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Abstract: Deep Image Prior (DIP) is an unsupervised deep learning

technique that does not require ground truth images. For the first time, 3D

PET reconstruction with DIP is cast as a single optimisation via penalised

maximum likelihood estimation, with a log-likelihood data-fit and an

optional Relative Difference Prior term. Experimental results show that

although unpenalised DIP optimisation trajectory performs well in high

count data, it can fail to adequately resolve lesions in lower count settings.

Introducing the Relative Difference Prior into the objective function the

DIP trajectory can yield notable improvements.

1 Introduction
Deep Image Prior (DIP) [1] is a state-of-the-art unsupervised
deep learning method for image reconstruction. It leverages
the inductive bias of Convolutional Neural Networks (CNNs)
to fit to natural signals faster than to noise, allowing regulari-
sation via early stopping along the optimisation trajectory.

Gong et al. [2] were the first to apply DIP to PET re-
construction by splitting the reconstruction into Expectation
Maximisation (EM) and DIP denoising. Splitting the opti-
misation was necessary as the PET forward model was not
integrated into a deep learning framework. This was subse-
quently done by Hashimoto et al. [3] and DIP was imple-
mented as a single optimisation problem, thus reducing the
number of hyperparameters and the computational overhead,
and simplifying implementation. But, the forward model
was stored as a sparse matrix which had an excessive GPU
memory overhead. Furthermore, mean-squared-error was
used as the data-fidelity. Their work was recently extended to
3D PET [4] through slicing the forward operator and solving
with a subset-based block iterative approach.

In this work we implement DIP for 3D PET as a single
optimisation problem with log-likelihood data-fit and an op-
tional penalisation term. Our implementation uses the wrap-
per developed in [5]. Projectors utilised are implicit, thus
alleviating the large GPU overhead associated with explicit
projection and allowing full gradient updates for 3D PET
data. The implementation is tested on realistic simulated data
with two count levels. Results are compared to solutions
from the provably convergent Block-Sequential Regularised
Expectation Maximisation (BSREM) algorithm.

2 Preliminaries
2.1 Penalised Maximum Likelihood

Penalised maximum likelihood methods for PET image re-
construction aim to solve the following optimisation problem:

argminx≥0
{

Φ(x) =−L(y|x)+βR(x)
}
, (1)

where L(y|x) is the Poisson log-likelihood describing the
goodness of fit of the reconstructed image x ∈ RN

≥0 to the
measurements y ∈ RM

≥0; M and N denote the number of
projection bins and image voxels, respectively; R(x) is
the penalty, and β > 0 balances the data-fit and penalty.
Up to an additive constant, the Poisson log-likelihood is
given by: L(y|x) = ∑

M
i=1 yi log(ȳi(x))− ȳi(x). The mean

of the measurements ȳ is obtained by projecting the recon-
structed image with an affine PET forward model, defined by
ȳ(x) = E[y] = Ax+ b̄. The system matrix A models the PET
scanner characteristics as well as physical phenomena, e.g.,
attenuation and positron range. The expected background
events b̄ include both scatter and randoms.

In this work we consider the Relative Difference Prior
(RDP) [6], defined by: R(x) = ∑

N
i=1 ∑ j∈Ni wi j

(xi−x j)
2

xi+x j+γ|xi−x j| ,
where Ni is a 3×3×3 neighbourhood of the i-th image voxel,
wi j are the neighbourhood weights. The edge preservation
parameter is set as γ = 2, as is standard in a clinical setting.
2.2 Block-Sequential Regularised Expectation

Maximisation
BSREM [7] is a provably convergent subset algorithm for
PET image reconstruction, with an iterative update given by:

xk+1 = Px≥0 [xk −αk,nD(xk,n)∇Φmk(xk)] , k ≥ 0. (2)

Here Φmk is a subset gradient and mk ∈ {1, . . . ,nsubsets} is
the index of a subset chosen at image update k, out of
nsubsets subsets. The epoch number n≥ 0 is incremented af-
ter every nsubsets image updates. The step-size is given by
αn, preconditioner by D(·), and Px≥0[·] is a non-negativity
projection. The EM preconditioner is used; D(xk,n) =
diag

{
(xk,n +δ )/A⊤1

}
, where δ = 1e-9 ensures positive def-

initeness, A⊤1 is the sensitivity image, and xk,n is the re-
construction at epoch n. The step-size is computed with
αk,n = α0/(ηn+1), where α0 = 1 is the initial step size and
η is a relaxation coefficient.
2.3 Deep Image Prior
DIP [1] represents x through learnable parameters θ ∈ Rp of
a CNN f(z;θ) with a fixed random input z. The optimisation
problem (1) is then recast as: θ

⋆ ∈ argminθ∈RpΦ(f(z;θ)),
where the reconstructed image is obtained from x⋆ = f(z;θ

⋆).
In the original DIP work [1, 2] the objective function Φ con-
sists solely of the likelihood term where the regularisation
is imparted through network architecture and stopping cri-
teria. A penalisation can be included to alleviate the lack
of robust stopping criteria, which is critical to prevent over-
fitting to noise. The utility of additional penalisation was
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first investigated for CT [8] and was included for PET in
[4], although the latter did not compare against traditional
penalised maximum likelihood solutions.

3 Methods
3.1 Wrapping the SIRF-Objective
SIRF is a multi-modality synergistic reconstruction frame-
work providing access to several well-established reconstruc-
tion engines. For advanced PET and SPECT reconstruction
the Software for Tomographic Image Reconstruction (STIR)
engine is used [9]. In this work we utilise various features
of STIR through SIRF such as the parallelised C++ backend,
access to 3D GPU-based projectors, and access to clinically
relevant PET penalties (e.g. RDP).

The wrapper integrates SIRF into PyTorch, via ex-
posure of sirf.STIR.ObjectiveFunction.value and
sirf.STIR.ObjectiveFunction.get_gradient meth-
ods in a custom autograd function that subclasses
torch.autograd.Function.
3.2 Synthetic Data Generation and System Modelling
A Monte-Carlo photon emission simulation of a voxelised
XCAT torso [10] with GE Discovery 690 scanner modelled
acquisition was performed using OpenGATE [11], STIR [9]
and STIR-GATE-Connection [12]. The distribution of back-
to-back 511 keV photon emissions is representative of activ-
ity concentrations from a 18F-FDG tracer study. Cylindrical
hot lesions of dimensions 1cm diameter by 1cm length were
inserted into the abdominal wall (1.6:1), liver (1.3:1), lung
(2:1), and spine (1.6:1). The lesion to associated background
ratio is indicated by (lesion:background).

Projection data sets containing 250 ("lower") and 1200
("higher") million coincidence events were acquired. A true-
to-background ratio of 0.93:1 was maintained for the datasets.
The resulting list-mode data were re-binned into sinograms
with 288 projection angles; all ring differences were used
as is typical in clinical practice. The reconstruction volume
had dimensions of 47× 128× 128 with voxel-size 3.27×
4.0 × 4.0 mm. Normalisation, randoms and scatter were
estimated from the Monte-Carlo data and incorporated within
the forward model, see [12] for details.
3.3 BSREM and DIP Implementation
For BSREM the objective Φ(x) was split into 32 ordered
subsets, accessed in accordance to the Herman-Meyer or-
der [13]. The initial image was set as a reconstruction with
ordered subset EM with 24 subsets after 1 epoch. The maxi-
mum epoch nepochs and relaxation coefficient η were found
through a grid search for both datasets: for higher count data
η = 0.02 and nepochs = 1000, for lower count η = 0.04 and
nepochs = 500. The grid search was assessed to ensure fast
convergence and small step-sizes at nepochs.

For DIP a three-scale 3D U-Net [14] was implemented in
PyTorch (1.13.0), in-line with previous work [2, 4]. Trilinear
upsampling and strided convolutions were used to change
scale, with the number of features compensating for the in-
crease/decrease of spatial dimensionality. Batch normalisa-

tion and Leaky ReLU were included after each convolution.
Skip connections were also present between encoding and de-
coding paths of the network. ReLU was used on the network
output as a non-negativity constraint. An ADAM optimiser
was used for training, with initial learning rate of 1.0 and
cosine annealing tending to 0 over 20,000 iterations. Two
configurations of DIP were implemented; DIP with only Pois-
son negative log-likelihood objective (referred to as"DIP"),
and with RDP in the objective ("DIP+RDP").
3.4 Quality Metrics
Standard metrics for quantification and detectability of le-
sions are used to assess image quality. Contrast Recovery
Coefficient (CRC) values are calculated between the lesions
and associated background Regions of Interest (ROIs) by:
CRC=( ā

b̄ −1)/(at
bt
−1), where ā and b̄ are average emissions

over lesion and associated background ROIs, respectively.
The subscript t denotes ground truth emission values. Stan-
dard Deviation (STDEV) was calculated on each of the back-
ground ROIs according to: STDEV =

(
N−1

ROI ∑(bi − b̄)2
)1/2

.
4 Results and Discussion

For BSREM results, a set of eleven regularisation val-
ues β were used for each count level. For higher count
β ∈ [3.125,31.25] · e-3; for lower count β ∈ [1.5,15] · e-2.
The largest and smallest values in the range represent over-
penalised and under-penalised solutions respectively. DIP
results are shown at different epochs. For DIP+RDP, four
regularisation values β were used for each count level: higher
count β ∈ {3.125,12.5,21.875,31.25} · e-3; lower count
β ∈ {1.5,6.0,10.5,15.0} · e-2. DIP+RDP worked best when
β was lowest (but non-zero), results are shown in Figs. 1c
and 1d. Qualitative visual comparisons of the lower count
reconstructions are given in Fig. 2.

In the higher count regime, see Fig. 1a, unpenalised DIP is
able to considerably out-perform BSREM across all ROIs. In
the lower count data this is not the case, see Fig. 1b. Through
the inclusion of RDP in the objective function, the trajectory
of DIP is improved significantly such that improved image
quality metrics are observed in both lower and higher count
data. However, the improvement is not consistent across all
lesions. From Figs. 1a and 1c, the CRC of the abdominal
wall lesion decreased markedly with the inclusion of RDP
for high count data. This could be due to the abdominal wall
lesions’ location at the edge of the axial field-of-view, where
noise is higher as sensitivity is lower. These issues of lesion
dependence on local sensitivity, contrast and surrounding
activity have been observed and investigated with non-DIP
reconstruction [15]. Extension of such work to DIP remains
for the future.

A single NVIDIA RTX 3090 with 24GB of dedicated
memory (VRAM) was used in this study. PARALLELPROJ
[16] was used for the projection operator, both the forward
and adjoint are implemented in CUDA (GPU-specific lan-
guage). One full gradient 3D PET DIP iteration took ≈ 2.4s,
therefore 13.3 hours for the 20,000 iterations. This included
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(a) Higher count data, DIP with no penalisation
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(b) Lower count data, DIP with no penalisation

5 10 15 20 25 30 35
Standard Deviation (STDEV)

0.5

0.6

0.7

0.8

0.9

Co
nt

ra
st

 R
ec

ov
er

y 
Co

ef
fic

ie
nt

 (C
RC

)

Abdominal Wall
Liver
Lung
Spine

BSREM
DIP+RDP
Same  value

(c) Higher count data, DIP+RDP (β = 3.125e-3), marker indicates the
same β BSREM solution
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(d) Lower count data, DIP+RDP (β = 1.5e-2), marker indicates the
same β BSREM solution, comparison BSREM solution (β = 4.5e-2)
used for qualitative assessment in Fig. 2.

Figure 1: Contrast Recovery Coefficient between lesion and background regions of interest against the standard deviation of the
background. Results closer to the top left are best. Solid lines correspond to the BSREM solution with relative difference prior with
different penalty strengths. Cross markers represent the minimum-loss DIP solution (at fixed penalty strength) taken every 100 epochs
after an initial 10,000 epochs up to 20,000 epochs.

Table 1: GPU memory requirements on tested data for explicit
vs. our implicit projector; estimated from sinogram/image sizes as
well as 8-byte sparse element-size, and observing GPU memory
usage respectively. Memory requirements for the 3D U-Net (see
Sect. 3.3) used in forward and backward modes, and maximum
image volume allowable on a 24 GB GPU.

Projector 3D U-Net

Explicit
matrix

Implicit
(ours)

Forward Backward Maximum
Volume

> 100 GB < 1 GB 0.65 GB 0.88 GB 3003

costly copying to-and-from the GPU which is currently nec-
essary for integration with SIRF. The wrapper could be de-
veloped further by interfacing directly with the projector
through a CUDA-based PyTorch wrapper which would keep
operations on the GPU and arrays saved in VRAM; speeding
up computation. Run-time could also be reduced by the use
of subsets in DIP+RDP. This will be pursued in the future
as it would be an important step in developing efficient deep
learning techniques for PET reconstruction.

5 Conclusion

This is the first single optimisation implementation of 3D
PET reconstruction via penalised maximum likelihood with
DIP. The implementation utilises a wrapper integrating a
well-established reconstruction framework (SIRF) with Py-
Torch. The application of DIP on high count data was able
to significantly increase quality metrics, whereas on lower
count data this was not observed. Introducing RDP into the
objective function significantly improved the DIP trajectory
for lower count data. Results indicate that further investiga-
tion is needed as conclusive and consistent improvements are
not observed across count levels and lesions.
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Figure 2: Axial slices taken through the center of lesions. Slices of ground truth emission and lower count data reconstructions with DIP,
BSREM (β = 4.5e−2), and DIP+RDP (β = 1.5e−2). DIP reconstructions are the minimum-loss solutions over 20,000 epochs. CRC
and STDEV values quotes are for the lesion shown in the slice. Colour-scales between reconstructed image slices are kept constant.
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