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INVERSE PROBLEMS FOR SUBDIFFUSION FROM OBSERVATION
AT AN UNKNOWN TERMINAL TIME"

BANGTI JINT, YAVAR KIAN? AND ZHI ZHOUS

Abstract. Inverse problems of recovering space-dependent parameters, e.g., initial condition,
space-dependent source, or potential coefficient in a subdiffusion model from the terminal observation
have been extensively studied in recent years. However, all existing studies have assumed that
the terminal time at which one takes the observation is exactly known. In this work, we present
uniqueness and stability results for three canonical inverse problems, e.g., backward problem, inverse
source, and inverse potential problems from the terminal observation at an unknown time. The
subdiffusive nature of the problem indicates that one can simultaneously determine the terminal
time and space-dependent parameter. The analysis is based on explicit solution representations,
asymptotic behavior of the Mittag—Leffler function, and mild regularity conditions on the problem
data. Further, we present several one- and two-dimensional numerical experiments to illustrate the
feasibility of the approach.
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1. Introduction. Let Q C R? (d=1,2,3) be an open bounded smooth domain
with a boundary 0f). Consider the following initial-boundary value problem with
€ (0,1) for the subdiffusion model:

Ofu—Au+qu=f in Q x (0,00),
(1.1) u=0 on 90 x (0,00),
u(0) =wup in £,

where T > 0 is a fixed final time, f € L°(0,T;L?(Q)) and ug € L?(Q) are given
source term and initial data, respectively, the nonnegative function ¢ € L*°(Q) is
a spatially dependent potential, and A denotes the Laplace operator in space. The
notation 0fu(t) denotes the Djrbashian—Caputo fractional derivative in time ¢ of order
a € (0,1) (see [10, p. 70] or [4, section 2.3.2]),

(1.2) Ou(t) = ﬁ /0/(1? —s)7 %/ (s)ds,
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where T'(2) is the Gamma function defined by T'(z) = [~ s*~'e~*ds, for R(z) > 0.
Note that the fractional derivative 0w recovers the first-order derivative u/(t) as
a — 17 if u is sufficiently smooth. Thus the model (1.1) is a fractional analogue of
the classical parabolic equation.

The model (1.1) arises naturally in the study of anomalously slow diffusion pro-
cesses, which encompasses a broad range of important applications in engineering,
physics, and biology. The list of successful applications includes thermal diffusion
in fractal media [21], dispersion in heterogeneous aquifer [1], ion dispersion in col-
umn experiments [2], and protein transport in membranes [11], to name just a few.
Thus its mathematical theory has received immense attention in recent years; see the
monographs [12, 4] for detailed discussions on the solution theory. Related inverse
problems have also been extensively studied [7, 17, 15]. The surveys [17, 15] cover
many inverse source problems and coefficient identification problems, respectively.

The observation g(z) = u(z,T), x € Q, at a terminal time T is a popular choice
for the measurement data in practice. There is extensive literature on inverse prob-
lems using terminal data, e.g., backward sudiffusion [22, 28], inverse source problem
[7, 17, 3], and inverse potential problem [27, 9, 8, 26], where the references are rather
incomplete but we refer to the reviews [7, 17, 15] for further references. Notably,
several uniqueness and stability results have been proved. For example, backward
subdiffusion is only mildly ill-posed, and enjoys (conditional) Lipschitz stability [22,
Theorem 4.1]; cf. (2.9) below. In all of these existing studies, the terminal time 7" at
which one collects the measurement has always been assumed to be fully known. None-
theless, in practice, the terminal time T" might be known only imprecisely. Therefore,
it is natural to ask whether one can still recover some information about the concerned
parameter(s). The missing knowledge of T introduces additional technical challenges
since the associated forward map is not fully known then. In this work, we address this
question in the affirmative both theoretically and numerically, and study the inverse
problem of identifying one of the following three parameters: (i) initial condition wg,
(ii) space-dependent source component 1, and (iii) space-dependent potential ¢, from
the observation «(7T) at an unknown terminal time T'.

For each inverse problem, we shall establish the unique recovery of the space-
dependent parameter and the terminal time 7" simultaneously from the terminal ob-
servation, as well as conditional stability estimates, under suitable a priori regularity
assumptions on the initial data ug and the source f; see Theorems 2.3, 3.3, and 4.6
for the precise statements. The analysis relies heavily on explicit solution represen-
tations via Mittag—Leffler functions (see, e.g., [22], [4, section 6.2]). The essence of
the argument is that the regularity difference leads to distinct decay behavior of the
Fourier coefficients of ug and f. This combined with distinct polynomial decay be-
havior of Mittag—Leffler function E, 1(z) (on the negative real axis) allows unique
determining of the terminal time 7. Note that the polynomial decay holds only for
E,1(z) with a order o € (0,1), and does not hold in the integer case (i.e., a = 1).
Thus, the unique determination of 7" does not hold for normal diffusion. Once the
terminal time 7T is determined, the unique determination of the space-dependent pa-
rameter follows. The proof of the stability results relies on smoothing properties of
the solution operators. In addition, we present several numerical experiments to illus-
trate the feasibility of numerical recovery. The numerical reconstructions are obtained
using the Levenberg—Marquadt method [13, 19]. Numerically, by choosing the hyper-
parameters in the method properly, both space-dependent parameter and terminal
time can be accurately recovered. To the best of our knowledge, this work presents
the first uniqueness and stability results for inverse problems from terminal data at
an unknown time.
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The rest of this paper is organized as follows. In section 2, we present uniqueness
and stability results for the backward problem, which are then extended to the inverse
source problem in section 3. In section 4, we discuss the inverse potential problem,
which requires several new technical estimates on the solution regularity and asymp-
totic decay. Finally, some numerical results for one- and two-dimensional problems
are given in section 5. Throughout, we denote by u = (v) and @ = u(?) the solutions
to problem (1.1) with the space dependent parameter v and 0, respectively. We often
write a function f(z,t) : Q x (0,7) — R as f(¢) a vector-valued function on (0,7).
The notation ¢ denotes a generic constant which may differ at each occurrence, but
it is always independent of the concerned parameter and terminal time 7.

2. Backward problem. First, we investigate the backward problem (BP):
recover the initial data uy = «(0) from the solution profile u(T") to problem (1.1)
at an unknown terminal time 7.

2.1. Solution representation. First, we recall the solution representation for
problem (1.1), which plays a key role in the analysis below. For any s > 0, we denote
by H*(Q) C L?(Q2) the Hilbert space induced by the norm:

(21) ol 70 = (ZA (0,05) ) 7

with {A;}32; and {p;}32, being, respectively, the eigenvalues (with multiplicity
counted) and eigenfunctions of the operator A = —A + ¢I on the domain Q with a
zero Dirichlet boundary condition. Then {¢;}22, can be taken to form an orthonor-
mal basis in L?(Q2). Further, [0l gro( is the norm in L?(Q), vl z71(q) 1s the norm
in H} (), and [Vl g2 () = [[Av[|z2(0) is equivalent to the norm in H () N HE ()
[25, section 3.1]. For s > 0, H5(Q) denotes the dual space of H*(€2). Throughout,
(,-) denotes both duality pairing between H—*(Q) and H*(Q2) and the L?(Q) inner
product.

Now we represent the solution u to problem (1.1) using the eigenpairs
{(Aj,05) 152, following [22] and [4, section 6.2]. Specifically, we define two solution
operators F'(t) and E(t) by
(2.2)

(D= Ean(—\t")(v,0;)¢; and  E(t)v=> t*"'Eq o(=At")(v,0;)0;,
: et

where E, g(z) is the Mittag-Leffler function defined by (see [10, pp. 40-45], [4, section
3.1])

ok

Ea, I
#(2 2}Pka+ﬁ) veel

Then the solution u of problem (1.1) can be written as

(2.3) u(t) = F(t)uo + /0 E(t—s)f(s)ds.

The function E, g(z) generalizes the exponential function e*. The following decay
estimates of E, g(z) are crucial in the analysis below; see e.g., [10, equation (1.8.28),
p. 43] and [4, Theorem 3.2] for the first estimate, and [24, Theorem 4] or [4, Theorem
3.6] for the second estimate.
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LEMMA 2.1. Let a € (0,2), B € R, and ¢ € (%, min(m,ar)), and N € N. Then
for o <|argz| <7 with |z| = co:

N 1
Zr ﬁ k) +O(W>'
k=1

For 0 < ag < a< ay <1, there exist constants cy, ¢ > 0 depending only on ag and
oy such that

co(l—2) ' <E,i(x)<ei(1—2)"' Va<o.
2.2. Uniqueness and stability. Now we study uniqueness and stability for BP,
when the source f is time-independent, i.e., f(z,t) = f(z). The key idea in proving
uniqueness is to distinguish decay rates of Fourier coefficients of the initial data wug

(with respect to the eigenfunctions {;}52;) and the source f. We use the set S,
v € [—1,00), defined by

(2.4) SW:{UGH‘Z(Q): nler;OAZ|(v,¢n)|:O}.

Clearly, for any v >0, H(Q) C Sy. Ifve H=2(Q)\S,, the sequence {\}/|(v, )|},
contains a subsequence that is bounded away from zero, i.e., there exists ¢, > 0 and
a sequence {n}g2, such that limy_,o ny =00 and A}, |(v,¢n,)| > ¢y, for all £€N.

THEOREM 2.2. Let f € H=2(Q)\S, for some v > 0. If BP has two solutions
(T,uo) and (T',7p) in the set Ry x S, y1 with the data u(T) and a(T), respectively,
then T=T and ug=ug.

Proof. Using the solution representation (2.3) and noting the identity
4
dt

since f is time-independent, the solution u to problem (1.1) can be written as

(2.5) Eo1(=Mt®) = =Mt Eg a(=Ant®),

=3 [Baa (=t o) + A ) ),
n=1 "

Let K = {k € N: (f,¢,) # 0}, which under the condition f € H~2()\ 'S, satisfies
K| = co. For any n € K, taking inner product (or duality pairing) with i ";f:) on

both sides of the identity gives

An(u(t), on) g (w0, ¥n) _ Yy g
W_)\nEa’l( Ant®) Foon) +1—Eq1(—Ant?).

Then setting ¢t =T and rearranging the terms lead to

(2.6) A (1 - A"(“(TW) = —)\nEw(—)\nTc‘)M A Ba 1 (—AnT).

(f,en) (fsn)
By assumption, f € H*Q(Q) \S, and up € S;+1, and hence we deduce
. ATL(an 9071) . AP‘/—"_l(uOv QOTL)
2.7 1 —_— = S~ =
@7 netihse (frpn)  melntoe X(fon)

Then, by letting n — oo and ¢t =T, the relation (2.6) implies

. An(U(T)7¢n) _ . ) 1
(2.8) nEKl,HrrLl—mo /\n (1 B (f, Son) o ne]Kl,H;(Llﬁoo )\nEa,l (_)\nT ) o F(l — Oé)TO‘ '
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The last identity follows from the fact that A, (¢) — 0o and the asymptotics of E, 1(2)
in Lemma 2.1. Note that W is strictly decreasing in the time 7. Hence, T can
be uniquely determined from the data (7). Finally, the unique determination of wg
follows from [22, Theorem 4.1]. O

Remark 2.1. The validity of Theorem 2.2 relies crucially on the regularity differ-
ence between the initial data ug and source f, so that the limit (2.7) holds.

Remark 2.2. Theorem 2.2 shows the unique determination of the terminal time
T in problem (1.1) from the observation u(7"). This interesting phenomenon is due to
the distinct asymptotic behavior of Mittag—Leffler functions and different smoothness
of the initial data uy and source f. It sharply contrasts with the backward problem
of normal diffusion (o= 1): analogous to (2.8),

lm A (1— 2@ Do) g g,
nek, n—oo (f, (pn) nek, n—oo

and thus it is impossible to determine both the terminal time 7" and initial data wug
from the data u(T). This shows one distinct feature of anomalously slow diffusion
processes, when compared with standard diffusion.

Next, we establish a stability estimate for BP with an approximately given T
When the terminal time T is exactly given, it recovers the following well-known esti-
mate [22, Theorem 4.1] (or [4, Theorem 6.28]):

(2.9) luo — ol L2(0) < cllu(T) — W(T) | 20

THEOREM 2.3. Let ug and ig be the solutions of BP with observations u(T) and
a(T ) with T < T, respectively. Then the following conditional stability estimate holds:

Jnto ol (e < e(14+7) (LA @T)~a( ) e+l T~ T o = A fll ().
Proof. By the solution representation (2.3) and the identity (2.5), we have
w(T)=F(T)ug+ A" (I - F(T))f and @(T)=F(T)io+A " (I—F(T))f.

Subtracting these two identities leads to

u(T) = a(T) = (F(T)u ( ~)
= F(T)(u )+

Consequently, we arrive at

wo — g = F(T) ™ (u(T) = a(T)) — F(T) " (F(T) = F(T)) (uo — A" ).

Next, we bound the two terms separately. For any v € L?(Q), by Lemma 2.1, we
derive

IAT F(T) ol F2 ) = Z/\ ?Ea1(=2aT%) (v, 00)"

n=1

. 5

14X\, T%\2 2

Scz<+) (v,0n)% < c(L+T%) [0][320)-
n=1 n
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Next, we bound F(T)"Y(F(T) — F(T)) = A~'F(T) lfTT AF'(s)ds. Note that for
any s € (T,T), there holds [4, Theorem 6.4]
[AF (s)ollL20) < es™' vl L2y < T o]l L2 (@)
This estimate implies
(2.10) JA(F(T) — F(P))oll gy < €T — T|vll 2.
Consequently, we obtain
|F(F) (F(T) — PT))olla) < A~ @I AFT) - FP)ol 20
<c(14 )T =T|T7*|v] 2 (-
Then the desired result follows immediately from the preceding estimates. 0

The next result bounds the terminal time 7" in terms of data perturbation.

COROLLARY 2.4. Let f € H2(Q)\S, for some v > 0. Let (T',up), (T, @) €
R4 X Sy41 be the solutions of BP with observations u(T') and u(T'), respectively. Then
there holds
1T — T| < emin(A, A) "= 1A — Al
with the quantities A and 7\, respectively, given by

A— tim A<A<<T>>) wd A—  lim A(ww)

nek, n—oo (f, (pn) nekK, n—oo (f, gpn)

In particular, for A < A, there holds

luo — dioll ey < (1 + A=) (AT — &) 20 + clA — Allluo — A~ z2(e))-
Proof. Tt follows from the relation (2.8) that

T —T|=|A"aT(1—a) » —A aT(1—a) »|<T(1—a) = min(A,A)"="![A — Al

The assertion follows from Theorem 2.3 and the identities 7= A=« I'(1 — )= and

T=A"5T(1—a)=. 0

3. Inverse source problem. Now we extend the argument in section 2 to an
inverse source problem of recovering the space dependent component from the data
u(T). Following the standard setup for inverse source problems [17], we assume that
the source f(x,t) is separable and satisfies

(3.1) flx,t) = g(t)(z), with ge L=(0,T), g>c, >0, and ¢» € H ().

Then we consider the following inverse source problem (ISP): determine the spatially
dependent source component ¢ (z) from the solution profile «(7T') at a later but un-
known time T

First, we give an intermediate result.

LeMMA 3.1. Let G(T) := fOT E(s)g(T — s)ds. Then under condition (3.1), G is
invertible and

AT G(T) 2@y S ¢t (1 = Baa (=MT)) vl L2 (g)-

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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Proof. Note that the function E, o(—t) > 0 for all 0 <t < oo (since it is completely
monotone and analytic) (see, e.g., [23], [20], or [4, Corollary 3.3]). This, the condition
g>cg >0, and the identity (2.5) imply

T T
/saflEa,a(f)\nso‘)g(Tfs) ds > cg/ saflEa,a(f)\nso‘)ds = cg)\;l(leajl(f/\nTO‘)).
0 0

This implies the invertibility of the operator G(T):

o0

G(T _l’l}: (U7(pn) ©On.
) n; Jo % Ea a(—Ans)g(T — ) ds

Consequently, for any v € L?(Q), we have

o

2
ATG(T) M0l L) = s
H L2 Z |:/\n fOT SaflEa,oz(_)\nsa)g(T_S) ds}

n=1

(U’ n) 2_ (Ua n) 2
1 cg)\nfoTs‘llEja()\nso‘)ds} _T; {Cg(lea,i*)‘nTa))}

n=

[e%e) (U7Q0n) 2 9 S )
< = — _ )
<2 [(1—Ea,1(—A1Ta))cJ ¢y "(1 = Ea, 1 (=0T%) [0l 72 (),

n=1

where in the last inequality we have used the monotonicity of E,1(—t) € (0,1] for
t>0. |

The next result gives the unique determination of the source ¥ and terminal
time 7.

THEOREM 3.2. Let ug € L*(Q)\S, for some v > 0. If ISP has two solutions

(T,%) and~(T, ) in the set Ry xS, from the observations u(T) and a(T), respectively,
then T=T and 1 =1).

Proof. Using the representation (2.3) and the separability assumption (3.1), we
have

(oo}

(32) u(0) = 3 [Bus At o) + [ 57 Ban(Aas gt 9)ds00)]

n=0

Define K = {k € N: (ug,p,) # 0}. For any n € K, taking inner product (or duality

pairing) with (i‘:f’”) on both sides of the identity (3.2) and setting t =T, we have

An(u(T), ¢n)
(u07 L)On)

A (Y, 0n)

T
=M\ Eqy 1 (=T Jr/ P LEL o(=MAs)g(T — s)ds .
A=A+ (A )g(T = )5 S

By assumption, g € L*°(0,T) and E, o(—t) > 0 for all co >t > 0 (since it is completely
monotone and analytic) [4, Corollary 3.3], we have
T
< [ 5 a2 dslglle o)
0

= Aﬁl[l - Ea,l(_)‘nTa)} H9||L°O(O,T)
<X Mgl e 0.1y

T
/ S By a(=Aus)g(T — s)ds
0

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/29/23 to 193.60.240.99 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

INVERSE PROBLEMS FOR SUBDIFFUSION 1503

where we have used the identity (2.5) and the inequality E, 1(—t) € [0,1] for all ¢ > 0.
Since ¢ €S, and ug € L*(Q)\S,, we have

T
. _ An (), n)
1 LB (= Ans®)g(T — s) ds 272
nGK,HrrLlﬁoo /O 5 a,oz( nd )g( S) y (UO, (pn)
. (1, n)
< =
_nEKI,HrILl—>00||gHL ©, T)‘ ‘ 0.
Consequently, we have
. An(u(T), o) . 1
. 1 — = ] MEa 1 (AT = —————.
(3.3) nEK,HrrLlﬁoo (ug, on) nE]K,HrILl%oo A ) I'l—a)T>

Note that the function W is strictly decreasing in T'. Hence, the terminal time

T is uniquely determined by u(T). Finally, the uniqueness of w follovvs from the
representation v = G(T) " 'u(T) — G(T) "1 F(T)uo (with G(T fo —s)ds),
and Lemma 3.1. ]

Remark 3.1. Note that W is also decreasing with respect to a if T is
sufficiently large [3, Lemma 4]. So the data u(T") can uniquely determine the order
a if T is a priori known. See some related arguments in [3, 16] for the inverse source
problem with an unknown order a.

The next theorem gives a stability result for recovering the source .

THEOREM 3.3. Fiz Tp > 0. Let ¢ and @[NJ be the solutions of ISP with the data
uw(T) and @(T) with To <T < T, respectively. Then for g € C*[0,T], there holds

[l — 7/;||L2(Q) <c(|A(u(T) - ﬂ(T))HL?(Q) + T — T|T717a||u0”L2(Q)
HT =TI+ T+ )¢ 2 ()

Proof. Tt follows from the solution representation (2.3) that
T ~ ~ T
u(T) = F(T)uo+/0 E(s)g(T—s)dsv and a(T)= F(T)uo+/0 E(s)g(T—s)ds.
Then subtracting these two identities leads to
~ ~ T ~
u(T) = alT) = (P(T) = F(P))uo+ [ BT = 5)ds (0 =)
T ~ _ T ~ ~
+ [ B = 5) = o(F = ))asi — [ B(o)g(T 5)dsi.
Therefore, with G(T) := fOT E(s)g(T — s)ds, we arrive at
Y= =G(T)" (u(T) —&(T)) + G(T)" (F(T) = F(T))uo
/ B()lg(T ~ ) — g(T — )] dsi

4
_1/T E(s)g(T — s)dsih = le.
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Next, we bound the four terms I; separately. First, by Lemma 3.1,
1Ll 2 < gt (1= Eq1(=MT5)) M AW(T) — ﬂ(T))||L2(Q)~
Second, by the estimate (2.10), we can bound the term Iy by
2l L2 () < el A(F(T) = F(T))uoll 20y < e T = TIT~||uo|| 20

Next, we bound the third term I3. It follows directly from integration by parts and
the identities F'(¢t) = —AE(t) and F(0) =1 [4, Lemmas 6.2 and 6.3] that

T T
[ B(0)0(T — s = 47 (o)1 = g(OF(@) = A7 [ F(s)g/(T = 5) s

i E(s)g(:f—s)ds:A—l(g(f)f—g(T—T)F(T))—A—l/o F(s)g'(T — s)ds.

Since g € C?[0,T], we have

T o~ -~
A / E(s)(g(T — 5) — g(T — 5)) ds)
0

I3l L2() < ¢
12(@)

T
< CQQ(T) —9(D)| +g(T —T) — g(0)| + | lg'(T =) = g'(T —s)| d8>||1/3||m(m
<c|T =T|(1+T)gllcapo, 191l 2(62)-

Finally, for the term 14, the estimate ||AE(s)|| <cs™! [4, Theorem 6.4] yields

T
Wil <] [ ABGT —9asi] ,

T
< cllgllepon /T 574 dslldlla () < T = TIT gl egomy 190 220

The preceding four estimates together complete the proof of the theorem. 0

The next result bounds the terminal time T for perturbed data. The proof is
identical with that for Corollary 2.4, and hence it is omitted.

COROLLARY 3.4. Fiz Ty > 0. Let ug € L*(Q)\S, for some v > 0, and
(T,9), (T',4h) € Ry xSy with T,T > Ty be the solutions of ISP with observations
uw(T) and a(T), respectively. Then the following estimate holds:

IT —T| <T(1—a) = min(A,A)"= 1A — Al
with the scalars A and A, respectively, given by

A =
nek, n—oo (UQ, (pn) nek, n—oo (UO, gon)

In particular, for A < A, there holds || — 1/~)||L2(Q) < c(||A(u(T) - ﬂ(T))Hm(Q) +]A -
AN~ 11+ A% + A %) [Pl 2
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4. Inverse potential problem. In this section, we discuss the identification of
the potential ¢ in the model (1.1) from the observation «(T"), at an unknown terminal
time 7. Specifically, consider the domain 2 = (0, 1) and a nonzero Dirichlet boundary
condition:

Ofu— Opzu+qu=f inQx (0,7,
(4.1) u(0,t) = ag,u(l,t)=a; on (0,7,
u(0) =wug in €,

where the functions f >0 and ug > 0 are given spatially dependent source and initial
data, respectively, and ag and a; are positive constants. Throughout, the potential
q belongs to the following admissible set A = {q € L>®(2): 0 < ¢ < ¢g}. The inverse
potential problem (IPP) is to recover the potential ¢ € A from the observation u(7T),
for an unknown time 7.

Similar to the discussions in section 2, let A, be the realization of the elliptic
operator —dy; + q(z)I in L?(Q), with its domain Dom(A,) given by Dom(4,) =
{ve L*(Q) : —0ppv + qu € L2(2) and v(0) =v(1) =0indQ}. Let {(M\n(q), n(q))},
be the eigenpairs of Ay, which is not known for an unknown ¢. Note that for any
q € A, the set {¢n(¢)}22, can be chosen to form a complete (orthonormal) basis of
the space L?(Q2). Note that for any q € A, the eigenvalues \,(¢q) and eigenfunctions
©n(q) satisfy the following asymptotics [14, section 2, Chapter 1]:

(4.2) A(q)=n%72+0(1) and o, (z;q) = V2sin(nzwz) + O(n™1).
Further, for any v € H}(Q) N H?(Q) and q € A, the following two-sided inequality
holds:
(4.3) cllvllaz) < 1Aqvllrz) + Ivllz20) < collvlla2(@),
with constants ¢; and ¢y independent of q. Next, we define a function ¢, € H?(Q)
satisfying
— 02z +qp=0 1in Q=(0,1),
$q(0) = a0, (1) = as.
It is easy to see that ¢g(x) =ag(1l —x)+ ajz. Then the solution u of problem (4.1) is
given by
(4.4) ut) = Fyltyuo + (I = Fy(0)ég + (I Fy(H) A7 f,
where E, and F; denote the solution operators (cf. (2.2)) for the elliptic operator Ay,
and the subscript ¢ explicitly indicates the dependence on the potential q.
Next, we show the unique recovery of the terminal time 7. Like before, the key

is to distinguish the decay rates of Fourier coefficients of ug and f with respect to the
eigenfunctions {¢;(q)}52;.

THEOREM 4.1. Let ug € L2Q\H* (Q), with s € (0,1), and f € H*(Q) and
g€ ANH(Q) with s € (s’ + %,1). Then in IPP, the terminal time T is uniquely
determined by the data u(T).

Proof. Let tig = uo — ¢o. Since ug € L2(Q)\H* (Q), by the asymptotics (4.2), we
obtain

(4.5) Z An(9)® (g, sin(nmz))? = cc.
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Then we claim that for § = %—i— %, + § < 35, with a small € € (0,25 — 25" — 1),
there holds @y ¢ S;. Indeed, assuming the contrary, i.e., g € S;, the definition
of S; in (2.4) implies lim, 00 An(q)%|(Go,sin(nrz))] = 0, and thus the sequence
{\n(@)%|(tg,sin(nmz))|}5; is uniformly bounded. This and the asymptotics (4.2)
lead to

Z)\ )*' (o, sin(nmx) Z 25 (g, sin(nw)) 2 An (q)* —2°

<CZAH 572s<cznle

This contradicts the identity (4.5), and hence the desired claim follows. The claim
to ¢ Sz and the asymptotics (4.2) imply that there exists a constant ¢, > 0, for any
N > 0, we can find n > N such that n?3|(ig,sin(nmz))| > c.. Let K= {n € N:
n25|(u0,sm(mmc))| > ¢}. Then we have |K| = oco. By the asymptotics (4.2), w
may assume that n%°|(to, vn(q))| > V2¢c./2 for n € K, and hence (to,¢n(q)) # O
Meanwhile, it follows directly from (2.3) that the solution u(t) satisfies

(4.6)

UE)=00= | B =6 o=, () + (1= B (Ao ) LEAD | ),
n=0 n

By taking inner product with ¢,(q), n € K, on both sides of the identity (4.6), we
obtain

An(@)(u(t) = ¢o,on(q)) 3 o 3 3 any (fr0n(9))
(ﬂo,@n(Q)) - /\Tb(q)EO&,l( )‘n(q)t ) + (1 Eoz71( /\’ﬂ(q)t )) (ao’wn( ))
(4_7) + (1 . Ea,l(_)\n(Q)ta>) /\n(Q)(¢ (bO,SOn ZI

(U‘Oa @n

We analyze the three terms I;, i = 1,2,3, separately. Since E, 1(—=Ant%) € (0,1] for
t >0, the regularity condition f € H*() implies lim,_, o n°|(f, ¥n(¢))| = 0. This and
the condition s > 25 yield 0 < n%|(f,¢n(q))| < n°|(f,¢n(q))| — 0, as n — co. Hence

SUNSVAL 2UCOP ()
n€K, n—o0o T nekK,n—oo nzs(uo,gon( ))

By the definitions of the eigenpairs (A, (q), ¢n(q)) and ¢, and ¢¢ and integration by
parts, we have

A (@) (g — G0, 0n(q)) = (dg — $0s —Ozaon (@) + a2n(q)) = —(q00, n(q))-

Moreover, since g € H*(Q) with some s € (3,1) and ¢ € C*>(€2), we have g¢ € H*(Q).
Hence,

— =0.
nek, n—oo nek, n—oo (120, ©n (q)) nek,n—oo ’I’L25 (’(7;0, @n (q))

Now letting n — oo and setting ¢ = T, the relation (4.7) and the asymptotics of
E, 1(z) imply

(4.9)
M@ = dopa(@) N
ek Rroo (tio, on(a)) = et B, A @ Ean (GO = 5= e
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since A,(q) — oo; cf. (4.2). Note that the function W is decreasing in T
and independent of ¢q. Last, we show that the left-hand side of (4.9) can actually be
computed independently of ¢ € H*(Q) N A, using the asymptotics (4.2). Indeed, since
up € LX(Q\H* (Q), f € H*(Q), and g € H5(Q) NA with s € (s + £,1) and s’ € (0, 3),
we have A(q)u(T) € L2(Q)\H* (Q) [22]. This and the assumption ¢ € H*(Q) imply
qu(T) € H*(Q), and hence d,,u(T) € L*(Q)\H* (Q). Meanwhile, integration by parts
twice yields

An(@)(u(T) = ¢0,0n(q)) = —(Feau(T), pn(q)) + (¢(u(T) — d0), 0n(q))-

Noting the fact that ¢(u(T) — ¢o) € H*(Q) and then repeating the argument for (4.8)
yield

lim =0.
n€k, n—oo (%0, ¢n(q))
Consequently, we derive
(4.10) fim 2@ —d0¢n(@) gy Z(0eulT) en(a))
n€K7 n—0o0 (UO, SDTL (Q)) HGK, n—oo (u()? 9077« (q))

Now using the asymptotics (4.2) again, we obtain

—(0zzuw(T'), on(q)) _ —(0pau(T), \/Esin(nﬂx)) + O(n_l) ’ ||8wwu(T)||L1(Q)
(@, on(a)) (ti0, V2sin(nmx)) + O(n=1) - |[tio]| 11 ()
_ —n%(0peu(T),v/2sin(nmz)) + O(n?~1) - 0z2u(T) L1 (02)
n2s (g, \/isin(mm‘)) +O0(n>1) - [|to|| 1 () .

(4.11)

Since n?%|(u,sin(nmx))| > ¢, for all n € K, by the condition 25 — 1 < 0, we obtain

— (8za:u(T) ) Pn (Q))

neit Raoo (i, £0(0))
—n%(0y2u(T), V2sin(nrz)) + O(n* 1) - |0z0u(T) || 11 (0)
 neK, mooo n?s (g, v2sin(nmz)) + O(n-1) - ||to | 11 (a)
B —(Opzu(T),sin(nmz))
T ek, oo (dg,sin(nmzx))
Therefore, the terminal time 7T is uniquely determined by the observation «(7"). 0O

Remark 4.1. The independence of the limit in (4.9) on the potential ¢ relies on the
asymptotics (4.2). This seems valid only in the one-dimensional case, and it represents
the main obstacle for the extension to the multidimensional case. Nonetheless, the
rest of the analysis does not use the estimate (4.2), and all the remaining results hold
also for the multidimensional case.

Next, we determine the potential g € A from u(T). First, we give useful smoothing
properties of the operators F; and E,. The notation || - || denotes the operator norm
on L%(Q).

LEMMA 4.2. For q € A, there exists a ¢ >0 independent of ¢ and t such that for
any s=0,1 and £=0,1,

1E ()] + ¢~ Eg()]| < emin(1,¢7%) and [ AZFS ()] < et
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Proof. The estimates follow from [4, Theorem 6.4]. By [4, Theorem 6.4(iv)] and
Lemma 2.1,

1B, <t* ' Eq.o(=A1(@)t*) < ct* 'min(1,¢7).

The bound on F,(t) follows similarly. For the second estimate, the case s=1, {=0,1,
the assertion is contained in [4, Theorem 6.4(iii)], and the case s =0,¢ =0 is direct
from the first estimate. The remaining case s = 0,¢ = 1 follows from Lemma 2.1
(noting 1/T°(0) =0):

1F5(t)vl12(0) = 1 Ag Eq (80l 72(0) = ZA )22 Ba,a(=An(@)t*)? (v, 00())°

a— >\721 e
<ct? QZW(U»SML(Q)FS@ 22 ||v||%2(ﬂ)
(14 (Apt®)?)
n=1 n

Combining these assertions completes the proof of the lemma. ]

The next lemma gives a priori estimate on the solution u to problem (4.1).

LEMMA 4.3. Let ug, f € L?>(Q) and q € A, and let u be the solution to problem
(4.1). Then there exists ¢ >0 independent of q¢ and t such that

00u(t) 2 <t and 07 u(®) (e + (Ol o) < 1+ 7).
Proof. The proof employs (4.3) and Lemma 4.2. First, by (4.4), we have Oyu(t) =

F!(t)(uo — ¢g — A7 f). Then from Lemma 4.2 and the norm equivalence (4.3), the
first estimate follows:

19ru(t) 1120y < 1AL L) | + L)) a0 — 6 — Ag 2y <t~
Similarly, by (4.4) and Lemma 4.2, there holds that

lu(®)llLai) < [ Fy(t)uo + (I — Fy(t))dq + (I — Fy(t)) Ay fllz20) <c,
lu(®)l2() < 1 Fa(t)(uo — bg) + (I = Fy(t) AT fll g2 ) + 10gll 20
< cmin(1,¢7)|Juo — @gllr2(0) + 1 fllL2(0) + [|@gllm2(0) < (1 +7%).
Last, we bound 87w using the identity dpu(t) = —AFy(t)(uo + ¢4 — A;'f) and
Lemma 4.2. a

For any ¢ € A, we denote the solution u to problem (4.1) by u(g). The next
lemma provides a crucial a priori estimate. Like before, we denote by v and @ to be
u(q) and u(q) below.

LEMMA 4.4. Let T, > 0 be fixed, and let q,q € A. Then there exists ¢ > 0
independent of q, ¢ and t such that for any t > T, >0,

107 (uw — @) ()| 2 (0) <t *lla — Gl L2(e)-
Proof. Let w=wu — 4. Then w solves

Ofw—Aw+quw=(q—q)a inQx(0,7],
(4.12) w=0 on 09 x (0,71,
w(0) =0 in Q.
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The representation (2.3) implies w(t) = fot E,(t — s)(Gd — q)u(s)ds. The governing

equation for w and the identities Of Fy(t) = —A Fy(t) and A E,(t) = —F;(t) [4,
Lemma 6.3] lead to

o u(t) = =4, [ E,(t=5)(a-0ils)ds+ (G i)
= [ Fitt= )@= @ue)ds+ G- 9a =0 [ Fult -G~ gals) ds.
0 0

Let ¢(t) = fot F,(t —s)(G— q)u(s)ds. Sobolev embedding theorem and Lemmas 4.2
and 4.3 imply

t
1A4g6@) 2 < 1 — alle@ | 1 AgFalt— )] li(s)] e ds
0
t
<clld— all 2o / (t — )~ [1(s) | 12 ds
0
< (B 4+ 721G — gl pagey < e £ 1 — gl 2

Next, the identity tA,¢(t) = fot(t — 8)A F,(t — s)(G — q)u(s)ds + fot A,F,(s)(q—q)
(t — s)u(t — s)ds yields

Du(tA(qr) (1) = / (= )AL — 5) + AgFylt — 5)] (@~ a)i(s) ds
+ /Ot AgFy(s)(G— @ lu(t —s) + (t —s)a/(t — )| ds=: 1 + L.
Next, we bound I; and I. First, we bound the term I; by Lemmas 4.2 and 4.3:
Millz2e) < /Ot [(t = )| AgFy(t — )| + | AgFy (t = $)I]11(d — @)(s)l| L2 (o) ds
<cl|q = qll2 ) /Ot(t = 8)"¥@(s)|| ooy ds < er t' G — qll 2()-

Similarly, by Lemma 4.2, Sobolev embedding theorem, and Lemma 4.3, the term I
is bounded by

t
Ml z2() < /0 1A ()11 = all 2oy [(t = )@ (= 5)l| e (@) + N8t = 5)l| Lo (@] ds

t
< clli— allz2o / 5[t — )T (- )l + [t — )] meen] ds
0
t
<cllq—dllz / SO((t— 5)~ + 1) ds < e, 1727 — gl 2 (e
0

Then the triangle inequality yields that for any ¢ > 0, there holds

tlAge' (OllL2 () < 1(EAGE)) 2@ + 1 Ag@ ()2 (@) < er+t~%(1G — all2(0)-

Now the desired inequality follows directly. This completes the proof of the lemma. O

Next, we give a stability result. It improves a known result [27, 26] by relaxing
the regularity assumption.
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THEOREM 4.5. Let ug, f € L?(Q), with ug, f > m a.e. in Q and ag,a; > m
for some m > 0. Then for q,§ € A, and a sufficiently large T, there exists ¢ > 0
independent of q, ¢, and T such that

lg = dllL2(@) < cl|lw(T) = a(T) || m2(o).-
Proof. 1t follows from (4.1) that ¢ can be expressed as
(4.13) q=[u(T)] 7 (f = 0 u(T) + Ozou(T)).
Then we split the difference g — ¢ into

u(T) —u(T) . u(T)0g u(T) — u(T)of u(T) L (1) 0peu(T) — u(T) 0z u(T)
w(T)a(T) w(T)a(T) w(T)a(T)

3
ZIi.
i=1

By the maximum principle of time-fractional diffusion [18], we deduce u(T") >m > 0.
This and the standard Sobolev embedding H?(Q2) — L>(Q) (for d=1,2,3) imply

q—q=1f

T[22y <m 2| fll2@ 6(T) — w(T) | g2 (0)-
By Lemma 4.3 and Sobolev embedding theorem, we have the a priori bound
1u(T)|| oo (@) + 105 u(T)| 12 (q) < e+ for T'>T*. This and Lemma 4.4 lead to
T2llz20) < e(lu(T)l Lo @ 107 (@(T) — u(T)) | L2y
107 u(T) | 2@ [(T) = UT) || L= ()
<e(T™g = dllzz@) + [w(T) = A(D) || u2(0)),
sl 220 < e(lu(T) Lo @ 1020 (@(T) — u(T))l| L2(0)
+ 110w u(T) || L2 () 1u(T) = &(T) | o= ()
<cllu(T) —u(T) || m2(0)-
Then for sufficiently large T, we have [[¢—q||2(0) < c(1—cT~*) " Hw(T) —a(T) || g2(0)-
This completes the proof of the theorem. 0
The next stability estimate is the main result of this section.

THEOREM 4.6. Let ug, f € L*(Q), with ug, f > m a.e. in 2 and ag,a1 > m for
some m > 0. Then for q,G€ A, and Ty <T <T with sufficiently large To, there exists
c independent of q, ¢, T and T such that

g = dllz2) < C(|u(T) — W) || g2y + T~ HT = T).

Proof. In view of the identity (4.13), we have the following splitting:
e < f = 8u(T) + 8puu(T) = 8a(T) + ama(T)>

u(T) u(T)
f - 5‘?‘@(T) + amﬂ(T) o f - 8?ﬁ(f) + amﬁ(f) _.
B Nt o,

Theorem 4.5 implies the following estimate on I;:

Il z2e0) < (T~ %|lg = qll L2 + |[w(T) = @(T)| a2 -
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The triangle inequality and Lemma 4.3 with v =2 lead to
[u(T) = &(T) | 2y < u(T) = @(T) |2 + 1G(T) = &(T)| 120
<[l(T) = a(T) | 20y + T~ HT =T,
and consequently,
il z2) < (T~ = dll o) + 1u(T) = @(T)||a2() + T~ HT = TY).
Next, to bound the term I, we rewrite
a(T) —a(T) n a(T)opa(T) (T) WT) | W(T)Dua@(T) — U(T)Dra(T)
u(T)a(T) a(T)a(T) w(T)a(T)

By the maximum principle [18], we have u(T),@(T) > m > 0. This and Lemma 4.3
lead to

| @ <M fllr2@lla(T) — @(T) || g2y < T~ HT - T
Meanwhile, by the Sobolev embedding theorem and Lemma 4.3, we obtain

12,2]l22(0) < c(l|0F @ (T)||L2(Q)||ﬁ(T) — (7)) a2
+ |07 a(T) = O ()| 2o la(D) || 12 (s2))
<c(llofa(T )||L2(Q) + 1a(T) | 2 (@) 1(T) = ()| () < T~ HT =T,
) < c([10p0@(T) || 2 18T — &(T) | 520
+ | 0ne (@(T) — (T ))HL?(Q)||@(T)||H2(Q))
< c(107u(T) || L2y + (D) 2 1U(T) — U(T) || 20y < T~ T =T,
Combining the preceding estimates yields

g — dllr2e0) < T™lg — dllr2) + |l w(T) = UT) || w20y + T~ T —T).

By choosing T} large enough such that ¢Tj; * < %, we deduce that for T > T > Ty, the
desired estimate holds. ]

The next corollary of Theorem 4.6 bounds the terminal time 7' for perturbed
data.

COROLLARY 4.7. Suppose that ug € L*(Q )\Hsl( ), f € HQ), and g € AN
H*(Q), with s € (0,%) and s; € (0,s). Let (T, q); (T,3) € Ry x AN H*(Q) be the
solutions of IPP with observations uw(T) and @(T), respectively. Then the following
estimate holds:

T —T|<I(1- a)_a min(A, A)~ *_1|A Al

with the scalars A and A, respectively, given by

A= lim —Ouau(T), sin(n7z)) and A= lim ~ (9w (T), sin(nmx))

nek, n—oo  (ug — ¢p, sin(nwx)) nek, n—soo (ug — ¢g,sin(nwz))

In particular, for A < A, there holds |q — qllr2) < e(|lu(T) — ﬁ(T)HHz(Q) + A - /~\|)
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5. Numerical experiments and discussions. In this section we present nu-
merical results to illustrate simultaneous recovery of a spatially dependent parameter
and terminal time T'.

5.1. Numerical algorithm. First, we describe a numerical algorithm for re-
construction. The inverse problems involve two parameters: unknown time 7 and
space-dependent parameter v (ug, ¥, or ¢g). Since these two parameters have differ-
ent influence on the measured data u(7T), standard iterative regularization methods,
e.g., Landweber method and conjugate gradient method, do not work very well. We
employ the Levenberg—Marquardt method [13, 19], which has been shown to be effec-
tive for solving related inverse problems [16]. Due to the ill-posedness of the inverse
problems, early stopping is required in order to obtain good reconstructions.

Specifically, define a nonlinear operator F : (v,T) € L?(Q) x Ry — u(v)(x,T) €
L?(Q), where u(v) solves problem (1.1), with the parameter v. Let (v°,7%) be the
initial guess of the unknowns (v,7). Now given the approximation (v*,T*), we find
the next approximation (v**!,T++1) by

("L, T = argmin Jy, (v, T),

with the functional Ji(v,T) at the kth iteration (based at (v*,T*)) given by
1
Ji(v,T) :§HF (vF, T%) - ¢’ + 0, F (vF,T%) (v — %) + OrF (VF,T%) (T — TF) H%Z(Q)
k k
g o
+ 7“” —0*|72 () + 7|T - T*?,

where v¥ > 0 and p* > 0 are regularization parameters, and 9,F(v*, T*) and
OrF (v, T*) are the derivatives of the forward map F in v and T, respectively. We
employ two parameters since v and T influence the data w(7T) differently. The pa-
rameters vy and p are often decreased geometrically with p € (0,1): v*+! = py*¥ and
p*+t = ppk. The derivative 0, F (v, T) can be evaluate explicitly. For example, for BP,
the (directional) derivative w =8, F (v, T)[h] (in the direction h) satisfies

Ofw—Aw+quw=0 in Q x (0,7,
w=0 on 09 x (0,7T),
w(0)=h in €.
To approximate the derivative OpF(v,T), we use the finite difference drF(v,T) =
(0T)"Y(F(v, T +6T) — F(v,T)), where 6T is a small number, fixed at 67 =1 x 1073
below. Due to the quadratic structure of the functional Jg(v,T), the increments
dvP =P+l —oF and 6TF .= Tr+1 — T* satisfy

Ty + kL JxJr L
5Ty T Jp + okt §T*

_ [ Jo(g® = F(o*, T%))
_[J%(QJ_F(Uvak)) ’

where * denotes the adjoint operator, and .J, = 9, F(v*, T*) and Jr = dp F(v*, T*).

5.2. Numerical illustrations. Now we present numerical results for the three
problems, and with the domain Q = (0,1) in one dimension and Q = (0,1)? in two
dimensions, and the terminal time T' = 0.5. We discretize problem (1.1) using the
Galerkin finite element method with continuous piecewise linear functions in space,
and L1 approximation in time [5, 6]. The accuracy of a reconstruction 9 relative to
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the exact one v' is measured by the L?(2) error e(9) = ||6 — v'||12(q). The residual
7() of the recovered tuple (#,T) is computed as r(0) = |F(0,T) — 9l z2(0)- The
exact data g' is generated on a fine space-time mesh. The noisy data ¢° is generated
from g' by ¢°(z) = gF + ellgt Lo )&(x), where &(x) follows the standard Gaussian
distribution, and € > 0 indicates the noise level.

The first example is BP, with ¢ =0.

Ezample 5.1. (i) The source f =min(z,1 —z), and the unknown initial condition
up = sin(rz), and (ii) the diffusion coefficient a = 1 + sin(wz)y(1 — y), the source
f=min(z,1— z)e*sin(27y), and the unknown initial condition ug = sin(mwz) sin(wy).

The convergence of the Levernberg—Mardquardt method is shown in Figure 1. For
the exact data, the residual r decreases rapidly to zero, and the error e also decreases
steadily and eventually levels off at 1e-3 (due to the presence of discretization error).
For noisy data, the method exhibits a typical semiconvergence behavior: the error
e first decreases and then starts to increase rapidly afterwards, necessitating the use
of early stopping. This behavior is also observed for the estimated terminal time T,
but it appears to be more resilient to the iteration number k£ and it does not change
much after a few extra iterations. Nonetheless, the estimate 7" will eventually drift
away when the method is run for too many iterations. Exemplary reconstructions of
the initial data ug are shown in Figures 2 and 3, which has the smallest L?({2) error
along the iteration trajectory; see Table 1 for the stopping index k*. These plots show
that the reconstructions are accurate for up to 5% noise in the data. See also Table 1
for quantitative results. Note that the accuracy e does not depend very much on
the order «, and decreases as the noise level e — 0%. This agrees with the Lipschitz
stability estimate in Theorem 2.3. However, the reconstructions for case (ii) tend to
be less accurate than case (i), which is attributed to larger discretization errors in two
dimensions.

10° 10° 038
—e=0% —e=0%
—e=1% —e=1%
10% N 100 5% 06 «=5%
. -~ o -
10 —e=0% 102 04
—e=1%
=5%
10% 104 02 :
0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
k k k
(a) residual r (b) error e (c) terminal time T

F1G. 1. The convergence of the Levenberg—Marquadt method for Example 5.1(i), for a=0.5.

Ve Ve Ve

=205 =205 =205
—exact —exact —exact
—e=1% —e=1% —e=1%
=5% e=5% e=5%
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
X X X
(a) a =10.25 (b) & =0.50 (¢) a=0.75

F1G. 2. The reconstructions of the initial condition ug for Example 5.1(1).
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0.5

070

(a) exact (b) reconstruction (c) error

F1G. 3. The reconstructions of the initial condition ug for Example 5.1(ii) with « =0.5, e =5%.

TABLE 1
The numerical results (error e, stopping index k*, and recovered T) for Example 5.1. For case
(1), v0 = 1e-2, po =2.7e-3, 6.3e-3 and 1.3e-2 for a =0.25, 0.50 and 0.75, respectively, and p = 0.80;
for case (ii), v0 = 1le-3, po = 1.1e-4, 2.7e-4, and 6e-4 for a =0.25, 0.50 and 0.75, respectively, and
p=0.80.

Case a 0.25 0.50 0.75

€ e k* T e k* T e k* T
0e-3 1.221e-3 0.496 9.948e-4 20 0.498 5.023e-4 31 0.500
le-3 1.455e-3 8 0.496 1.210e-3 8 0.499 7.217e-4 10 0.500
i) 5e-3 2.961e-3 7 0.496 2.468e-3 7 0.499 1.852¢-3 9 0.500
le-2 4.793e-3 6 0.498 4.114e-3 7 0.499 3.275e-3 9 0.500
6 6
5 6

Ju—
=]

2e-2 8.121e-3 0.498 6.872e-3 0.501 5.578e-3 8 0.502
5e-2 1.675e-2 0.505 1.476e-2 0.502 1.230e-2 8 0.503

Oe-3 7.368e-2 32 0.496 7.414e-2 33 0.500 7.586e-2 36 0.498
le-3 7.574e-2 15 0.497 7.622e-2 17 0.500 7.799e-2 20 0.498
(ii) 5e-3 8.230e-2 11 0.497 8.315e-2 13 0.500 8.648e-2 17 0.498
le-2 9.119e-2 10 0.497 9.247e-2 11 0.500 9.737e-2 15 0.498
3e-2 1.169e-1 6 0.497 1.186e-1 7 0.500 1.235e-1 7 0.499
5e-2 1.281e-1 4 0.499 1.275e-1 4 0.503 1.300e-1 6 0.501

10° 10° 0.8
—e=0%
—e=1%
10?2 =5% 10° 06
- o - ——
10% 1072 —e=0% 0.4 —e=0%
—e=1%— —e=1%
=5% =5%
10 10 0.2
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
k k k
(a) residual r (b) error e (c) terminal time T

F1G. 4. The convergence of the Levenberg—Marquadt method for Example 5.2(i) with a =0.5.

The next example is about ISP, with ¢ =0.

Ezample 5.2. (i) The initial condition ug = sin(27x), and the unknown source
(x) =sin(3wx), and (ii) the known diffusion coefficient a = 1+sin(rz)y(1 —y), initial
condition ug = sin(mz) sin(ny), and the unknown source 1 = 4x(1 — x)e” sin(27y).

The numerical results for Example 5.2 are shown in Figures 4, 5, and 6, and
Table 2. The convergence plots in Figure 4 show the semiconvergence phenomenon,
and with the chosen parameters, the method converges rapidly to an acceptable so-
lution, and then the error e starts to increase shortly afterwards. Nonetheless, the
estimate of T converges fairly fast (within five iterations), and it is also quite stable
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1.5

1.5 1.5
1 —exact 1 —exact 1 —exact
—e=1% —e=1% —e=1%
0.5 €=5% 0.5 €=5% 0.5 €=5%
= 0 s 0 s 0
-0.5 / -0.5 / -0.5 \/

] Rl Rl

-1.5 -1.5 -1.5
0 0.5 1 0 0.5 1 0 0.5 1

X X X

(a) = 0.25 (b) a = 0.50 (¢) a=0.75

F1G. 5. The reconstructions of the space-dependent source v for Example 5.2(i).

2, 2.
0 ‘ 0‘
-2 -2 -0.
1 T o 1 T o 1 .
~ 1 ~ T . it 1
05 7 0s 05 "~ " 05 05 "~ " 05
y 00 X y 00 X y 00 M
(a) exact (b) reconstruction (c) pointwise error

F1G. 6. The reconstructions of the space source component ¢ for Ezample 5.2(ii) with o =0.5,
e=5%.

TABLE 2
The numerical results (error e, stopping index k*, and recovered T) for Example 5.2. For case
(i), v0 = le-4, po = 1e-8, 5e-8, and le-7 for a=0.25,0.50, and 0.75, respectively, and p =0.8; and
for case (ii), vo = le-4, po = 1e-9, and p=10.8.

Case a 0.25 0.50 0.75
€ e k* T e k* T e k* T
Oe-3 2.534e-3 6 0.507 2.709e-3 6 0.505 3.057e-3 6 0.506
le-3 3.402¢-3 6 0.507 3.381e-3 6 0.504 3.417e-3 6 0.506
i) 5e-3 1.098e-2 5 0.506 1.000e-2 5 0.504 8.016e-3 6 0.505
le-2 2.035e-2 5 0.505 1.825e-2 5 0.503 1.410e-2 5 0.505
2e-2 3.839¢-2 4 0.503 3.488e-2 4 0.502 2.669¢-2 5 0.504
5e-2 8.668e-2 4 0.496 7.761e-2 4 0.499 5.944e-2 4 0.501
Oe-3 2.122e-1 35 0.514 2.121e-1 35 0.508 2.119e-1 35 0.509
le-3 2.173e-1 9 0.514 2.171e-1 9 0.508 2.166e-1 10 0.509
(ii) 5e-3 2.223e-1 4 0.515 2.218e-1 4 0.509 2.206e-1 5 0.509
le-2 2.276e-1 3 0.516 2.267e-1 3 0.509 2.250e-1 3 0.509
3e-2 2.626e-1 3 0.522 2.576e-1 3 0.512 2.477e-1 3 0.512
5e-2 2.843e-1 2 0.519 2.797e-1 2 0.507 2.707e-1 2 0.500

during the iteration. We obtain very accurate reconstructions for the noise level e
up to be-2. Like before, the reconstruction quality does not depend much on the
order «; cf. Table 2 and Figure 5, concurring with the observations for BP. The lat-
ter also agrees with the fact that ISP enjoys similar stability as BP, as indicated by
Theorems 2.3 and 3.3.

The last example is about IPP in one dimension.

Ezample 5.3. The source f = |sin(27z)|, initial condition ug = 1, and a zero
Dirichlet boundary condition. The unknown potential ¢ = sin(7z).
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10° 10° 0.8
—a=0.25 —a=0.25
102 —a =0.50 —a =0.50
107 0=075 0.6
() [ &
1072 \ 04 —a =025
—a=050
) a=075
103 | 0.2
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
k k k
(a) residual r (b) error e (¢) terminal time T

FiG. 7. The convergence of the Levenberg—Marquadt method for Example 5.3 with exact data.

1.5 1.5 1.5
—exact —exact —exact
—recon —recon —recon
1 1 — 1 .
T 05 T 05 o 05
0- - 0- - 0- -
-0.5 -0.5 -0.5
0 0.5 1 0 0.5 1 0 0.5 1
X X X
(a) « =10.25 (b) & =0.50 (¢) a=0.75

Fic. 8. The reconstructions of the space-dependent potential q for Example 5.3 with exact data.

The parameter g is fixed at le-7 and po at 1le-8, and the decreasing factor p is
set to 0.5. The numerical results are summarized in Figures 7 and 8. Note that we
can obtain highly accurate reconstructions for exact data, with the L2(£2) error of
the recovered potential ¢ being 1.318e-3, 1.374e-3, and 1.174e-3 for a = 0.25, 0.50,
and 0.75, respectively. The estimated terminal time T = 0.4996, 0.4997, and 0.4998
for a =0.25, 0.50, and 0.75, respectively, are also fairly accurate. This clearly shows
the feasibility of simultaneous recovery. However, for noisy data, the recovery is
very challenging. Numerically, we observe that the singular value spectrum of the
linearized forward operator has many tiny values (and hence we have to use a tiny
value for the parameter 7y), which precludes applying any realistic amount of noise
to the data and renders the recovery from noisy data highly unstable.
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