
Deep Image Prior PET Reconstruction using a
SIRF-Based Objective

Imraj RD. Singh†, Student Member, IEEE, Riccardo Barbano†, Robert Twyman, Student Member, IEEE
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Abstract—Widespread adoption of deep learning in medical
imaging has been hampered, in part, due to a lack of integration
with clinically applicable software. In this work, we establish
a direct connection between an established PET reconstruction
suite, SIRF, and PyTorch. This allows for advanced reconstruction
methodologies to be deployed on clinical data with an unsuper-
vised deep learning approach: the Deep Image Prior. Results show
consistent quality metrics for DIP in comparison to OSMAP.

I. INTRODUCTION

AS deep learning becomes ubiquitous in medical image
reconstruction research, there still exists a lack of com-

patibility between established reconstruction suites and deep
learning toolkits. Few exceptions exist and those that do are
primarily applied to computed tomography (e.g., Operator
Discretization Library [1] and Tomosipo [2]) while positron
emission tomography (PET) is mostly neglected. In this work,
we develop a PyTorch wrapper for CCP SyneRBI’s Synergistic
Image Reconstruction Framework (SIRF) [3]. SIRF provides
access to Software for Tomographic Image Reconstruction
(STIR), an advanced PET and SPECT reconstruction library
[4], as well as Gadgetron for MRI reconstruction. The inte-
gration is publicly available on GitHub and we showcase its
potential by reconstructing a clinically-realistic PET XCAT
torso phantom via the deep image prior (DIP) framework
[5]. DIP is a well-established unsupervised learning approach
requiring only a single set of measured data. The results show
performance comparable to ordered subset methodologies.

A. Penalised Maximum Likelihood

Penalised maximum likelihood methods for PET solve the
following optimisation problem

argminx≥0Φ(x) = −L(x) + βR(x), (1)

where L(x) is the Poisson log-likelihood describing the good-
ness of fit to the measurements, R(x) is the penalty, and
β > 0 balances the two terms. In this work, we consider
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two penalties. The first is the Quadratic Prior (QP), defined
by R(x) =

∑N
i=1

∑
j∈Ni

wij(xi − xj)
2, where Ni is a 3× 3

neighbourhood of the i-th image voxel and wij are the neigh-
bourhood weights. The other is the Relative Difference Prior
(RDP), defined by R(x) =

∑N
i=1

∑
j∈Ni

wij
(xi−xj)

2

xi+xj+γ|xi−xj | ,
where the edge preservation parameter is set as γ = 2.

B. Wrapping SIRF-Objective as torch.nn.Module

SIRF is integrated into PyTorch by wrapping
the SIRF ObjectiveFunction class as a
PyTorch module via an ad hoc class named
ObjectiveFunctionModule. Our custom autograd
function subclasses torch.autograd.Function and
uses the value and derivative of (1), which is computed via
SIRF (with a C++ backend provided by STIR).

C. Deep Image Prior

DIP represents the image x through learnable parameters
θ ∈ Rp of a CNN f(z;θ) with a fixed random input z. The
optimisation problem (1) is then recast as

θ⋆ ∈ argminθ∈RpΦ(f(z;θ)), (2)

and we denote the recovered image as x⋆ = f(z;θ⋆). In
line with [6], we use a U-Net [7] (without skip connections)
with 128 channels at each scale. To enforce the non-negativity
constraint, ReLU is applied on the output x⋆. The unsupervised
nature of DIP is attractive for imaging tasks as the scarcity of
high-quality training data has hindered the deployability of su-
pervised deep learning solutions to clinically-realistic settings.
Additionally, test time optimisation of DIP ensures desired
data-consistency. Previous applications of DIP to PET have
been implemented indirectly via optimising the augmented
Lagrangian of the objective function with ADMM [8], where
early stopping was required to deliver best reconstruction
quality. In this work, the use of an explicit penalty alleviates
the dependency on early stopping for regularisation.

II. EXPERIMENTS AND RESULTS

A. Dataset

A numerical GATE simulation [9] of a 1 ring GE Dis-
covery 690 scanner [10], with uniform crystal efficiencies,
is performed via the STIR-GATE-Connection (SGC) [11]. A
photon emission simulation is performed using back-to-back
511 keV photon emissions from a voxelised XCAT torso
phantom [12] with activity concentrations representative of an
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18F-FDG study. A 1 cm diameter, 1 cm long, cylindrical hot
lesion, with 2.6:1 lesion to lung contrast, is inserted into the
lung of the XCAT emission. Cardiac and respiratory motion,
and radioactive decay, are not modelled. The resulting list
mode data are binned into sinograms with a 0.93:1 true-to-
background ratio, where background is random plus scattered
events. Random, scatter and normalisation are modelled using
SGC tools and are included in the system model.

B. Quality Metrics

Standard metrics related to quantification and detectability
of a lung lesion are used to assess image quality. Contrast
recovery coefficient (CRC) values are calculated between the
lung lesion and lung regions of interest (ROIs) by ( ā

b̄
−

1)/(at

bt
− 1), where ā and b̄ are average emissions over lung

lesion and lung ROIs, respectively. The subscript t denotes
ground truth emission values. Standard deviation (STD) is
calculated for an eroded lung ROI (excluding the lesion) by
STD =

(
N−1

roi

∑
(bi − bi,t)

2
)1/2

, where i indexes a voxel from
the lung ROI and Nroi is the number of voxels in the ROI.
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Fig. 1. For the baseline, we use 200 epochs of the One Step Late MAP
(OSMAP) modification of OSEM [13] with 4 ordered subsets. For DIP both
6-scale and 2-scale U-Net architectures are tested and 50,000 epochs are
used. OSMAP and DIP results on CRC of lung/lung lesion ROIs and STD
of lung ROI. Both the QP and RDP are tested with various β values: QP
β ∈ {20, 10, 7.5, 5, 2.5, 1}·e−4 and RDP β ∈ {20, 10, 7.5, 5, 2.5, 1}·e−2.

III. DISCUSSION AND CONCLUSION

The SIRF objective function enables the use of penalty
functions (e.g., QP and RDP) and more complex system models
allowing for an investigation of penalised DIP reconstructions
on realistic datasets.

From Fig. 1 it follows that the over-parameterised 6-scale
DIP network out-preforms the 2-scale network with larger
CRCs and smaller STDs, improvements are consistent yet
marginal. Similarly there are increases in performance for
exemplary DIP reconstructions as compared with OSMAP with
the same β values (see Fig. 2 for the reconstructions).

In future work, an improved comparison with [8] will
be conducted along with investigations into subset methods,
applications to 3D data, more noise realisations, and more
diverse network architectures.
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Fig. 2. OSEM, OSMAP and DIP (6-scale) reconstruction images. DIP -
Maximum Likelihood Estimate (MLE) was obtained after 50,000 epochs,
and OSEM after 200 epochs with 4 subsets. The β values for penalised
reconstructions were determined from greatest CRC values for RDP and QP
from Fig. 1. The inset shows the reconstruction of the lung lesion ROI.

REFERENCES

[1] J. Adler et al., “Odlgroup/odl: Odl 0.7. 0,” 2018.
[2] A. Hendriksen et al., “Tomosipo: Fast, flexible, and convenient 3D

tomography for complex scanning geometries in Python,” Optics Express,
2021.

[3] E. Ovtchinnikov et al., “SIRF: synergistic image reconstruction frame-
work,” Computer Physics Communications, 2020.

[4] K. Thielemans et al., “STIR: software for tomographic image reconstruc-
tion release 2,” Physics in Medicine and Biology, 2012.

[5] D. Ulyanov et al., “Deep image prior,” in CVPR, 2018.
[6] D. O. Baguer et al., “Computed tomography reconstruction using deep

image prior and learned reconstruction methods,” Inv. Problems, 2020.
[7] O. Ronneberger et al., “U-net: Convolutional networks for biomedical

image segmentation,” in MICCAI, 2015.
[8] K. Gong et al., “PET image reconstruction using deep image prior,” IEEE

Trans. Med. Imaging, 2018.
[9] S. Jan et al., “GATE V6: A major enhancement of the GATE simula-

tion platform enabling modelling of CT and radiotherapy,” Physics in
Medicine and Biology, 2011.

[10] V. Bettinardi et al., “Physical performance of the new hybrid PET/CT
Discovery-690,” Medical Physics, 2011.

[11] R. Twyman et al., “A demonstration of STIR-GATE connection,” IEEE
NSS/MIC, 2021.

[12] W. P. Segars et al., “4D XCAT phantom for multimodality imaging
research,” Medical Physics, 2010.

[13] H. Hudson and R. Larkin, “Accelerated image reconstruction using
ordered subsets of projection data,” IEEE Trans. Med. Imaging, 1994.


	Introduction
	Penalised Maximum Likelihood
	Wrapping SIRF-Objective as torch.nn.Module
	Deep Image Prior

	Experiments and Results
	Dataset
	Quality Metrics

	Discussion and Conclusion
	References

