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Abstract—Liquid hydrogen in cryogenic condition can 

incidentally leak from offshore rocket launching platforms, 

leading to catastrophic impacts. Risk assessment and 

management of hydrogen leaks are required to prevent such 

accidents. The aim of the paper is to develop a methodology 

for quantitative risk assessment on hydrogen leak hazards 

from offshore rocket launching platforms during their filling 

process. A set of credible leak scenarios are chosen using 

Latin Hypercube Sampling (LHS) technique. The flows of 

hydrogen leaks for the selected scenarios are simulated using 

Computational Fluid Dynamics (CFD) method. A 

probabilistic model for predicting hydrogen leaks is 

established based on the computed results, where a long 

short-term memory (LSTM) network is used. Individual risks 

are defined as likelihood of explosion and fire due to 

hydrogen leaks. As an illustrative example, the developed 

methodology was applied to a hypothetical offshore rocket 

launching platform, confirming that the hydrogen leak risk 

level of the platform meets the ALARP (As Low As 

Reasonably Practicable) criteria. Risk mitigation options are 

also discussed to reduce the risk level. 

Keywords-quantitative risk assessment; long short-term 

memory network; offshore rocket launching platform 

1. INTRODUCTION 

The offshore rocket launching can overcome the geographical 
limitations of the traditional land-based launching. However, 
the severe marine environment poses a significant threat to the 
propellant filling system, which can result in propellant 
leakage, leading to fire and explosion. Statistics show that 
more than 64% of aerospace accidents are explosion and fire 
caused by accidental leaks of propellant [1]. Effective risk 
assessment can mitigate the risk of leakage and avoid 
catastrophic accidents.  
The objective of offshore risk assessment is to ensure high 

safety and reliability of the system [2][3][4]. Most of the 

studies can get highly reliable results largely depending on a 

clear understanding of the system and its operating 

environment. For example, the risk assessment of offshore 

wind turbines based on failure model effect analysis (FMEA) 

[5]. With the advancement of techniques, the focus on risk 

assessment has shifted to quantitative assessment that can 

provides more accurate results[6][7]. This methodology 

utilizes computational fluid dynamics (CFD) to characterize 

load time profiles and other techniques to calculate the 

possible consequence of the accidents. Although a more 

accurate methodology is provided for propellant leakage risk 

assessment, there are still some drawbacks. For example, it is 

time-consuming to perform necessary CFD calculations, e.g. 

more than several hours [8]; it is not sure if the risk assessment 

can cover all the possible scenarios; it is difficult to cope with 

the extreme accidents with low probabilities and large effects, 

some of which are difficult to selected by digital techniques, 

e.g. earthquake. 

To deal with the above-mentioned problems, Paik et al. [6] 

proposed a risk assessment methodology based on Latin 

Hypercube Sampling (LHS) technique to consider possible 

scenarios. API [9] suggests screening out high-risk accidents 

as typical scenarios. While most of them primarily concentrate 

on typical scenarios rather than the specific extreme accidents. 

A data-driven approach has been proposed and applied, which 

combines CFD simulations and machine learning models to 

predict gas leakage in a more efficient manner [10]. A back 

propagation (BP) model minimizing the objective function is 

first developed to predict gas dispersion. On this basis, other 

machine learning models are developed based on the above 

model, such as support vector machine (SVM), long short-

term memory (LSTM), radial basis function (RBF). Because 

of the time dependency of leakage accidents, the LSTM 

network is suitable for capturing the temporal link between 

input and output variables, and can accurately describe the 

actual leakage scenario [8]. For instance, a prediction for stock 

trends [11], a forecasting model of wind speed [12].  

Inspired by the above studies, the present study utilizes 

machine learning models to address the problems of extreme 

accidents in the risk assessment. After hazard identification, a 

simulation database provided by CFD is used for the training 

of LSTM-based prediction model. The integrity of hazard 

scenarios is guaranteed by the performance of prediction 

model. Finally, the risk assessment, including consequence 

and frequency analysis, is performed by applying the damage 

model. A case study is performed to illustrate the applicability 

and effectiveness of the method. 

The following section introduces the methodology used to 

assess the risk of leakage scenarios. Section 3 presents the 
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application of the approach in a case study of leakage 

accidents on an offshore rocket launching platform. Section 4 

provides the results. Conclusions are summarized in section 5. 

2. METHODOLOGY 

2.1. Framework 

Figure 1 shows the QRA procedure for the propellant filling 

system, which involves the identification of potential hazards 

and the quantification and assessment of risks. The fire and 

explosion mainly depend on gas concentration, and the CFD 

method is used to determine the gas cloud feature parameters.  

Various leakage scenarios are generated using a sampling 

method, considering the uncertainty of wind direction, wind 

speed, leak position and leakage rate. The machine learning-

based prediction model is developed based on a database 

generated from CFD simulations. Consequence assessment of 

fire and explosion is conducted using empirical models. The 

risk assessment, which takes into account the frequency and 

consequence of the accident, is performed, and a criterion is 

used to judge whether or not the risk control measures should 

be applied. The accident frequency is calculated by 

multiplying the component’s failure frequency by the ignition 

probability. 

Quantitative risk assessment of leakage accidents in refiling systems

Credible Risk Scenarios

  Leakage rate(X1)

  Leak Position(X2)

  Wind Speed(X3)

  Wind direction(X4)

Hazard Identification

Machine learning prediction models

Importing training samples and pre-processing

CFD  simulation leakage models

Training the model

Saving the trained model

Predicting hydrogen cloud characteristic parameters

Machine Learning 

Databases

Explosive/Fire Frequancy

=Leak frequency× ignition probability

Explosive /Fire energy calculation model

Analysis of the consequence of  

explosion and fire

Risk

= frequency× consequancy

Risk ALARP Stop

Risk Control Measures

No

Yes

 
Figure 1. Quantitative risk assessment process for filling 

system 

2.2. Hazard Identification 

FMEA is widely used in hazard identification for complex 

systems including ocean engineering [5]. When performing 

hazard identification for the entire system, it is crucial to 

consider the intricate connections between different 

components involved in the propellant filling system. It is 

recommended to assess the components with high Risk 

Priority Numbers (RPNs), which are the product of the 

severity (S), occurrence (O), detection (D). 

 RPN S O D=    (1) 

2.3. Scenarios for Gas Leakage 

Latin hypercube sampling (LHS) is usually used to generate 

scenarios involving several random variables[13]. Historical 

data can provide statistical parameters for random variables 

such as leakage rate, wind speed, and wind direction. The 

equipment with the highest RPN is selected to determine the 

leakage location. Equation (2) is used to perform random 

sampling from the probability density function (PDF), 

ensuring a good coverage of the range of values. 

 
1 0.5
( )i

i

m
x F

N

− −
=  (2) 

where N is the sample size, mi is the i th element in the sample, 

F-1 is the inverse function of the cumulative distribution 

function. 

2.4. The Long Short-Term Memory Network 

The LSTM network is used to predict the leakage 

characteristics, which is trained based on CFD simulation 

results. The problem of gradient explosion or disappearance, 

also referred to as long-range dependence, can be effectively 

resolved by employing the LSTM network, which is a 

specialized type of recurrent neural network [14]. Figure 2 

shows the LSTM circuit unit structure, where it, ft, and ot are 

the input, forgotten, and output gate, respectively. It controls 

the path of information transmission through several gates. 

The three gates are calculated as follows. 

 1( )t i t t t ii W x U h b −= + +  (3) 

 
1( )t f t f t ff W x U h b −= + +  (4) 

 1( )t o t o t oo W x U h b −= + +  (5) 

 
-1tanh( )t c t f t Cc W x H h b= + +  (6) 

 1t t t t tc f c i c−=  +   (7) 

 tanh( )t t th o c=   (8) 

where σ is the sigmoid activation function with values from 

0~1, tanh is the hyperbolic tangent function with output values 

from -1~1, xt is the input value at the current moment, ht-1 is 

the state at the previous moment, W is the weight matrix; b is 

the bias vector. 
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Figure 2. LSTM circular cell structure 
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2.5. Frequency Analysis 

LH2 leakage accident can occur in three different ways, as 

shown in Figure 3. The first one is an immediate ignition, 

which may lead to a jet fire depending on the ignition 

probability. The second one involves delayed ignition, where 

an explosion can occur and the accident progression is 

dependent on the timing of the ignition. The third one occurs 

when there is no ignition source, and no significant harm 

occurs as the fuel is non-toxic. If the leakage is detected and 

isolated, the consequence can be avoided. The HyRAM 

database [15] provides a default value of 0.9 for successful 

detection and isolation, and 0.1 for failed. The frequency of 

fire and explosion can be calculated using the following 

equation. 

 ( )Jetfire total iF f P Isolated P=    (9) 

 ( )Exp total df f P Isolated P=    (10) 

 total leakf N f=   (11) 

where N is the number of components of the same category, 

fleak is the component leak frequency, ( )P Isolated  is the 

probability of failed leakage detection and isolation before 

ignition, iP  and dP are the probability of immediate and 

delayed ignition respectively that depend on the leakage rate. 

Value of the parameter is provided in HyRAM [15]. 

Failed Detected 

and Isolated

No Ignition

Immediate 

Ignition

Delayed Ignition

Jet fire 

No consequance

Explosion

Successful  Detected and 

Isolated
Shutdown

Leakage 

 
Figure 3. LH2 leakage event tree 

The low viscosity of hydrogen makes joints, pipes and valves 

more susceptible to leakage [16]. The frequencies of fire and 

explosion for each category are presented in Table 1. 

 

 

Table 1. Frequency of fire and explosion 

Category Leakage frequency Type of accident Frequency 

Joints 8*6.96E-6 
Jet fire 2.95E-7 

Explosion 1.50E-7 

Pipe 4*9.12E-7 
Jet fire 1.93E-8 

Explosion 9.84E-9 

Valves 28*4.13E-5 
Jet fire 6.12E-6 

Explosion 3.12E-6 

2.6. Consequence Analysis 

1) Overpressure 

The so-called Boiling liquid expanding vapor explosion 

(BLEVE) is a classical accident scenario for LH2 leakage. 

The LH2 explosion is a physical, not a chemical. 

Overpressure is the primary outcome, resulting in structural 

damage and human fatalities [17]. The energy of LH2 

explosion can be calculated as: 

 [ ( )( / )]m v g s gE C P P V R m = − −  (12) 

where γ is the correction factor, 1.8, Cv is the specific heat 

capacity at constant volume, J·kg-1·K-1, Pg is the pressure of 

hydrogen, MPa, Ps is the surfing pressure, MPa, V is the 

volume of hydrogen, m3, Rg is the gas constant of hydrogen, 

4157 J·kg-1·K-1, α is coefficient, 1.9155×10-6 K·Pa-1, m is mass 

of hydrogen, kg. 

Explosive energy is equal to TNT equivalent. 

 /m TNTW E Q=  (13) 

where QTNT is the detonation heat, 4500 kJ/kg. 

Combined with the distance from the leak source, the 

shockwave overpressure is calculated as follows. 

 

1/3 2/3

2 3

0.108 0.114 1.772
s

W W W
p

r r r
 = − +  (14) 

where r is the distance from the leak source, m. 

2) Thermal flux 

To trigger LH2 fire and explosion, three conditions must be 

satisfied: concentration threshold, flame accelerator and 

ignition source. Hydrogen flammability ranges have been 

defined by different standards, leading to fire or explosion 

consequences. A flammable concentration within the range of 

4~75 % is selected. By combining with the distance from the 

leak source, the heat flux can be calculated using the 

hydrocarbon ignition model [18][19], which is expressed as 

follows. 

 
0.32 2/3 2[5777.3 (1 0.058ln )] /gq P m r r= −  (15) 

3. CASE STUDY 

3.1. Hazard Identification 

The filling system can be divided into two main parts based 
on their structure and function: the liquid system and the gas 
system. The gas system is subdivided into three subsystems: 
storage tank pressure boosting system, propellant blow-off 
system and pneumatic valve control system. It consists of 
several components such as high-pressure cylinders, pipelines, 
filters, valves, and filling pumps.  
In this study, liquid hydrogen and liquid oxygen are used as 
the propellant for the filling system. The storage tank pressure 
boosting system assists the propellant blow-off system to 
remove impurities before filling, and pressurizes the liquid 
hydrogen storage tank to ensure filling tasks. The propellant 
blow-off system's function is to remove flammable gases 
before or after filling. The pneumatic valve control system 
controls the pressure and flow rate during filling. The liquid 
system is responsible for the actual propellant filling process 
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and is composed of storage tanks, level gauges, valves, flow 
gauges, filters, flanges, and other related components. The 
filling process is divided into four phases:  
a) Low flow rate filling phase: avoid rapid cooling of the 

storage tank in the hot state, and prevent overpressure. 
b) High flow rate filling phase: storage tank is pre-cooled to 

a certain level, increasing the flow rate to reduce time. 

c) Reducing flow rate filling phase: filling to a certain level, 

reduce the filling flow rate to ensure filling accuracy. 

d) Replenishment phase: replenish the propellant consumed 

by evaporation during parking. 

Based on the subdivision of the filling system, the main 

leakage failure modes are identified. For each failure mode,  

there are several reasons. The PRN for each reason is 

calculated using (1). The PRN for each failure mode is 

obtained by summing the PRNs for all the reasons. The FMEA 

results are shown in Table 3. Only the failure modes with high 

RPNs are considered in the present study. 

Table 3 FMEA results 

Failure modes Causes of failure RPN 

Level gauge failure 
1. Poor quality 

32 
2. reed switch damage 

Valve failure 1. Corrosion 18 

Filling pump failure 
1. cavitation 

40 
2. poor contact of return relay 

Flow gauge failure 

1. Pulse interference 

18 2. instrumentation failure 

3. PLC failure 

Seals failure 1. Corrosion 18 

Pressure sensor failure 1. Quality problems 16 

Filler flap failure 1. Mechanical failure 14 

Connection valve failure 1. Poor sealing 14 

Storage tank rupture 1. Pressure instability 12 

Flange failure 1. Poor sealing 15 

3.2. Leakage Simulation 

The Odyssey platform [20], which has dimensions of 160  

92 81 m is considered in the simulation. Monitor points 

(MPs) are placed throughout the model to record hydrogen 

dynamic behavior, as shown in Figure 4. 

Leak source

Pipe
Liquid hydrogen tank

Liquid oxygen tank

Monitor point
Rocket

Wall

 
Figure 4. Geometric model 

It can be seen from Figure 4 that, the distance between the gas 

monitors is calculated to be 7 m using the characteristic length 

[21] defined by: 

 3 in( ) 1,...,jL M V j N= =，  (16) 

where Vj is the volume of the cloud at the flammable 

concentration, m3, N is the sample size. The flammable cloud 

volumes for all simulated scenarios are shown in Figure 5. 
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Figure 5. Flammable cloud volume 

The 150 scenarios were generated by LHS. The statistical 

descriptors of the random variables are listed in Table 5. 

Table 5. Statistical descriptors 
Random 

variable 

Distribution 

type 
Mean 

Standard 

deviation 
Reference 

Wind speed Normal  4.28 1.86 -- 

Wind direction Normal 175.1 100.3 [22] 

Leak rate Weibull  0.86 0.43 [23] 
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Figure 6. Time history of LH2 diffusion variables: (a) leak 

rate; (b) pressure; (c) concentration; (d) hydrogen cloud 

volume 

The dispersion modeling is performed using the CFD software 

STAR-CCM+ that has been validated in several LH2 

dispersion [24][25]. The ideal compressible model is used to 

solve dispersion problems assuming all LH2 evaporates. The 

polyhedral mesh is used to grid the computational domain, the 

leakage hole is refined and the other regions are sparse.  



5 

 

It is assumed that leak occurs in the pipelines as shown in 

Figure 4. The time histories of the hydrogen diffusion 

variables for a leakage scenario are shown in Figure 6. It can 

be seen from Figure 6 that, since the monitors are placed at 

different places, the output will be different. It is worth 

mentioning that all of the diffusion variables reach an 

approximately steady state after about 80 seconds. 

3.3. Prediction Model based on LSTM 

Compared to traditional diffusion models, such as Gaussian 

diffusion models and CFD models, machine learning models 

have demonstrated higher efficiency in predicting gas 

diffusion. Among machine learning prediction models, the 

LSTM model has shown excellent performance in gas 

diffusion prediction with time sequence. The LSTM model 

consists of four parts: sequence input, LSTM layer, fully 

connected layer, and regression output.  

To ensure the accuracy of the results, the input data are 

standardized to reduce the difference. The LSTM layer with 

128 hidden units further improves the accuracy of the results. 

The output size of the fully connected layer corresponds to the 

quantity of input data channels. To predict diffusion states for 

m+1 to m+x seconds, the first m seconds of the diffusion 

variables are chosen as input. The accuracy of the model is 

evaluated using the root mean square error. 

 2 1/2

1

1
RMSE [ ( ) ]

n

i i

i

C D
n =

= −  (17) 

where Ci and Di are the true value and predicted value per MP 

respectively, n is the number of MPs. The RMSE of diffusion 

variables is listed in Table 6. It is concluded that when the 

minimum batch size is 10 and the maximum epoch is 200, the 

model has the best prediction result and shortest running time. 

A leakage scenario with wind speed of 2.929m/s, wind 

direction of 70.516° and leakage rate of 0.212kg/m3 is chosen 

to verify the accuracy the prediction model, and to determine 

the risk. The prediction results of MP 20 are compared with 

results from CFD simulation as shown in Figure 7. It can be 

seen from the figure that the agreement between the predicted 

and simulated results is good. 

Table 6. The RMSE of diffusion variables 
Diffusion variable RMSE 

Velocity 9.718 

Pressure 15.030 

Concentration 7.821 

Volume 14.193 

 

  
(a) (b) 

  
(c) (d) 

Figure 7. Prediction results: (a) leakage rate ; (b) pressure; 

(c) concentration; (d) hydrogen cloud volume 

3.4. Consequence Analysis 

The occurrence of explosion and fire is the result of the 

interaction between gas and ignition sources. As a 

consequence of such accidents, overpressure and thermal flux 

can pose significant safety risks. Combining (14) and (15) and 

the prediction data of MP 20, as shown in Figure 7, the 

overpressure and thermal flux at different distances from the 

leak source are calculated, as shown in Figure 8. 
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Figure 8. (a) overpressure; (b) thermal flux as a function of 

distance from the source 

It can be seen from Figure 6 that the hydrogen diffusion state 

is stable for about 80 seconds. Therefore, there is little 

variation in the overpressure and thermal flux with time after 

80 seconds. According to overpressure and heat flux damage 

criteria for personnel and structures[26][27], the personnel 

and equipment safety distance is calculated, as shown in 

Figure 8.  
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Figure 9. Probability of damage for personnel and structure: 

(a) damage probability for personnel; (b) damage probability 

for structure 

Figure 9 shows the probability of damage for personnel and 

structure. The probability of damage Pr can be calculated by 

combing the overpressure ΔPs or heat flux q (shown on Figure 

8) and the distance from leakage source r. The equations for 

the probability calculation is provided in [28]. 
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4. RISK CALCULATION 

4.1 Individual Risks 

The IR can be calculated as: 

 

1

R

i i

i

IR f p
=

=   (18) 

where fi is the probability of failure events, pi is the probability 

of death due to failure events, R is the total number of failure 

events. 

It can be seen from Eq. (18) that, the IR can be calculated by 

the outcome of Section 2.5 and Section 3.4. By adding 

together all accident scenarios that could happen for each 

component, the IR is shown in Figure 10 (a). It stands for the 

probability of an individual death at the platform 24 hours per 

day, 365 days per year, and it is visually represented by risk 

contours. The risk varies with the distance to MP 20. 
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Figure 10. Individual risks: (a) Initial risk, (b) Reduced 

risk with mitigation options 

According to the IR acceptability guideline [29], a risk of 10-

6/year is acceptable. Nevertheless, the platform is almost 

completely covered by the counter representing 10-6/year. It 

indicates that the risk of filling missions is unacceptable. The 

protective measures should be taken to make the platform 

within the As Low As Reasonably Practicable (ALARP) 

region. It can be seen from Eq. (18) that, the IR is impacted by 

the failure probability. Therefore, the valve which has high 

initial failure probability must be monitored carefully. 

4.2 Risk Mitigation Options 

To minimize the consequence of accidents, protective 

measures such as monitors and blast walls should be 

implemented. Table 1 demonstrates that valves are a key 

factor in risk assessment. In order to prevent fire, explosion 

and the domino effect, monitors and blast walls are erected 

next to leak-prone equipment (such as tanks, pipelines). This 

safeguard ensures that any leak from monitoring equipment 

will be quickly identified and isolated. The updated IR is 

shown in Figure 10(b). The current highest risk value for IR 

is 10-4/year, and the risk range is 0.1 m. In accordance with 

ALARP recommendations, the risk has been reduced by a 

factor of 10 compared to the previous example, and the risk 

range has been condensed. 

In general, the use of hydrogen presents various risks, 

including fire, explosion, and asphyxiation. These risks are 

less likely to occur on land but are more likely in open areas, 

particularly at sea, where they can result in more dangerous 

situations. Gas monitors are currently one of the most 

effective and popular techniques to reduce risks. These 

monitors are designed to detect hydrogen and notify staff 

members to take timely action to prevent potentially fatal 

accidents and injuries, as is the case with LH2. As shown in 

Figure 10(b), after implementing protective measures, the IR 

has been significantly reduced compared to the previous state. 

5. CONCLUSIONS 

In the present study, a machine learning based approach is 

proposed to address the main challenges of risk assessment. 

The applicability of this methodology is illustrated in a case 

study. The LSTM model has been used for the prediction of 

LH2 dispersion characteristics. The developed prediction 

model aims to cover all relevant accident scenarios. The 

proposed approach can provide the dispersion characteristics 

of different phases, which are valuable for keeping track of 

accident development. Moreover, the combination of LSTM 

and CFD can efficiently predict various hazards that may 

occur during the filling process in a short period. The initial 

forecasting may not be optimal due to the lack of data, but as 

more simulations are done and the prediction model is 

developed, it can be used to integrally and rapidly assess 

numerous unexpected scenarios that may arise. 

The proposed methodology can be used for other industries 

like process plants, which makes it a valuable tool for 

mitigating the risk of leakage. One limitation of the current 

methodology is the lack of considering the uncertainty 

between modeling and simulation, which could be considered 

in the future. 
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