Integrated Thermal and Energy Management of Connected Hybrid Electric Vehicles Using Deep Reinforcement Learning

Hao Zhang, Boli Chen, Nuo Lei, Bingbing Li, Rulong Li and Zhi Wang

Abstract—The climate-adaptive energy management system holds promising potential for harnessing the concealed energy-saving capabilities of connected plug-in hybrid electric vehicles. This research focuses on exploring the synergistic effects of artificial intelligence control and traffic preview to enhance the performance of the energy management system (EMS). A high-fidelity model of a multi-mode connected PHEV is calibrated using experimental data as a foundation. Subsequently, a model-free multistate deep reinforcement learning (DRL) algorithm is proposed to develop the integrated thermal and energy management (ITEM) system, incorporating features of engine smart warm-up and engine-assisted heating for cold climate conditions. The optimality and adaptability of the proposed system is evaluated through both offline tests and online hardware-in-the-loop tests, encompassing a homologation driving cycle and a real-world driving cycle in China with real-time traffic data. The results demonstrate that ITEM achieves a close to dynamic programming fuel economy performance with a margin of 93.7%, while reducing fuel consumption ranging from 2.2% to 9.6% as ambient temperature decreases from 15°C to -15°C in comparison to state-of-the-art DRL-based EMS solutions.

Index Terms—Climate-adaptive, plug-in hybrid electric vehicles, deep reinforcement learning, integrated thermal and energy management, optimality, adaptability.

I. INTRODUCTION

Plug-in hybrid electric vehicles (PHEVs) have remarkable potential to augment conventional powertrain efficiency and significantly curtail carbon emissions [1, 2]. By combining the advantages of series-parallel and power-split hybrid powertrain [3], a novel multi-mode dedicated hybrid transmission (DHT) has gained widespread attention and application, offering enhanced control flexibility and striking energy-saving benefits [4]. Though the concept of multi-mode-PHEVs have been proved promising for enhancing fuel economy, the actual performance under real driving conditions is highly dependent on the energy management system (EMS) and thermal management system (TMS) [5], since the engine efficiency and TMS-related accessory loads are greatly influenced by the coolant temperature. Current research often presupposes that the engine is pre-heated at the commencement of this mission [6], but vehicles invariably encounter cold start conditions [7]. Moreover, it is challenging to maintain coolant temperature in PHEV due to the intermittent operation of engine [8]. Given that using electric heater in cold climate can be highly energy consuming, optimizing the integrated thermal and energy management (ITEM) system could engender reliance on engine assisted heating instead of electric heating [9].

Effective control systems are required to address the inherent coupling in the EMS and TMS [10], and a handful of researches have begun to explore the synergistic optimization of ITEM [11]. Pham et al. proposed an integrated strategy for energy and thermal management applicable to parallel HEVs using the equivalent consumption minimization strategy (ECMS), where the battery state of charge (SOC) is designed to be temperature-related [12]. Zahraei et al. introduced an energy management framework incorporates engine thermal management, where they developed a cost function based on SOC and coolant temperature to obtain the optimal SOC trajectory using dynamic programming (DP) [13]. Though the above literatures have initiated the exploration of more nuanced and accurate system models to depict the reciprocal impact of EMS and TMS [14], substantial challenges still persist in this field due to the complexity of solving coupled thermal and energy management in varying climate conditions [15, 16]. To effectively address this problem, research might need to concentrate on the following areas: 1) the use of real-time traffic and terrain data provided by intelligent transportation system (ITS) and geographic information system (GIS) to achieve predictive ITEM for near-global optimality [17, 18]; 2) adopting optimization methodologies empowered by reinforcement learning (RL) to solve complex energy and thermal management problems [19].

Recently, some studies have made use of the information from ITS for model predictive control (MPC) to solve the ITEM of HEVs [17]. With reliance on traffic data, Wang et al. developed a speed prediction-based ITEM system built upon
ultimately enhancing the overall efficiency of the powertrain [36]. To the best of the authors’ understanding, there is a scarcity of research focused on the trip-oriented integrated thermal and energy management system for PHEVs using DRL. This area of study is crucial in the development of the powertrain domain control unit (DCU) for PHEVs that operate under varying climatic conditions during real-driving scenarios. To fill this gap, this research is based on the promising multi-mode PHEV that embodies series, parallel, and power-split functionalities. In this context, a powertrain model with high-fidelity thermal and energy consumption characteristics is built. Then, a DRL-based ITEM system is proposed, as depicted in Fig.1, which integrates multi-source traffic and terrain information processed by a spatio-temporal data processing (STDP) framework in real-time.

The principal features of the proposed ITEM strategy encompass the following elements: (1) a novel model-free optimization methodology is proposed for the trip-oriented ITEM of a multi-mode PHEV with engine-assisted heating for cold climate operation, where the powertrain model is modeled by experimental data; (2) multivariate states, which encompass the ambient temperature and engine coolant temperature, in addition to traffic and terrain information, are integrated into the state space of the RL agent, which promotes the optimal decision-making in real-world driving situations; (3) numerous features including a spatio-temporal data processing (STDP) framework, bounded double Q-values, and delayed policy updates are merged to design the ITEM agent for enhanced learning ability, and the results under homologation and real-world driving cycles verify the optimality and adaptability of the proposed control system.

The rest of this article is structured as follows. Section II describes the powertrain model of a connected PHEV. Section III presents the design of DRL-based ITEM strategy. In Section IV, the testing and validation setup are explained and the benchmark strategies are introduced. Section V analyses the optimality and adaptability of the proposed RL-ITEM in

Fig. 1. The overall design of the intelligent ITEM system and dual-mode PHEV powertrain configuration.
different temperature conditions and under various driving scenarios. Section VI summarizes the concluding remarks.

II. POWERTRAIN MODEL AND EXPERIMENTAL CALIBRATION

A. Multi-Mode PHEV Longitudinal Dynamic Model

The PHEV in this work adopts a planetary gear (PG)-based DHT with dual clutches, as shown in Figure 1, where the shift drums \(D_1 \) and \(D_2 \) control the system operating in series hybrid (SH), parallel hybrid (PH), and power-split hybrid (PSH) modes. When operating in the PSH mode, the PG functions as an electric continuously variable transmission (ECVT), where generator (GEN) acts as a speed regulator. The longitudinal dynamic model is explained from Eq. (1) to Eq. (3), and the powertrain parameters can be found in Table I.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>SPECIFICATIONS OF THE VEHICLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>Parameters</td>
</tr>
<tr>
<td>Vehicle</td>
<td>Total mass</td>
</tr>
<tr>
<td></td>
<td>Rolling resistance</td>
</tr>
<tr>
<td></td>
<td>Air resistance coefficient</td>
</tr>
<tr>
<td>Engine</td>
<td>Maximum power</td>
</tr>
<tr>
<td></td>
<td>Maximum torque</td>
</tr>
<tr>
<td></td>
<td>Maximum speed</td>
</tr>
<tr>
<td>Generator</td>
<td>Maximum power</td>
</tr>
<tr>
<td></td>
<td>Maximum torque</td>
</tr>
<tr>
<td>Motor</td>
<td>Maximum power</td>
</tr>
<tr>
<td></td>
<td>Maximum torque</td>
</tr>
<tr>
<td>Battery</td>
<td>Battery Capacity</td>
</tr>
<tr>
<td></td>
<td>Nominal Voltage</td>
</tr>
<tr>
<td></td>
<td>Number of cells in series</td>
</tr>
</tbody>
</table>

\[
T_{dem} = r \left(m_v \frac{dv}{dt} + (f + \sin \theta)m_og + \frac{1}{2} \rho C_p A v^2 \right) \tag{1}
\]

\[
\omega_{DM} = \frac{r_y r_f T_{DM}}{r} \tag{2}
\]

\[
\begin{aligned}
T_I = & \frac{r_f T_{DM}}{1 + r_{pg}} \omega_{ICE} = \frac{r_f^2 D_1}{D_2} = [1] \quad \text{if} \quad D_1 = [1] \quad D_2 = [1] \\
T_I = & \frac{r_f T_{DM}}{1 + r_{pg}} \omega_{ICE} = \frac{r_f^2 D_1}{D_2} = [0] \quad \text{if} \quad D_1 = [0] \quad D_2 = [1] \\
\end{aligned} \tag{3}
\]

where \(T_{dem} \) refers to the torque demand, and \(\alpha \) represents acceleration. Air density is denoted by \(\rho \), while gravitational acceleration is represented by \(g \). Additionally, \(m_v \), \(v \) and \(A \) represent the vehicle mass, velocity, and frontal area. Also, \(r_{pg}, r_f, r_e \) and \(r_I \) refer to the gear ratio of the PG, final drive and the transmission sets shown in Fig.1. Moreover, the wheel radius is represented by \(r \), respectively. Rolling resistance is defined as \(f \). The air resistance coefficient and slope gradient are indicated by \(C_g \) and \(\theta \), respectively. \(T_{ICE}, T_{GEN}, T_{DM}, \omega_{ICE}, \omega_{GEN} \) and \(\omega_{DM} \) refer to the torque and angular speed of the engine, generator, and drive motor, respectively.

B. Powertrain Model Calibrated with Experimental Data

The efficiency map of the generator can be observed in Fig. 2 (a). The power of electric machines (EMs) can be calculated according to Eq. (4), where \(T_{EM}, \omega_{EM} \) and \(\eta_{EM} \) represent the torque, angular speed and efficiency of EMs. Besides, the engine fuel consumption model considering thermal effect is corrected on the basis of the steady-state map, which is shown in Fig. 2 (b), and the dynamic model is represented by Eq. (5) and Eq. (6). In addition, \(T_{tar} \) and \(T_{col} \) are the target and actual value of the engine coolant temperature, respectively, also, the \(\alpha \) and \(\beta \) are fitting parameters calibrated with experimental data. And the thermal dynamics of engine coolant \(T_{col} \) is modeled based on Eq. (7). Also, the engine speed is limited to 1200 rpm when the coolant temperature is less than 40°C.

\[
P_{EM} = T_{EM} \omega_{EM} \eta_{EM} (T_{MG}, \omega_{EM})^\mu \tag{4}
\]

\[
\dot{m} = \left(1 + \alpha \left(\frac{T_{tar} - T_{col}}{T_{tar} - 20} \right) \right) P_{ICE} BSFC(T_{ICE}, \omega_{ICE}) \tag{5}
\]

\[
\omega_{ICE} \epsilon \left\{ (0,1200 \, \text{rpm}), \quad T_{col} < 40{}^\circ \text{C} \right\} \tag{6}
\]

\[
T_{col} = \frac{(LHV \, m - P_{ICE}) - (Q_{exh} + Q_{rad} + Q_{cab})}{m_{ICE} C_{ICE}} \tag{7}
\]

where \(\mu \) determines whether the EM operates as a motor or a generator. It is assigned a value of -1 when the EM functions as a motor. Conversely, \(\mu \) is set to 1 when the EM serves as a generator. Also, \(LHV \) refers to the lower heating value of gasoline, and the heat brought by exhaust gases, emitted via air convection and delivered for cabin heating through radiator are denoted as \(Q_{exh}, Q_{rad} \) and \(Q_{cab} \), respectively. Besides, the \(m_{ICE} \) and \(C_{ICE} \) represent the equivalent thermal mass and specific heat capacity of the engine body and cooling system.

The battery's charge-discharge characteristics are modeled with the open circuit voltage and internal resistance, depicted in Fig. 3. By employing Eq. (8), the battery output power can be obtained. Also, the current can be calculated using Eq. (9).

\[
P_{bat} = P_{trac} - P_{ICE} - P_{aux} \tag{8}
\]

\[
I_{bat} = \frac{U_{oc}(SOC) - \sqrt{U_{oc}^2(SOC) - 4R_{bat}P_{bat}}}{2R_{bat}} \tag{9}
\]

where \(P_{trac}, P_{ICE} \) and \(P_{aux} \) represent the power of traction, engine and auxiliary components. This paper mainly focuses
The simulation results of the model after being calibrated using experimental data are presented in Fig. 5, which exhibit a high level of consistency with the benchmark control system. Notably, the actual energy management strategy implemented in the vehicle controller of Dongfeng Motor is designated as the benchmark (BMK) strategy, which is calibrated using finite state machine for mode selection and look-up-table for determining output power of the engine and battery, as shown in Fig. 5 (a). The simulated engine power aligns well with the actual strategy, and the trend of coolant temperature and SOC captured by the simulation accurately characterize the real system, as illustrated in Fig. 5 (b) and Fig. 5 (c).

III. REINFORCEMENT LEARNING-BASED INTEGRATED THERMAL AND ENERGY MANAGEMENT STRATEGY

A. Problem Formulation with Reinforcement Learning

In our research, we harness the reinforcement learning for the optimization of integrated thermal and energy management. The core capability of RL lies in its competency to manage assignments that follow the MDP. This property empowers it to construct a precise correlation between environmental states and the ideal responses. Four elements form the nucleus of the RL iterative process: (a) environment

model, (b) value function \(V^\pi(s_t) \), (c) samples \(e_t = (s_t, a_t, s_{t+1}) \) and (d) policy \(\pi_\theta(s_t) \) parametrized by \(\theta \). Within this context, the control policy, symbolized as \(\pi^*_\theta \), is developed focusing on boosting the overall return in the long run rather than seeking immediate gains. The optimization is to maximize the total discounted reward, as shown below

\[
\pi^*_\theta = \arg\max_{\pi} \mathbb{E}_\pi \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t(s_t, a_t) \right]
\]

where \(r(s_t, a_t) \) denotes the reward associated with the state and action at time step \(t \). Also, \(\gamma \) is defined as the discount factor belongs to \([0,1]\). The reward function \(r_t \) is designed to include the engine fueling rate (ml/s), denoted as \(\dot{m}_f(a_t) \), and the battery SOC penalty \(\zeta(s_t) \), which are both set to negative as shown in Eq. (11). The weight \(\lambda \) balances the engine consumption and battery charge depletion.

\[
r(s_t, a_t) = -\left[\dot{m}_f(a_t) \right] + (1 - \lambda) \zeta(s_t)
\]

where the SOC difference is defined as \(\Delta SOC_t = SOC_t - SOC_{SC} \), where \(SOC_{SC} \) is indicative of the SOC target value.

B. Design of the State and Action Space

Multivariate state space: the state space of ITEM agent \(S_t \) is expected to consider key parameters related to three parts: (a) thermal management variables \(S_t^{TMS} \), (b) energy management variables \(S_t^{EMS} \) and (c) real-time traffic information \(S_t^{ITS} \).

\[
S_t = [S_t^{TMS}, S_t^{EMS}, S_t^{ITS}] \]
Hybrid action space: the action A_t includes continuous engine power $P^\text{ICE}_t \in [0 \text{ kW}, 60 \text{ kW}]$ and the priority of each drive mode with a value belongs to $[0,1]$, namely V^SH_t, V^PH_t, and V^PSH_t. The ultimate drive mode M^DET_t, either series hybrid (SH), parallel hybrid (PH) or PSH, is chosen with the highest value, a principle analogous to DQL action selection mechanism, namely $M^\text{DET}_t = \arg\max(V^\text{SH}_t, V^\text{PH}_t, V^\text{PSH}_t)$.

$$A_t = [P^\text{ICE}_t, M^\text{DET}_t]$$ (14)

The thermal states of the powertrain and cabin are taken into account when optimizing power distribution, thus the state space in this work includes the power demand of thermal management system P^Th_t, engine coolant temperature T^ce_t and ambient temperature T^am_t, which can be found in Eq. (15).

$$S^\text{TMS}_t = [P^\text{Th}_t, T^\text{ce}_t, T^\text{am}_t]$$ (15)

The energy management related variables, shown in Eq. (16), include the vehicle's velocity v, acceleration χ, and the battery SOC denoted as SOC_t.

$$S^\text{EMS}_t = [v, \chi, SOC_t]$$ (16)

Multi-source traffic and terrain data processed by an STDTP framework is incorporated as shown in Eq. (17), where d^rem_t refers to the remaining mileage of the journey, and T^L_t, defined in Eq. (18), represents the traffic light state which is determined based on the signal phasing and timing (SPaT) data $cd^\text{G/R}_t$ and SPaT type S^TL_t. Here, cd^G_t and cd^R_t are defined as the countdown of green and red traffic light, respectively. Besides, T^G_t and T^R_t respectively refer to the total time length of the green or red phase. The definition of the SPaT type is as follows: $S^\text{TL}_t=1$ is defined as when the vehicle does not enter the traffic light waiting area; $S^\text{TL}_t=0$ means when the vehicle appears in the traffic light waiting area while the traffic signal is green; and $S^\text{TL}_t=-1$ means when the vehicle appears in the traffic light waiting area and the traffic signal is red.

$$S^\text{STD}_t = [d^\text{rem}_t, T^\text{L}_t, v, \chi, \psi]$$ (17)

$$T^\text{L}_t = \left\{ \begin{array}{ll} 1, & \text{if } S^\text{TL}_t = 1 \\ \frac{cd^\text{G}_t}{T^\text{G}_t}, & \text{if } S^\text{TL}_t = 0 \\ \frac{T^\text{R} - cd^\text{R}_t}{T^\text{R}}, & \text{if } S^\text{TL}_t = -1 \end{array} \right.$$ (18)

where $v = v(t-T^\text{B}_t; t+T^\text{F}_t)$ and $\psi = \psi(t-T^\text{B}_t; t+T^\text{F}_t)$ represent the vector of velocity and road slope for the past and future horizon, provided by the digital map service from time step $t-T^\text{B}_t$ to $t+T^\text{F}_t$. Here, T^B_t is symbolic of backward indexed time steps, while T^F_t signifies forward indexed time steps, i.e., the length of the future horizon. The future horizon's vehicle velocity at the initial time step and final time step T are both set to zero, implying a stationary state. The recorded historical velocity and road slopes are denoted as $v(t-T^\text{B}_t; t-1)$ and $\psi(t-T^\text{B}_t; t-1)$. Correspondingly, the future horizon's $v(t; t+T^\text{F}_t)$ and $\psi(t; t+T^\text{F}_t)$ can be obtained by transforming the map-forecasted future velocity $v(t; t+n)$ and GIS-based road slopes $\psi(t; t+n)$ from the spatial domain to the desired time span. Here, d_i, t_d, and v_d symbolize the driving distance, time, and velocity at a specific location.

$$v(t-T^\text{B}_t; t+T^\text{F}_t) = [v(t-T^\text{B}_t; t-1), v(t; t+T^\text{F}_t)]$$ (19)

$$\psi(t-T^\text{B}_t; t+T^\text{F}_t) = [\psi(t-T^\text{B}_t; t-1), \psi(t; t+T^\text{F}_t)]$$ (20)

$$\psi(t; t+T^\text{F}_t) = \psi(t; t+d_i) + \frac{2(d_{d+1} - d_i)}{(v_{d+1} - v_d)}$$ (21)

C. Training of Integrated Thermal and Energy Management

In contrast to the notably DQN and DDPG, the state-of-the-art twin delayed deep deterministic policy gradient is favored for its faster convergence speed and stability during the training process. Its improvements can primarily be ascribed to three aspects: adoption of the target policy smoothing technique, which imparts a level of randomness to the policy for the establishment of a non-deterministic policy; delayed policy updates mechanism, where TD3 exhibits slower policy updates than those of the Q-function; and utilization of the clipped DQL mechanism, which allows TD3 to learn dual Q-functions instead of a singular one. Given these features, we leverage TD3 to train the agent. Moreover, the state space of the TD3 agent is expanded to encompass EMS and TMS and traffic/terrain information, as shown in Eq. (13). Following completion of the training, the trained network can be downloaded to powertrain DCU for online implementation.

The structure of the proposed learning algorithm is illustrated in Fig. 6. The Actor network is trained to output engine power P^ICE_t and drive mode M^DET_t by $a_t = \pi^\text{a}(s_t) + N(0, \delta^2)$, where the mean-zero Gaussian noise $N(0, \delta^2)$ is added to deterministic policy for the balance of exploration and exploitation. It commences with the initialization of the replay memory D with a capacity of M before the offline training begins. The transition tuples harvested from the interaction process are preserved in the replay buffer for experience replay, while the agent continues this iterative process logging new transitions in the replay memory. If the replay buffer reaches its limit, the oldest data will be replaced with new ones. In each cycle, a mini-batch of M transition tuples are randomly selected from the replay memory for parameter update. The Evaluate Actor network is responsible for generating optimal commands, while a pair of Evaluate Critic networks calculate the Q values based on state and action inputs. The Q values parallely computed by double Evaluate Critic networks are aimed to mitigate overestimation, with the lower of the two Q values, $Q^1_w(s_t, a_t)$ and $Q^2_w(s_t, a_t)$. They are utilized for the update of the Evaluate Critic networks by minimizing the TD error-based loss functions as shown in Eq. (22) and Eq. (23).

$$J(w_i) = \frac{1}{M} \sum_{t=1}^{M} [y_t - Q^i_w(s_t, a_t)]^2, \quad i = 1, 2$$ (22)

$$y_t = r_t + \gamma \min \{Q^1_w(s_{t+1}, \tilde{a}_{t+1}), Q^2_w(s_{t+1}, \tilde{a}_{t+1})\}$$ (23)
Actor network, modified by a clipped random noise for improved precision in value estimating, defined as shown in Eq. (24), where ± refers to the upper and lower range.

\[\hat{a}_{t+1} = \pi_\theta(s_{t+1}) + \text{clip}[N(0, \delta^2), -c, c] \quad (24) \]

Also, \(Q_{\hat{w}_1}(s_{t}, a_{t}) \) refers to the action-value function representing the expected accumulated reward following policy \(\pi \) at time step \(t \) which is defined by Eq. (25).

\[
Q_{w_1}(s_{t}, a_{t}) = \mathbb{E}_\pi \left[\sum_{k=t}^{\infty} \gamma^{k-t} r_k(s_k, a_k) \right] \quad (25)
\]

Each transition tuple \(e_t = (s_t, a_t, r_t, s_{t+1}) \) feeds \(s_t \) into the Evaluate Actor network to produce action \(a_t = \pi_\theta(s_t) \), which is employed by the pair of Evaluate Critic networks independently to compute the Q-values, represented as \(Q_{w_1}(s_t, \pi_\theta(s_t)) \) and \(Q_{w_2}(s_t, \pi_\theta(s_t)) \), with \(w_1 \) and \(w_2 \) denoting the parameters of Evaluate Critic network I and II, respectively. Moreover, \(Q_{w_1}(s_t, \pi_\theta(s_t)) \) is used for updating the weights of the Evaluate Actor network using Eq. (26). It’s worth noting that the Target networks are updated every \(d \) steps, implying that the pace of weight updates in the Target networks lags behind that of the Evaluate networks.

\[
\nabla J_{\theta} = \mathbb{E}_\pi \left[\sum_{m=1}^{M} \nabla_\theta Q_{\hat{w}_1}(s_m, a_m) | a = \pi_\theta(s_m) \right]
\approx \frac{1}{M} \sum_{m=1}^{M} \nabla_\theta Q_{\hat{w}_1}(s_m, a_m) | a = \pi_\theta(s_m) \nabla_\theta \pi_\theta(s_j) \quad (26)
\]

Concurrently, the parameters of the Evaluate networks are optimized synchronously with the training progress, while the Target networks’ weights take after the corresponding Evaluate networks with soft updates with a ratio of \(\sigma \) as detailed in Eq. (27). The pseudo code for the RL-based offline training for the ITEM agent is provided in Table II. Upon the completion of the targeted episodes \(E \), the optimal policy is chosen and loaded into the online controller.

\[
\{ w_i' \leftarrow \sigma w_i + (1-\sigma) w_i', \; i = 1, 2 \}
\]

\[
\theta' \leftarrow \sigma \theta + (1-\sigma) \theta'
\]

\[
(27)
\]

TABLE II

PROCEDURES OF TRAINING THE DRL-BASED ITEM

<table>
<thead>
<tr>
<th>Offline Training Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Initialize replay memory (D) with capacity (M)</td>
</tr>
<tr>
<td>2. Initialize two critic networks (Q_{w_1}) and actor network (\pi_\theta) with random parameters (w_i (i=1,2)) and (\theta)</td>
</tr>
<tr>
<td>3. Initialize target networks by (\hat{w}_i (i=1,2)) and (\theta' \leftarrow \theta)</td>
</tr>
<tr>
<td>4. For episode (1, 2, ..., E), do</td>
</tr>
<tr>
<td>5. Initialize (S_1 = { s_1^{MS}, s_1^{BB}, s_1^{STDP} })</td>
</tr>
<tr>
<td>6. For step (1, 2, ..., T), do</td>
</tr>
<tr>
<td>7. Select an action with (a_t = \pi_\theta(s_t) + N(0, \delta^2))</td>
</tr>
<tr>
<td>8. Execute (a_t) to get new state (s_{t+1}) reward (r_t), and store the transition tuple (e_t = (s_t, a_t, r_t, s_{t+1}))</td>
</tr>
<tr>
<td>9. Sample mini-batch of (N_s) transitions (e_n = (s_n, a_n, r_n, s_{n+1})), from (D)</td>
</tr>
<tr>
<td>10. Calculate (\hat{a}{t+1} = \pi\theta(s_{t+1}) + \text{clip}[N(0, \delta^2), -c, c])</td>
</tr>
<tr>
<td>11. Update critic (w_i (i=1, 2)) by minimizing the loss:</td>
</tr>
<tr>
<td>12. If ((t \mod d)) then</td>
</tr>
<tr>
<td>13. Update (\theta) by the deterministic policy gradient:</td>
</tr>
<tr>
<td>14. Update target networks:</td>
</tr>
<tr>
<td>15. End If</td>
</tr>
<tr>
<td>16. End For</td>
</tr>
<tr>
<td>17. End for</td>
</tr>
</tbody>
</table>

IV. TESTING AND VALIDATION SETUP

The ITEM system is trained under the WLTC driving cycle during the charge sustaining (CS) stage, where both the initial and target SOC values are set to 34% according to parameter setting of the real vehicle controller in Dongfeng Motor. Since the homologation driving cycle does not have real-time traffic information, the author’s previous study proposed a synthetic construction of traffic data [33] and it is adopted in this paper. In addition, this work mainly focuses on the PHEV performance during charge sustaining stage, thus each episode of the training process is initialized with a fixed SOC starting value of 34%, while the ambient temperature is sampled according to the probability shown in Fig. 7, a fitted data of Beijing average temperature from November to April.

A detailed capture of a 27 km driving during peak hours was carried out in Beijing, China, employing the vehicle diagnostics system OBD-II and dashboard-mounted cameras. Concurrently, real-time traffic information was recorded from
Fig. 7. Winter ambient temperature occurrence probability.

The reconstructed traffic data can be seen in Fig. 9. Besides, the comparative study is carried out against the DP, RL-based EMS and the rule-based benchmark control strategies. The state space of benchmark RL-EMS S_{RL-EMS} also adopts multivariate except for TMS related states, as shown below:

$$S_{RL-EMS} = [S_{EMS}, S_{TTDF}]$$ \hspace{2cm} (28)

Its action space is consistent with that of the ITEM agent. Furthermore, the SOC compensation procedure is performed to obtain the corrected fuel consumption before conducting the comparison of control results with the identical terminal SOC, which aligns with the SAE J1711 standard [38].

V. RESULTS AND DISCUSSIONS

A. Parameter design and Learning Ability

The specific hyperparameters utilized during the training process of the ITEM agent are listed in Table III, and a total of 500 training episodes have been designated. Additionally, the parameters T_b and T_f corresponding to the velocity vector and the slope vector of the state inputs, have been set to 10 seconds and 50 seconds, respectively. The neural network architecture consists of four fully connected layers, with each layer comprising 200, 150, 100, and 50 neurons respectively. These values have been determined based on comprehensive experiments and the latest literatures in this field. Fig. 10 displays the convergence curves of the offline training of the benchmark EMS and the proposed ITEM system. The RL-based EMS shows a faster convergence rate as it does not consider thermal variables in its state space. Despite the ITEM is slower in convergence speed, it achieves a higher return.

![Fig. 8. Platform for real-world driving scenario reconstruction.](image)

![Fig. 9. Trip profile of the reconstructed real driving cycles.](image)

![Fig. 10. Learning curve of episode return in ITEM and EMS.](image)

TABLE III

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Value</th>
<th>Hyperparameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor γ</td>
<td>0.995</td>
<td>Actor learning rate</td>
<td>1e-4</td>
</tr>
<tr>
<td>Buffer capacity M</td>
<td>1e6</td>
<td>Critic learning rate</td>
<td>1e-4</td>
</tr>
<tr>
<td>Batch size N_t</td>
<td>256</td>
<td>Update rate σ_w, σ_b</td>
<td>0.005</td>
</tr>
<tr>
<td>Delayed update d</td>
<td>4</td>
<td>Noise clip range ϵ</td>
<td>0.5</td>
</tr>
</tbody>
</table>

B. Optimality Validation in Homologation Driving Cycle

To understand the training process and performance after convergence, Fig. 11 shows the results from the 450th to the 500th episode. The fuel consumption after correction has been illustrated, since each episode has a different terminal SOC. Further, the ITEM demonstrates better fuel economy than conventional RL-EMS as the temperature decreases. This is because that the increased necessity of substituting electric heating with coolant heating at lower temperatures. The training results of both algorithms were separately fitted, and fuel consumption is recorded with initial coolant temperature ranging from -10°C to 10°C, as shown in Table IV.
To analyze the performance under homologation cycles, the IETM is compared against the RL-EMS and BMK strategies. The results of SOC, cumulative fuel consumption, and coolant temperature are illustrated in the plots of Fig. 12. In this test, the ambient temperature is set as 10°C and the initial coolant temperature is set as 23°C. Fig. 12 (a) presents the comparison of SOC dynamics, revealing that the IETM strategy achieves a shallower depth of discharge compared to RL-EMS and BMK. This is attributed to the fact that IETM learns to expedite the engine warm-up process. In terms of the discharge process and the shape of the SOC trajectory, IETM exhibits results closest to those of DP, outperforming the other two control systems and leading to improved fuel economy. In comparison to the RL-EMS and BMK control strategies, IETM achieves fuel savings of 3.4% and 4% respectively, while maintaining the highest average water temperature. The comparison of different control systems can be found in Table V.

![Graph](image1)

Fig. 11. Training results in terms of fuel economy for IETM and EMS during the 450th to the 500th episodes.

Table IV

<table>
<thead>
<tr>
<th>Ambient Temp (°C)</th>
<th>EMS FC (L/100km)</th>
<th>IETM FC (L/100km)</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5.47</td>
<td>5.32</td>
<td>2.82</td>
</tr>
<tr>
<td>5</td>
<td>5.78</td>
<td>5.55</td>
<td>4.14</td>
</tr>
<tr>
<td>0</td>
<td>6.14</td>
<td>5.79</td>
<td>6.04</td>
</tr>
<tr>
<td>-5</td>
<td>6.50</td>
<td>6.05</td>
<td>7.43</td>
</tr>
<tr>
<td>-10</td>
<td>6.88</td>
<td>6.33</td>
<td>8.69</td>
</tr>
</tbody>
</table>

![Graph](image2)

Fig. 12. Algorithm comparisons in 10°C with SOC profiles (a) and cumulative fuel usage and coolant temperature (b).

![Graph](image3)

Fig. 13. The feature importance of the state variables of the RL-based IETM and EMS.

C. Online HIL Experiment in Real-World Driving Condition

A hardware-in-the-loop (HIL) testing system is utilized to validate the real-time control performance of the IETM system under the CS stage. In the HIL test, the ambient temperature and the initial coolant temperature are both set as -10°C, and a higher initial SOC state of 45% is selected. The testing platform, depicted in Fig. 14, comprises an upper computer that manages and configures input and output (I/O) interfaces, communication interfaces, and test cases using NI VeriStand software. The I/O signals from the rapid control prototype (RCP) are connected to the HIL terminals, enabling real-time operation of the automotive powertrain within the real-time computer (RTPC).

The detailed control results are compared, as depicted in Figure 15. The engine output power curve serves as a critical...
indicator for evaluating the performance of the control systems. It is evident that both the ITEM and BMK algorithms initiate engine preheating prior to 1000 s. However, the ITEM algorithm promptly commences engine operation once the engine reaches a temperature of 40°C, thereby raising the coolant temperature. Although BMK achieves a higher coolant temperature than RL-EMS before 2000 s through rapid preheating, it struggles to sustain the coolant temperature above 75°C for an extended duration. This limitation hampers its capability to substitute cabin electric heating.

Conversely, BMK refrains from engine operation mode after completing the preheating process due to the logic of rule-based energy management strategy, since the battery SOC has not reached its threshold for engine operation. The RL-EMS, lacking thermal management-related information in terms of heating load and coolant temperature in its state space, commences engine preheating around 1600 s. However, even after completing preheating, RL-EMS fails to raise the coolant temperature adequately. Hence, despite RL-EMS showing commendable energy management performance, its overall energy-saving effectiveness is compromised.

As a result, the fuel economy of RL-EMS exceeds that of BMK in the later stages, while ITEM demonstrates the best performance. To provide a more comprehensive depiction of the powertrain control results, a zoomed-in view of the output power of engine, coolant temperature, power of the drive motor, and battery SOC is presented during the driving cycle from 1500 s to 3500 s, as illustrated in Fig. 16. The ITEM efficiently accomplishes engine preheating, initiating engine operation and promptly elevating the coolant temperature to a level required for heating, while maintaining it consistently.
TABLE VI

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>ITEM</th>
<th>EMS</th>
<th>BMK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final SOC (%)</td>
<td>33.1</td>
<td>33.5</td>
<td>32.9</td>
</tr>
<tr>
<td>Avg coolant temp (°C)</td>
<td>63.1</td>
<td>51.0</td>
<td>61.4</td>
</tr>
<tr>
<td>Electric heating energy (kWh)</td>
<td>2.94</td>
<td>3.24</td>
<td>3.60</td>
</tr>
<tr>
<td>Corrected FC (L/100km)</td>
<td>4.11</td>
<td>4.40</td>
<td>4.62</td>
</tr>
<tr>
<td>Fuel savings (%)</td>
<td>12.4</td>
<td>4.8</td>
<td>-</td>
</tr>
</tbody>
</table>

VI. CONCLUSIONS

This paper proposes the trip-oriented thermal and energy management for a multi-mode connected PHEV. The performance of the proposed ITEM has been validated by comprehensive experiments under homologation and real-world drive cycles with different SOC initial conditions, and the findings of the study are summarized as follows:

1) A multi-mode PHEV model with high-fidelity thermal and energy consumption characteristics is calibrated using experimental data. Based on this, a model-free multistate RL algorithm with a hybrid action space is designed for the trip-oriented ITEM system, featuring with engine smart warm-up and engine-assisted heating.

2) The proposed ITEM controller incorporates techniques including a STDTP framework, bounded double Q-values, and delayed policy updates. Offline tests confirm the ITEM achieving fuel economy enhancement from 2.2% to 9.6% when ambient temperature drops from 15°C to -15°C, compared with the state-of-the-art RL-based EMS, and realizes on average 93.7% of the performance of DP.

3) The adaptability of the ITEM system is facilitated by integrating coolant temperature, ambient temperature as well as multisource traffic and terrain data processed by STDTP framework into the state space. The HIL experiments conducted in -10°C demonstrate the real-time implementation in real-world driving scenarios, which reduces fuel cost by 7.1% and 12.4% compared to RL-EMS and rule-based control strategies, respectively.

REFERENCES

Driving Style Recognition Into MPC for Energy Management of Plug Electric Vehicles

