estimated to have formed 

approximately 4 Ma (Marcot et al., 2016).  

Potential LBG drivers dan be summarized as geographical, historical, and 

climatic (see also Mittelbach et al. (2007); Pontarp et al. (2019); Willig et al. 

(2003)), with the fossil record providing an unparallel perspective with which 

to tease apart competing hypotheses (Brodie & Mannion, 2022). 

Geographical drivers refer to greater areal extent enabling higher diversity 

in the tropics (Rosenzweig, 1995). Although South America holds greater 

area extent towards the tropics, this has been the case throughout the last 

66 Myr, and so this cannot explain the emergence of the present-day LBG 

only in the last 5 Myr. Furthermore, no statistically significant correlation was 

found between diversity and land area with latitude in any time interval in 

my thesis.  

Historical drivers are those that involve higher tropical diversity building up 

over longer uninterrupted time intervals, as a consequence of relatively 

limited environmental perturbations (Willig et al., 2003). Although Andean 

uplift, a key driver of the continent’s reshaping, had a less prominent effect 

in the southern parts of the continent (see above), other tectonic-driven 

shifts were taking place that did affect this region, namely the separation of 

South America and Antarctica in the Paleogene (Livermore et al., 2005), 

resulting in the formation of the Drake Passage during the 

Eocene/Oligocene transition (Barker & Burrell, 1977; Scher & Martin, 

2006b; Toumoulin et al., 2020). This led to the development of the 

Circumpolar Current (Livermore et al., 2004), which amplified ongoing 

cooling and aridification in southern South America, as well as ice sheet 

expansion in Antarctica (Goin, et al., 2012a; Miller et al., 1987; Mudelsee et 

al., 2014; Passchier et al., 2013; Prothero et al., 2003). This shift to colder, 

drier, and more seasonal habitats coincided with the ‘Patagonian Hinge’ 

(Goin et al., 2010). Thus, these environmental perturbations and faunal 
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disruptions at higher latitudes might have played a role in shaping the 

present-day South American LBG, but lower latitudes were not 

environmentally or tectonically stable either. 

Climate has often been considered as the main driver of the LBG, with a 

higher concentration of taxa in the tropics, with specialised, restricted niches 

as a consequence of lower seasonality and higher insolation and 

productivity (Archibald et al., 2010; Mittelbach et al., 2007; Willig et al., 

2003). Furthermore, the presence of a unimodal LBG (i.e. the present-day 

pattern) has been linked with periods of icehouse worlds, i.e. intervals 

characterised by a steeper latitudinal temperature gradient and higher 

seasonality (Kröger, 2017; Mannion et al., 2014). With the transition to an 

icehouse world in the late Paleogene (a period of warm climate, and 

extensive temperate diversity like the presence of monkeys in Patagonia; 

Silvestro, Tejedor, et al. (2019)), and a continued global cooling trajectory 

into the Neogene (Westerhold et al., 2020; Zachos et al., 2008), and the 

further cooling and precipitation increase in the Plio-Pleistocene transition, 

the absence of a unimodal LBG in South America until the last 5 Myr, fits 

this scenario. Moreover, I found that the latitudinal distribution of mean 

annual temperature (slope = 0.765, p = 0.015) and mean annual 

precipitation (slope = -4.329, p = 0.027) correlate with eutherian diversity in 

the Pleistocene. The importance of precipitation, alongside temperature, 

has previously been recognised in constraining the distribution of diversity 

(Saupe, Myers, et al., 2019), including for North American Cenozoic 

mammals (Fraser et al., 2014). In the late Pleistocene, in particular, Saupe, 

Myers, et al. (2019) showed that the effect of precipitation shifts on diversity 

were more intense at lower latitudes, whereas temperature shifts were more 

intense at higher latitudes. Although the absence of such a correlation in 

earlier time periods could be a result of less complete fossil sampling, my 

data show that there was a major tropical precipitation increase in the 

Pliocene/Pleistocene transition of South America from 2.9 to 4.9 kg/m2/s in 

the 0° to 15° N latitudinal band (perhaps related to the Andean uplift of these 

regions), and a 2.5 to 3.3 kg/m2/s increase in the 0° to 15° S band (SI section 

13). Temperature and precipitation are therefore potentially key drivers of 

the South American LBG pattern, at least in the Plio-Pleistocene. Climate 
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was also underlined as the main driver in North America, with a 

strengthened gradient linked with global cooling (Marcot et al., 2016). 

 

 

Figure 10: Spatial eutherian subsampled diversity (for quorum level = 0.4), using 15 degree 

latitudinal bins, for the Paleocene, Eocene, Oligocene, Early Miocene, Middle Miocene, 

Late Miocene, Pliocene, and Pleistocene. 

 

The Plio-Pleistocene appearance of the present-day LBG also coincides 

with the main phases of the GABI. Although Marcot et al. (2016) discarded 

the GABI as a key driver of the LBG in North America, due to the relatively 

low number of South American groups reaching North America, this is not 

the case for South America. The GABI was asymmetrical, with 

disproportionately more North American taxa reaching South America 
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(Bacon et al., 2015; Webb & Marshall, 1982), or at least a greater number 

of species successfully establishing themselves on the southern landmass 

(Carrillo et al., 2020). However, the Plio-Pleistocene fossil record of tropical 

South America shows that North American mammals did not dominate 

these ecosystems, and their representation was in fact much greater at 

higher latitudes in South America (Carrillo et al., 2018; Carrillo-Briceño et 

al., 2021), with a possible dispersal corridor forming via Andean uplift, 

facilitating the movement of North American groups reaching the central and 

southern-most parts of South America (Patterson et al., 2012). As such, 

higher South American diversity at low latitudes did not result from 

increased North American emigrants into the tropics, although heightened 

extinction of South American eutherians, in the southern parts of the 

continent, due to competition with North American emigrants, likely 

contributed to the steepening of the LBG. Regardless, my results indicate a 

primary role for climate in shaping the emergence of the South American 

terrestrial LBG. 

 

Conclusion 

The findings of this thesis have shed light on the multi-faceted and deep-

time relation between terrestrial vertebrate diversity and climate and 

topography, in South America, one of the continents most affected by the 

current climate crisis. Andean uplift, along with its subsequent habitat and 

climate remodelling taking place throughout the Cenozoic, drove eutherian 

mammal diversity in South America, aiding some groups to diversify, while 

others to perish. In addition, precipitation and temperature likely played a 

key role in the emergence of the present-day terrestrial mammalian LBG in 

the last 5 Myr, similar to that of North America. While there are still plenty of 

aspects of the diversity-climate relationship to explore, like the role of the 

GABI in the shaping of the LBG, this thesis’s findings contribute towards a 

better understanding, and empirical evidence of the biodiversity-climate 

relationship, that is critical in the light of the current climate crisis.  
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Supplementary Information  
 

1. Updating the SALMAs 
The International stages (International Commission of Stratigraphy or ICS, 2020) are compared to the 

out-of-date SALMAs from the PBDB and the updated SALMA from this study. 

 

For the latter, I have performed a literature review to extract the most recent information on the 

SALMAs age limits. The first column has the SALMA names currently used in the literature. The next 

two columns have the updated lower (max Ma) and upper (min Ma) boundaries for each SALMA. The 

fourth column shows the references used for each SALMA. Finally, the last column presents the 

SALMA names used in the PBDB – some are outdated and replaced (example the Uquian) and those 

are indicated in bold. 
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Current 
SALMAs 

max 
(Ma) 

min 
(Ma) 

Notes & references 
Old-PBDB 
SALMAs 

Lujanian 0.13 0.08 
 (Cione & Tonni, 1999; Pardiñas et al., 2004; 
Tonni et al., 2003) 

Lujanian 

Bonaerian 0.78 0.13 (Cione & Tonni, 1999; Verzi et al., 2004) Lujanian 

Ensenadan 2 0.78 

Upper Ensenadan ~ 0.78Ma (MacFadden et al., 
1983) for upper limit of Ensenadan age: 
Ensenadan/ Marplanan  ~2Ma (Cione & Tonni, 
1995, 1999) 

Ensenadan 

Marplatan 3.27 2 

Ensenadan/ Marplanan  ~2Ma (Cione & Tonni, 
1995, 1999) 
Marplatan/ Chapadmalalan  3.27Ma (Schultz et 
al., 1998; Tomassini et al., 2013; Zárate, 2005) 

 

Uquian 

Chapadmalalan 4.5-5 3.27 

Marplatan/ Chapadmalalan  3.27Ma  
Chapadmalalan/ Montehermosan 4.5/5Ma 
(Tomassini et al., 2013; Zárate, 2005) 

Chapadmalalan 

Montehermosan 5.2-8 4.5-5 

Chapadmalalan/ Montehermosan 4.5/5Ma 
(Tomassini et al., 2013; Zárate, 2005) 
Montehermosan/ Huayquerian: base of 
Montehermosan at 7.1Ma (Reguero & Candela, 
2011) but new findings do not support the 
6.8/7Ma extension, but a 5.28Ma age  
(Tomassini et al., 2013) 

Montehermosan 

Huayquerian 
 

8.5 5.28 

(Tomassini et al., 2013) 
8.5 Ma (Cione & Tonni, 2001; Reguero & 
Candela, 2011) 

Huayquerian 
 

Chasicoan 10 8.7 

Upper limit <9.02 (8.7) Ma (Zárate et al., 2007) 
and lower limit ~10Ma (>10Ma) (Cione et al., 
2000; Cione & Tonni, 2005; Zárate et al., 2007) 

Chasicoan 

Mayoan 11.8 10 11.8–10Ma (Flynn & Swisher III, 1995) Mayoan 

Laventan 13.5 11.8 13.5–11.8Ma (Madden et al., 1997) Laventan 

Colloncuran 15.7 14 
15.7–14Ma (Bondesio et al., 1980; Madden et 
al., 1997; Marshall et al., 1977) 

Colloncuran 

Santacrucian 18 15.6 
18–15.6 Ma (Cuitiño et al., 2016; Fleagle et al., 
2013; Perkins et al., 2012)  

Friasian 
Santacrucian 

Pinturan? 
19.0
4 

17.5 19.04 to 17.5 Ma (Dunn et al., 2013) Colhuehuapian 

Colhuehuapian 21 20.1 21.0– 20.1 Ma (Dunn et al., 2013) Colhuehuapian 

Deseadan 29.4 24.2 29.4–24.2  (Dunn et al., 2013) Deseadan 

Tinguirirican 33.6 31.6 33.6–31.3 Ma (Dunn et al., 2013) Tinguirirican 

Mustersan 38.2 38 38.2– 38 (Dunn et al., 2013)  Divisaderan 

Barrancan 
(Casamayoran 
subage) 

41.7 39 41.7 to 39.0 Ma (Dunn et al., 2013) Casamayoran 

Vacan 
(Casamayoran 
subage) 

46 44 
46-44 Ma (Woodburne, Goin, Bond, et al., 
2014) 

Casamayoran 

“Sapoan” 48.5 47 
48.5 – 47 Ma (Tejedor et al., 2009; Woodburne, 
Goin, Raigemborn, et al., 2014) 

Mustersan? 

Riochican 49 48.5 
49 Ma – 48.5 Ma (Woodburne, Goin, 
Raigemborn, et al., 2014) 

Riochican 

Itaboraian 
49.5
12 

53 
49.512 Ma – 53 Ma (Woodburne, Goin, 
Raigemborn, et al., 2014) 

Itaboraian 
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2. Alpha diversity 
I calculated alpha diversity or local richness by counting the number of unique species in each 

collection (or fossil locality).  

I also incorporated “cryptic diversity” by looking at occurrences indeterminate at species level in each 

collection and counting potentially distinct species using the occurrence’s higher taxonomic 

classification in the PBDB. Thus, we used the identified name of occurrences classified in all levels 

(species to order) to calculate cryptic alpha diversity. 

Cryptic diversity, while it can be very informative, has often been overlooked in the fossil record, with 

a few exceptions (Close et al., 2019; Dunne et al., 2018; Mannion et al., 2011). 

Here, I calculate cryptic alpha diversity in two ways. The relaxed approach was performed similarly to 

that in other papers (Close et al., 2019; Dunne et al., 2018). These authors also refer to it as 

indeterminate richness. It is a less conservative approach, where diversity equals the number of 

unique occurrence names, with vaguely classified occurrences (i.e. not in species level, example 

Genus sp. or Family indet.) counting as separate species. 

I also calculate cryptic alpha diversity in a more conservative approach (resembling that of Mannion 

et al., (2011)). Occurrences that are not classified at species level are considered distinct only if they 

belong to an order not already represented in the collection. Counts per collection are expected to be 

lower than the previous approach. 

Note that both approaches consider occurrences with cf. aff. ? etc. as the same species (for example 

Macrauchenia cf. patagonica is considered the same species as Macrauchenia patagonica). In both 

approaches, informal species (e.g. <sp. A>, <sp. B> etc.) are also not considered distinct species. 

In the following example on a fossil collection, alpha diversity (excluding cryptic diversity) would be 

equal to 1, as the only recognised species for this collection would be Macrauchenia patagonica. 

However, the conservative cryptic alpha diversity for the same collection would be equal to 2, 

recognising the additional distinct species Toxodontia indet. Finally, the relaxed cryptic alpha diversity 

would equal 4, in addition recognising Macrauchenia sp. and Macrauchenidae indet. as distinct 

species. 

Order Occurrence 

Litopterna Macrauchenia patagonica 

Litopterna Macrauchenia cf. patagonica 

Litopterna Macrauchenia sp. 

Litopterna Macrauchenia <sp. A> 

Litopterna Macrauchenia <sp. B> 

Litopterna Macrauchenidae indet. 

Toxodontia Toxodontia indet. 

 

Alpha diversity, as well as “relaxed” cryptic alpha diversity is calculated and plotted in the following 

graphs. 

Peligran 63.2 63.8 
63.2 – 63.8 Ma (Clyde et al., 2014; Woodburne, 
Goin, Raigemborn, et al., 2014) 

Peligran 

Tiupampan 64 65.6 
64Ma – 65.6 Ma (Woodburne, Goin, Bond, et 
al., 2014) 

Tiupampan 
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In the following graph is shown the relation between the “relaxed” cryptic alpha diversity versus the 

“conservative” cryptic alpha diversity. The points are collections, and this graph shown an obvious 

correlation, especially in collections with less diversity. 

 

3. Raw counts 
In the following table are shown raw counts of cells, collections, references, genera and species per 

time bin. Cell counts are correlated with genera counts (Rho = 0.967, p < 0.001). Same for collection 

counts vs genera (Rho = 0.881, p < 0.001) and for reference counts vs genera (Rho = 0.947, p < 

0.001). Spearman’s test showed very positive (Rho = 0.931) and statistically significant (p < 0.001) 

correlation between accepted genera mean counts and accepted species mean counts. Therefore, it 

would be redundant to do all analyses for both genera and species level. I run them only in genus 

level because I believe that species counts are more prone to taxonomic bias. 

name max_age min_age mid_age bin genus_mean collections_mean species_mean references_mean cells_mean 

Pleistocene 2.588 0.0117 1.29985 18 198 516 279 300 236 

Piacenzian 3.6 2.588 3.094 17 98 150 80 93 66 

Zanclean 5.332 3.6 4.466 16 127 199 135 135 85 

Messinian 7.246 5.332 6.289 15 101 149 105 113 76 
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4. Diversity (SQS with grid-cell rarefaction) 
This is the sqs (q=0.4) diversity with grid-cell rarefaction (GCR) applied. The curve shows similarity 

to that of the diversity without GCR, except in the Piacenzian (late Pliocene) where this curve shows 

a diversity dip. 

 

 

 

 

 

 

5. Preservation rates 
In the following graph I show preservation rates calculated per time bin, using PyRate. 

Tortonian 11.62 7.246 9.433 14 132 190 139 150 77 

Serravallian 13.82 11.608 12.714 13 70 235 83 97 37 

Langhian 15.97 13.82 14.895 12 76 104 99 77 47 

Burdigalian 20.44 15.97 18.205 11 123 216 214 162 94 

Aquitanian 23.03 20.44 21.735 10 51 50 57 55 26 

Chattian 28.1 23.03 25.565 9 98 89 109 91 49 

Rupelian 33.9 28.1 31 8 83 69 92 66 44 

Priabonian 38 33.9 35.95 7 8 7 8 4 7 

Bartonian 41.3 38 39.65 6 85 85 144 55 36 

Lutetian 47.8 41.3 44.55 5 37 35 47 22 16 

Ypresian 56 47.8 51.9 4 36 14 35 25 11 

Thanetian 59.2 56 57.6 3 2 2 2 2 3 

Selandian 61.6 59.2 60.4 2 3 4 4 4 3 

Danian 66 61.6 63.8 1 8 5 11 4 2 
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6. Diversification rates with PyRate 
The histograms (frequencies) show the calculated times of rate shifts and calculate Bayes Factors in 

order to determine if the time of a rate shift is supported by a significant posterior probability. Positive 

evidence of rate shift is when logBF > 2 (lower dashed line) and strong evidence of rate shift is when 

logBF > 6 (higher dashed line). 

 

 

 

 

7. Westerhold mean-per-timebin global curve 

Speciation rate shift importance Extinction rate shift importance 
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Palaeotemperature curve, based on the δ18O data from Westerhold et al., (2020). The grey area 

shows the maximum and minimum mean temperature range of each time bin. 

 

I tested the correlation of these palaeotemperature data with (non-GCR) eutherian diversity. There is 

not a statistically significant correlation between the global palaeotemperature d18O proxy 

(Westerhold et al., 2020) and eutherian diversity in South America (slope = 0.670, p = 0.429). This 

could suggest more local/regional environmental drivers exist. 

 Slope (Estimate) 

δ18O 0.670 (p = 0.429) 

Intercept Estimate Adjusted R squared 

12.702 (p > 0.001) -0.024 (p = 0.429) 

 

8. Andean uplift 
The following graph shows the mean values (in m) of Andean uplift per time bin.  
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9. South American continent palaeoclimatic variable curves (Getech stage-level 
from HadCM3) 

Mean temperature, precipitation, topography (altitude in m), and number of land cells per time bin, for 

South America. These data come from the HadCM3 models. 

 

I calculated the regression between South American continent palaeoenvironmental variables & SQS 

diversity without GCR. There is no statistically significant correlation between temperature, 

precipitation and topography on eutherian diversity in South America. 

 Slope (Estimate) 

Temperature -0.973 (p = 0.095) 

Precipitation 0.714 (p = 0.871) 

Topography 0.018 (p = 0.217) 

Intercept Estimate Adjusted R squared 

25.709 (p = 0.126) 0.052 (p = 0.337) 

 

 

10. Individual eutherian group diversity curves & regression with whole-
eutherian curve (non GCR) 

Performed a general least-square regression (GLS) to test the effect of caviomorph, xenarthran and 

SANU diversity curves on full eutherian curve (non GCR).  

 Number of unique genera 

caviomorphs 336 

xenarthrans 390 

SANU 386 

 

All groups were found to significantly and positively drive the all-eutherian diversity curve. Xenarthrans 

have the biggest effect (slope = 1.026) followed by caviomorphs (slope = 0.944) and SANU (slope = 

0.868). 
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 Slope (Estimate) 

caviomorphs 0.944 (p = 0.036) 

xenarthrans 1.025 (p > 0.002) 

SANUs 0.868 (p = 0.008) 

Intercept Estimate Adjusted R squared 

4.097 (p = 0.267) 0.879 (p = 0.001) 

 

11. Metatherian diversity (without GCR) 
I calculated the SQS diversity of metatherians, in the same way as in eutherians in this thesis. 
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12.  Latitudinal SQS diversity for specific time periods 
The following graphs were produced, for periods with enough data that could produce more than one 

point. 

 

 

 

 

 

 

 

13.  Palaeoenvironmental variables in latitude 
I also calculated the HadCM3 modelled palaeoenvironmental variables mean (faded area consists of 

maximum and minimum values for each bin). 
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I calculated a regression of spatial palaeoenvironmental variables and eutherian diversity (non GCR). 

Analyses either didn’t have a large enough sample size, or showed a non-significant effect of 

palaeoenvironmental variables on eutherian diversity latitudinally. The exception is the Pleistocene, 

where latitudinal distribution of temperature (slope = 0.765, p = 0.015) and most importantly 

precipitation (slope = -4.329, p = 0.027) significantly drive eutherian diversity.  

 Slope (Estimate) 

Temperature 0.765 (p = 0.015) 

Precipitation -4.329 (p = 0.027) 

Topography 0.004 (p = 0.0.152) 

Intercept Estimate Adjusted R squared 

15.592 (p = 0.037) 0.998 (p = 0.025) 

 

14. Raw counts of modern South American placentals per latitude 
I calculated the raw counts of unique general of extant South American placentals for each latitudinal 

bin, based on data from GBIF. 

 

15. Diversification rates (SQS without GCR) 
I calculated sampled-in-bin (SIB) and corrected SIB (CSIB) diversification rates by time bin (Alroy, 

2008) using the divDyn package in R. 
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Similarly, I calculated the following origination and extinction rates per time bin: second-for-third (2f3) 

rates (Alroy, 2015) and corrected three-timer (C3t) rates (Alroy, 2008). 

 

 

16. Occurrence-based palaeoclimatic variable curves 
I have calculated palaeoenvironmental variables per time bin. These are the mean values (faded area 

is restricted by the maximum and minimum value in each time bin) of each variable, calculated taking 

into account only cells that contain fossil occurrences used in this thesis. 

 

I performed a regression between these occurrence-based palaeoenvironmental variables & SQS 

diversity without GCR. The regression results show that temperature (slope = 1.166, p < 0.001) and 

humidity (slope = -2.45, p < 0.001) drive South American eutherian diversity. 

 Slope (Estimate) 

Temperature 0.804 (p = 0.432 

Precipitation 0.994 (p = 0.755) 

Topography -1.584 (p = 0.336) 

Intercept Estimate Adjusted R squared 

12.115 (p = 0.434) -0.228 (p = 0.770) 
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