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a b s t r a c t

Object recognition is often viewed as a feedforward, bottom-up process in machine learning, but in
real neural systems, object recognition is a complicated process which involves the interplay between
two signal pathways. One is the parvocellular pathway (P-pathway), which is slow and extracts fine
features of objects; the other is the magnocellular pathway (M-pathway), which is fast and extracts
coarse features of objects. It has been suggested that the interplay between the two pathways endows
the neural system with the capacity of processing visual information rapidly, adaptively, and robustly.
However, the underlying computational mechanism remains largely unknown. In this study, we build
a two-pathway model to elucidate the computational properties associated with the interactions
between two visual pathways. Specifically, we model two visual pathways using two convolution
neural networks: one mimics the P-pathway, referred to as FineNet, which is deep, has small-size
kernels, and receives detailed visual inputs; the other mimics the M-pathway, referred to as CoarseNet,
which is shallow, has large-size kernels, and receives blurred visual inputs. We show that CoarseNet
can learn from FineNet through imitation to improve its performance, FineNet can benefit from the
feedback of CoarseNet to improve its robustness to noise; and the two pathways interact with each
other to achieve rough-to-fine information processing. Using visual backward masking as an example,
we further demonstrate that our model can explain visual cognitive behaviors that involve the interplay
between two pathways. We hope that this study gives us insight into understanding the interaction
principles between two visual pathways.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Imagine you are driving a car on a highway and suddenly an
bject appears in your visual field, crossing the road. Your initial
eaction is to slam on the brakes even before recognizing the
bject. This highlights a core difference between human vision
nd current machine learning strategies for object recognition.
n machine learning, visual object recognition is often viewed as
feedforward, bottom up process, where object features are ex-
racted from local to global in a hierarchical manner; whereas in
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human vision, we can capture the gist of a visual object at a glance
without processing the details of it, a crucial ability for us (es-
pecially animals) to survive in competitive natural environments.
This strategic difference has been demonstrated by a large volume
of experimental data. For examples, Sugase, Yamane, Ueno, and
Kawano (1999) found that neurons in the inferior temporal cortex
(IT) of macaque monkeys convey the coarse information of an
object much faster than the fine information of it; FMRI and MEG
studies on humans showed that the activation of orbitofrontal
cortex (OFC) precedes that of the temporal cortex when a blurred
object was shown to the subject (Bar et al., 2006); Liu, Wang,
Zhou, Ding, and Luo (2017) further demonstrated that the dorsal
pathway extracts the coarse information of an object in less than
100 ms after the stimulus onset, and this coarse information
guides the subsequent local information processing.

Indeed, the Reverse Hierarchy Theory for visual perception

has proposed that although the representation of image features
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Fig. 1. Illustration of the two separated pathways for information processing in the visual system. An image of an eagle is processed through two pathways. Upper
panel: the P-pathway processes the detailed information of the image. Lower panel: the M-pathway processes the coarse information of the image rapidly, generates
predictions about the image (association), and modulates the information processing of the P-pathway (feedback). MRGC: midget retina ganglion cell. PRGC: parasol
retina ganglion cells. EVA: early visual area. LOC: lateral occipital complex. IPS: intraparietal sulcus. SC: superior colliculus. PFC: prefrontal cortex.
along the ventral pathway goes from local to global, our percep-
tion of an object goes inversely from global to local (Hochstein
& Ahissar, 2002). How does this happen in the brain? Experi-
mental studies have revealed that there exist two anatomically
and functionally separated signal pathways for visual information
processing (see Fig. 1). One is called the parvocellular path-
way (P-pathway), which starts from midget retina ganglion cells
(MRGCs), projects to layers 3–6 in the lateral geniculate nu-
cleus (LGN), and then primarily goes downstream along the ven-
tral stream. The other is called the magnocellular pathway (M-
pathway), which starts from parasol retina ganglion cells (PRGCs),
projects to layers 1–2 of LGN, and then goes along the dorsal
stream or the subcortical pathway (the superior colliculus and
downstream areas). The two pathways have different neural re-
sponse characteristics and complementary computational roles.
Experimental findings have shown that the P-pathway is sensitive
to colors and responds primarily to visual inputs of high spatial
frequency; whereas the M-pathway is color blind and responds
primarily to visual inputs of low spatial frequency (Derrington &
Lennie, 1984). It has been suggested that the M-pathway serves as
a short-cut to extract coarse information of images rapidly, while
the P-pathway extracts fine features of images slowly, and the
interplay between two pathways endows the neural system with
the capacity of processing visual information rapidly, adaptively,
and robustly (Bar, 2003; Bullier, 2001; Liu et al., 2017; Wang,
Zhou, Zhuo, Chen, & Huang, 2020). For instance, by extracting
the coarse information of an image, the M-pathway can gen-
erate predictions about what are expected in the visual field,
and this knowledge subsequently modulate the fine information
processing in the P-pathway (see Fig. 1).

Although the existence of separated P- and M- pathways is
ell known in the neuroscience field, exactly how they cooper-
te with each other to facilitate information processing remains
oorly understood. The main difficulty comes from that to date,
e still do not have much knowledge about the detailed struc-
ures of two pathways and the details of their interaction process,
hich prevent us from building a detailed biological model to
lucidate the associated neural mechanisms. Recently, computa-
ional studies have demonstrated that deep neural networks can
e useful models to describe visual information processing, e.g., it
as shown that convolution neural networks (CNNs) can effec-
ively mimic the neuronal response variability along the visual
athway (Kriegeskorte, 2015; Yamins, Hong, Cadieu, & DiCarlo,
013). Inspired by these studies, in this work, we build up a
wo-pathway model using CNNs as building blocks to elucidate
he computational properties of the interplay between two vi-
ual pathways (see Fig. 2). Specifically, we model the P-pathway
sing a relatively deep CNN, which has small-size kernels and
eceives detailed visual inputs, referred to as FineNet hereafter;
nd we model the M-pathway using a relatively shallow CNN,
hich has large-size kernels and receives blurred visual inputs,
eferred to as CoarseNet hereafter. Based on the proposed model,
e investigate several computational issues associated with the

nterplay between two pathways, including how CoarseNet learns
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from FineNet via imitation, how FineNet benefits from CoarseNet
via feedback to leverage its performance, and how they interact
with each other to achieve rough-to-fine information processing.
We also use the two-pathway model to reproduce the backward
masking phenomenon observed in human psychophysic exper-
iments. We hope that this modeling study, although it is still
quite preliminary and misses many biological details, can give
us some insight into understanding the interaction principles
between two visual pathways.

2. The two-pathway model

The structure of our two-pathway model is illustrated in
Fig. 2, where FineNet and CoarseNet mimic the P- and M- path-
ways, respectively. Notably, FineNet is deeper than CoarseNet,
reflecting that the P-pathway goes through more feature ana-
lyzing relays (e.g., V1-V2-V4-IT along the ventral pathway) than
the M-pathway. FineNet also has smaller convolutional kernels
than CoarseNet, reflecting that MRGCs in the retina have much
smaller receptive fields than PRGCs. Furthermore, we consider
that FineNet receives detailed and colorful visual inputs, re-
flecting that MRGCs have small receptive fields and are color
sensitive; while CoarseNet receives blurred and gray inputs, re-
flecting that PRGCs have large receptive fields and are color
blind.

In the model, we consider that the two pathways interact
with each other in three forms: (1) Imitation learning. Since
CoarseNet has a shallow structure and receives blurred inputs,
it is hard to train CoarseNet well for object recognition directly.
Hence we consider that CoarseNet learns the feature represen-
tations of FineNet via an imitation process. Later we will argue
that this has an important biological implication (see Section 3.1).
(2) Association. It is supposed that the M-pathway generates
predictions about what might be in the visual scene, which guides
the information processing in the P-pathway. We model this by
considering that CoarseNet predicts the representation of FineNet
through a memory association process. (3) Feedback. It is known
that coarse information can serve as a cognitive bias guiding
the extraction of fine information of images. We model this
by feeding the associated prediction back to an earlier layer of
FineNet to enhance the fine feature extraction. The details of the
two-pathway model are introduced below.

2.1. The inference process of the model

Denote the input to FineNet as x and the input to CoarseNet
as x̂. x̂ is obtained by either filtering x with a 2D Gaussian
filter or binarizing x. Denote the output of CoarseNet to be
pC (x̂) = f C

[
gC

(
x̂; θC)

; wC
]
, where gC (·; θC ) and f C (·; wC ) repre-

sent, respectively, the feature extractor and the linear classifier of
CoarseNet, and {θC , wC

} the trainable parameters. The output of
FineNet is similarly denoted as pF (x) = f F

{
gF

[
x,O(x̂, x); θF ]

;

wF
}
, where the feature extractor gF (·; θF ) has an extra input

component O(x̂; x), representing the feedback signal.
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Fig. 2. Illustration of the two-pathway model. (A) The architecture of the model. The blue and orange blocks represent the feedforward convolutional layers in
FineNet and CoarseNet, respectively. The purple one represents the feedback convolution block in FineNet. In inference, CoarseNet extracts coarse features gC (x̂)
from a blurred image x̂, which serves as a cue to predict the fine features C (x̂) of the image via association. The associated result is then combined with the deep
representations hF (x, x̂) to form a feedback signal O(x, x̂), and the latter modulates an early layer of FineNet. In training, FineNet is optimized by minimizing the
classification loss, and CoarseNet by minimizing both classification and imitation losses. (B) Illustration of static memory association (SMA). A query of the coarse
features gC (x̂) of the input x̂ is associated with a weighted summation of the fine features stored in the memory buffer, where the weighting coefficient ∆k(x̂) is
the similarity between the coarse features and the key vector uk .
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To generate the feedback signal O(x̂, x) in FineNet, we con-
sider a memory association process. Two types of associations
are exploited in this work, static memory association (SMA) and
dynamic memory association (DMA) . They have the similar effect
of using coarse features gC (·; θC ) as a cue to predict fine features.
SMA is simpler, but we also consider DMA, as it introduces
temporal dynamics into our two-pathway model necessary for
reproducing the backward masking experiment (see Section 4).
For clearance, we only introduce SMA here (see Fig. 2B), and
DMA is described in Appendix E. Specifically, we implement SMA
with the cache memory model (Orhan, 2018), which performs a
key–value association. The model stores a pair of a key matrix
u ∈ Rd×K and a value matrix v ∈ Rc×K in the memory buffer,
with K the number of memory items and d, c the dimensions
of the key and value vectors, respectively. The columns uk and
vk represent, respectively, the normalized gC (x̂k; θC ) of CoarseNet
and the flattened feature vector hF (xk, x̂k) of the last convo-
lution layer of FineNet. When a specific query vector gC (x̂) of
CoarseNet is presented, we first calculate its similarities with all
key vectors stored in the memory buffer, which are given by
∆k(x̂) = exp

[
βgC (x̂)⊤uk

]
, for k = 1, . . . K , with β controlling

the sharpness of similarity. After that, we calculate the associ-
ated result, i.e., the predicted fine features, which is given by
C (x̂) =

∑
k vk∆k(x̂)/

[∑
k ∆k(x̂)

]
. The inference of FineNet forms a

continuous loop so that the feedback signal is updated iteratively
(see Fig. 2A). At time step t , the feedback signal in FineNet is
calculated by Ot (x̂, x) = C (x̂) + hF

t−1(x, x̂). Notably, at the first
step t = 1, only the associated result from CoarseNet is available,
which gives O1(x̂, x) = C (x̂). This reflects the fact that the M-
pathway is much faster than the P-pathway, which generates the
first feedback signal without interacting with high visual areas in
the P-pathway.

In summary, the inference of the model involves interac-
tion between two pathways: in response to an image, CoarseNet
first generates its output and meanwhile predicts the fine fea-
tures of FineNet through association; the predicted result is then
combined with the deep representations of FineNet to form a
feedback signal, which modulates the shallow layer of FineNet
for feature extraction; this feedback loop can go on iteratively to
continuously leverage the performance of FineNet.

2.2. The training of the model

During training, FineNet and CoarseNet are optimized jointly.
To get the network output for an input, we run the feedback loop
iteratively in FineNet for T steps. FineNet is optimized through
minimizing the cross-entropy loss, which is given by

LF = −
1
N

N∑ K∑
yi,j ln pF

j (xi), (1)

i=1 j=1
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where pF
j is the jth element of pF , i.e., the likelihood of the jth

class, and yi,j is the jth element of the one-hot label y i for the
mage xi, which is 1 for the correct class and 0 otherwise. The
ummation runs over all images N and all classes K .
Since CoarseNet receives coarse inputs and has a shallow

tructure, we optimize it via a combination of classification and
mitation losses, which is written as

C =
1
N

×

N∑
i=1

⎡⎣−α

K∑
j=1

yi,j ln pCj (x̂i) +
1 − α

2
∥gC (x̂i) − gF (xi, x̂i)∥2

⎤⎦ ,

(2)

where the symbol ∥ · ∥ denotes L2 normal, and α is a hyper-
parameter balancing the cross-entropy loss and the imitation loss.

Since SMA aims to store the long-term correlation (associ-
ation) between the feature representations of CoarseNet and
FineNet, we update its key and value matrices after every N
(N = 2 is used in this study) training epochs .

3. Interplay between two pathways

In our two-pathway model, FineNet and CoarseNet interact
with each other in three forms, including imitation learning, as-
sociation and feedback. We explore how these three interactions
affect the computational properties of the two-pathway model.

3.1. Imitation learning from FineNet improves CoarseNet’s perfor-
mance

In the two-pathway model, CoarseNet is supposed to gener-
ate a good initial guess of the image, which further serves as
a cognitive bias to facilitate the performance of FineNet. How-
ever, since CoarseNet is shallow, has large convolution kernels,
and receives coarse inputs, it is hard to train CoarseNet well
independently. Therefore, we consider that CoarseNet learns the
feature representations of FineNet via imitation learning. This is
an interesting issue and may have some far-reaching implications
to brain functions (see discussions below). We therefore carry
out a separate experiment to study the imitation learning effect.
Specifically, we focus on exploring how CoarseNet learns from
FineNet via imitation, without considering other interactions be-
tween two pathways. To evaluate the model performance, we
use Pascalvoc-mask and CIFAR-10 datasets (see Appendix A.1).
To generate blurred inputs x̂ to CoarseNet, we either adopt low-
pass filter x using a 2D Gaussian filter with std = 2 or binarizing

x using a shape mask (see examples in Fig. 3A), mimicking the
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Fig. 3. Examples of visual inputs used in the experiments. (A) Examples of visual inputs used for training FineNet and CoarseNet. From up to down, a raw image
to FineNet, the corresponding low-pass filtered image (blurred) to CoarseNet, and the corresponding binarized image (mask data) to CoarseNet. (B-E) Different kinds
of noise disrupted inputs. (B) Examples of Gaussian noise with std = 0.04, 0.3, 0.6, respectively. (C) Examples of shot noise with c = 100, 3, 1, respectively. (D)
xamples of impulse noise with p = 0.07, 0.15, 0.3, respectively. (E) Adversarial noise. Up: the adversarial noise of the example image in (A)-up, obtained by the
ast Gradient Sign Method (Goodfellow, Shlens, & Szegedy, 2014); Middle and down: the adversarial examples with the noise levels of 0.1 and 0.5, respectively.
Fig. 4. Imitation learning from FineNet improves the performance of CoarseNet. (A-B): performances of CoarseNet trained on low-pass filtered images from CIFAR-10.
(A) Performances vs. the number of convolution channels. (B) Performances vs. the size of convolution kernel. (C-D): performances of CoarseNet trained on the
binarized Pascalvoc-mask. (C) Performance vs. the number of convolution channels. (D) Performance vs. the size of convolution kernel. The number of convolution
channels and the size of convolutional kernel refer to that in the first layer in CoarseNet. Mean and std are obtained by averaging over 5 trials with random network
initialization. See Appendix A for the details of the training and testing data.
coarse input to M-pathway. The detailed implementations of the
model are presented in Appendix C.

Fig. 4 present the results, which demonstrate that over a
ide range of parameters, the classification accuracy of CoarseNet
ith imitation learning is improved considerably compared to
hat without imitation learning. Specifically, with respect to the
umber of convolution kernels in CoarseNet, the improvement
s significant when the number of kernels is large (Fig. 4A for
ow-pass filtered inputs; Fig. 4C for binarized inputs); with re-
pect to the size of kernels in CoarseNet, the improvement is
lso significant (Fig. 4B for low-pass filtered inputs; Fig. 4D for
inarized inputs). The fact that the effect of imitation learning
lso depends on the network parameters (see Fig. 4A) indicates
hat in reality there is a trade-off between the simplicity of the
-pathway structure and the effect of the M-pathway learning

rom the P-pathway.
695
3.1.1. Biological implications of imitation learning
From the computational point of view, the brain faces a dif-

ficulty of ‘‘designing’’ properly the M-pathway. On one hand,
the M-pathway needs to be shallow and process coarse visual
inputs in order to generate quick responses (which is important
in a dangerous environment); on the other hand, the M-pathway
needs to efficiently generate approximated, if not accurate, recog-
nition of an object, serving as a good initial guess for further
processing. However, it is a well-known fact that a shallow neural
network alone is unable to achieve good object recognition (this
has actually motivated the development of deep neural net-
works). So, how does the brain resolve this dilemma? Here, our
study suggests that the strategy of imitation learning proposed in
machine learning (Hinton, Vinyals, & Dean, 2015) may provide a
solution to this challenge, that is, the shallow M-pathway learns
the representations of the deep P-pathway through imitation
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Fig. 5. Model performances against noises and adversarial noise perturbations. The loop of feedback interactions is 3 for TwoPathway model. CoarseNet in these
models takes grayed and low-pass filtered inputs with std = 2. Adversarial noises are generated by attacking FineNet using the Fast Gradient Sign Method (Goodfellow
t al., 2014). In (A-C), model performances against noise perturbations. FineNet and CoarseNet are trained independently on the dataset. (D) Model performances
gainst adversarial noise perturbations. Mean and std are obtained by averaging over 4 trials with random network initialization and seed.
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o improve its performance. Imitation learning may also be in-
olved in other brain functions, such as for knowledge transfer
nd memory consolidation between hippocampus and neocor-
ex (Alvarez & Squire, 1994; Sirota, Csicsvari, Buhl, & Buzsáki,
003). During the acquisition of motor skills, it has been observed
hat neural activities gradually shift from the prefrontal cortex
o the premotor, posteriorparietal, and cerebellar areas (the so-
alled scaffolding-storage proposed by Petersen, Van Mier, Fiez,
Raichle, 1998), indicating that imitation learning may occur

cross cortical regions. Notably, the brain also has resources to
mplement imitation learning, e.g., the widely observed synchro-
ized oscillations between cortical regions (Buzsáki & Draguhn,
004) can modify neuron connections via Hebbian plasticity to
upport the transfer of neural representations. It will be interest-
ng to explore how imitation learning is realized in real neural
ystems.

.2. CoarseNet improves FineNet’s robustness to noise

A deep CNN trained for image classification is known to
verly rely on local textures rather than the global shape of ob-
ects (Baker, Lu, Erlikhman, & Kellman, 2018; Geirhos et al., 2018,
018), which is sensitive to unseen noises. In our model, since
oarseNet processes blurred visual inputs, whereby the local
exture information is no longer the main cue supporting object
lassification, we expect that CoarseNet is robust to noise corrup-
ions. Furthermore, through association and feedback, we expect
hat the robustness of FineNet to noises is also leveraged. We
arry out simulations to test this hypothesis. The implementation
etails are presented in Appendix D.
Fig. 5 presents the results, which compares the performance

f the two-pathway model with those of FineNet and CoarseNet
nly without interaction. The models were trained on the clean
IFAR-10 dataset and tested by adding various noise perturba-
ions, including Gaussian, shot, impulse and adversarial noises
for details, see Appendix A.2). We see that the noise robustness
f the two-pathway model is improved significantly compared
o that of FineNet only without the feedback of CoarseNet. No-
ably, although CoarseNet has much lower accuracy compared
o FineNet, it is robust to all kinds of noises. This indicates
hat CoarseNet can generate a robust association, which help to
mprove the robustness of FineNet to noises.
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To exclude the possibility that noise robustness of our model
omes from the feedback interactions in FineNet itself rather than
he feedback from CoarseNet, we carry out simulations by includ-
ng feedback loops between higher and lower layers in FineNet
ithout considering the feedback from CoarseNet. As shown in
able 1, with the loop of feedback interactions increases, the per-
ormances of FineNet in both clean and noisy datasets increase,
ut they are still inferior to the two-pathway model. These results
onfirm that the interplay between two pathways does contribute
o improving the noise robustness of the model.

Finally, we carry out ablation study to analyze the contri-
utions of different elements of the model, including FineNet,
oarseNet, the association module (SMA), and the feedback loop,
nd confirm that when any one of them is missing or modified,
he robustness of the model to noise is degraded dramatically (see
ig. 6).

.3. The two-pathway model implements rough-to-fine information
rocessing

In the above sections, we have considered that the two path-
ays recognize the same categorical information of images. In
eality, the two pathways may also process different levels of
ategorical information of images, and object recognition goes
rom rough to fine. For instance, CoarseNet may recognize the
igher category of an object (e.g., reptile), and FineNet recognizes
he lower category of the object (e.g., turtle). In such a case, the
esult of CoarseNet can serve as a cognitive bias to facilitate the
erformance of FineNet. We carry out experiments to test this
ypothesis.
We construct a rough-to-fine recognition task using the CIFAR-

00 dataset. We randomly choose 15000 images from CIFAR-100,
ith each image having a super- and a sub-class labels, e.g., an

mage belongs to a sub-class turtle and super-class reptile (see
ig. 7A). There are totally 5 super-classes (people, reptiles, small
ammals, trees, vehicles) and each of which further contains 5
ub-classes (e.g., for reptiles, the five sub-classes are crocodile,
inosaur, lizard, snake, and turtle) (see Appendix A.1). We train
oarseNet and FineNet to recognize the super- and sub-classes of
ach image, respectively. After training, we test the performances
f the two-pathway model on a test dataset with Gaussian noise
see Appendix A.2).
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Fig. 6. Component analysis of the two-pathway model. FN: FineNet. CN: CoarseNet. SMA: static associative memory. FB†: the long-range feedback from CoarseNet and
the higher layer of FineNet to the second layer of FineNet; without FB† means a short-range feedback to the third layer of FineNet. Red dashed line: the performance
of the two-pathway model. (A) Model performances with respect to Gaussian, impulse and shot noises. (B) Model performances with respect to adversarial noise.
Mean and std are obtained by averaging over 4 trials with random network initialization. Experimental details are the same as in Table 1.
Fig. 7. Coarse to Fine information processing in the two-pathway model, where CoarseNet and FineNet perform super- and sub-class classifications, respectively. (A)
Example images with super- and sub-class labels. Left panel: five sub-classes image samples of the super-class reptiles. Right panel: five sub-classes image samples
of the super-class small mammals. (B) Left panel: the inference of the two-pathway model is divided into four steps. S0: CoarseNet recognizes the super-class label
of the image; S1: FineNet recognizes the sub-class label of the image through the 1st-round of feedback interaction; S2 and S3: FineNet recognizes the sub-class
label of the image through the 2nd and third rounds of feedback interaction. Right panel: the performances of the model over steps. The dashed red line denotes
the accuracy of FineNet-only without interaction with CoarseNet. The model performances are evaluated on a test dataset with Gaussian noise and severity = 2. A
aired t-test is conducted, and statistical significance is denoted as: *** indicates a significance level of P < 0.001, ** indicates P < 0.01, and * indicates P < 0.05.

Mean and std are obtained by averaging over 8 trials with random network initialization. The other experimental settings are the same as in Table 1.
Table 1
Comparing the performance of the two-pathway model with that of FineNet with internal feedback loops. FineNet-
only with nfd = 0, 1, 3, refer to FineNet without feedback connection, with 1 loop of feedback interaction, and with
3 loops of feedback interaction, respectively. FineNet takes clean RGB images and CoarseNet the grayed, low-pass
filtered images. The network performances for Gaussian, shot, and impulse noises are obtained by averaging over 5
different noise perturbation levels, and the results for adversarial noises are obtained by averaging over 8 different
noise perturbation levels. Mean and std are obtained by averaging over 4 trials.
Models Clean Gaussian noise Shot noise Impulse noise

FineNet-only (nfd = 0) 86.9±0.1 50.0±0.5 57.8±0.8 59.0±0.4
FineNet-only (nfd = 1) 88.4±0.0 56.6±1.2 64.4±1.2 61.4±1.4
FineNet-only (nfd = 3) 88.0±0.0 59.1±1.4 65.9±1.2 63.0±0.1

Two-pathway model 86.7±0.2 62.2±0.2 68.0±0.1 66.5±0.5
Notably, the networks (CNNs) we use do not have temporal
ynamics. To reflect the temporal dynamics of the real neural sys-
em, we decompose the model’s outputs into multiple steps: Step
: CoarseNet generates its output, predicting the super-class label
f the image; Step 2: CoarseNet feedbacks to FineNet, and FineNet
redicts the sub-class label of the image; Step 3 and 4: FineNet
697
receives the feedback from CoarseNet and outputs the sub-class
label of the image iteratively. The results are shown in Fig. 7B.
We see that indeed through the feedback from CoarseNet, the
accuracy of FineNet recognizing the sub-class label of an image
increases over time, manifesting a characteristic of rough-to-fine
information processing.
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Fig. 8. The two-pathway model explains visual backward masking. (A) The paradigm of the backward masking experiment, adapted from Macknik and Martinez-Conde
2007). SOA: the time interval between the onsets of target and mask; ISI: the interval between the termination of target and the onset of mask; STA: the interval
etween the terminations of target and mask. (B) The experimental result, adapted from Tang et al. (2018). (C) The two-pathway model with RBM. RBM plays the
ole of a dynamical associative memory, which consists of a hidden layer and a visible layer, and the visible layer receives concatenated features from CoarseNet
nd FineNet. (D) The retrieval phase in the two-pathway model. The coarse features from CoarseNet are fed into the visible layer of RBM and the prediction is
enerated through the dynamics of RBM. (E) The recognition accuracy of the two-pathway model vs. different values of STA. ISI = 0. (F) The recognition accuracy
f the two-pathway model vs. different values of SOA. Mean and std are obtained by averaging over 10 trials with random network initialization.
. Two-pathway processing accounts for visual backward
asking

Visual backward masking is a classic experiment widely used
n cognitive psychology to investigate attention, awareness and
yslexia. In the cognitive experiment, a masking stimulus is pre-
ented after the target stimulus with a brief delay (usually 30–
0 ms), which incurs a failure of the subject to consciously
erceive the target (see Fig. 8A). The important factors affect-
ng the masking effect are the target duration and the mask
uration, referred to as stimulus onset asynchrony (SOA) and
timulus termination asynchrony (STA), respectively. An exam-
le study is display in Fig. 8B (Tang et al., 2018), in which
ubjects were required to perform a 5-classes recognition task
nvolving objects that were either partially or fully visible, and
bject images were followed by either a gray screen (without
asking) or a spatially overlapping noise pattern (with mask-

ng). SOA varies from 25 to 150 ms in randomly ordered trials.
he experiment found that subjects’ performances were dramat-
cally disturbed when SOA is very small, and they were im-
roved gradually when SOA increases. To explain visual backward
asking, both feedback and feedforward mechanisms were pro-
osed in the literature. The feedback mechanism suggests that
he feedback from higher visual areas to V1 leads to the invisi-
ility of the target stimulus (Lamme, Zipser, & Spekreijse, 2002).
698
However, many experimental findings do not support that feed-
back plays a crucial role in visual masking (Macknik & Martinez-
Conde, 2004, 2007; Martinez-Conde, Macknik, & Hubel, 2004),
rather they suggest that visual masking is primarily driven by
feedforward (non-reverberatory) lateral interactions between the
target and mask (Macknik & Martinez-Conde, 2007). One well-
known feedforward mechanism is the conceptual two-channel
framework proposed by Breitmeyer et al. which comprises a fast
transient channel and a slow sustained channel (Breitmeyer &
Ganz, 1976), and our study proposes a neural network model to
implement this framework.

Our two-pathway model naturally implements the
two-channel processing idea. To capture the temporal effect in
the experiment, we consider a dynamical memory association
(DMA) process implemented by a restrict Boltzmann machine
(RBM), which holds the same idea of using coarse features as
a cue to predict fine features as SMA (see Fig. 8C, note that we
use RBM instead of SMA to model visual masking is only because
RBM involves iterative memory association, which allows us to
model the time delay between the M and P pathways; while SMA
performs one-shot computation and is not suitable to model this
process. There is no extra interaction induced between SMA and
RBM). The visible part of RBM is composed of the concatenated
features from CoarseNet and FineNet, which are associated with
each other through hidden variables, as shown in Fig. 8D. In the
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imulation, one iteration in RBM equals to a time step of 10 ms.
s suggested by the neural data (Bar et al., 2006; Liu et al., 2017;
ugase et al., 1999), information processing in the M-pathway
roceeds that in the P-pathway for about 50 ms, thus RBM will
nly receive coarse features as the input at the first 5 iterations.
hen the target information from FineNet arrives at the visible

ayer of RBM, it will interact with the features from CoarseNet.
ote that at this moment the features can be the mask or the
oarse feature of the target, depending on the SOA value. The
etwork evolves for another period of time (500 ms), and the
inal features in the visible layer are used for recognition. For the
raining of DMA implemented by RBM, please refer to Appendix E.

Because of the time lag between two pathways, the coarse
nformation of the mask is confounded with the fine information
f the target, leading to wrong association that interferes the
erception. The results are presented in Fig. 8E,F, which shows
hat the larger the STA or the shorter the SOA, the stronger
he interference of the mask. Our model successfully reproduces
he backward masking effect as observed in the experiment. As
hown in Fig. 8F, the classification accuracy of the model in-
reases with SOA, agreeing with the experimental findings (Tang
t al., 2018).

. Conclusion and discussion

In the present study, we have built a two-pathway model
ased on CNNs to study the interplay between two visual path-
ays. The model is composed of FineNet and CoarseNet, with
he former extracting fine information of visual inputs and the
atter extracting coarse information of inputs. CoarseNet pro-
esses information rapidly, whose result serves as a feedback to
acilitate the performance of FineNet. Our study demonstrates
everal appealing properties associated with the interplay be-
ween two pathways, which are: (1) through imitation, CoarseNet
an learn from FineNet to improve its prediction of inputs; (2)
hrough association and feedback from CoarseNet, the robustness
o noise of FineNet is improved significantly; (3) the predic-
ion of CoarseNet can serve as a cognitive bias to leverage the
erformance of FineNet, achieving rough-to-fine information pro-
essing. Furthermore, we show that the two-pathway model can
xplain the visual backward masking phenomenon as observed in
he experiment.

While there is currently no direct biological evidence for
he presence of imitation learning in the M-pathway, numerous
xperimental findings and computational requirement strongly
uggest that imitation learning should occur in the M-pathway.
irstly, imitation learning between different pathways has been
uggested to be the cause of cognitive automaticity (Alvarez &
quire, 1994; Ashby, Ennis, & Spiering, 2007; Hélie, Roeder, &
shby, 2010; Kawai et al., 2015; Murray & Escola, 2019; Pollmann
Maertens, 2005), enabling our brain to perform cognitive tasks

apidly, efficiently, and effortlessly after sufficient practice (Haith
Krakauer, 2018), especially in memory consolidation and motor

kill learning. In addition, experiments have provided evidence
hat the M-pathway exhibits faster processing of image infor-
ation compared to the P-pathway (Bar et al., 2006) and can
rocess visual information in an automatic manner (Tamietto &
e Gelder, 2010). Thus, the M-pathway has been proposed to
lay a significant role in cognitive automaticity, such as automatic
ategorization judgment (Ashby & Maddox, 2011), supporting the
otential role of imitation learning in the M-pathway. Secondly,
rom the computational point of view, the M-pathway receives
oarse visual input and is characterized by a shallow hierarchy,
hich limit its performance in recognition tasks. To enhance task
erformance, imitation learning from the P-pathway seems to be
natural solution.
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Recently, Bakhtiari et al. also proposed a deep network model
with two parallel pathways to simulate the visual cortex
(Bakhtiari, Mineault, Lillicrap, Pack, & Richards, 2021). They found
that when trained on a video dataset using a self-supervised
predictive loss function, the model can capture the properties of
both the ventral and dorsal visual pathways. Although both are
studying visual information processing using CNNs, their model is
different from ours on two key issues. First, their model consists
of two CNNs of similar structures mimicking the ventral and
dorsal pathways, while our model consists of two CNNs of very
different structures, mimicking the difference between the P- and
M- pathways. Second, their model focuses on the information
fusion between two pathways, while our model focuses on the
interplay between two pathways. Overall, the two models are
studying the different parts (with some overlap) and different
functions of the visual system, it will be interesting to integrate
them together in future work.

It is believed that our visual system primarily learns and
organizes itself in an unsupervised manner during the devel-
opmental period (Zhuang et al., 2020). Here, we training the
model using supervised learning has two gains: (1) it brings
us some insight into the computational principles of the two-
pathway model; (2) supervised learning may be seen as partially
modeling the evolutionary process of the neural system. Our
model can be extended to accommodate unsupervised learning
straightforwardly. For example, we can train our two-pathway
model using some unsupervised methods, such as deep clustering
method (Oord, Li, & Vinyals, 2018), BYOL (Grill et al., 2020),
SimCLR (Chen, Kornblith, Norouzi, & Hinton, 2020) and so on.
Moreover, we can leverage the dynamic interplay characteristic
of our two-pathway model to enhance unsupervised learning on
video data. For example, the coarse M-pathway can be trained
in a unsupervised manner to predict spatial fine representations
of the P-pathway, while the slow P-pathway can be trained in
a unsupervised manner to predict future coarse features of the
M-pathway.

Notably, the present study focuses on visual information pro-
cessing, but the interplay between two pathways also exists in
auditory information processing. It has been found that in the
primate auditory cortex, two anatomically distinct streams exit,
one is the ventral auditory pathway for analyzing the semantic
information of sound-emitting objects and the other the dorsal
auditory pathway for locating these objects (Santoro et al., 2014).
Studies of the human auditory cortex further suggest that the
ventral auditory pathway preferably encodes the fine-grained
spectral information of sound in a slow processing manner, while
the dorsal pathway encodes the coarse spectral information in
a fast processing manner (Santoro et al., 2014). The separation
of two pathways is proposed to support flexible auditory cogni-
tion (Santoro et al., 2014; Zulfiqar, Moerel, & Formisano, 2020).
It will be interesting to extend our two-pathway model to the
auditory system and explore whether the interaction principles
found in this work are applicable to the auditory information
processing.

We would like to point out that the current work is still a very
preliminary modeling study of the dynamical interaction between
two visual pathways, and there are a lot of space to improve. First,
the current model considers that CoarseNet receives low-pass
filtered or binarizing inputs mimicking the property of PRGCs,
while in reality, the retina is not a simple prefilter of visual input,
but has diverse ganglion cell types extracting different features
of visual scene (Gollisch & Meister, 2010). Also, many inhibitory
neurons, such as horizontal and amarcrine cells, exist in the
retina, which interact with ganglion cells to execute complicated
information processing (Gollisch & Meister, 2010). Incorporating
these retinal functions in our model will improve the simulation
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Fig. A.9. Data examples of the dataset Pascalvoc-mask. (A) left panel: a raw image and the corresponding objects; right panel: the segment of the raw image and
he corresponding object segments. (B) Examples of Pascalvoc-mask. Images in the RGB channel and their masked counterparts.
f the M-pathway and P-pathway. Second, the current model
onsiders a simple memory module, SMA or DMA to mediate the
nteraction between FineNet and CoarseNet, while the real mem-
ry association process in the brain is much more complicated
nd efficient. In future work, we will include the biologically
ore plausible memory module in the model, such as to combine

he synaptic plasticity and addressing mechanism (Tyulmankov,
ang, & Abbott, 2022) and the hierarchical associative memory
rocess (Krotov, 2021). Third, the current model employs CNNs
s the building block to construct FineNet and CoarseNet, which
iss the lateral connections between neurons that widely exist in

he visual cortex. These lateral connections are known to play im-
ortant roles in dynamical visual information processing (Gilbert
Li, 2013), and should be included in our future work. Never-

heless, we hope that this preliminary modeling study can give
s some insights into understanding the interaction principles
etween two visual pathways and may inspire us to develop new
bject recognition architectures.
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ppendix A. Datasets and manipulation of the input

.1. Three datasets

We use three datasets, Pascalvoc-mask, CIFAR-10 and CIFAR-
00 to evaluate our model. Pascalvoc-mask and CIFAR-10 are used
o demonstrate the effect of imitation learning in Fig. 4. CIFAR-
0 and CIFAR-100 are used to test the noise robustness and the
ough-to-fine processing property of our model.

Pascalvoc-mask is a new dataset we created from the Pas-
alvoc2012 dataset (Everingham et al., 2015), which contains 20
oreground object classes. The goal of the original Pascalvoc2012
ataset is to recognize objects from a number of visual object
lasses in realistic scenes. There are two main tasks (classification
700
and detection) and two additional competitions (segmentation
and action classification). In the current study, we are only inter-
ested in those objects with precise annotated segments. Totally,
there are 2913 images with 6866 objects having annotated seg-
ments. To create the Pascal-mask dataset, firstly, we extract each
object image from the raw image and each object segment from
the corresponding ‘‘SegmentationObject’’ image set according to
the bounding box information (see Fig. A.9A). Secondly, we re-
move object images with low resolution (the number of pixels in
width or height is less than 50) or large aspect ratio (width/height
or height/width is more than 3). In this way, the number of
remaining objects is 4887. Thirdly, to obtain the masked coun-
terpart of each object, we gray the object segment by setting
the pixel values for objects to be 1 and backgrounds to be 0
(see Fig. A.9B). All object images are resized to 64 × 64 to fit
the input of CoarseNet. The new dataset consists of 4887 object
images with masks. We split the dataset into 4512 training and
375 testing images, where the testing set is all from the Pas-
calvoc2007 testing set. See Table A.2 for the details of Pascalvoc-
mask. The dataset can be found at https://drive.google.com/file/
d/1TP0QsFBtVwXaCENGTwuk9ZhDlkGMyTOj/view?usp=sharing.

CIFAR-10 consists of 60 000 32 × 32 color images for 10
classes, with 6000 images per class, and they are split into 5000
training and 1000 test images in each class.

CIFAR-100 is a harder version of the CIFAR-10 dataset, which
has 100 classes, with 600 images per class, and they are split
into 500 training and 100 testing images in each class. The 100
classes in the CIFAR-100 are further grouped into 20 superclasses,
so that each image has a pair of sub-class and super-class labels
(this information is used to test the rough-to-fine processing
property). In the rough-to-fine task, 5 superclasses are randomly
selected, containing 15 000 images, 12 500 for training and 2500
for testing. The detailed superclasses and subclasses are shown in
the Table A.3.

A.2. Manipulating the input with different noises

Evaluating the model performances under different kinds of
noise disruption is a main task in the current study. Here we
describe the details of manipulating inputs with various forms of
noise. Four types of noises are used, Gaussian, shot, impulse, and
adversarial noises. Please see Fig. 3 for details.

We obtain the performances of models on Gaussian noise, shot
noise, and impulse noise dataset by averaging over 5 amplitude
levels (see Fig. 5). For Gaussian noise, the 5 levels correspond to
the noise variance std = [0.04, 0.06, 0.08, 0.09, 0.10]. For shot
noise, the 5 levels correspond to the multiplication parameter
c = [500, 250, 100, 75, 50]. For impulse noise, the 5 levels
correspond to the probability p = [0.01, 0.02, 0.03, 0.05, 0.07].
For adversarial noise, we average 9 different levels with ϵ =

[0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04].

https://drive.google.com/file/d/1TP0QsFBtVwXaCENGTwuk9ZhDlkGMyTOj/view?usp=sharing
https://drive.google.com/file/d/1TP0QsFBtVwXaCENGTwuk9ZhDlkGMyTOj/view?usp=sharing
https://drive.google.com/file/d/1TP0QsFBtVwXaCENGTwuk9ZhDlkGMyTOj/view?usp=sharing
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Table A.2
The number of samples in each class of Pascalvoc-mask. Digits in each column mean the training/testing numbers.
The number of classes is 20 and the total number of training examples/testing examples is 4512/375.
Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow
104/10 147/15 215/11 126/9 92/6 174/12 206/16 261/17 398/33 204/10

Diningtable Dog Horse Motorbike Person Pottedplant Sheep Sofa Train Tvmonitor
115/14 267/16 176/11 162/18 1017/100 186/14 188/21 178/14 138/12 158/16
T

P

Table A.3
The detailed superclasses and subclasses used in the rough-to-fine task.
Superclasses Subclasses

People Baby, boy, girl, man, woman
Reptiles Crocodile, dinosaur, lizard, snake, turtle
Small mammals Hamster, mouse, rabbit, shrew, squirrel
Trees Maple, oak, palm, pine, willow
Vehicles 1 Bicycle, bus, motorcycle, pickup truck, train

Appendix B. Implementation details of the SMA buffer

The SMA buffer is initialized by using the feature represen-
ations obtained from FineNet and CoarseNet, which are trained
ndependently for several optimization iterations. The SMA buffer
ize, denoted as K , is set to be equal to the number of training
amples, e.g., K = 40 000 in Fig. 5. The inverse temperature
parameter β is set to be 100. During each SMA update, the key
and value matrices in the SMA are replaced by the feature vectors
from the newly trained CoarseNet and FineNet. Using different
parameter settings will not change our results qualitatively, but
the optimal values of parameters vary with the task.

Appendix C. Implementation details of imitation learning

In Section 3.1, we illustrate the effect of imitation learning to
oarseNet. Here, we will introduce the implementation details of
ineNet and CoarseNet in imitation learning task. FineNet used in
his task consists of three stacked layers, each of which comprises
128-filter 3 × 3 convolution, followed by a batch normalization,
ReLU nonlinearity, and 2 × 2 max-pooling. CoarseNet has

wo stacked layers with the same composition as in FineNet,
xcept that it comprises 64-filter 11 × 11 convolution in the
irst layer and 128-filter 9 × 9 convolution in the second layer.
he balancing term α = 0.4 is used when training CoarseNet.
oth FineNet and CoarseNet have a fully-connected layer of 1000
nits before the readout layer. Except for normalizing with the
hannel-wise mean and standard deviation of the whole dataset,
o other pre-processing strategies are adopted. Both FineNet and
oarseNet share the same training settings: the total number of
raining epochs is 150, SGD with a momentum term 0.9 is used
o optimize parameters, and the initial learning rate is 0.05 which
s multiplied with 0.1 after 100 and 125 epochs.

ppendix D. Implementation details of noise robustness task
ith our two-pathway model

In Section 3.2, we illustrate the computational property of
wo-pathway model in noise robustness task. Here, we will in-
roduce the implementation details of our two-pathway model
n the task (the implementation is also adopt in Section 3.3).
ithout loss of generality, FineNet adopt slightly deeper struc-

ures than that used in the imitation learning task (see examples
n Fig. 3A). In the experiments, FineNet consists of four convo-
utional layers (see Fig. 2A), each of which comprises a 3 × 3
onvolution, followed by a group normalization, a ReLU non-
inearity. The numbers of convolutional filters in 4 layers are
64, 128, 256, 512]. CoarseNet consists of two convolutional lay-

rs with the same composition as in FineNet, except that it
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comprises 128-filter 7 × 7 convolution kernels in the first layer
and 512-filter 5 × 5 convolution kernels in the second layer.
The balancing term α = 0.0 is used when training CoarseNet.
Both FineNet and CoarseNet have a global pooling layer before
the readout layer (for generating gC (x̂; θC ) and gF (x,O(x̂, x); θF ),
respectively). The feedback kernel consists of an upsample layer
and an 1×1 convolutional layer, followed by group normalization
and sigmoid nonlinearity. It takes O(x̂, x) as the input and output
a weighting term to modulate the representations in the second
convolutional layer of FineNet via element-wise multiplication.
During training, the memory buffer in SMA is updated after every
two epochs, and β = 100. Both FineNet and CoarseNet share the
same training settings as that in imitation learning task.

Appendix E. Restrict boltzmann machine (RBM) as a dynami-
cal memory association model

To investigate the effect of different factors on the target vis-
ibility, e.g., the task duration (SOA), the mask duration (STA), we
modified the similarity-based association phase into RBM, which
introduces dynamics in the association phase. RBM is a simplified
version of Boltzmann Machine (BM), with the latter being an ex-
tension of the Hopfield model with stochastic dynamics (Hinton,
Osindero, & Teh, 2006). Both BM (Ackley, Hinton, & Sejnowski,
1985) and the Hopfield model (Hopfield, 1982) can be used to
capture how memory patterns are stored as stationary states of
neural circuits via recurrent connections between neurons. RBM
consists of a visible and a hidden layers with no within-layer
connections. Denote the input to the visible layer as v, activities
at the hidden layer as h and the connection matrix between two
layers is W . The energy function of a RBM is written as

E(v, h) = −avT
− bhT

− vWhT , (E.1)

where a and b represent the bias vectors in the visible and the
hidden layers, respectively. The joint probability of a configura-
tion (v, h) is written as

P(v, h) =
e−E(v,h)

Z
, (E.2)

where Z is the partition function given by Z =
∑

h
∑

v e
−E(v,h).

he probability of a specific v is

(v) =
1
Z

∑
h

e−E(v,h). (E.3)

The appealing property of the bipartite graph structure of RBM is
that the conditional distributions P(h|v) and P(v|h) are factorial,
i.e.,

P(v|h) =

nv∏
i

P(vi|h), P(vi = 1|h) = σ (ai +
nh∑
j=1

wijhj), (E.4)

P(h|v) =

nh∏
i

P(hi|v), P(hi = 1|v) = σ (bi +
nv∑
j=1

wjivj), (E.5)

where σ (x) = 1/(1 + e−x/T ) is a sigmoid function, with T the
temperature.

To implement the association phase, we construct v by con-
catenating the features from both CoarseNet and FineNet, e.g., v =
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Fig. E.10. Learning in RBM. (A) Diagram of a RBM with three visible and three hidden units. There are only connections between layers. (B) Illustrating the Gibbs
sampling process in RBM during training. At time t = 0, the visible units v are initialized and the hidden units are updated according to h ∼ P(h|v). At time t = 1,
he visible units are updated according to v ∼ P(v|h) and the correlations ⟨vihj⟩ are the statistics used for contrastive learning in the RBM. The number of units in
he visible layer is 1000, with 500 units for coarse features and 500 units for fine features.
Fig. E.11. DMA implemented by RBM. (A) The training phase (see Fig. E.10 for the details). (B) The retrieval phase. The coarse probe gC (x̂) of a visual object is fed
nto the visible layer of the trained RBM and the prediction O(x̂) is retrieved through the dynamics of RBM.
vC , vF
], with vC

= gC (x̂) and vF
= gF (x). Given the training

examples (features of input images), RBM is optimized through
minimizing the negative log-likelihood:

LRBM = −
1
N

N∑
i=1

log [P(vi)] = −
1
N

N∑
i=1

log
[
P(vF

i , v
C
i )

]
. (E.6)

The derivative of the log likelihood with respect to a connection
weight is calculated to be,
−∂ log P(v)

∂Wij
= ⟨vihj⟩data − ⟨vihj⟩model, (E.7)

where the first and the second terms in the right hand of the
equation denote expectations over the distributions of data and
the model, respectively. The first expectation is tractable. For
the second expectation, we apply the strategy of contrastive
divergence (CD) gradient (Hinton, 2002), which approximates the
expectation over the model distribution by a sample generated
via a number of Gibbs sampling iterations, with the initial state
of the visible units being the training sample, as illustrated in
Fig. E.10B. More specifically, we use the correlation statistics
⟨vihj⟩

k after k step Gibbs sampling to replace the ⟨vihj⟩model to
update the connection weights, i.e.,

∆Wij = ϵ(⟨vihj⟩
0
− ⟨vihj⟩

k), (E.8)

where ϵ is the learning rate. During the training, v and h are
sampled from P(h|v) and P(v|h) alternatively. The total number
of training epochs is 2000. We use SGD to optimize the RBM with
an initial learning rate of 0.1, which is multiplied with 0.1 after
500 and 1000 epochs.

Once the training is finished, we can feed a partial feature
to the visible layer of RBM, and retrieve the complete one. For
example, given a partial feature v0 at time 0, the hidden repre-
sentations of RBM is h0 = P(h = 1|v0 = σ (a + Wv0) and the
updated activation in the visible layer is v1 = σ (b + W Th1).
After k iterations, we can get a vk which is a complete feature
corresponding to v0 (see Fig. E.11B).
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