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Abstract
Humans can derive enormous benefit from the natural environment and the wildlife they see there, but increasing human 
use of natural environments may negatively impact wildlife, particularly in urban green spaces. Few studies have focused on 
the trade-offs between intensive human use and wildlife use of shared green spaces in urban areas. In this paper, we investi-
gate the impacts of humans and their dogs on wildlife within an urban green space using camera trap data from Hampstead 
Heath, London. Spatial and temporal activity of common woodland bird and mammal species were compared between sites 
with low and high frequency of visits by humans and dogs. There was no significant difference in the spatial or temporal 
activity of wildlife species between sites with lower and higher visitation rates of humans and dogs, except with European 
hedgehogs (Erinaceus europaeus) which showed extended activity in the mornings and early evenings in sites with lower 
visitation rates. This may have implications for the survival and reproductive success of European hedgehogs. Our results 
suggest that adaptation to human and dog activity deserves greater study in urban green spaces, as would a broader approach 
to measuring possible anthropogenic effects.
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Introduction

Enjoyment of green spaces in urban areas is important to 
mental health and wellbeing, and a key aspect of this effect 
is the interaction with nature and wildlife (Soulsbury and 
White 2015; Triguero-Mas et al. 2015). However, there is 
growing evidence that recreational use can be a form of 
human disturbance affecting the abundance, diversity and 
behaviour of wild species (Larson et al. 2016; Gaynor et al. 
2018). Understanding how wildlife is impacted by human 
disturbance in urban green spaces will allow us to develop 
solutions that minimise negative impacts. This will benefit 

both wildlife and people, who will experience a greater 
abundance and diversity of wildlife.

While there is widespread evidence that recreation may 
have a negative impact on wild animal activity and abun-
dance (Larson et al. 2016; Gaynor et al. 2018), most stud-
ies to date have focused on non-urban settings. It could be 
argued that negative effects will be particularly apparent in 
urban settings, especially if wildlife populations there have 
more limited space and resources, and experience more 
intense and continuous human disturbance. However, wild-
life in urban ecosystems may also be more adapted to, and 
tolerant of, human presence. There is evidence, for instance, 
that wild birds forage less in city parks with greater human 
activity (Fernández-Juricic and Tellería 2000; Fernández-
Juricic et al. 2001), but also evidence that the distance at 
which birds take flight when approached is less in urban than 
rural areas (Matsyura et al. 2015; Bötsch et al. 2018). Some 
urban wildlife may be adapted to anthropogenic sources of 
food (Storch and Leidenberger 2003; Ditchkoff et al. 2006), 
which could make them more likely to be seen in areas of 
high human activity. The effect of human activity on the 
presence and enjoyment of urban wildlife may therefore be 
complex and species-specific.
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To explore this, we investigate the impact of human 
activity on a range of diurnal and nocturnal wildlife spe-
cies on Hampstead Heath, a large, continuously accessible 
and intensively visited green space in central London, UK. 
Our study exploits the fact that different parts of the Heath’s 
275 ha experience very different levels of local human 
activity, due to the distribution of footpaths and fencing. 
Many people who use Hampstead Heath walk dogs, usually 
off-lead. Because there is evidence that dogs, like humans, 
can have a negative impact on wildlife activity (Fernández-
Juricic and Tellería, 2000; Dowding et al. 2010; Banks and 
Bryant 2007; Reilly et al. 2017), our study considers the 
combined effect of humans and their dogs on the presence 
and temporal activity of bird and mammal species which use 
the Heath’s woodlands.

We used camera traps to examine the effect of human and 
dog visits on wildlife activity. Camera traps provide a unique 
opportunity to understand small scale patterns in temporal 
and spatial overlap and interactions across species within 
vertebrate communities (Rowcliffe and Carbone 2008) and 
are increasingly used at a range of scales from local commu-
nities to global-scale meta-analyses (Steenweg et al. 2016). 
For this study, we utilised images from a 2018 camera trap 
survey set up to study European hedgehogs by the London 
HogWatch Project (Carbone and Cates, 2018). This survey 
captured activity of species foraging on woodlands based on 
a systematic grid-based camera survey (see Rowcliffe et al. 
2014). By recording continuous photographic data across 
multiple independently selected woodland sites, we were 
able to obtain unbiased spatial and temporal information 
on wildlife occurrence and activity in areas that differed in 
levels of human and dog visitation.

Methods

Study area

Hampstead Heath is a 275 ha urban green space, which is 
listed as a site of Metropolitan Importance for Nature Con-
servation and situated in a densely populated part of Central 
London (City of London 2019). Hampstead Heath comprises 
a mosaic of habitats including woodland, grassland, scrub 
and open water, which are managed to maintain a biodi-
verse landscape while ensuring access to visitors (City of 
London 2010; City of London 2019). Local wildlife surveys 
show woodlands, including an ancient woodland designated 
as a Site of Special Scientific Interest (Natural England 
1990), to be particularly rich in breeding bird and mammal 
species (City of London, unpublished). These woodlands are 
criss-crossed by a network of walking paths used by visitors. 
A significant proportion of visitors bring dogs to Hampstead 

Heath, usually off-lead, which is typical across green spaces 
in England (Taylor et al. 2005).

Data collection

Between 18th April and 5th July 2018, camera traps were 
uniformly distributed over Hampstead Heath across 150 sites 
of various habitat types using a 150  m2 cell-size grid over-
lay (Monterroso et al. 2013). Each camera trap operated on 
average for 15 days (range: 9—23 days) and recorded con-
tinuously 24 h a day. Survey lengths varied due to limited 
storage on memory cards, batteries running out of charge 
and camera failures. Camera traps were attached 20–50 cm 
above the ground to suitable features nearest to the ideal 
coordinates, for example fence posts or trees. Traps were 
angled slightly downwards to increase the probability of 
recording wildlife. Traps minimised disturbance by passively 
detecting wildlife using heat signatures (Welbourne et al. 
2016) and were not baited. 104 camera traps across four 
models were used: 64 Browning Strike Force HD-Pro BTC-
131 5HDPs, 20 Reconyx HyperFire HC-500 s, 10 Reconyx 
Hyperfire HC-600 s and 10 Reconyx Hyperfire PC-800 s. 
The Browning model took one image per trigger with a 
recovery time of approximately 0.6 s, while the Reconyx 
models took ten images per trigger with a recovery time of 
one second between photos (specifications for these cameras 
can be found at www. trail campro. com).

Camera site selection

For the purpose of this study, a subset of 26 camera traps 
were selected from woodland sites across Hampstead Heath 
which recorded wildlife between 18th April and 10th June 
2018 (Fig. 1; Online Resource-Table 1). Camera traps were 
selected from areas with the vegetation classification: “at 
least 84% broadleaved woodland” (City of London 2009; 
Online Resource-Table 2). One camera trap was selected 
from a site classified as “semi-neutral improved grassland” 
but was located in a broadleaved woodland copse within 
that area with a similar composition to the other selected 
woodland sites. Broadleaved woodland sites were dominated 
by English oak (Quercus robur) and less frequently by com-
mon beech (Fagus sylvatica) and sessile oak (Quercus pet-
raea), with an understory of bramble (Rubus fruticosus), 
holly (Ilex aquifolium) and other small trees, and a ground 
cover of common ivy (Hedera helix) or bracken (Pteridium 
aquilinum) (See Online Resource-Table 2 for full habitat 
descriptions by site). Care was taken to select woodland 
sites with similar plant composition and microhabitats in 
order to reduce the confounding effects of factors like food 
availability and ground cover. Within this habitat, all cam-
era traps were positioned to give a clear view of open leaf 
litter to at least five metres with little ground cover under a 

http://www.trailcampro.com
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closed canopy. This improved the detection probability for 
all wildlife species, especially European hedgehogs which 
can go undetected in tall vegetation (Sollmann et al. 2013). 
Importantly, the distribution of cameras across the Heath 
meant some were close to, and others distant from, foot 
paths. Some were in the few fenced off woodland areas on 
the Heath, which people and dogs rarely visited. This created 
a broad range in frequency of human and dog visits recorded 
between traps.

Photo review

All vertebrate species within camera images were manually 
identified using ExifPro v2.1 (Kowalski 2013). When an ani-
mal enters a camera’s field of view, the camera triggers and 
takes a series of successive images of the animal. For this 
study, we measured discrete visits to the site by individu-
als of particular species, which we call “contacts”. Contacts 
are indicated by successive images showing an individual 
appearing, being present, and then disappearing from the 
camera’s field of view. A new contact was recorded if eleven 

seconds had elapsed between successive images of that par-
ticular species. This removed differences between cameras 
in the way in which they recorded animals as they entered 
the camera field. Eleven seconds was chosen as it would take 
approximately nine seconds for each camera model to take 
ten successive photos of an animal that was continuously in 
the camera view. Considering the camera's recovery times, 
adding two seconds ensured that the next image was of an 
individual of that species coming newly into the field of a 
view, and not a continuation of the current visit.

Wildlife selection

Across the 26 camera traps, images of 18 distinct species 
of wildlife were captured, in addition to images of humans 
and dogs. Cats were recorded only twice and excluded from 
analysis. Some species of wildlife were particularly common 
(Table 1): diurnal wildlife species included a range of ground-
foraging birds and grey squirrels (Sciurus carolinensis), while 
nocturnal species included mostly red foxes (Vulpes vulpes) 
and European hedgehogs (Erinaceus europaeus). For our 

Fig. 1  Map showing the distribution of the 26 camera trap sites across Hampstead Heath, the camera trap model utilised at each site and whether 
the site was designated as having low or high visits of human and dogs
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analysis of wildlife activity, we put species in groups (‘All 
Birds’ and ‘Non-diurnal Mammals’) and also investigated indi-
vidual species where we had enough contacts. A minimum of 
25 contacts was required at both low visit sites and high visit 
sites (see site definition below) for a wildlife species to be 
included in the analysis, as this was the minimum needed to 
generate an activity schedule for the temporal analysis.

More frequently observed species were also better repre-
sented over a range of sites with different levels of humans 
and dog visits. Based on total contacts, we selected four bird 
species for individual analysis: common blackbirds (Tur-
dus merula), Eurasian magpies (Pica pica), song thrushes 
(Turdus philomelos), and wood pigeons (Columba palum-
bus). We also created for analysis the category “All Birds” 
in order to incorporate these species and the individually 
rare but collectively significant diversity of ‘Other Birds’ 
(Table 1). Three species of mammals were analysed indi-
vidually: European hedgehogs, grey squirrels, and red foxes. 
As nocturnal and crepuscular mammals are likely to respond 

differently to daytime visits by humans and dogs (Gaynor 
et al. 2018), we analysed “Non-diurnal Mammals” as a 
group which comprised of European hedgehogs, red foxes, 
wood mice (Apodemus sylvaticus), European rabbits (Oryc-
tolagus cuniculus) and muntjac (Muntiacus reevesi) (Online 
Resource-Fig. 1). Grey squirrels were the only diurnal mam-
mal species analysed, therefore a “Diurnal Mammal” group 
was not included in the analyses. Camera trap records of 
brown rats showed them to be predominantly diurnal, but 
their numbers were so few that they were excluded from 
the analysis.

Statistics

Establishing sites of low and high human and dog visits

Total contacts of people and dogs were used as an indicator 
of anthropogenic disturbance at a particular site. Human 
and dog contacts, separately recorded at each site, were 

Table 2  Median Relative Abundance Indices of each species in low and high visit sites, and results from Wilcoxon tests comparing RAIs 
between low and high visit sites

Significant if p-value < 0.05 (in bold). For mean values, see Online Resource-Table 5

Species Median RAIs [95% CI] (low visit 
sites; contacts day−1)

Median RAIs [95% CI] (high visit 
sites; contacts day−1)

W statistic p
value

Humans and Dogs 1.47[0.18, 2.10] 11.61[3.14, 41.29] 169  < 0.01
All Birds 1.24 [0.60, 3.63] 1.23[0.21, 5.46] 88 0.88
Common Blackbird 0.43[0.08, 1.01] 0.13[0.00, 3.56] 69 0.44
Eurasian Magpie 0.15[0.06, 0.58] 0.33[0.00, 2.51] 101 0.41
Song Thrush 0.00[0.00, 0.51] 0.05[0.00, 0.86] 87 0.91
Wood Pigeon 0.00[0.00, 0.25] 0.05[0.00,0.56] 102 0.34
Non-diurnal Mammals 1.17[0.47, 2.13] 1.22[0.56, 3.01] 92 0.72
European Hedgehog 0.16[0.00, 0.50] 0.11[0.00, 0.47] 67.5 0.39
Grey Squirrel 1.74[0.64, 7.57] 1.26[0.70, 3.14] 77 0.72
Red Fox 0.36[0.06, 1.90] 0.90[0.49, 2.85] 119 0.08

Table 1  Summary of wildlife 
species detected in camera 
images across the 26 sites, with 
the number of absolute and 
relative contacts (out of total 
2,178 wildlife contacts), and 
the number of sites at which the 
species was detected in camera 
images

a ’Other Birds’ and ‘Other Mammals’ consists of species which individually have very few tags and often 
were present at only a few sites. (For list of specific species see Online Resource-Table 3)

Common Species Name Latin Name Total Number 
of Contacts

Proportion of 
Wildlife Contacts

Total Sites

Common Blackbird Turdus merula 260 12% 19
Eurasian Magpie Pica pica 192 9% 21
Song Thrush Turdus philomelos 90 4% 13
Wood Pigeon Columba palumbus 66 3% 12
Other  Birdsa - 161 7% 18
European Hedgehog Erinaceus europaeus 69 3% 18
Grey Squirrel Sciurus carolinensis 812 37% 26
Red Fox Vulpes vulpes 361 17% 24
Other  Mammalsa - 167 8% 10
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summed and divided by the time of operation of the cam-
era at each site to generate Relative Abundance Indices 
(RAIs) in contacts per day (Carbone et al. 2001). We jus-
tify the use of RAIs as we chose sites of the same habitat 
with similar fields of view, and examined activity for a 
period of 2.5 months, a relatively constrained window of 
observation. This increases the likelihood that our ability 
to detect particular species was similar across sites. We 
justify the use of these “Human + Dog RAIs” on the basis 
that dogs were not seen without humans, and the effects 
of both on wildlife could not be easily separated. There 
was a statistically significant positive association between 
human RAIs and dog RAIs (simple linear regression with 
logged RAIs: b = 0.67, p-value < 0.001,  R2 = 0.70; Online 
Resource-Table 4 and Fig. 2).

Human + Dog RAIs per site ranged from zero for cameras 
in remote, fenced areas to 127 contacts  day−1 for cameras 
near busy paths. The distribution of Human + Dog RAIs was 
strongly skewed, with many sites having very low values and 
few sites having very high values, with no clear gap between 
the two (Online Resource-Fig. 3). Therefore, sites were 
divided into “low” and “high” visit sites using the median 
Human + Dog RAIs (2.18 contacts  day−1). Sites with fewer 
than the median humans and dogs contacts per day were 
defined as low visit sites (n = 13, median = 1.47 contacts 
 day−1 (95% CI[0.18, 2.10])), while sites with greater than 
the median human and dogs contacts per day were defined 

as high visit sites (n = 13, median = 11.61 contacts  day−1 
(95% CI[3.14, 41.29])) (Fig. 2) (for mean values, see Online 
Resource-Fig. 4 and Table 5).

Spatial analysis

To examine the impact of human and dog abundances on 
wildlife species abundances, RAIs were calculated for wild-
life species at each site using the same method as for humans 
and dogs above. Wildlife RAIs were put into low and 
high visit site groups and the two groups compared using  
Wilcoxon tests, due to the general non-homogeneity of vari-
ances and lack of normality.

Temporal analysis

To examine how the activity schedules of wildlife species 
are affected by human and dog visits, we compared the activ-
ity schedules of each wildlife species between our low and 
high visit sites. We postulated that at low visit sites, where 
human and dog disturbance is less, the observed activity 
schedules are more likely to reflect the natural times of 
activity for a species. Hence, differences between activity 
schedules in low and high visit sites suggests human and 
dogs have disrupted the natural activity schedules of wildlife 
species.

Activity schedules were estimated for wildlife species by 
using contacts. A minimum of 25 contacts was required in 
low visit sites and high visit sites for a wildlife species to be 
included in the analysis, as this was the minimum number 
of contacts needed to generate an activity schedule for the 
temporal analysis.

Timestamps were then converted to ‘solarTime’, using 
the R package ‘Activity’ (Rowcliffe et al. 2014; Rowcliffe 
2022), to standardise how sunrise and sunset varied between 
18th April and 10th June across the 26 sites: times at sunrise 
and sunset were standardised to the mean sunrise and sunset 
times, respectively. This corrected for changes in timings of 
behaviour due to the seasonal photoperiod change (Vasquez 
et al. 2019; Rowcliffe 2022).

Activity schedule estimates were generated using the R 
package ‘Activity’ (Rowcliffe et al. 2014; Rowcliffe 2022). 
‘Activity’ which converts solarTime, in radians, into non-
parametric kernel density estimates for each species, i.e. 
activity schedules (Rowcliffe et al. 2014; Rowcliffe 2022).

To estimate the accuracy of the activity schedules esti-
mates, we generated their standard errors by recalculating 
the activity schedule estimates 1,000 times using bootstrap-
ping (Rowcliffe 2022).

Activity schedule estimates of each wildlife between low 
and high visit sites were compared using Watson Wheeler 
tests using the dedicated function within ‘circular’ package 
(Agostinelli and Lund 2022). Using a degree of freedom of 
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two, temporal activity schedule estimates from low and high 
visit sites were significantly different if the chi-squared value 
was greater than 5.991 (p-value < 0.05).

All plotting and analyses were conducted in R v.3.6.2 (R 
Core Team 2019).

Results

Across 26 sites, the total trapping effort was 389 days. In 
total, 2,178 wildlife contacts of 18 species (Table 1), and 
3,558 contacts of humans and dogs were recorded, with 
1,918 human detections and 1,640 dog detections.

Spatial analysis

There was an eightfold increase in Human + Dog RAIs in 
high visit sites relative to low visit sites. For all wildlife 
species and groups, there were no significant differences 
between RAIs in low visit sites and high visit sites (Table 2).

Temporal analysis

The activity schedule for human and dogs in low sites was 
not significantly different from that in high visit sites (Fig. 3 
and Table 3). There were no significant differences in the 
activity schedules in low visit sites and high visit sites for 
all wildlife species and groups with the exception of Euro-
pean hedgehogs (Fig. 3 and Table 3). European hedgehogs 
showed more activity later in the mornings and earlier in the 
evenings at low sites (Fig. 3h).

Discussion

Camera traps have a history of being used to study rare, 
widely ranging mammals in remote areas. However it is 
only in more recent years have they been used in urban 
green spaces and to study common urban birds and mam-
mals. This study further shows their value to the study 
of small-scale spatiotemporal patterns of habitat use in 
response to disturbance, at both the individual species and 
community level. Using camera traps overcomes the prob-
lems of more typical focal observations, including any bias 
from the presence of a human observer and the limited 
time period for such observations. This results in more 

accurate observations of wildlife activity and increases the 
likelihood of capturing long term changes in behaviour in 
response to a range of environmental factors.

The spatial analysis revealed no significant differences 
between the activity of particular species at low and high 
visit sites. Other studies suggest that human and dog pres-
ence could affect the distribution of some of the species 
we observed, including magpies and blackbirds, the bird 
species seem most frequently and widely across our study 
sites (Table 1). For example, in parks and recreational 
spaces, blackbirds have been shown to be less active in 
sites with higher human or dog visitation (Fernández-
Juricic and Tellería 2000; van der Zande and Vos 1984), 
while magpies have been reported to be anthropophilic 
in natural habitats (Gutzwiller et al. 2002; Larson et al. 
2016). Foxes too are known to be anthropophilic (Contesse  
et al. 2004), but were not significantly more active in high 
visit sites in this study, where they may have found food 
discarded by people, or dog faeces, on which they are 
known to feed (Waggershauser et al. 2022). In another 
study in London using camera traps across six urban green 
spaces, no differences were found in fox activity rates 
relative to levels of human activity (Lovell et al. 2022), 
although temporal differences were observed which were 
not found in this study.

With respect to temporal activity, combined human 
and dog activity was similar at high and low visit sites, 
and showed a distinct, flat peak between mid-morning and 
mid-afternoon (Fig. 3). Were this affecting diurnal wildlife 
activity at high visit sites, we would have expected species 
to show a depressed midday activity, with activity periods 
shifted to early morning and/or late evening. This was found 
for no diurnal species (Fig. 3). While we would expect tem-
poral impact of human and dog activity to be less likely for 

Fig. 3  Temporal activity schedules of a Human + Dogs, b All Birds, 
c  Common Blackbirds, d  Eurasian Magpies, e  Song Thrushes, 
f  Wood Pigeons, g  Non-diurnal Mammals, h European Hedgehogs, 
i Grey Squirrels and j Red Foxes in low visit sites (purple line) and 
high visit sites (yellow line) with 95% confidence intervals (dashed 
lines). For number of contacts for each species, see Table 1

◂ Table 3  Difference in temporal activity schedule estimates of humans 
and dogs, and wildlife species between low and high visit sites with 
standard error. Significance of differences is determined by Watson 
Wheeler tests with a degree of freedom of two

Significant p-values (< 0.05) in bold

Species Difference Standard 
Error

W value p-value

Humans and Dogs -0.03 0.02  < 0.01 1.00
All Birds  < -0.01 0.05 0.54 0.77
Common Blackbird -0.03 0.06 0.37 0.83
Eurasian Magpie 0.03 0.07 1.17 0.56
Song Thrush -0.10 0.10 1.28 0.53
Wood Pigeon 0.02 0.09 0.24 0.89
Non-diurnal Mammals 0.07 0.04 2.17 0.34
European Hedgehog  < 0.01 0.07 6.71 0.03
Grey Squirrel 0.05 0.05 3.06 0.22
Red Fox 0.02 0.04 4.09 0.13
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nocturnal species, a significant temporal effect was found 
for European hedgehogs, a largely nocturnal species which 
also exhibits some diurnal activity. In high visit sites, Euro-
pean hedgehogs shifted their foraging to earlier periods in 
the morning and later periods in the evening, suggesting 
that they may be avoiding humans and dogs. Rast et al. 
(2019) also found that European hedgehogs exhibit tempo-
ral evasion of areas experiencing greater human disturbance. 
Given the steep recent decline in British European hedge-
hog populations, particularly in urban areas (Wilson and  
Wembrige 2018), this evidence of anthropogenic disturbance 
is noteworthy. Avoidance of humans and dogs may limit for-
aging activity and, potentially, fitness (Ditchkoff et al. 2006; 
Larson et al. 2016; Gaynor et al. 2018).

European hedgehogs aside, the results of this study sug-
gest that the presence of humans and dogs does not affect 
patterns of use of urban green spaces by a range of common 
wildlife species. Given this evidence, our study suggests that 
the phenomenon of adaptation by wildlife to recreational 
activity may be significant and worthy of more study.

This study has a number of limitations. Many factors 
determine the activity of wildlife species in woodlands, 
including the local distribution of vegetation, food and water 
resources, and the location of burrows and nest sites. We 
measured only one factor, the effects of visits by humans 
and dogs, and variation in other factors may have obscured 
anthropogenic effects, particularly if these habitats were 
not of particular significance to the species observed. We 
sought to control for other factors by selecting traps sites 
with specific, and very similar, vegetation and microhabi-
tats. Furthermore, the species we observed do have a strong 
natural association with broadleaved woodland floors as a 
foraging site. This is an important microhabitat for com-
mon blackbirds and song thrush (Carpenter et al. 2009), and 
one which is frequently used by wood pigeon (Robinson 
2005) and Eurasian magpie (Birkhead 2010). Broadleaved 
woodland floors are also used for foraging by grey squirrels 
(Gurnell 1987; Kenward et al. 1998), red foxes (Sidorovich 
et al. 2006) and European hedgehogs (Riber 2006).

Another possible limitation of this study is the manner in 
which we established high and low visit sites. The majority 
of the 26 woodland sites had infrequent visits by humans 
and dogs, and a very few had extremely high visit levels. 
Separating high and low visit sites based on median contacts 
was sensible in the absence of any more ecological justifi-
cation, and created an equal number of high and low visit 
sites. However, because of the skewed distribution of con-
tacts between sites, the resultant “high” category displayed 
a greater range of values (2–127 contacts per day) than the 
low (0–2 contacts/day). Hence, any anthropogenic effects 
that occur only at very high levels of humans and dog visits 
may have been obscured by the inclusion in the “high visit” 
category of sites with lower visit levels.

Furthermore, the general applicability of our findings is 
limited by two factors: firstly, Hampstead Heath is not a typi-
cal urban green space as it is exhibits both high ecological 
diversity and intense recreational use; and secondly wildlife 
behaviour was recorded for only two and half months, which 
prevented analysis on how the year-round behaviour may be 
being impacted by recreation.

Finally, time spent foraging in specific habitats is not nec-
essarily a good indicator of the fitness and sustainability of 
wildlife populations in the face of human and dog activity. 
Predation and disturbance of nests, for instance by dogs off-
lead, may be much more significant. The encouragement 
in urban spaces of anthropophilic species, like Eurasian 
magpies and red foxes, may also have a negative impact on 
other wild species with which they compete, or on which 
they feed. European hedgehogs on Hampstead Heath, for 
instance, are often found injured or dead due to injuries that 
may have been caused by dogs or red foxes.

Future studies would benefit from a more experimental 
approach, matching, or even creating sites with high and low 
levels of human and dog visits prospectively, and inclusion 
of a more thorough assessment of impacts of humans and 
dogs on wildlife fitness.

In conclusion, our study provides evidence that the spatial 
and temporal activity of common bird and mammal spe-
cies in one urban woodland is not significantly reduced by 
increased frequency visits by humans and dogs, with the 
exception that European hedgehogs were more nocturnal 
in sites with high levels of human and dog visits. While 
this does not dispel the possibility that such disturbance is 
harmful to wildlife communities, it suggests that a broader 
consideration of possible anthropogenic effects, beyond 
those on foraging activity, would be desirable, as well as a 
greater focus on possible behavioural adaptation by wildlife 
to human disturbance.
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