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Abstract  1 

Background. Network-based measures are emerging MRI markers in multiple sclerosis (MS). 2 

We aimed to identify networks of white (WM) and grey matter (GM) damage that predict 3 

disability progression and cognitive worsening using data-driven methods. 4 

Methods. We analysed data from 1836 participants with different MS phenotypes (843 in a 5 

discovery cohort, and 842 in a replication cohort). We calculated standardised T1/T2 6 

(sT1w/T2w) ratio maps in brain GM and WM, and applied spatial independent component 7 

analysis to identify networks of covarying microstructural damage. Clinical outcomes were 8 

Expanded Disability Status Scale (EDSS) worsening confirmed at 24 weeks (24-week CDP) 9 

and time to cognitive worsening assessed by the Symbol Digit Modalities Test (SDMT). We 10 

used Cox proportional hazard models to calculate predictive value of network measures. 11 

Results. We identified 8 WM and 7 GM sT1w/T2w networks (of regional co-variation in 12 

sT1w/T2w measures) in both cohorts. Network loading represents the degree of co-variation 13 

in regional T1/T2 ratio within a given network. The loading factor in the anterior corona radiata 14 

and temporo-parieto-frontal components were associated with higher risks of developing CDP 15 

both in the discovery (respectively, HR=0.85, P<0.05; and HR=0.83, P<0.05) and replication 16 

cohorts (respectively, HR=0.84, P<0.05; and HR=0.80, P<0.005). The decreasing or increasing 17 

loading factor in the arcuate fasciculus, corpus callosum, deep GM (DGM), cortico-cerebellar 18 

patterns, and lesion load were associated with a higher risk of developing SDMT worsening 19 

both in the discovery (HR=0.82, P<0.01; HR=0.87, P<0.05;  HR=0.75, P<0.001; HR=0.86, 20 

P<0.05; and HR=1.27, P<0.0001) and replication cohorts (HR=0.82,  P<0.005; HR=0.73, 21 

P<0.0001; HR=0.80, P<0.005; HR= 0.85, P<0.01; and HR= 1.26, P<0.0001). 22 

Conclusions. GM and WM networks of microstructural changes predict disability and 23 

cognitive worsening in MS. Our approach may be used to identify patients at greater risk of 24 

disability worsening and stratify cohorts in treatment trials. 25 

 26 

 27 

  28 
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Highlights 1 

 2 

• Network measures complement regional and global white and grey matter measures in 3 

explaining disability and predicting its worsening.  4 

 5 

• This study is the first study to use networks of changes in standardised T1w/T2w, a 6 

proxy for microstructural damage, in WM and GM to predict the disability in MS. 7 

 8 

• We found clinically relevant GM and WM networks of microstructural changes, some 9 

of which predicted the disability progression and cognitive worsening in a large cohort 10 

of participants with MS.  11 

 12 

• The identification of networks of GM and WM changes, based on MRI scans routinely 13 

collected in clinical trials, that predict progression may be used in combination with 14 

other factors to identify treatment trial participants most likely to experience disability 15 

progression. 16 

 17 

• Because sT1w/T2w maps were estimated from MRI scans routinely acquired in clinical 18 

trials, our models have the potential to be widely applied to future clinical trials, 19 

identifying participants at higher risk of progression.  20 

 21 

 22 

 23 

 24 

 25 

 26 

  27 
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Introduction  1 

Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease. 2 

Most people with MS accumulate irreversible neurological and cognitive disability.1 Markers 3 

that predict clinical and cognitive progression are needed in MS1 as they can have useful roles 4 

in clinical trials and in clinical practice.  5 

 6 

Previous studies quantifying the risk of disability worsening using MRI have mostly focused 7 

on white matter (WM) lesions (number and location) and relapses, especially in the relapsing-8 

remitting MS.2,3 Neurodegeneration, manifest in part as brain grey matter (GM) atrophy,4 is 9 

also recognised as a leading cause of long-term irreversible disability, particularly in 10 

progressive MS.5 However, it is now well-recognised that WM lesions and brain atrophy 11 

represent only a fraction of the MS pathology, and that they do not fully explain clinical 12 

disability in MS.6 Pathology beyond lesions, in normal-appearing (NA) WM and in GM, goes 13 

undetected but can be assessed using  advanced MRI 7–9 , and this may help further bridge the 14 

gap between clinical and radiological findings.  15 

 16 

Advanced MRI sequences are not routinely obtained in clinical practice or in large clinical 17 

trials. T1/T2 ratio measures are a promising marker of microstructural damage10,11 because they 18 

can be estimated from MRI sequences routinely acquired in clinical practice and trials.12 The 19 

pathological substrates of the T1/T2 ratio are still debated and it is not yet clear whether this 20 

measure reflects demyelination, axonal or dendrites loss.13–18 Previous studies have found a 21 

correlation between T1/T2 ratio maps and histological cortical myeloarchitectural. 17 T1/T2 22 

ratio measures correlate with magnetization transfer ratio (MTR) measures (considered 23 

relatively specific for myelin content) in normal appearing WM (NAWM) and normal-24 

appearing GM (NAGM), and  T1/T2 has similar accuracy and sensitivity compared to MTR in 25 

detecting cortical demyelination.12,19 In patients with a CIS, T1w/T2w alterations precede 26 

lesion formation and are associated with disease activity.20 Recently, lower lesional and cortical 27 

T1w/T2w ratio values have been shown to be associated with longer disease duration, higher 28 

EDSS, higher brain lesional volume and lower normalised brain volume at all MS disease 29 

stages.9,20  30 

 31 

Recent work using independent component analysis (ICA) of volumetric brain MRI scans has 32 

shown spatial patterns of cortical GM atrophy. This is likely to represent underlying network-33 
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based pathology, an interpretation supported by patterns that resemble structural and functional 1 

networks..21 These patterns of cortical changes may be related to the distribution of WM 2 

lesions22 and with clinical outcomes in MS.21,23–25 ICA is a data-driven (i.e. no a-priori 3 

hypothesis) algorithm that identifies spatially-independent patterns while looking for non-4 

Gaussian spatial sources. It is based on the maximization of non Gaussianity, thus it forces the 5 

data to be as far from the normal distribution as possible, to identify patterns independent from 6 

each other. ICA offers the advantage over conventional atlas- or voxel- based analysis of 7 

investigating the inter-relationship between covarying voxels and provides a more holistic 8 

understanding of brain changes. Structural network-based analyses may better explain clinical 9 

outcomes and to complement conventional MRI measures.25,26 We have recently shown that 10 

network-based measures of covarying GM volumes are associated with neurological disability 11 

measures and cognitive performance.27 Similarly, ICA applied to diffusion tensor imaging 12 

(DTI) data has shown non-random patterns of fractional anisotropy changes in WM tracts 13 

associated with cognitive functioning in SPMS.28 We hypothesise that data-driven networks 14 

based on T1/T2 can identify non-random covariation of WM and GM microstructural damage, 15 

and predict clinical and cognitive progression in MS.  16 

 17 

Here we aimed to (1) identify networks of WM and GM in MS using standardised T1w/T2w 18 

ratio maps from MRI sequences acquired in clinical trials, (2) determine whether structural 19 

networks could be replicated in separate cohorts, (3) determine the clinical relevance of these 20 

measures by predicting EDSS and cognitive dysfunction, and (4) if the clinical relevance of 21 

these networks differed across clinical MS phenotypes.   22 
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Materials and methods  1 

Overview 2 

This was a retrospective study using cross-sectional MRI and longitudinal clinical data 3 

acquired at study entry. We used data from eight randomised-controlled clinical trials29–35 4 

acquired under the auspices of the International Progressive Multiple Sclerosis Alliance 5 

(IPMSA) and as part of the MS-SMART trial.  6 

Participants 7 

We included cross-sectional MRI, and cross-sectional and longitudinal clinical data from eight, 8 

randomized-controlled clinical trials. We balanced the data according to the clinical phenotype 9 

and clinical trial, and randomly sampled 1900 participants (RRMS, SPMS, and PPMS) from a 10 

database of 5089 participants to a discovery and replication cohorts to avoid bias. 11 

Computational resource limitations meant that we could not process data from the full cohort, 12 

and so we sub-selected 1900, which is larger than previous studies using sT1/T2 data effects.7 13 

We did not include all participants from all clinical trials because of memory requirements for 14 

the computational analysis. The IPMSA database was collected to target progressive MS trials, 15 

and 81% of patients in this study had progressive MS. Of the eight clinical trials sampled, three 16 

showed treatment effects,30,32,36 for which we included data from the placebo arm only.  17 

 18 

The Institutional Review Board at the Montreal Neurological Institute (MNI), Quebec, Canada 19 

approved this study (Reference number: IRB00010120). Participants gave informed consent to 20 

collect their data. All visits that fulfilled availability criteria of MRI and clinical data (explained 21 

below) were included.  22 

To determine whether similar networks were present in healthy controls (HC), we performed 23 

additional analysis as described in supplemental materials.  24 

 25 

Clinical and cognitive outcomes 26 

We used the Expanded Disability Status Scale (EDSS) and Symbol Digit Modalities Test 27 

(SDMT) scores to assess disability and information processing speed. We estimated the EDSS 28 

worsening as an increase of 1 point from a baseline EDSS score of 5.5 or below, or of 0.5 29 

points from baseline EDSS score greater than 5.5, and whether the worsening was confirmed 30 
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at 24 weeks (24-week confirmed disability progression or CDP).37 We excluded clinical visits 1 

within 30 days of an MS relapse, where clinical attack dates were available. We defined 2 

cognitive worsening as a 4 point reduction in SDMT score.38 3 

Brain MRI acquisition and image processing 4 

Inclusion criteria for MRI were the availability of 2D or 3D, 1.5T or 3T, T1-weighted (T1w) 5 

without Gadolinium administration, T2-weighted (T2w), and T2 Fluid Attenuated Inversion 6 

Recovery (T2-FLAIR) MRI scans. Details of MRI protocols are given in the supplemental 7 

materials and in the source clinical trial publications.29,30,32–36 8 

 9 

Standardised T1w/T2w ratio maps (sT1w/T2w)  10 

The first image processing goal was to obtain standardised T1w/T2w ratio maps. These scans 11 

were then used as input for the pattern analysis with ICA. We processed all available data for 12 

this study using the pipeline shown in Figure 1. 13 

 14 

Standardised T1w/T2w ratio (sT1w/T2w) is a measure designed to address the technical and 15 

methodological limitations of the T1w/T2w ratio. T1/T2 ratio measures are derived from T1w 16 

and T2w intensities, which are variable and influenced by several technical and methodological 17 

factors (e.g. field strength or scanner manufacturer). The normalisation in sT1w/T2w measures 18 

addresses inhomogeneity in image intensities and harmonises measures for cross-subject 19 

comparisons.7 20 

  21 

To obtain sT1w/T2w ratio maps in a common standard space, we followed an analysis pipeline 22 

similar to Cooper et al.7 We also calculated sT1w/T2w ratios using another technique9,39 on a 23 

randomly selected subsample to assess the consistency of measures between  techniques and 24 

present the findings of this in the supplementary materials. Briefly, we resampled MRI images 25 

to 1x1x1, used N4 bias field correction tool in Advanced Normalization Toolbox (ANTs) to 26 

correct for bias field inhomogeneities in T1w and T2w scans.40 We used NiftyReg to rigid 27 

register T1w and T2w images to a halfway space between the two modalities to avoid any bias 28 

toward one of the two modalities. We performed lesion segmentation using the DeepMedic 29 

software41 on T2-FLAIR scans. We transformed the lesion masks and segmentation maps 30 

obtained with Geodesic Information Flows (GIF) version 3.042 to the mid-space, and subtracted 31 

lesion masks from WM masks to extract NAWM maps.  32 
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  1 

We applied an established formula to obtain sT1w/T2w.7 Specifically, we estimated a scaling 2 

factor by dividing median values in GM in T1w by the median GM intensity in T2w. We 3 

obtained a scaled T2 image by multiplying the T2w scan by the scaling factor and estimated 4 

standardised T1w/T2w maps in the native space.  5 

We transformed sT1w/T2w maps to a common space (customised study-specific template 6 

obtained as described in our previous work27) to allow the ICA to consistently identify 7 

covarying patterns. For further details on image processing, see Supplementary Materials.  8 

We visually inspected the output of each step to check for segmentation errors (e.g. WM/GM 9 

maps estimation), and misregistration.  10 

 11 

Network-based measures 12 

We utilised the FastICA algorithm from scikit-learn 0.23.143 to identify spatial patterns of 13 

covarying 1) WM changes and 2) GM changes from sT1w/T2w ratio maps in the study-specific 14 

template. We refer to these spatial brain maps as networks in this manuscript. We specified the 15 

maximum number of components the ICA should attempt to extract at 20. This allowed subtle 16 

patterns to be extracted, albeit with caveat that these may produce measures which are noisier 17 

than the dominant networks of changes, and so have less potential to correlate with clinical 18 

outcomes. 44 We repeated the same for GM sT1w/T2w maps. To determine the stability of the 19 

independent components, we repeated the analysis independently in the replication cohort. We 20 

generated a 4D image by concatenating the 20 identified components and assessed pairwise 21 

spatial cross-correlations between ICs from the discovery and replication cohorts to select 22 

components that were spatially stable for each cohort. Higher correlation coefficients imply 23 

more spatial overlap between components across our two data sets. We considered ICs stable 24 

if there were statistically significant spatial voxel-wise correlations (P<0.05) across two data 25 

sets. To be even more conservative, we visually checked the identified components and exclude 26 

those not resembling well known functional or structural systems. We obtained the loading 27 

factor (i.e. the contribution of a subject to an independent component) for each participant in 28 

each network for statistical analysis for the discovery and replication cohort. 29 

Because ICA loading factors will not always follow the same direction as variables underlying 30 

them (i.e. for a component both a positive or negative loading can represent decreasing or 31 

increasing sT1w/T2w), we performed Pearson correlations between the ICA loading for each 32 

network and sT1w/T2w measures. To aid readability, where needed we inverted the sign of the 33 
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ICA loading for a network so that for the final results a positive loading corresponded with 1 

increasing sT1w/T2w. 2 

 3 

Statistical analysis 4 

We used R (version 3.6.1) for statistical analysis. We assessed the demographic characteristic 5 

for each dataset and looked for differences across datasets and phenotypes (demographics and 6 

clinical) using the Mann-Whitney U test and two-sample t-test for continuous variables, and 7 

the Chi-Square test for categorical ones. We used two sample t-test to assess differences in 8 

WM and GM network measures between clinical phenotypes. We performed Pearson 9 

correlations to determine the relationship between WM and GM network measures with whole 10 

brain volume and lesion load.  11 

 12 

Network measures 13 

In the discovery cohort, we calculated the extent to which each participant contributed to each 14 

ICA component (i.e. “loading factor”). We calculated z-scores from the loading factor for each 15 

WM and GM-IC. We built a Cox regression model for each independent variable to determine 16 

whether baseline WM and GM networks, lesion load, and the volume of whole brain GM, 17 

thalamus, caudate, and pallidum (and the combination of the latter variables as “DGM”) could 18 

predict EDSS and cognitive worsening. In these models, the event and the time-to-event were 19 

dependent variables. We adjusted each model for age, gender, clinical trial, MRI protocol, 20 

treatment, and disease duration. We repeated the analysis for each MS phenotype. We repeated 21 

the same analysis in the replication cohort. We corrected for multiple comparisons using 22 

Benjamini-Hochberg. 23 

 24 

We performed post-hoc multivariate stepwise backward regression analysis including 25 

conventional MRI measures (i.e. lesion load and whole brain GM volume) and variables that 26 

were consistently identified from univariate Cox regression models to be associated with 27 

clinical and cognitive progression both in the discovery and replication cohorts.  28 

Data and code availability  29 

 30 
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Data presented in this manuscript are controlled by various pharmaceutical companies. 1 

Therefore, data cannot be shared by investigators but can be requested directly from the 2 

pharmaceutical companies sponsoring each clinical trial. The computer code to obtain 3 

standardized T1w/T2w ratio maps in native space is available at https://github.com/co-4 

el/Estimate-standardized-T1-T2-maps. 5 

 6 

Results  7 

Participants  8 

MRI data were available for 1836 participants. We excluded 64 participants from the original 9 

sample: 31 had artefacts on the available images and T2w scans were missing for 33 10 

participants. Clinical data were available for 1685 participants. The discovery cohort consisted 11 

of 843 participants with MS (310 men and 533 women with mean age of 46.6±9.3, mean 12 

disease duration of 10.2±8.4 years, mean follow-up of 2.75±1.74; 19% RRMS, 64%SPMS, and 13 

17% PPMS). The replication cohort consisted of 842 participants (329 men and 513 women 14 

with mean age of 46.2±9.6, mean disease duration of 9.7±8.1 years, mean follow-up of 15 

2.73±1.84; 19% RRMS, 64% SPMS, and 17% PPMS) with MS. Demographics are reported in 16 

Table 1 and in Supplementary Materials Table s1.  17 

The discovery and replication cohorts were not different in age (P=0.39) and gender (P=0.36), 18 

lesion load (P=0.68), baseline EDSS (P=0.54), baseline SDMT (P=0.17), whole-brain GM 19 

volume (P=0.56), and disease duration (P=0.20). Comparisons across these measures remained 20 

non-significant between the discovery and replication cohorts when we looked individual MS 21 

phenotypes (Table 1).   22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

https://github.com/co-el/Estimate-standardized-T1-T2-maps
https://github.com/co-el/Estimate-standardized-T1-T2-maps
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 1 

Table 1. Demographics 2 
 3 

Discovery Cohort 

Phenotype ALL (n= 843) RRMS (n= 159) SPMS (n= 537) PPMS (n= 147) 

Gender (M/F) 310/533 48/111 178/359 84/63 

Age (years) 46.6 ± 9.3 40.7±10.2 48.5±8.4 46.4±8.7 

EDSS  

(median, 

range) 

5.5 [0-8] 2.5 [0-8] 6 [3-7] 5 [2-6.5] 

SDMT score 

(mean, SD) 

42.3±14.7 48.0±18.8 41.5±13.9 NA 

Disease 

duration 

(years) 

10.2±8.4 7.1±8.9 12.9±7.9 3.4±3.6 

Lesion load 

(ml) 

 

28.5.0±25.0 23.8.3±24.7 31.2±25.5 23.7±22.1 

Whole-brain 

GM volume 

(ml) 

558.2±75.8 559.3±58.8 554.9±83.6 569.0±59.9 

     

Replication Cohort 

Phenotype ALL (n= 842) RRMS (n=159) SPMS (n=536) PPMS (n=147) 

Gender (M/F) 329/513 45/114 220/316 64/83 

Age (years) 46.2± 9.6 39.1±10.1 48.4±8.4 46.1±9.4 

EDSS  

(median, 

range) 

5.5 [0-8] 2.5 [0-8] 6[3-7.5] 4.5[2-6.5] 

SDMT score 

(mean, SD) 

43.8±14.3 48.4±15.9 43.3±14.0 NA 

Disease 

duration 

(years) 

9.7±8.1 6.1±8.8 12.6±7.2 3.0±3.7 

Lesion load 

(ml) 

27.9±27.7 19.5±19.5 30.9±26.2 26.7±37.0 

Whole-brain 

GM volume 

(ml) 

560.2±71.7 565.1±54.4 560.9±78.7 552.6±60.6 

 4 
Acronyms: EDSS, Expanded Disability Status Scale; M, male, F, female, SDMT, Symbol Digit 5 
Modalities Test; NA, Not Available 6 

 7 

Comparison of WM and GM sT1w/T2w maps across clinical MS phenotypes 8 

The loading factor of most of the identified WM and GM networks differed at baseline across 9 

clinical MS phenotypes.  The loading of GM patterns mostly differed between participants with 10 

SPMS and RRMS, and between participants with SPMS and PPMS (e.g. GM-IC1). The loading 11 

factor of two WM networks (WM-IC1 and WM-IC2) differed between people with RRMS and 12 

PPMS, and between people with SPMS and PPMS. The loading factor of three two networks 13 

(WM-IC2, WM-IC4, and WM-IC8) differed between people with RRMS and SPMS, and 14 

between people with SPMS and PPMS (Supplementary Figure s1).  15 

 16 
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Stability of WM and GM sT1w/T2w networks across cohorts  1 

Spatial cross-correlations showed that 10 WM and 10 GM networks were stable across cohorts 2 

(respectively, 0.40<r<0.75 and 0.20<r<0.69) (Supplementary Figure s2). After a visual 3 

inspection, 8 WM and 7 GM networks resembled well-known functional and anatomical 4 

systems (Figure 2). As shown in Figure 2, ICs encompassed known anatomical regions affected 5 

by MS. For instance, WM-IC2 represents a WM sensorimotor network; WM-IC7 the corpus 6 

callosum; GM-IC2 was a temporal lobe component, and GM-IC5 an extended DGM 7 

component (spanned the thalamus, putamen, caudate, accumbens, frontal and temporal cortex). 8 

For a complete description of WM and GM networks, see Figure 2 and Supplementary 9 

Materials Table s2.  10 

 11 

Relationship between WM and GM sT1w/T2w network measures with GM and WM 12 

volume and lesion load 13 

Most of the identified WM and GM sT1w/T2w network measures showed a positive correlation 14 

with volumes (e.g., WM-IC4: r= 0.28, 95%CI [0.22:0.34], P<0.0001; GM-IC1: r= 0.15, 15 

95%CI[0.08:0.21], P<0.0001), and  a negative correlation with lesion load (e.g., WM-IC4: r= 16 

-0.50, 95%CI[-0.55:-0.44], P<0.0001; GM-IC1= r= -0.48, 95%CI[-0.53:-0.43], P<0.0001). 17 

Lower WM and GM sT1/T2 network measures (higher microstructural damage) are associated 18 

to lower volume measures and with higher lesion load (see Table s3 in Supplementary 19 

materials).  20 

 21 

Predicting disability progression with Cox regression models 22 

Predicting the risk of 24-week confirmed EDSS progression  23 

 24 

 Entire discovery and replication cohorts 25 

 26 

By the end of the observation period (mean-time-to-progression of 2.07 (SD=1.4) years), 21% 27 

(173 out of 842) of participants from the discovery cohort had 24-week CDP. In the replication 28 

cohort, after a mean-time-to-progression of 1.9 (SD=1.4) years, 22% (186 out of 842) had 24-29 

week CDP. 30 

 31 
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The loading factor in the anterior corona radiata (WM-IC1) and temporo-parieto-frontal (GM-1 

IC7) patterns predicted CDP both in the discovery and replication cohorts (WM-IC1 from 2 

discovery cohort: hazard ratio [HR]=0.85, 95%CI[0.73:0.99], P<0.05; WM-IC1 from 3 

replication cohort: HR=0.84, 95%CI[0.73:0.97], P<0.05; GM-IC7 from discovery cohort: 4 

HR=0.83, 95%CI[0.70:0.98], P<0.05; GM-IC7 from replication cohort: HR=0.80, 5 

95%CI[0.69:0.92], P<0.005). After correcting for multiple comparison, GM-IC7 was still 6 

statistically significant in the replication cohort  (Figure 3 and Supplementary Table s4). 7 

 8 

Additionally, in the replication cohort CDP was also predicted by the loading factor in the 9 

arcuate fasciculus (WM-IC3), corpus callosum regions (WM-IC7), and DGM (GM-IC5) 10 

components.  11 

 12 

Lesion load and the volume of whole-brain GM, whole-DGM, and regional volumes of the 13 

thalamus, pallidum, and caudate did not predict CDP in the whole discovery and replication 14 

cohorts (Figure 3 and Supplementary Table s4). 15 

 16 

A post-hoc stepwise backward regression analysis showed that among lesion load, whole brain 17 

GM volume, and the variables that were consistently associated to CDP in the two cohorts 18 

(WM-IC1 and GM-IC7), the best model to explain CDP included WM-IC1, GM-IC7, and 19 

whole brain GM (C-index= 0.62 (se= 0.02)).  20 

 21 

 22 

 Predicting CDP in the RRMS subgroup from the discovery and replication cohorts 23 

 24 

When looking within MS phenotypes, we found that different brain networks could predict the 25 

24-week CDP. From the discovery cohort, 22% of patients with RRMS (35 out of 159) 26 

experienced CDP during follow-up with a mean-time-to-progression of 2.73 (SD=2.34) years. 27 

From the replication cohort, 19.5% (31 out of 159) of participants with RRMS had 24-week 28 

CDP by the end of the study, after a mean-time-to-progression of 2.76 (SD=2.40) years. 29 

 30 

The loading factor in a sensorimotor pattern (WM-IC2) was consistently associated with a 31 

higher risk of developing CDP both in the discovery and replication cohorts (respectively, HR= 32 

0.26, CI[0.14:0.48], P<0.0001; HR=0.51, 95%CI[0.27:0.97], P<0.05) (Figure 3 and 33 
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Supplementary Table s4). However, when correcting for multiple components, WM-IC2 was 1 

not statistically significant in the replication cohort.  2 

 3 

Additionally, the loading factor of a WM arcuate fasciculus [WM-IC3] component, and three 4 

GM components (anterior cingulate-precuneus-cerebellum [GM-IC1], cerebellum [GM-IC4], 5 

and DGM [GM-IC5] networks) predicted 24-week CDP in the discovery cohort. When 6 

correcting for multiple comparisons, GM-IC5 was still statistically significant (Figure 3 and 7 

Supplementary Table s4).  8 

In the replication cohort, CDP was also predicted by the loading factor in the anterior corona 9 

radiata (WM-IC1) and a parieto-cerebellar (WM-IC2) components.  10 

 11 

Lesion load was associated with CDP in the RRMS group from the discovery cohort (HR=1.40, 12 

95%CI [1.00:1.95], P<0.05). However, when correcting for multiple comparisons it was not 13 

statistically significant (Figure 3 and Supplementary Table s4). The global volume of whole-14 

brain GM and whole-DGM, and regional volume measures of the thalamus, pallidum, and 15 

caudate did not predict CDP in the RRMS cohorts. 16 

 17 

 18 

 Predicting CDP in the SPMS subgroup from the discovery and replication cohorts 19 

 20 

In SPMS group in the discovery cohort, 18% (99 out of 537) of participants had 24-week CDP 21 

by the end of the study (mean-time-to-progression of 1.98 (SD=1.04). From the replication 22 

cohort, 21% (114 out of 536) of participants had CDP within the period of observation, after a 23 

mean time-to-progression of 1.81 (SD=1.02) years. 24 

 25 

In the discovery cohort, each unit decrease in the loading factor of GM fronto-occipital-26 

somatosensory and motor-cerebellar (GM-IC3) component was associated with a 27% higher 27 

risk of developing CDP (HR=0.73, 95%CI [0.57:0.95], P<0.05).  28 

In the replication cohort, for each unit decrease in the loading factor of an anterior corona 29 

radiata pattern (WM-IC1) and of a temporo-parieto-frontal component (GM-IC7) there was 30 

respectively a 17% and 24% increased risk of developing CDP (HR=0.83, 95%CI[0.70:0.99], 31 

P<0.05; HR=0.76, 95%CI[0.64:0.91], P<0.005). When correcting for multiple comparison, 32 

GM-IC7 was still statistically significant in the replication cohort (P<0.05). 33 

 34 
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Lesion load and the global (i.e. whole-brain GM and whole-DGM) and regional (i.e. thalamus, 1 

pallidum, and caudate) volume measures did not predict CDP in the SPMS group from the 2 

discovery and replication cohorts (Figure 3 and Supplementary Table s4).   3 

 4 

 5 

 Predicting CDP in the PPMS subgroup from the discovery and replication cohorts 6 

 7 

In PPMS, 27% (39 out of 147) of participants from the discovery cohort experienced 24-week 8 

CDP by end of the study, with a mean-time-to-CDP of 1.67 (SD=1.02) years. For the 9 

replication cohort, by end of the observation period, 28% of participants (41 out of 147) had a 10 

24-week CDP (mean-time-to-progression of 1.73 (SD=0.82) years). 11 

 12 

In the discovery cohort, the loading factor of a temporo-parieto-frontal component was 13 

predictive of CDP (HR=0.51; 95%CI[0.32:0.81]; P<0.005), and was still statistically 14 

significant when correcting for multiple comparison. In the replication cohort, the loading 15 

factor of a sensorimotor component (WM-IC2) was predictive of CDP (HR=0.44, 16 

95%CI[0.24:0.82], P<0.01), and was still statistically significant when correcting for multiple 17 

comparison. 18 

 19 

Lesion load and the volume of whole-brain GM, DGM, thalamus, pallidum, and caudate did 20 

not predict CDP in the PPMS group from the discovery and replication cohorts (Figure 3 and 21 

Supplementary Table s4). 22 

 23 

 24 

 25 

Predicting SDMT worsening  26 

 27 

Entire discovery and replication cohorts 28 

 29 

In the discovery cohort, longitudinal SDMT data were available for 625 (207 males, 418 30 

females) participants. After a mean time to SDMT worsening of 1.42 (SD=0.08) years, 44% of 31 

participants (276 out of 625) experienced a worsening in SDMT by the last available visit. For 32 

the replication cohort, SDMT data were available for 624 participants (248 males, 376 33 

females). Of them, 44% of participants (273 out of 624) experienced SDMT worsening by the 34 

end of the study, with a mean-time-to-progression of 1.4 (SD=1.06) years. 35 



   

 

17 

 

 1 

The loading factor of a WM arcuate fasciculus (WM-IC3), corpus callosum regions (WM-IC7), 2 

DGM (GM-IC5), and parieto-cingulate-precuneus-cerebellar (GM-IC6) patterns, and lesion 3 

load were consistently associated with a higher risk of developing SDMT worsening both in 4 

the discovery and replication cohorts. When correcting for multiple comparison, they were still 5 

statistically significant in the replication cohort (Table s5 and Figure 4).  6 

 7 

Additionally, in the discovery cohort the loading factor of WM-IC1 (HR=0.85; 8 

95%CI[0.75:0.96]; p<0.01), WM-IC2 (HR=0.74; 95%CI[0.64:0.86]; p<0.0001), and GM-IC3 9 

(HR=0.72; 95%CI[0.62:0.84]; p<0.0001) were associated with SDMT worsening. In the 10 

replication cohort, one GM component (GM-IC2= HR=0.87; 95%CI[0.78:0.98]; p<0.05) was 11 

associated with SDMT worsening.  12 

 13 

Lesion load was consistently associated to SDMT worsening both in the discovery and 14 

replication cohorts (respectively, HR=1.27; 95%CI[1.11:1.44]; p<0.0001; and HR=1.26; 15 

95%CI[1.11:1.42]; p<0.0001). The volume of the thalamus predicted SDMT in the replication 16 

cohort (HR=0.77; 95%CI[0.66:0.9]; p<0.001), while global measure of whole brain GM or 17 

DGM, and regional measures (i.e., volume of caudate and pallidum) were not associated with 18 

SDMT worsening (Figure 4 and Supplementary Table s5).  19 

When correcting for multiple comparisons WM-IC3, GM-IC5, and lesion load, and the volume 20 

of the thalamus were still statistically significant in both the discovery and replication cohorts.   21 

 22 

A post-hoc multivariate stepwise regression analysis showed that among conventional MRI 23 

measures and those consistently identified both in the discovery and replication cohort using 24 

univariate models, the best model to explain SDMT worsening included GM-IC5 and GM-IC6 25 

(C-index= 0.58, se= 0.017). 26 

 27 

   28 

Predicting SDMT worsening in the RRMS subgroup from the discovery and replication 29 

cohorts 30 

In RRMS, 41.5% of participants (37 out of 89) from the discovery cohort had SDMT worsening 31 

by the end of the study (mean-time-to-worsening of 1.14 [SD=0.72] years). For the replication 32 

cohort, by the end of the study, 33% (30 out of 90) experienced SDMT worsening (mean-time-33 

to-worsening of 1.22(SD=0.70) years). 34 
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 1 

In the discovery cohort, the loading factor of a GM temporal component was associated with a 2 

higher risk of cognitive worsening (GM-IC2, HR=0.61; 95%CI[0.37:0.99]; p<0.05).  3 

For the replication cohort, the SDMT worsening was predicted by the loading factor in a WM 4 

cerebellum network (WM-IC5), and a GM anterior cingulate-precuneus-cerebellum 5 

component (GM-IC1) (WM-IC5:  HR=0.45; 95%CI[0.23:0.88]; P<0.05; GM-IC1: HR=0.36; 6 

95%CI[0.15:0.87]; p<0.05). However, when correcting for multiple comparison nothing stayed 7 

significant (Figure 4 and Supplementary Table s5). 8 

 9 

Lesion load, the volume of whole brain GM, of the DGM, and regional volumes measures were 10 

not associated with the SDMT worsening.  11 

 12 

Predicting SDMT worsening in the SPMS subgroup from the discovery and 13 

replication cohorts 14 

 15 

In SPMS, 44.5% of participants (238 out of 535) from the discovery cohort had cognitive 16 

worsening by the end of the study, with a mean-time-to-worsening of 1.47 (SD=1.13). In the 17 

replication cohort, 45.5% of participants (243 out of 534) had SDMT worsening by the end of 18 

the study, with a mean-time-to-worsening of 1.37 (SD=1.11) years. 19 

 20 

The loading factor of a WM arcuate fasciculus (WM-IC3), caudate nucleus and internal capsule 21 

(WM-IC4), and cerebellum (WM-IC5) networks were consistently associated to SDMT 22 

worsening both in the discovery and replication cohorts. Each unit increase in these networks 23 

was associated to a 18%, 26%, and 21% increased risk of SDMT worsening. When correcting 24 

for multiple comparison, the loading factor of WM-IC4 and WM-IC5 were still significant in 25 

the discovery cohort (Figure 4 and Table s5). 26 

 27 

Additionally, the loading factor of an anterior corona radiata (WM-IC1), anterior cingulate-28 

precuneus-cerebellum (GM-IC1), and fronto-occipital-somatosensory and motor-cerebellar 29 

(GM-IC3) components were associated to SDMT worsening (WM-IC1: HR=0.85; 30 

95%CI[0.74:0.98]; p<0.05; GM-IC1: HR=0.84; 95%CI[0.72:0.99]; p<0.05; GM-IC3: 31 

HR=0.79; 95%CI[0.65:0.97]; p<0.05). In the replication cohort, the loading factor of a corpus 32 

callosum regions (WM-IC7), GM temporal (GM-IC2), and a DGM (GM-IC5) components 33 
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were associated with cognitive worsening (WM-IC7: HR=0.75; 95%CI[0.65:0.88]; p<0.0001; 1 

GM-IC2: HR=0.88; 95%CI[0.77:1]; p<0.05; and GM-IC5: HR=0.81; 95%CI[0.67:0.99]; 2 

p<0.05) (Figure 4 and Table s5).  3 

 4 

Lesion load and the volume of the thalamus were consistently associated with SDMT 5 

worsening both in the discovery and replication cohorts, while the volume of the whole GM, 6 

DGM, and the regional volume measure of caudate and pallidum did not predict SDMT 7 

worsening. When correcting for multiple comparison, the loading factor of WM-IC5 and lesion 8 

load were still significant in both in the discovery and replication cohorts. (Figure 4 and Table 9 

s5).  10 

 11 

 12 

Discussion  13 

In this study, we found that networks of microstructural changes predict clinical disability and 14 

cognitive worsening. Our study is the first to use networks of changes in standardised T1w/T2w 15 

in WM and GM to do this. We found that different WM and GM networks predicted clinical 16 

progression in the different MS phenotypes. Because sT1w/T2w maps were estimated from 17 

MRI scans routinely acquired in clinical trials, our models have potential to be widely applied 18 

to future clinical trials, identifying participants at higher risk of progression who are more likely 19 

to reveal therapeutic effects in treatment trials.  20 

 21 

In our previous work we identified structural networks of covarying GM volumes that predicted 22 

SDMT and 9HPT worsening in SPMS using volumetric measures alone, but not confirmed 23 

EDSS progression or sT1/T2 ratio.27 This study adds to our previous work by investigating (1) 24 

both WM and GM brain networks, (2) across different MS phenotypes, and (3) by revealing 25 

brain networks that are associated with confirmed EDSS progression.  26 

 27 

 28 

ICA and brain networks 29 

 30 

ICA is a data-driven technique used to identify (structural and functional) networks. Spatial-31 

ICA detects modes of covariation in the data; thus, in structural MRI, it identifies networks of 32 
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voxels whose values change similarly, although not necessarily in the same direction. Here, we 1 

detected WM and GM patterns showing a positive correlation with brain volume measures, 2 

suggesting that the higher the T1/T2 ratio (lower microstructural damage), the higher the 3 

volume content. Similarly, network measures were inversely correlated with lesion load, 4 

suggesting that the higher the T1/T2 ratio, the lower the lesion load.  5 

 6 

The identified WM and GM networks resemble well-known anatomical regions, WM tracts, 7 

and brain networks. For instance, WM-IC2 represents a WM sensorimotor network; and GM-8 

IC5 is an extended DGM component involving primarily the thalamus, putamen, caudate, 9 

cerebellum, frontal and temporal cortex. While several ICA networks appear to represent 10 

recognizable anatomical regions rather than distributed neural networks, several components 11 

such as GM-IC6 and GM-IC7 represent a cluster of regions (although anatomically close). ICA 12 

helps to extract such local by reducing the noise (extracting signals of interest) but also 13 

extracting structural networks that would not otherwise be clustered and analysed together. In 14 

addition to identifying changes across functional or structural networks, covarying regional 15 

changes may also represent disease effects targeting different discrete regions simultaneously 16 

or some regions being more (or less) vulnerable to widespread disease effects.45 Other factors 17 

that may contribute to demyelination and neuroaxonal loss leading to brain damage (e.g. local 18 

microglial activation, glutamate excitotoxicity, and oxidative injury) might also explain the 19 

less conventionally identified networks of covarying microstructural damage.46  20 

 21 

We found that a cerebellum GM pattern, and six WM networks were similarly identified in the 22 

MS and HC cohorts. Results suggest that while some networks might represent more 23 

physiological processes, other might be more disease-specific.  24 

 25 

WM and GM networks of sT1/T2w changes predict clinical disability and cognitive 26 

dysfunction  27 

 28 

Among the identified networks, the anterior corona radiata (WM-IC1) and GM temporo-29 

parieto-frontal (GM-IC7) components could predict CDP in the discovery and replication 30 

cohorts. The anterior corona radiata and temporo-parieto-frontal networks have extensive 31 

afferent and efferent connection, and thus subserve different cognitive and motor functions. 32 

The anterior corona radiata is a WM structure associated with the corticopontine, corticobulbar, 33 

and corticospinal tracts, with afferent and efferent projections fibers to the cortex. Being this 34 
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structure highly involved in motor functions. This might explain the association of this network 1 

with EDSS in MS. Previous studies showed an association between higher EDSS and a 2 

decrease in T1/T2 ratio values in GM.20 The predictive ability of the GM network for CDP 3 

might be explained by the presence in this component of the parietal cortex. Parietal brain 4 

regions have extensive connections with visual, auditory, and somatosensory systems, and 5 

sends outputs to several cortical and subcortical areas, particularly to the frontal motor cortex. 6 

It plays a crucial role in controlling attention, learning motor skills, planned movements, and 7 

proprioception. Damage to this area has already been associated with ataxia and hemispatial 8 

neglect.47 The present results suggest that disability emerges because of a combination of 9 

impaired connections between, and damage within brain regions. 20 10 

 11 

The prognostic markers with higher hazard ratios for a clinically meaningful cognitive 12 

worsening were a DGM (GM-IC5), a fronto-parieto-cingulate-precuneus-cerebellar (GM-IC6) 13 

and a corpus callosum (WM-IC7) patterns. This finding extends our previous work, in which 14 

we predicted cognitive worsening using GM volume patterns and identified a GM component 15 

spanning similar areas to GM-IC5 with similar predictive performance.27 The presence of the 16 

interconnected basal ganglia nuclei in this component might explain its predictive value. Basal 17 

ganglia play a crucial role in controlling motor and non-motor behaviours (such as procedural 18 

learning and higher-order process of movement initiation) required by the SDMT task. SDMT 19 

is also thought to reflect cognitive fatigue. Previous studies showed that a disconnection 20 

syndrome and damage to frontal cortico-subcortical connections could explain the fatigue.38,48 21 

 22 

The value of sT1/T2w ICA measures in addition to conventional MRI 23 

measures  24 

 25 

While whole-brain and regional GM volume measures were not associated with clinical 26 

disability in the whole, RRMS, SPMS, and PPMS groups from the discovery or replication 27 

cohorts, ICA-derived GM and WM components could predict CDP. CDP was also predicted 28 

by lesion load in the RRMS in the discovery cohort, although this was not replicated in the 29 

replication cohort, and CDP was not predicted by lesion load in either PPMS or SPMS.  30 

 31 
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Considering cognitive worsening, while WM-IC5, WM-IC7, GM-IC5, GM-IC6, and lesion 1 

load could consistently predict SDMT worsening both in the discovery and replication cohorts, 2 

whole-brain GM volume measures could not. When performing post-hoc backward selection-3 

models, we found that among conventional MRI measures and those that were consistently 4 

predictive CDP in both cohorts in the univariate models, the final model included an anterior 5 

corona radiata, a GM temporo-parieto-frontal network and whole brain GM volume. For 6 

cognitive worsening, the final model included a deep GM and a parieto-cingulate-precuneus-7 

cerebellar network. For cognitive worsening, the final model included a deep GM and a parieto-8 

cingulate-precuneus-cerebellar network. A previous study has shown that decreased T1/T2 9 

ratio values in the cingulate cortex were associated with the attentional performance in patients 10 

with MS. 16 Therefore, the present results suggest that T1w/T2w network measures may 11 

complement conventional MRI measures in predicting clinical progression and cognitive 12 

worsening. 13 

 14 

Overall a reduction in T1/T2 seems to be a proxy for pathological changes in MS.10,11,13 15 

However, it is important to note that T1/T2 is a not a purely quantitative measures, and in MS 16 

similar to other neurodegenerative disorders, it can change as a result of many different 17 

processes that may change as T1/T2 changes in different directions.  These changes may be 18 

due to myelin, neurite density, and iron deposition. A recent study showed that in the cortex of 19 

Alzheimer’s disease patients the T1/T2 index increased compared to healthy controls. While 20 

the pathological processes in MS are different, these results show that T1/T2 changes should 21 

be interpreted with caution.49  22 

 23 

Strengths and limitations 24 

 25 

Computational limits meant that we could only process data from 1900 participants. By using 26 

data from eight different clinical trials, and dividing the cohort in two, we were able to 27 

determine if the results were robust to confounding by MRI protocols and scanners, and if they 28 

could be replicated across cohorts. An alternative approach would have been to use data from 29 

fewer trials and fewer scanners, so reducing heterogeneity in the MRI data, and this may 30 

increase sensitivity to more subtle patterns of changes, but conversely could reduce confidence 31 

that the results were robust to protocol and scanner heterogeneity that is likely to be 32 

encountered in future multicentre clinical trials. We included in this study both 2D and 3D 33 
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images, acquired at 1.5 or 3T. While T1/T2 ratio values were not equal when comparing 1 

between MRI protocols, these groups also differed for age, sex, disease duration, EDSS score 2 

and clinical phenotypes. This should not lead to spurious ICA patterns being identified, but it 3 

could obscure them, and while MRI protocol was used as a covariate in the statistical analyses, 4 

associations with clinical features may have been influenced by this.When compared with 5 

using volumetric 3D T1-weighted scans alone, the use of 3D and 2D images may have reduced 6 

sensitivity to more subtle covarying patterns, and so we may have overlooked networks that 7 

are clinically relevant but more difficult to detect. 8 

 9 

Similarly, in this study, we did not use DTI or MTR data that are more sensitive to intrinsic 10 

tissue changes, and further work using such data may reveal further clinically relevant networks 11 

affected by MS. However, these measures are not routinely collected in phase 3 clinical trials, 12 

while T1w and T2w MRI sequences normally are, and so the present findings can be more 13 

readily translated. 14 

 15 

In this study we used NAGM as a scaling factor to obtain sT1/T2 measures which is not ideal. 16 

There is no gold-standard on the calibration technique that should be preferred to obtain the 17 

standardized T1/T2 ratio maps. Several techniques are available, although they all have pitfalls. 18 

We found that the technique used in this study was consistent with other calibration 19 

techniques9,39 (in GM: ICC 0.70; in WM: ICC 0.79). We preferred this method over using 20 

extra-CNS structures (e.g. eyes and temporal muscles) as it would not be applicable to 21 

anonymized and defaced MRI data where information for eyes and temporal muscles is 22 

missing. Moreover, the temporal muscle is a thin structure and there are no automatic 23 

techniques to segment it. Therefore, it needs to be manually drawn from the MNI template and 24 

registered to the subject space, requiring a certain level of manual editing when the registration 25 

was suboptimal which is not feasible for a large cohort. Finally, using GM should not introduce 26 

spurious regional differences, but it may reduce the magnitude of effects (i.e. potential bias will 27 

more likely be in the conservative direction). 28 

 29 

Our cohort mainly included participants with progressive forms of MS. Future studies should 30 

investigate whether when repeating the analysis on a large cohort of participants with RRMS 31 

other components might emerge. Additionally, Comparing HC (from the HCP) with the MS 32 

groups, we found that those with MS had lower GM and WM sT1w/T2w overall, and some 33 

components seen in the MS groups were also seen in HC, suggesting that they may be part of 34 
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a structural response to brain pathology per se, rather than MS specific. For this study we used 1 

data from the HCP as no HC data were available in phase 3 clinical trials, and given that the 2 

HCP data cannot be matched to the clinical trial data in terms of the scanners and protocols 3 

used, comparisons should be considered with caution and future studies in age and MRI 4 

protocol matched cohort of HC and MS participants are needed to confirm how MS-specific 5 

each component is.”  6 

 7 

We showed that 2 networks measures and 4 components were consistently associated with 8 

CDP and cognitive worsening in the whole discovery and replication cohorts, results were not 9 

completely replicated when splitting the cohorts into clinical phenotypes. The discrepancy 10 

across two data sets is because they represent different population of patients at different stages 11 

of the disease, different eligibility criteria in the clinical trials, and scanner effects.  The primary 12 

aim of our study was to find the networks that remain robust across cohorts and, despite all the 13 

differences mentioned before, our identified measure can reliably be used in future clinical 14 

trials.  15 

 16 

 Our cohorts had a relatively short follow-up (average years 2.75 [1.74]), consistent with the 17 

typical length of clinical trials and our interest in applications in future clinical trials. Future 18 

work will apply these methods in observational cohorts which allow for longer follow ups to 19 

investigate longer term outcomes in MS patients.    20 

 21 

EDSS was the only clinical data that was available across all clinical trials, while 9 Hole Peg 22 

Test (9HPT) and Timed 25-Foot Walk Test (T25FW) data might have allowed to investigate 23 

more specifically the upper and lower body functions notoriously impaired in MS. Similarly, 24 

cognitive data were limited to SDMT, and more comprehensive batteries might allow 25 

investigating the association of these patterns with other cognitive domains known to be 26 

impaired in MS. We used SDMT because it is believed to be relevant to information processing 27 

speed that is the most impaired cognitive function in MS and it has recently been validated as 28 

a sensitive measure of cognitive impairment.38 29 

 30 

Conclusion 31 

We found clinically relevant GM and WM networks of microstructural changes from 32 

sT1w/T2w WM and GM maps, some of which predicted the disability progression and 33 
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cognitive worsening in a large cohort of participants with MS. Further work is needed to 1 

resolve the underlying pathological processes leading to these network changes, and their 2 

independence from whole-brain atrophy and lesions. The identification of networks of GM and 3 

WM changes, based on MRI scans routinely collected in clinical trials, that predict progression 4 

may be used to identify treatment trial participants most likely to experience disability 5 

progression.  6 

 7 

 8 

  9 
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List of Figures 1 

 2 

 3 

Figure 1 Pipeline to obtain networks of sT1w/T2w changes and determine their 4 

predictive value. We first split the data into discovery and replication cohort; estimated WM 5 

and GM sT1w/T2w maps; generated a WM and a GM 4D image used as input of the ICA; 6 

identified GM and WM patterns of covarying sT1w/T2w changes; determined the stability of 7 

the identified components and their prognostic value for disability progression and cognitive 8 

worsening.  9 

Acronyms: sT1w/T2w, standardized T1w/T2w; WM, white matter; GM, grey matter; ICA, 10 

Independent Component Analysis; EDSS, Expanded Disability Status Scale; SDMT, Symbol 11 

Digit Modalities Test 12 

 13 
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 1 

Figure 2 Brain areas that had similar patterns of change in WM and GM sT1w/T2w. 2 

Figure 2 shows stable (A) GM and (B) WM patterns of covarying sT1w/T2w changes identified 3 

by the ICA . The colour bar represents the loading of each network: the higher the loading, the 4 

lower the microstructural damage in the network.  5 
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 1 

Figure 3 Survival analysis for 24-week CDP.  2 

Figure 3 shows the hazard ratio (HR) of the white and grey matter components that were 3 

predictive of the 24-week CDP in the discovery or replication cohorts, for the whole cohort, 4 

RRMS, SPMS, and PPMS groups. HR higher than 1 indicates that each standard deviation 5 

increase in the loading of the corresponding variable is associated to a higher risk of developing 6 

the event. HR values lower than 1 indicates that for each standard deviation decrease in the 7 

loading of the corresponding variable, there is a higher risk of 24-week CDP.  8 

Error bars represent the confidence interval (CI).  9 

* Statistically significant after Benjamini-Hochberg correction 10 

Acronyms: HR= hazard ratio; EDSS= expanded disability status scale; RRMS= relapsing-11 

remitting MS; SPMS= secondary progressive MS; PPMS= primary progressive MS; WM-IC 12 

= white matter independent component; GM-IC = grey matter independent component 13 

 14 

 15 

 16 

 17 

 18 
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 1 

 2 

Figure 4 Survival analysis for SDMT worsening.  3 

Figure 4 shows the hazard ratio (HR) of WM and GM components that were predictive of  4 

SDMT worsening in the discovery or replication cohorts, for the whole cohort, RRMS, and 5 

SPMS groups. HR higher than 1 indicates that for each standard deviation increase in the 6 

loading of the corresponding variable there is a higher risk of developing the event. HR values 7 

lower than 1 indicates that each standard deviation decrease in the loading of the corresponding 8 

variable is associated to a higher risk of developing cognitive worsening. For instance, 9 

considering the whole cohorts, for each standard deviation decrease in GM volume there is a 10 

13% and 18% increased risk of developing SDMT worsening in the discovery and replication 11 

cohorts. Error bars represent the confidence interval (CI).  12 

* Statistically significant after Benjamini-Hochberg correction 13 

Acronyms: HR= hazard ratio; SDMT= Symbol digit modalities test; WM-IC = white matter 14 

independent component; GM-IC = grey matter independent component; RRMS= relapsing-15 

remitting MS; SPMS= secondary progressive MS 16 



   

 

37 

 

  1 



   

 

38 

 

Supplementary Materials 1 

 2 

Acquisition protocol 3 

This was a retrospective study and the MRI protocol for each clinical trial is previously 4 

published. We included brain scans acquired at either 1.5 or 3T from 8 clinical trials. For 5 

completeness, a brief summary of acquisition protocol for each study is as follows:  6 

 7 

- ASCEND:  8 

◼ T1-weighted, voxel size= 1x1x3mm3, ET= 11, RT=30, Flip Angle= 30 9 

◼ T2-weighted, voxel size= 1x1x3mm3, ET= 83, RT= 5470, Flip Angle= 180 10 

- DCE:  11 

◼ T1-weighted, voxel size= 1x1x3mm3, ET= 20, RT= 600, Flip Angle= 90  12 

◼ T2-weighted, voxel size= 1x1x3mm3, ET= 84, RT= 2800, Flip Angle=  90 13 

 14 

- LIPOIC-ACID:  15 

◼ T1-weighted, voxel size= 1x1x1mm3, ET= 3.9, RT= 8.45, Flip Angle= 8.0 16 

◼ T2-weighted, voxel size= 0.5x0.5x3mm3, ET= 100, RT= 3585.5, Flip Angle= 90 17 

 18 

- MS-SMART:  19 

◼ T1-weighted, voxel size= 1x1x1mm3, ET= 0.004, RT= 2.4, Flip Angle= 1 20 

◼ T2-weighted, voxel size= 1x1x3mm3, ET=0.01, RT= 2.92, Flip Angle= 150 21 

 22 

- OLYMPUS: 23 

◼ T1-weighted, voxel size= 1x1x3mm3, ET=  20, RT= 650, Flip Angle= 90 24 

◼ T2-weighted, voxel size= 0.4x0.4x3mm3, ET= 2500, RT= 94.9, Flip Angle= 90  25 

 26 

- OPERA1, OPERA2, ORATORIO:  27 

◼ T1-weighted, voxel size= 1x1x3mm3, ET= 0.01, RT= 0.03, Flip Angle= 30 28 

◼ T2-weighted, voxel size= 1x1x3mm3, ET= 0.09, RT= 5.75, Flip Angle= 180  29 

 30 

 31 
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The table below shows the number of participants scanned at 1.5 or 3T, and using 2D or 3D 1 

acquisitions. 2 

 3 

Clinical trial N Field strength 

(1.5 or 3T) 

Acquisition 

(2D or 3D) 

ASCEND 814 1.5 3D 

DCE 136 1.5 2D 

LIPOIC-ACID 26 3 3D 

MS-SMART 269 3 3D 

OLYMPUS 85 1.5 2D 

OPERA1 95 1.5 3D 

OPERA2 61 1.5 3D 

ORATORIO 209 1.5 2D 

 4 

 5 

Considering the field strength, 295 participants were scanned at 3T and 1400 participants at 6 

1.5 T. The two groups were not equal for age (mean 54.9 (SD=7) vs. mean 44.7(SD= 9), 7 

P<0.0001), disease duration (mean 16 years (SD= 10), vs. mean 8.7 years (SD=7.2), P<0.0001), 8 

EDSS score (median 6 [5.5-6.5] vs. median 5.5 [4-6], P<0.0001), sex (P<0.0001), mean GM 9 

T1/T2 ratio values (mean 0.07 (SD= 0.01) vs. mean (0.05 (SD = 0.01), P<0.0001), mean WM 10 

(mean 0.25 (SD= 0.05) vs. mean 0.17 (SD= 0.03), P<0.0001), and clinical phenotypes (3T 11 

group included only participants with SPMS).  12 

Considering the acquisition, 1265 participants were scanned using a 3D acquisition and 430 13 

participants using a 2D acquisition. The two groups were not equal for age (mean 47.3 14 

(SD=9.3) vs. mean 44.0(SD= 9.4),  P<0.0001), disease duration (mean 12 years (SD= 8.4), vs. 15 

mean 3.9 years (SD=4.3), P<0.0001), EDSS score (median 6 [4.5-6.5] vs. median 4 [3-6], 16 

P<0.0001), mean GM T1/T2 ratio values (mean 0.05 (SD= 0.01) vs. mean (0.04 (SD = 0.01), 17 

P<0.0001), mean WM (mean 0.19 (SD= 0.05) vs. mean 0.17 (SD= 0.04), P<0.0001), and 18 

clinical phenotypes (the 3D acquisition group included mainly participants with SPMS 19 

(N=1109) and RRMS (N=156), while the 2D acquisition group included mainly participants 20 

with PPMS (N=294) and RRMS (N=136)).  21 

We used the MRI protocol as a covariate in the following statistical analysis.    22 
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Standardised T1w/T2w maps 1 

To extract sT1w/T2w maps, we applied a pipeline similar to Cooper et al. 1. Specifically:  2 

1) N4 bias filed corrected T1w and T2w scans to correct for scanner-field inhomogeneity;2 3 

2) Rigid registered T1w and T2w images to an halfway space using NiftyReg;3 4 

3) Applied an established pipeline as in Eshaghi et al.4 and used Geodesic Information 5 

Flows (GIF) version 3.05 to obtain segmentation maps and DeepMedic software 6 for 6 

lesion masks in the native T1w lesion filled and FLAIR images;  7 

4) Used fslmaths to extract GM, WM and CSF maps from the previous step and NiftyReg 8 

to register them to the halfway space. With fslmaths, we obtained masks of GM and 9 

WM for each participant in the mid-space; 10 

5) Rigid registered FLAIR images to the halfway space and transformed lesion masks from 11 

the native FLAIR to the mid-space;  12 

6) To obtain GM maps, we multiplied GM masks by the T1w and T2w N4-bias field 13 

corrected images in halfway space and subtracted lesion masks;  14 

7) Estimated the median values in T1w and T2w GM and calculated a scaling factor by 15 

dividing median values in GM in T1w by the median values GM in T2w;  16 

8) Obtained a scaled T2w image by multiplying the T2w scan by the estimated scaling 17 

factor;  18 

9) To compute standardized T1w/T2w (sT1w/T2w) maps in the halfway space we applied 19 

the following formula: sT1w/T2w = T1w – sT2w / T1w + sT2w;  20 

10) To obtain GM and WM sT1w/T2w maps, for each participant we multiplied 21 

respectively the whole brain sT1w/T2w maps by their GM and WM masks;  22 

11) We transformed the GM and WM sT1w/T2w maps to a customised template obtained as 23 

in Colato et al.7. To be even more conservative in the definition of the WM maps, we 24 

created a WM mask using the major voting algorithm implemented in 25 

antsJointLabelFusion to fuse the 39 parcellation maps of subjects that had contributed to 26 

the template and obtain a single parcellation map where the likelihood that each region 27 

corresponds to the labelled one is higher. 8 We thresholded out non-WM brain structures 28 

(e.g., ventricles, meninges, etc.), binarised the output and used the obtained mask to 29 

mask WM sT1w/T2w maps.  30 

  31 
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Standardised T1w/T2w maps and networks in healthy controls 1 

 2 

To determine whether similar networks were present in healthy controls (HC), we randomly 3 

selected and downloaded the available 3D T1 and T2 scans from 300 participants from the 4 

Human Connectome Project. 5 

 6 

MRI analysis  7 

ST1w/T2w maps in healthy controls 8 

 9 

We adapted the previously described pipeline to healthy controls. Specifically:  10 

1) N4 bias filed corrected T1w and T2w scans to correct for scanner-field inhomogeneity;2 11 

2) Used Geodesic Information Flows (GIF) version 3.05 to obtain segmentation maps in 12 

the native T1w filled images;  13 

3) Used fslmaths to extract GM, WM and CSF maps from the previous step and NiftyReg 14 

to register them to the halfway space. With fslmaths, we obtained masks of GM and 15 

WM for each participant in the mid-space; 16 

4) To obtain GM maps, we multiplied GM masks by the T1w and T2w N4-bias field 17 

corrected images in halfway space;  18 

5) Estimated the median values in T1w and T2w GM and calculated a scaling factor by 19 

dividing median values in GM in T1w by the median values GM in T2w;  20 

6) Obtained a scaled T2w image by multiplying the T2w scan by the estimated scaling 21 

factor;  22 

7) To compute standardized T1w/T2w (sT1w/T2w) maps in the halfway space we applied 23 

the following formula: sT1w/T2w = T1w – sT2w / T1w + sT2w;  24 

8) To obtain GM and WM sT1w/T2w maps, for each participant we multiplied 25 

respectively the whole brain sT1w/T2w maps by their GM and WM masks;  26 

9) We transformed the GM and WM sT1w/T2w maps to the MNI template and applied a 27 

WM and GM masks.  28 

 29 

We visually inspected the output of each step to check for segmentation errors (e.g. WM/GM 30 

maps estimation), and misregistration.  31 

 32 
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ST1w/T2w maps in healthy controls 1 

 2 

We repeated ICA for HC using the FastICA algorithm from scikit-learn 0.23.1 34 to identify 3 

spatial patterns of covarying 1) WM changes and 2) GM changes from sT1w/T2w ratio maps 4 

in the study-specific template. We specified the number of components to be identified to 20 5 

for ICA to capture potentially relevant but less strong data patterns from WM sT1w/T2w 6 

maps.35  We repeated the same for GM sT1w/T2w maps.  7 

We performed pairwise spatial cross-correlations between components from the MS and HC 8 

cohorts to determine whether similar networks were present also in healthy participants. 9 

 10 

Statistical analysis 11 

 12 

We used Independent t-test to assess differences between MS and HC in GM and WM maps. 13 

 14 

Results  15 

Demographics 16 

 17 

We used data for 300 participants from the Human Connectome Project (HCP). After visually 18 

inspecting the results of each MRI processing step, the final sample included 282 participants 19 

(mean age 28.8 (SD= 3.5), M= 133, F= 149).  20 

 21 

Comparison of WM and GM sT1w/T2w maps and networks in participants with MS and 22 

HC 23 

Participants with MS showed a statistically significant decrease in sT1w/T2w measures 24 

compared to HC both in GM (respectively, mean (SD)= 0.05(0.01) vs. mean(SD) = 0.12(0.01), 25 

P<0.0001) and in WM (respectively, mean(SD)= 0.18(0.05) vs. mean(SD) = 0.32(0.02), 26 

P<0.0001) maps (Figure s1).   27 

 28 

One GM component (GM-IC4) and six WM networks (WM-IC1, WM-IC2, WM-IC4, WM-29 

IC7, WM-IC8) were similarly identified both in the MS and HC cohorts. 30 

 31 

32 
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Comparing different calibration techniques 1 

 2 

Different standardization techniques have been developed to calibrate the T1/T2 ratio measure. 3 

However, so far no gold-standard is available. We aimed to determine the consistency of the 4 

standardization technique adopted for this study relative to other standardization techniques.  5 

 6 

MRI processing  7 

 8 

We randomly selected data for 100 participants and processed MRI images as in Ganzetti et al. 9 

(2014) and Margoni et al. (2022). Specifically, we:  10 

1. Manually segmented eye and temporal muscle masks in the MNI template; 11 

2. Registered the MNI template to the halfspace between the T1 and T2 bias-field 12 

corrected images using ANTs, and transformed the eye and temporal masks to this 13 

space. We visually inspected the registrations and manually corrected the masks were 14 

needed.  15 

3. Extracted the distribution peaks (modes) of intensities in the eye (XS) and temporal 16 

(YS) masks in the T1w and T2w images of the subject; 17 

4. Extracted the distribution peaks (modes) of intensities in the eye (XR) and temporal 18 

(YR) masks in the T1w and T2w images of the MNI 19 

5. Standardized the intensities in T1w and T2w by applying the following formula: 20 

IC = [
XR−YR

XS−YS
]*I + [

XSYR−XRYS

XS−YS
] 21 

where IC is the calibrated image, and I the T1w and T2w images respectively.  22 

6. Divided the calibrated T1 and T2 images to obtain the standardized T1/T2 ratio maps  23 

7. Obtained the standardized T1/T2 ratio maps in GM and WM by applying a GM and 24 

WM mask.   25 

 26 

We performed ICC analysis between the sT1/T2 ratio measures obtained with this method and 27 

the one adopted in this paper to determine the consistency of the measure in GM and WM.  28 

 29 

Results 30 

 31 

We excluded three participants for whom the estimation of the sT1/T2 ratio was above the 99th 32 

percentile. The final sample included 97 participants (mean age: 47.3(SD=9.8); M=32, F=49, 33 
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mean duration: 8.5(SD=8.9).The two methods showed an ICC of 0.70 (95% CI[0.57:0.80], 1 

p<0.0001) in GM and 0.79 (95% CI[0.68 : 0.86], p<0.0001) in WM.  2 

 3 

 4 

 5 

  6 
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 1 

Estimating confirmed disability progression 2 

 3 

Participants did not have treatment change for the entire follow-up.  4 

 5 

We estimated the EDSS progression as an increase of 1 point from a baseline EDSS score of 6 

5.5 or below, or of 0.5 points from baseline EDSS score greater than 5.5, and whether the 7 

worsening was confirmed at 24 weeks (24-week CDP).9 We excluded clinical visits within 30 8 

days of an MS relapse, where clinical attack dates where available.  9 

 10 

  11 
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Supplementary Tables 1 

Table s1. Demographics 2 

 3 

Discovery Cohort 

Phenotype ALL (n= 843) RRMS (n= 159) SPMS (n= 537) PPMS (n= 147) 

Gender (M/F) 310/533 48/111 178/359 84/63 

Age (years) 46.6 ± 9.3 40.7±10.2 48.5±8.4 46.4±8.7 

EDSS  

(median, rage) 
5.5 [0-8] 2.5 [0-8] 6 [3-7] 5 [2-6.5] 

SDMT score 

(mean, SD) 
42.3±14.7 48.0±18.8 41.5±13.9 NA 

Disease 

duration 

(years) 

10.2±8.4 7.1±8.9 12.9±7.9 3.4±3.6 

Number of 

relapse rate  

during trial 

(mean (SD)) 

0.51(1.22) 
 

0.55(1.63) 
 

1.21(2.21) 
 

1.7(3.14) 
 

DMT 

Placebo = 395 

 
Dimethyl 

Fumarate 240 

mg BID = 20 
 

Dimethyl 

Fumarate 240 
mg TID = 19 

 
Lamotrigine= 4 

 

Glatiramer 
Acetate = 15 

 

Interferon beta-
1a = 78 

 

Natalizumab 
300 mg = 212 

 

Fluoxetine = 38 
 

Amiloride = 33 

 
Riluzole= 29 

 

 

Placebo = 23 

Dimethyl 

Fumarate 240 

mg BID = 20 

Dimethyl 

Fumarate 240 

mg TID = 19 

Lamotrigine= 4 

Glatiramer 

Acetate = 15 

Interferon beta-

1a = 78 

 

 

 

 

 

 

 

Natalizumab 

300 mg = 212 

Placebo = 225 

Fluoxetine = 38 

Riluzole= 29 

Amiloride = 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

Placebo = 147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lesion load 

(ml) 

 

28.5.0±25.0 23.8.3±24.7 31.2±25.5 23.7±22.1 

Whole-brain 

GM volume 

(ml) 

558.2±75.8 559.3±58.8 554.9±83.6 569.0±59.9 

     

Replication Cohort 

Phenotype ALL (n= 842) RRMS (n=159) SPMS (n=536) PPMS (n=147) 

Gender (M/F) 329/513 45/114 220/316 64/83 

Age (years) 46.2± 9.6 39.1±10.1 48.4±8.4 46.1±9.4 

EDSS  

(median, rage) 
5.5 [0-8] 2.5 [0-8] 6[3-7.5] 4.5[2-6.5] 

SDMT score 

(mean, SD) 
43.8±14.3 48.4±15.9 43.3±14.0 NA 

Disease 

duration 

(years) 

9.7±8.1 6.1±8.8 12.6±7.2 3.0±3.7 

Number of 

relapse rate 

during trial 

(mean(SD)) 

0.37(0.67) 0.26(0.63) 

 

0.25(0.72) 

 

 

0.25(0.57) 
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DMT 

Placebo = 416 

 

Dimethyl 

Fumarate 240 mg 

BID = 22 

 

Dimethyl 

Fumarate 240 mg 

TID = 15 

 

Lamotrigine= 7 

 

Glatiramer 

Acetate = 15 

 

Interferon beta-1a 

= 78 

 

Natalizumab 300 

mg = 197 

 

Fluoxetine = 27 

 

Amiloride = 28 

 

Riluzole= 28 

 

Placebo = 22 

Dimethyl 

Fumarate 240 mg 

BID = 22 

Dimethyl 

Fumarate 240 mg 

TID = 15 

Lamotrigine= 7 

Glatiramer 

Acetate = 15 

Interferon beta-1a 

= 78 

 

 

 

 

 

 

Natalizumab 300 

mg = 197 

Placebo = 247  

Fluoxetine = 27 

Riluzole = 37  

Amiloride = 28 

 

 

 

 

 

 

 

 

 

 

 

 

Placebo= 147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lesion load 

(ml) 
27.9±27.7 19.5±19.5 30.9±26.2  

Whole-brain 

GM volume 

(ml) 

560.2±71.7 565.1±54.4 560.9±78.7 552.6±60.6 

 1 

 2 

 3 

 4 

  5 
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 1 

Table s2. Description of WM and GM components 2 

 3 

GM Network components: 

GM IC1 = anterior cingulate-precuneus-cerebellum pattern 

GM IC2 = temporal GM pattern 

GM IC3 = fronto-occipital-somatosensory and motor-cerebellar GM pattern 

GM IC4 = cerebellum GM pattern 

GM IC5 = deep grey matter pattern 

GM IC6 = fronto-parieto-cingulate-precuneus-cerebellar pattern 

GM IC7 = temporo-parieto-frontal GM pattern 

WM Network components: 

WM IC1 =  anterior corona radiata regions pattern 

WM IC2 = sensorimotor WM pattern 

WM IC3 = arcuate fasciculus pattern 

WM IC4 = caudate nucleus and internal capsule pattern 

WM IC5 = caudate nucleus and cerebellum pattern  

WM IC6 = cortical projections pattern 

WM IC7 = corpus callosum pattern 

WM IC8 = cerebellum WM pattern 

 4 

 5 
Acronyms: GM, grey matter; WM, white matter 6 
 7 
 8 
  9 
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 1 
Table s3. Correlations between WM and GM networks and GM and WM volume and 2 

lesions load 3 
 4 

 5 

Net

wor

k 

Whole cohort RRMS SPMS PPMS 
Discovery Replication Discovery Replication Discovery Replication Discovery Replication 

Vol

ume 
lesion Volu

me 
lesion Volu

me 
lesio

n 
Volu

me 
lesio

n 
Volu

me 
lesion Volu

me 
lesion Volu

me 
lesion Volum

e 
lesion 

WM

1 
r=0.

18; 

[0.1

1:0.

24];  
P<0.

001

* 

r=0.39; 

[0.33:0

.44];  

P<0.00

01* 

r=0.0

9; 

[0.02:

0.16];  

P<0.0

1* 

r=0.4

1; 

CI0.3

5:0.4

6];  

P<0.0

001* 

r=-

0.15; 

[0.3:0

.01]; 

P=0.0

6 

r=-

0.33; 

[0.46

:-

0.19]

;  

P<0.

0001

* 

r=-

0.15; 

[0.3:0

.01]; 

P=0.0

58 

r=-

0.48; 

[0.59

:-

0.35]

;  

P<0.

0001

* 

r=0.1

7; 

CI0.0

9:0.25

];  

P<0.0

001* 

r=0.4; 

CI0.3

3:0.4

7];  

P<0.0

001* 

r=0.0

4; 

[0.05:

0.12]; 

P=0.3

7 

r=0.4

5; 

CI0.3

8:0.5

2];  

P<0.0

001* 

r=0.1

2; 

[0.04:

0.28]; 

P=0.1

5 

r=0.5

3; 

CI0.4

1:0.6

4];  

P<0.0

001* 

r=0.27; 

CI0.11:

0.42];  

P<0.00

1* 

r=0.29; 

CI0.13:

0.43];  

P<0.00

01* 

WM 

2 
r=0.

21; 

CI0.

14:0

.27];   

P<0.

001

* 

r=0.02; 

[0.05:0

.09]; 

P=0.60 

r=0.1

4; 

CI0.0

7:0.2]

;  

P<0.0

001* 

r=-

0.02; 

[0.09:

0.05]; 

P=0.5

7 

r=0.1

5; 

[0.01:

0.3]; 

P=0.0

6 

r=-

0.17; 

[0.31

:-

0.01]

; 

P<0.

05* 

r=-

0.02; 

[0.17:

0.14]; 

P=0.8

5 

r=-

0.21; 

[0.35

:-

0.06]

; 

P<0.

01* 

r=0.2

5; 

CI0.1

7:0.32

];  

P<0.0

001* 

r=0.0

8; 

[0.01:

0.16]; 

P=0.0

7 

r=0.2; 

CI0.1

2:0.2

8];  

P<0.0

001* 

r=0.0

5; 

[0.04:

0.13]; 

P=0.2

9 

r=-

0.11; 

[0.27:

0.05]; 

P=0.1

8 

r=-

0.17; 

[0.33:

-

0.01]; 

P<0.0

5* 

r=-0.18; 

[0.34:-

0.02]; 

P=0.05

* 

r=-

0.26; 

[0.4:-

0.1]; 

P=0.05

* 

WM 

3 
r=0.

03; 

[0.0

4:0.

09]; 

P=0.

47 

r=-

0.71; 

[0.74:-

0.67];  

P<0.00

01* 

r=-

0.04; 

[0.11:

0.02]; 

P=0.2

0 

r=-

0.6; 

[0.64:

-

0.55];  

P<0.0

001* 

r=0.1

1; 

[0.05:

0.26]; 

P=0.1

9 

r=-

0.63; 

[0.72

:-

0.53]

;  

P<0.

0001

* 

r=0.0

5; 

[0.1:0

.21]; 

P=0.5

0 

r=-

0.78; 

[0.83

:-

0.71]

;  

P<0.

0001

* 

r=-

0.02; 

[0.11:

0.06]; 

P=0.5

9 

r=-

0.73; 

[0.77:

-

0.69];  

P<0.0

001* 

r=-

0.07; 

[0.15:

0.02]; 

P=0.1

2 

r=-

0.65; 

[0.7:-

0.6];  

P<0.0

001* 

r=0.0

2; 

[0.14:

0.18]; 

P=0.8

2 

r=-

0.66; 

[0.75:

-

0.56];  

P<0.0

001* 

r=-0.13; 

[0.28:0.

04]; 

P=0.13 

r=-

0.36; 

[0.49:-

0.21];  

P<0.00

01* 

WM 

4 
r=0.

28; 

CI0.

22:0

.34];  

P<0.

000

1* 

r=-0.5; 

[0.55:-

0.44];  

P<0.00

01* 

r=0.2

5; 

CI0.1

9:0.3

1];  

P<0.0

001* 

r=-

0.49; 

[0.54:

-

0.44];  

P<0.0

001* 

r=0.2

4; 

CI0.0

8:0.3

8]; 

P<0.0

05* 

r=-

0.46; 

[0.57

:-

0.33]

;  

P<0.

0001

* 

r=0.1

8; 

CI0.0

2:0.3

2]; 

P<0.0

5* 

r=-

0.52; 

[0.63

:-

0.4];  

P<0.

0001

* 

r=0.3; 

CI0.2

2:0.37

];  

P<0.0

001* 

r=-

0.51; 

[0.57:

-

0.44];  

P<0.0

001* 

r=0.2

9; 

CI0.2

2:0.3

7];  

P<0.0

001* 

r=-

0.53; 

[0.59:

-

0.47];  

P<0.0

001* 

r=-

0.01; 

[0.17:

0.15]; 

P=0.9

2 

r=-

0.38; 

[0.51:

-

0.23];  

P<0.0

001* 

r=0; 

[0.16:0.

17]; 

P=0.96 

r=-

0.33; 

[0.46:-

0.17];  

P<0.00

01* 

WM 

5 
r=0.

35; 

CI0.

29:0

.41];  

P<0.

000

1* 

r=-

0.16; 

[0.23:-

0.09];  

P<0.00

01* 

r=0.3

1; 

CI0.2

5:0.3

7];  

P<0.0

001* 

r=-

0.34; 

[0.39:

-

0.27];  

P<0.0

001* 

r=0.3

2; 

CI0.1

7:0.4

5];  

P<0.0

001* 

r=-

0.22; 

[0.36

:-

0.06]

; 

P<0.

01* 

r=0.3

7; 

CI0.2

2:0.4

9];  

P<0.0

001* 

r=-

0.27; 

[0.41

:-

0.12]

; 

P<0.

001* 

r=0.3

5; 

CI0.2

7:0.42

];  

P<0.0

001* 

r=-

0.12; 

[0.2:-

0.03];  

P<0.0

01* 

r=0.3

1; 

CI0.2

3:0.3

8];  

P<0.0

001* 

r=-

0.37; 

[0.44:

-

0.29];  

P<0.0

001* 

r=-

0.11; 

[0.26:

0.06]; 

P=0.2

0 

r=-

0.01; 

[0.18:

0.15]; 

P=0.8

6 

r=0.29; 

CI0.14:

0.43];  

P<0.00

01* 

r=-

0.19; 

[0.34:-

0.03]; 

P<0.05

* 

WM 

6 
r=0.

13; 

CI0.

06:0

.19];  

P<0.

000

1* 

r=0.43; 

CI0.37:

0.49];  

P<0.00

01* 

r=0.1

4; 

CI0.0

7:0.2

1];  

P<0.0

001* 

r=0.2

4; 

CI0.1

7:0.3]

;  

P<0.0

001* 

r=-

0.12; 

[0.27:

0.03]; 

P=0.1

2 

r=-

0.4; 

[0.52

:-

0.26]

;  

P<0.

0001

* 

r=-

0.07; 

[0.23:

0.08]; 

P=0.3

5 

r=-

0.31; 

[0.45

:-

0.17]

;  

P<0.

0001

* 

r=0.1

2; 

CI0.0

4:0.2

1];  

P<0.0

05* 

r=0.4

8; 

CI0.4

1:0.5

5];  

P<0.0

001* 

r=0.1

3; 

CI0.0

5:0.2

2]; 

P<0.0

05* 

r=0.2

6; 

CI0.1

8:0.3

4];  

P<0.0

001* 

r=0.1

4; 

[0.03:

0.29]; 

P=0.1

0 

r=0.3; 

CI0.1

4:0.4

4];  

P<0.0

001* 

r=0.2; 

CI0.04:

0.35]; 

P<0.05

* 

r=0.27; 

CI0.11:

0.41]; 

P<0.00

1* 

WM 

7 
r=0.

15; 

CI0.

08:0

.21];  

P<0.

000

1* 

r=-

0.22; 

[0.28:-

0.15];  

P<0.00

01* 

r=0.0

3; 

[0.04:

0.1]; 

P=0.3

9 

r=-

0.4; 

[0.45:

-

0.34];  

P<0.0

001* 

r=0.1

4; 

[0.01:

0.29]; 

P=0.0

7 

r=-

0.22; 

[0.37

:-

0.07]

; 

P<0.

005* 

r=0.2

4; 

CI0.0

9:0.3

9]; 

P<0.0

05* 

r=-

0.42; 

[0.54

:-

0.29]

;  

P<0.

0001

* 

r=0.1

2; 

CI0.0

3:0.2]

;  

P<0.0

05* 

r=-

0.19; 

[0.28:

-

0.11];  

P<0.0

001* 

r=-

0.02; 

[0.1:0

.07]; 

P=0.7

1 

r=-

0.41; 

[0.48:

-

0.34];  

P<0.0

001* 

r=0.2

9; 

CI0.1

3:0.4

3];  

P<0.0

001* 

r=-

0.32; 

[0.46:

-

0.16];  

P<0.0

001* 

r=0.1; 

[0.06:0.

26]; 

P=0.22 

r=-

0.35; 

[0.48:-

0.2];  

P<0.00

01* 

WM 

8 
r=0.

12; 

CI0.

05:0

.19];  

P<0.

000

1* 

r=-

0.19; 

[0.26:-

0.13];  

P<0.00

01* 

r=0.1

7; 

CI0.1

1:0.2

4];  

P<0.0

001* 

r=-

0.12; 

[0.19:

-

0.05];  

P<0.0

001* 

r=0.2; 

CI0.0

4:0.3

4]; 

P<0.0

5* 

r=-

0.12; 

[0.27

:0.04

]; 

P=0.

14 

r=0.2

7; 

CI0.1

1:0.4]

;  

P<0.0

001* 

r=-

0.05; 

[0.2:

0.11]

; 

P=0.

56 

r=0.0

6; 

[0.03:

0.14]; 

P=0.2

0 

r=-

0.23; 

[0.31:

-

0.15];  

P<0.0

001* 

r=0.1

1; 

CI0.0

3:0.2]

; 

P<0.0

1* 

r=-

0.15; 

[0.23:

-

0.06]; 

P<0.0

01* 

r=0.1

1; 

[0.05:

0.27]; 

P=0.1

9 

r=0; 

[0.16:

0.16]; 

P=0.9

9 

r=0.26; 

CI0.1:0.

4]; 

P<0.05

* 

r=0; 

[0.16:0.

16]; 

P=0.99 

GM

1 
r=0.

15; 

CI0.

08:0

.21];  

P<0.

r=-

0.48; 

[0.53:-

0.43];  

P<0.00

01* 

r=0.0

6; 

[0.01:

0.13]; 

P=0.0

8 

r=-

0.38; 

[0.44:

-

0.32];  

P<0.0

001* 

r=0.2

6; 

CI0.1

1:0.4]

; 

P<0.0

01* 

r=-

0.47; 

[0.58

:-

0.34]

;  

P<0.

r=0.0

4; 

[0.12:

0.2]; 

P=0.6

1 

r=-

0.47; 

[0.58

:-

0.34]

;  

P<0.

r=0.1

2; 

CI0.0

4:0.21

];  

P<0.0

05* 

r=-

0.5; 

[0.56:

-

0.43];  

P<0.0

001* 

r=0.0

6; 

[0.02:

0.15]; 

P=0.1

4 

r=-

0.39; 

[0.46:

-

0.31];  

P<0.0

001* 

r=0.1

6; 

CI0:0

.32]; 

P=0.0

52 

r=-

0.33; 

[0.46:

-

0.17];  

P<0.0

001* 

r=0.12; 

[0.04:0.

27]; 

P=0.15 

r=-

0.33; 

[0.46:-

0.17];  

P<0.00

01* 



   

 

51 

 

000

1* 
0001

* 
0001

* 
GM

2 
r=0.

19; 

CI0.

12:0

.25];  

P<0.

000

1* 

r=-

0.23; 

[0.29:-

0.16];  

P<0.00

01* 

r=0.1

4; 

CI0.0

8:0.2

1];  

P<0.0

001* 

r=-

0.22; 

[0.28:

-

0.15];  

P<0.0

001* 

r=0.3

1; 

CI0.1

6:0.4

4];  

P<0.0

001* 

r=-

0.32; 

[0.46

:-

0.18]

;  

P<0.

0001

* 

r=0.1

8; 

CI0.0

2:0.3

3]; 

P<0.0

5* 

r=-

0.22; 

[0.36

:-

0.06]

; 

P<0.

01* 

r=0.1

5; 

CI0.0

7:0.24

];  

P<0.0

001* 

r=-

0.21; 

[0.29:

-

0.12];  

P<0.0

001* 

r=0.1

3; 

CI0.0

4:0.2

1]; 

P<0.0

05* 

r=-

0.23; 

[0.31:

-

0.15];  

P<0.0

001* 

r=0.2

4; 

CI0.0

8:0.3

9];  

P<0.0

05* 

r=-

0.16; 

[0.31:

0]; 

P=0.0

57 

r=0.26; 

CI0.1:0.

41];  

P<0.00

1* 

r=-

0.22; 

[0.36:-

0.06]; 

P<0.01

* 

GM

3 
r=0.

22; 

CI0.

15:0

.28];  

P<0.

000

1* 

r=-

0.11; 

[0.18:-

0.04]; 

P<0.00

5* 

r=0.0

2; 

[0.05:

0.09]; 

P=0.6

1 

r=-

0.12; 

[0.18:

-

0.05]; 

P<0.0

01* 

r=0.0

9; 

[0.06:

0.25]; 

P=0.2

4 

r=0.

05; 

[0.11

:0.21

]; 

P=0.

52 

r=-

0.06; 

[0.21:

0.1]; 

P=0.4

8 

r=-

0.25; 

[0.39

:-

0.1]; 

P<0.

001* 

r=0.2

5; 

CI0.1

7:0.33

];  

P<0.0

001* 

r=-

0.15; 

[0.23:

-

0.06];  

P<0.0

01* 

r=0.0

2; 

[0.06:

0.1]; 

P=0.6

4 

r=-

0.1; 

[0.19:

-

0.01]; 

P<0.0

5* 

r=0.1

7; 

CI0.0

1:0.3

3]; 

P<0.0

5* 

r=-

0.2; 

[0.35:

-

0.04]; 

P=<0.

05* 

r=0.11; 

[0.06:0.

26]; 

P=0.20 

r=-

0.11; 

[0.27:0.

05]; 

P=0.19 

GM

4 
r=0.

04; 

[0.0

3:0.

1]; 

P=0.

29 

r=0.06; 

[0.01:0

.13]; 

P=0.07 

r=-

0.05; 

[0.12:

0.02]; 

P=0.1

4 

r=-

0.13; 

[0.2:-

0.06];  

P<0.0

001* 

r=0.1; 

[0.05:

0.26]; 

P=0.1

9 

r=-

0.34; 

[0.47

:-

0.2];  

P<0.

0001

* 

r=-

0.01; 

[0.16:

0.15]; 

P=0.9

5 

r=-

0.39; 

[0.51

:-

0.25]

;  

P<0.

0001

* 

r=0.0

7; 

[0.02:

0.15]; 

P=0.1

3 

r=-

0.01; 

[0.1:0

.07]; 

P=0.7

4 

r=-

0.05; 

[0.13:

0.04]; 

P=0.2

9 

r=-

0.11; 

[0.2:-

0.02]; 

P<0.0

5* 

r=0.0

5; 

[0.11:

0.21]; 

P=0.5

5 

r=-

0.01; 

[0.17:

0.16]; 

P=0.9

5 

r=0.14; 

[0.02:0.

3]; 

P=0.09 

r=-

0.02; 

[0.18:0.

14]; 

P=0.78 

GM

5 
r=0.

32; 

CI0.

25:0

.38];  

P<0.

000

1* 

r=-

0.39; 

[0.45:- 

P<0.00

01*0.3

3];  

P<0.00

01* 

r=0.3

2; 

CI0.2

5:0.3

8];  

P<0.0

001* 

r=-

0.29; 

[0.36:

-

0.23];  

P<0.0

001* 

r=0.0

8; 

[0.08:

0.23]; 

P=0.3

3 

r=-

0.32; 

[0.45

:-

0.18]

;  

P<0.

0001

* 

r=0.1

7; 

CI0.0

1:0.3

1]; 

P<0.0

5* 

r=-

0.06; 

[0.21

:0.1]

; 

P=0.

45 

r=0.3

7; 

CI0.3

:0.44]

;  

P<0.0

001* 

r=-

0.42; 

[0.49:

-

0.34];  

P<0.0

001* 

r=0.3

4; 

CI0.2

7:0.4

2];  

P<0.0

001* 

r=-

0.35; 

[0.43:

-

0.27];  

P<0.0

001* 

r=0.1

2; 

[0.04:

0.28]; 

P=0.1

5 

r=-

0.52; 

[0.63:

-

0.39];  

P<0.0

001* 

r=0.24; 

CI0.08:

0.38]; 

P<0.00

5* 

r=-

0.48; 

[0.6:-

0.35];  

P<0.00

01* 

GM

6 
r=0.

12; 

CI0.

05:0

.19];  

P<0.

000

1* 

r=-

0.13; 

[0.19:-

0.06];  

P<0.00

01* 

r=0.0

6; 

CI0:0

.13]; 

P=0.0

7 

r=-

0.03; 

[0.09:

0.04]; 

P=0.4

7 

r=0.0

6; 

[0.1:0

.22]; 

P=0.4

4 

r=-

0.02; 

[0.18

:0.13

]; 

P=0.

78 

r=0.1

2; 

[0.03:

0.27]; 

P=0.1

2 

r=0.

1; 

[0.06

:0.25

]; 

P=0.

21 

r=0.1

5; 

CI0.0

7:0.23

];  

P<0.0

001* 

r=-

0.17; 

[0.25:

-

0.08];  

P<0.0

001* 

r=0.0

5; 

[0.04:

0.13]; 

P=0.2

9 

r=-

0.06; 

[0.14:

0.03]; 

P=0.2

1 

r=-

0.03; 

[0.19:

0.13]; 

P=0.7

1 

r=-

0.08; 

[0.24:

0.08]; 

P=0.3

2 

r=0.15; 

[0.01:0.

3]; 

P=0.07 

r=-

0.15; 

[0.3:0.0

2]; 

P=0.08 

GM

7 
r=0.

15; 

CI0.

08:0

.21];  

P<0.

000

1* 

r=-

0.13; 

[0.2:-

0.06];  

P<0.00

01* 

r=0.1

6; 

CI0.1

:0.23]

;  

P<0.0

001* 

r=-

0.14; 

[0.21:

-

0.08];  

P<0.0

001* 

r=0.1

7; 

CI0.0

1:0.3

1]; 

P<0.0

5* 

r=-

0.08; 

[0.23

:0.08

]; 

P=0.

32 

r=0.3

7; 

CI0.2

3:0.5]

;  

P<0.0

001* 

r=-

0.08; 

[0.23

:0.08

]; 

P=0.

34 

r=0.1

4; 

CI0.0

6:0.23

]; 

P<0.0

01* 

r=-

0.1; 

[0.19:

-

0.02]; 

P<0.0

5* 

r=0.1

4; 

CI0.0

6:0.2

2];  

P<0.0

001* 

r=-

0.16; 

[0.25:

-

0.08];  

P<0.0

001* 

r=0.0

9; 

[0.07:

0.25]; 

P=0.2

8 

r=-

0.12; 

[0.28:

0.04]; 

P=0.1

5 

r=0.14; 

[0.02:0.

3]; 

P=0.09 

r=-

0.05; 

[0.21:0.

12]; 

P=0.58 

  1 

  2 

  3 

  4 

  5 

  6 

 7 

 8 

 9 
 10 
 11 

 12 
 13 
 14 
  15 
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Table s4. Predicting 24-week CDP using GM and WM components 1 

 2 
Network Whole 

discovery 

cohort 

Whole 

replication 

cohort 

RRMS 

discovery 
RRMS 

replication 
SPMS 

discovery 
SPMS 

replication 
  

PPMS 

discovery 
PPMS 

replication 

WM IC1  R=0.85; 

95%CI[0.7

3:0.99]; 

P<0.05* 

HR=0.84; 

95%CI[0.73:

0.97]; 

P<0.05* 

HR=0.82; 

95%CI[0.53:

1.27]; P=0.37 

HR=0.55; 

95%CI[0.33:

0.92]; 

P<0.05* 

HR=0.87; 

95%CI[0.72:

1.05]; P=0.14 

HR=0.83; 

95%CI[0.7

:0.99]; 

P<0.05* 

HR=0.85; 

95%CI[0.6

:1.22]; 

P=0.39 

HR=0.92; 

95%CI[0.62:1.

37]; P=0.69 

WM IC2 HR=0.86; 

95%CI[0.7

2:1.03]; 

P=0.11 

HR=0.96; 

95%CI[0.82:

1.12]; P=0.58 

HR=0.26; 

95%CI[0.14:

0.48]; 

P<0.0001* 

HR=0.51; 

95%CI[0.27:

0.97]; 

P<0.05* 

HR=0.89; 

95%CI[0.7:1.

15]; P=0.38 

HR=0.97; 

95%CI[0.7

6:1.25]; 

P=0.84 

HR=0.96; 

95%CI[0.4

7:1.96]; 

P=0.92 

HR=0.44; 

95%CI[0.24:0.

82]; P<0.01* 

WM IC3 HR=0.88; 

95%CI[0.7

6:1.03]; 
P=0.12 

HR=0.84; 

95%CI[0.72:

0.97]; 
P<0.05* 

HR=0.52; 

95%CI[0.31:

0.87]; 
P<0.05* 

HR=0.81; 

95%CI[0.48:

1.36]; P=0.43 

HR=0.95; 

95%CI[0.79:

1.14]; P=0.58 

HR=0.84; 

95%CI[0.7

:1.01]; 
P=0.06 

HR=0.93; 

95%CI[0.5

9:1.46]; 
P=0.74 

HR=0.88; 

95%CI[0.59:1.

32]; P=0.53 

WM IC6 HR=0.97; 

95%CI[0.8
3:1.14]; 

P=0.75 

HR=0.83; 

95%CI[0.71:
0.98]; 

P<0.05* 

HR=0.68; 

95%CI[0.43:
1.09]; P=0.11 

HR=0.61; 

95%CI[0.35:
1.08]; P=0.09 

HR=0.97; 

95%CI[0.8:1.
18]; P=0.76 

HR=0.87; 

95%CI[0.7
2:1.05]; 

P=0.16 

HR=0.93; 

95%CI[0.5
8:1.49]; 

P=0.76 

HR=0.76; 

95%CI[0.49:1.
17]; P=0.21 

GM IC1 HR=0.91; 

95%CI[0.7

7:1.08]; 

P=0.28 

HR=0.95; 

95%CI[0.79:

1.13]; P=0.55 

HR=0.46; 

95%CI[0.25:

0.86]; 

P<0.05* 

HR=0.8; 

95%CI[0.4:1.

59]; P=0.53 

 HR=1; 

95%CI[0.81:

1.23]; P=0.97 

HR=0.96; 

95%CI[0.7

8:1.19]; 

P=0.70 

HR=0.87; 

95%CI[0.4

5:1.69]; 

P=0.69 

HR=0.96; 

95%CI[0.51:1.

81]; P=0.90 

GM IC3 HR=0.85; 

95%CI[0.7:

1.04]; 

P=0.12 

HR=0.87; 

95%CI[0.75:

1.02]; P=0.08 

HR=0.78; 

95%CI[0.38:

1.6]; P=0.49 

HR=0.56; 

95%CI[0.24:

1.3]; P=0.18 

HR=0.73; 

95%CI[0.57:

0.95]; 

P<0.05* 

HR=0.86; 

95%CI[0.7

2:1.03]; 

P=0.10 

HR=0.68; 

95%CI[0.3

2:1.42]; 

P=0.30 

HR=0.93; 

95%CI[0.49:1.

75]; P=0.81 

GM IC4 HR=0.88; 

95%CI[0.7

5:1.04]; 

P=0.14 

HR=0.98; 

95%CI[0.85:

1.12]; P=0.75 

HR=0.62; 

95%CI[0.4:0.

96]; P<0.05* 

HR=0.92; 

95%CI[0.56:

1.49]; P=0.73 

HR=0.97; 

95%CI[0.79:

1.19]; P=0.77 

HR=0.99; 

95%CI[0.8

4:1.16]; 

P=0.90 

HR=0.9; 

95%CI[0.6

1:1.34]; 

P=0.61 

HR=0.92; 

95%CI[0.6:1.4

1]; P=0.69 

GM IC5 HR=0.95; 

95%CI[0.7

9:1.14]; 

P=0.59 

HR=0.83; 

95%CI[0.69:

1]; P<0.05* 

HR=0.34; 

95%CI[0.16:

0.71]; 

P<0.005* 

HR=0.42; 

95%CI[0.17:

1.06]; P=0.07 

HR=1; 

95%CI[0.8:1.

26]; P=0.99 

HR=0.83; 

95%CI[0.6

5:1.07]; 

P=0.16 

HR=0.83; 

95%CI[0.4

2:1.63]; 

P=0.59 

HR=0.98; 

95%CI[0.42:2.

26]; P=0.96 

GM IC7 HR=0.83; 

95%CI[0.7:
0.98]; 

P<0.05* 

HR=0.8; 

95%CI[0.69:

0.92]; 

P<0.005* 

HR=0.77; 

95%CI[0.47:
1.26]; P=0.31 

HR=0.69; 

95%CI[0.41:
1.15]; P=0.15 

HR=0.91; 

95%CI[0.74:
1.12]; P=0.38 

HR=0.76; 

95%CI[0.

64:0.91]; 

P<0.005* 

HR=0.51; 

95%CI[0.

32:0.81]; 

P<0.005* 

HR=0.95; 

95%CI[0.65:1.
37]; P=0.77 

Lesion 

load 
HR=1.12; 
95%CI[0.9

6:1.3]; 

P=0.14 

HR=1.02; 
95%CI[0.88:

1.18]; P=0.79 

HR=1.4; 
95%CI[1:1.9

5]; P<0.05* 

HR=1.45; 
95%CI[0.87:

2.41]; P=0.15 

HR=1.03; 
95%CI[0.85:

1.25]; P=0.77 

HR=1.01; 
95%CI[0.8

2:1.24]; 

P=0.92 

HR=1.02; 
95%CI[0.7

:1.47]; 

P=0.93 

HR=1.07; 
95%CI[0.82:1.

4]; P=0.62 

Whole 

brain GM 

volume 

HR=0.93; 

95%CI[0.8:

1.09]; 

P=0.37 

HR=0.94; 

95%CI[0.78:

1.13]; P=0.50 

HR=0.98; 

95%CI[0.55:

1.76]; P=0.96 

HR=0.7; 

95%CI[0.39:

1.24]; P=0.22 

HR=0.92; 

95%CI[0.77:

1.1]; P=0.36 

HR=0.92; 

95%CI[0.7

3:1.17]; 

P=0.5 

HR=0.93; 

95%CI[0.5

6:1.55]; 

P=0.78 

HR=0.75; 

95%CI[0.48:1.

15]; P=0.19 

Deep GM 

volume 
HR=0.99; 

95%CI[0.8

3:1.17]; 

P=0.89 

HR=0.98; 

95%CI[0.83:

1.14]; P=0.76 

HR=0.85; 

95%CI[0.49:

1.46]; P=0.55 

HR=0.94; 

95%CI[0.64:

1.39]; P=0.77 

HR=0.95; 

95%CI[0.75:

1.18]; P=0.63 

HR=0.84; 

95%CI[0.6

6:1.07]; 

P=0.15 

HR=0.77; 

95%CI[0.5

3:1.12]; 

P=0.17 

HR=0.7; 

95%CI[0.45:1.

09]; P=0.12 

Thalamus HR=0.95; 

95%CI[0.8:

1.13]; 

P=0.55 

HR=0.98; 

95%CI[0.83:

1.16]; P=0.85 

HR=0.87; 

95%CI[0.55:

1.38]; P=0.56 

HR=0.86; 

95%CI[0.53:

1.38]; P=0.52 

HR=0.99; 

95%CI[0.81:

1.21]; P=0.92 

HR=0.94; 

95%CI[0.7

5:1.16]; 

P=0.55 

HR=0.87; 

95%CI[0.5

4:1.4]; 

P=0.57 

HR=0.75; 

95%CI[0.48:1.

17]; P=0.20 

Caudate HR=0.92; 

95%CI[0.7
7:1.09]; 

P=0.33 

HR=0.9; 

95%CI[0.76:
1.07]; P=0.24 

HR=0.67; 

95%CI[0.41:
1.08]; P=0.10 

HR=0.84; 

95%CI[0.52:
1.36]; P=0.48 

HR=0.99; 

95%CI[0.81:
1.21]; P=0.93 

HR=0.87; 

95%CI[0.6
9:1.09]; 

P=0.22 

HR=0.9; 

95%CI[0.5
8:1.41]; 

P=0.65 

HR=0.83; 

95%CI[0.54:1.
27]; P=0.40 

Pallidum HR=0.96; 
95%CI[0.8

1:1.13]; 

P=0.64 

HR=0.92; 
95%CI[0.76:

1.1]; P=0.35 

HR=0.85; 
95%CI[0.52:

1.41]; P=0.54 

HR=0.86; 
95%CI[0.49:

1.49]; P=0.58 

HR=0.94; 
95%CI[0.78:

1.13]; P=0.53 

HR=0.83; 
95%CI[0.6

5:1.07]; 

P=0.15 

HR=0.88; 
95%CI[0.5

6:1.37]; 

P=0.57 

HR=0.79; 
95%CI[0.51:1.

22]; P=0.28 

 3 
*statistically significant  4 
 5 
Table sT2 shows the hazard ratio, 95% CI, and p-value for the 24-week CDP for GM and WM 6 
components and lesion load in the discovery and application cohorts’ whole, RRMS, SPMS, and 7 
PPMS groups. In bold, components that were still statistically significant after correcting for multiple 8 
comparisons. 9 
 10 
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Acronyms: CI, confidence interval, GM, grey matter; WM, white matter   1 
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Table s5. Predicting SDMT worsening using GM and WM components 1 

 2 

 3 
Network Whole discovery 

cohort 

Whole application 

cohort 

RRMS discovery RRMS 

application 

SPMS discovery SPMS 

application 

WM IC1  HR=0.85; 

95%CI[0.75:0.96]; 

p<0.01* 

HR=0.93; 

95%CI[0.82:1.04]; 

p=0.21 

HR=0.93; 

95%CI[0.56:1.5

5]; p=0.79 

HR=0.73; 

95%CI[0.45:1.1

9]; p=0.21 

HR=0.85; 

95%CI[0.74:0.9

8]; p<0.05* 

HR=0.94; 

95%CI[0.82:1.0

7]; p=0.33 
WM IC2 HR=0.74; 

95%CI[0.64:0.86]; 

p<0.0001* 

HR=0.90; 

95%CI[0.78:1.02]; 
p=0.10 

HR=0.85; 

95%CI[0.44:1.6

8]; p=0.65 

HR=0.98; 

95%CI[0.58:1.6

6]; p=0.94 

HR=0.84; 

95%CI[0.69:1.0

2]; p=0.08 

HR=0.96; 

95%CI[0.8:1.15

]; p=0.64 
WM IC3 HR=0.82; 

95%CI[0.72:0.95]; 

p<0.01* 

HR=0.82; 

95%CI[0.72:0.94]; 

p<0.005* 

HR=0.83; 
95%CI[0.5:1.39

]; p=0.48 

HR=0.66; 
95%CI[0.39:1.1

]; p=0.11 

HR=0.82; 
95%CI[0.7:0.96

]; p<0.05* 

HR=0.84; 
95%CI[0.73:0.9

6]; p<0.05* 
WM IC4 HR=0.93; 

95%CI[0.82:1.05]; 

p=0.25 

HR=0.90; 

95%CI[0.8:1.02]; 

p=0.09 

HR=0.89; 
95%CI[0.57:1.4

]; p=0.62 

HR=0.59; 
95%CI[0.34:1.0

1]; p=0.054 

HR=0.74; 

95%CI[0.63:0.

86]; p<0.0001* 

HR=0.84; 
95%CI[0.74:0.9

6]; p<0.05* 
WM IC5 HR=1.01; 

95%CI[0.89:1.14]; 
p=0.90 

HR=0.90; 

95%CI[0.8:1.01]; 

p=0.08 

HR=0.99; 

95%CI[0.56:1.7
8]; p=0.98 

HR=0.45; 

95%CI[0.23:0.8
8]; p<0.05* 

HR=0.79; 

95%CI[0.68:0.

92]; p<0.005* 

HR=0.8; 

95%CI[0.69:0.

93]; p<0.005* 
WM IC7 HR=0.87; 

95%CI[0.76:0.99]; 
p<0.05* 

HR=0.73; 

95%CI[0.64:0.84]; 

p<0.0001* 

HR=0.73; 

95%CI[0.43:1.2
5]; p=0.26 

HR=0.65; 

95%CI[0.38:1.1
1]; p=0.12 

HR=0.92; 

95%CI[0.79:1.0
8]; p=0.31 

HR=0.75; 

95%CI[0.65:0.

88]; p<0.0001* 
GM IC1 HR=0.99; 

95%CI[0.87:1.12]; 
p=0.86 

HR=0.96; 

95%CI[0.85:1.09]; 

p=0.53 

HR=0.94; 

95%CI[0.47:1.8
6]; p=0.86 

HR=0.36; 

95%CI[0.15:0.8
7]; p<0.05* 

HR=0.84; 

95%CI[0.72:0.9
9]; p<0.05* 

HR=0.89; 

95%CI[0.77:1.0
3]; p=0.13 

GM IC2 HR=0.97; 

95%CI[0.86:1.1]; 

p=0.62 

HR=0.87; 
95%CI[0.78:0.98]; 

p<0.05* 

HR=0.61; 

95%CI[0.37:0.9

9]; p<0.05* 

HR=0.83; 

95%CI[0.5:1.37

]; p=0.47 

HR=0.99; 

95%CI[0.86:1.1

3]; p=0.87 

HR=0.88; 

95%CI[0.77:1]; 

p<0.05* 
GM IC3 HR=0.72; 

95%CI[0.62:0.84]; 

p<0.0001* 

HR=0.97; 

95%CI[0.87:1.09]; 
p=0.63 

HR=0.72; 

95%CI[0.33:1.5

5]; p=0.40 

HR=0.89; 

95%CI[0.44:1.8

3]; p=0.76 

HR=0.79; 

95%CI[0.65:0.9

7]; p<0.05* 

HR=0.98; 

95%CI[0.86:1.1

1]; p=0.70 
GM IC5 HR=0.75; 

95%CI[0.64:0.88]; 

p<0.001* 

HR=0.80; 

95%CI[0.69:0.93]; 

p<0.005* 

HR=0.78; 
95%CI[0.38:1.6

]; p=0.50 

HR=0.9; 
95%CI[0.46:1.7

6]; p=0.76 

HR=0.83; 
95%CI[0.68:1.0

2]; p=0.08 

HR=0.81; 
95%CI[0.67:0.9

9]; p<0.05* 
GM IC6 HR=0.86; 

95%CI[0.75:1]; 

p<0.05* 

HR=0.85; 

95%CI[0.75:0.96]; 

p<0.01* 

HR=0.91; 
95%CI[0.36:2.3

2]; p=0.85 

HR=0.71; 
95%CI[0.39:1.2

8]; p=0.26 

HR=0.9; 
95%CI[0.74:1.0

9]; p=0.29 

HR=0.88; 
95%CI[0.77:1]; 

p=0.057 
Whole 

brain GM 

volume 

HR=0.9; 

95%CI[0.78:1.04]; 

p=0.14 

HR=0.88; 

95%CI[0.76:1.02]; 

p=0.10 

HR=0.92; 

95%CI[0.53:1.6

2]; p=0.78 

HR=0.9; 

95%CI[0.49:1.6

6]; p=0.74 

HR=0.93; 

95%CI[0.79:1.0

9]; p=0.38 

HR=0.91; 

95%CI[0.77:1.0

7]; p=0.25 
DGM 

volume 
HR=0.97; 

95%CI[0.85:1.1]; 
p=0.63 

HR=0.95; 

95%CI[0.83:1.08]; 

p=0.41 

HR=0.87; 

95%CI[0.47:1.6
4]; p=0.67 

HR=0.83; 

95%CI[0.43:1.6
1]; p=0.58 

HR=0.99; 

95%CI[0.85:1.1
4]; p=0.84 

HR=0.96; 

95%CI[0.83:1.1
]; p=0.53 

Lesion 

load 
HR=1.27; 

95%CI[1.11:1.44]; 

p<0.0001* 

HR=1.26; 

95%CI[1.11:1.42]; 

p<0.0001* 

HR=1.1; 

95%CI[0.74:1.6

4]; p=0.63 

HR=1.46; 

95%CI[0.8:2.67

]; p=0.22 

HR=1.44; 

95%CI[1.24:1.

67]; p<0.0001* 

HR=1.27; 

95%CI[1.12:1.

43]; p<0.0001* 
Thalamus HR=0.87; 

95%CI[0.75:1.01]; 

p=0.07 

HR=0.77; 

95%CI[0.66:0.9]; 

p<0.001* 

HR=0.93; 

95%CI[0.59:1.4

9]; p=0.78 

HR=0.63; 

95%CI[0.39:1.0

3]; p=0.06 

HR=0.79; 

95%CI[0.66:0.9

5]; p<0.05* 

HR=0.77; 

95%CI[0.65:0.

92]; p<0.005* 
Caudate HR=0.95; 

95%CI[0.83:1.08]; 

p=0.43 

HR=0.89; 

95%CI[0.77:1.03]; 
p=0.11 

HR=0.88; 

95%CI[0.58:1.3

5]; p=0.56 

HR=0.74; 

95%CI[0.44:1.2

3]; p=0.24 

HR=0.95; 

95%CI[0.82:1.1

1]; p=0.53 

HR=0.93; 

95%CI[0.8:1.08

]; p=0.36 
Pallidum HR=0.91; 

95%CI[0.79:1.06]; 

p=0.22 

HR=0.81; 

95%CI[0.68:0.96]; 

p<0.05* 

HR=0.9; 
95%CI[0.53:1.5

3]; p=0.70 

HR=0.6; 
95%CI[0.35:1.0

4]; p=0.07 

HR=0.87; 
95%CI[0.73:1.0

3]; p=0.11 

HR=0.83; 
95%CI[0.69:1]; 

p<0.05* 

 4 
*statistically significant  5 
 6 
Table sT3 shows the hazard ratio, 95% CI, and p-value for 10% SDMT worsening for GM and WM 7 
components, whole brain GM volume loss, and lesion load in the discovery and application cohorts’ 8 
whole, RRMS, SPMS, and PPMS groups. In bold, components that were still statistically significant 9 
after correcting for multiple comparisons. 10 
 11 
Acronyms: CI, confidence interval, GM, grey matter; WM, white matter 12 
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Supplementary Figures 1 

 2 
 3 

 4 
 5 

 6 

Figure s1. Comparison of WM and GM sT1w/T2w networks across clinical MS phenotypes 7 

 8 

 9 

  10 
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 1 

 2 
 3 

Figure s2. Figure s2 shows stable (A) GM and (B) WM patterns of covarying sT1w/T2w 4 

changes identified by the ICA. The colour bar represents the loading of each network: the 5 

higher the loading, the lower the microstructural damage in the network.  6 

 7 


