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A B S T R A C T 

We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function 

(2PCF) on simulated catalogs representative of luminous red galaxies (LRGs) data collected during the initial 2 months of 
operations of the Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). We run the pipeline on multiple 
ef fecti v e Zel’do vich (EZ) mock galaxy catalogs with the corresponding cuts applied and compare the results with the mock 

sample covariance to assess the accuracy and its fluctuations. We propose an extension of the previously developed formalism for 
catalogs processed with standard reconstruction algorithms. We consider methods for comparing covariance matrices in detail, 
highlighting their interpretation and statistical properties caused by sample variance, in particular, non-trivial expectation values 
of certain metrics even when the external covariance estimate is perfect. With impro v ed mocks and validation techniques, we 
confirm a good agreement between our predictions and sample covariance. This allows one to generate covariance matrices for 
comparable data sets without the need to create numerous mock galaxy catalogs with matching clustering, only requiring 2PCF 

measurements from the data itself. The code used in this paper is publicly available at https://github.com/oliverphilcox/RascalC . 

Key words: methods: statistical – surv e ys – software: data analysis – galaxies: statistics – large-scale structure of Universe –
cosmology: theory. 
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 I N T RO D U C T I O N  

easurements of the large-scale structure of the Universe are one of
he pillars of modern cosmology. The two-point correlation function
2PCF) of galaxies is a particularly important statistical quantity for
he large-scale structure, describing the excess probability of finding
 galaxy at a given separation from another galaxy, compared to a
andom distribution. Its measurements have a notable feature at the
cale of baryon acoustic oscillations [BAO; first detected by Eisen-
tein et al. ( 2005 )]. As the corresponding comoving scale is a standard
uler with length set by sound horizon during recombination (more
recisely, drag epoch), these measurements particularly constrain the
xpansion history of the Universe at redshifts between then and now
 z ∼ 1), providing a valuable test for cosmological models. A more
etailed o v erview of the methodology is provided in Weinberg et al.
 2013 ). 
 E-mail: mrashko v etsk yi@cfa.harvard.edu 
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We have an exciting opportunity to analyse the data from the Dark
nergy Spectroscopic Instrument [DESI; DESI Collaboration ( 2016 ,
022 , 2023a , b )], a highly promising 5-yr Stage-IV BAO experiment
or large-scale spectroscopic surv e ys. F or e xample, the sample of
uminous red galaxies [LRG; Zhou et al. ( 2020 )] observed during
he first 2 months of DESI main surv e y operations (DESI-M2) yields
 BAO scale measurement with 1.7 per cent precision (Moon et al.
023 ), which is already comparable to the aggregate precision of
.77 per cent of preceding leading surv e ys, BOSS and eBOSS (Alam
t al. 2021 ). 

For rigorous interpretation of data, the likelihood is crucial.
ortunately, the distribution of measured clustering statistics is well
escribed by a multi v ariate Gaussian, which is fully described by
ean and covariance matrix. Unfortunately, the latter poses a serious

hallenge. A fully analytical model for the covariance matrix is
esirable because it can provide a fast and stable result. Ho we ver,
t is very hard to construct in the case of galaxy clustering. One of
he reasons is that galaxies are high matter o v erdensities, evolving in
 crucially non-linear regime. Another is the complicated effects of
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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urv e y geometry and non-uniform selection. There have been recent 
romising developments on covariance matrices for power spectra 
sing perturbation theory (Wadekar & Scoccimarro 2020 ). Ho we ver, 
ower spectra results are difficult to apply to the correlation functions, 
ecause the Fourier transform is not local. 
The standard approach is using a sample covariance estimated 

rom mock (simulated) galaxy catalogs. This solution is far from 

deal. Such catalogs need to capture key aspects of clustering and be
epresentative of the data or assumed theoretical model. Detailed sim- 
lations are computationally e xpensiv e, while for precise covariance 
stimate, a large number of samples is required, increasingly higher 
s more quantities are measured. This forces a hard compromise 
etween quality and quantity, keeping the total computation time 
ery long. The mock-based covariance production is therefore not 
haracterized by flexibility, as the generation and processing of 
umerous simulations for an updated data set or alternative model 
equire a huge effort. 

Another group of methods is called internal for using only the 
ata itself. The lack of dependence on mocks and model assump-
ions makes them attractive. These are represented by re-sampling 
echniques like jackknife and bootstrap, which involve splitting the 
ata into parts. Ho we ver, it may be hard to ensure that the parts
re principally equi v alent (so the differences all stem from random
uctuations) and separate the independent contributions to different 
stimates used for covariance. Mohammad & Percival ( 2022 ) attempt 
o mitigate the latter issue for jackknives by modifying the pair 
eighting for jackknife covariance estimates. Howev er, Truso v et al. 

 2023 ) find that the results are still prone to a density-dependent bias.
Each of the three approaches has its flaws and combining 

dvantages from different ones seems very promising. Thus, we 
hoose to focus on a method that started nearly analytical and 
mployed elements of an internal approach. O’Connell et al. ( 2016 )
emonstrated that the covariance matrix for 2PCF in arbitrary surv e y
eometry can be expressed through integrals or sums in configu- 
ation space [this result is analogous to Bernstein ( 1994 )], which
an be computed efficiently with importance sampling techniques. 
here are terms containing higher-point correlations (three-point 
nd connected four-point functions), which are highly challenging 
o model or measure with precision. Thus, instead a procedure 
f leaving only Gaussian correlation and rescaling of shot noise 
mplitude was proposed and found to achieve a good agreement with 
ock-based covariances. This rescaling parameter can be calibrated 

n a small suite of mocks, or on a jackknife covariance intrinsic
o the data analysed (O’Connell & Eisenstein 2019 ). We find the
ombination of analytical methods with jackknife more promising 
han with mocks, because, after a validation, such a procedure does 
ot require the construction of any new mocks to match updated 
ata or an alternative model with different assumptions and does not 
equire any more than jackknife covariance computation, at the same 
ime offering higher smoothness, stability, and invertibility. Philcox 
t al. ( 2020 ) introduced the RASCALC 

1 code with a new algorithm,
aking it easier to account for surv e y geometry via a catalog of

andom points, boosting the efficiency several times and extended the 
ormalism to covariances for multiple tracers (galaxy types). Philcox 
 Eisenstein ( 2019 ) developed the estimators for Legendre-binned 

PCF and isotropic three-point correlation function. 
 https://github.com/oliv erphilcox/RascalC (Oliv er Philcox, Daniel Eisen- 
tein, Ross O’Connell, Ale xander Wie gand, Misha Rashko v etsk yi, Yuting 
ang, Ryuichiro Hada, Uendert Andrade) 

ξ

(
(  

D  
We have contributed RASCALC covariances for the BAO analysis 
f DESI-M2 data (Moon et al. 2023 ). This work accompanies it,
ocusing on the validation of the approach in realistic circumstances. 

e limit ourselves to analogs of DESI LRG sample (Zhou et al. 2020 )
ue to the availability of a large suite of mocks with corresponding
uts, providing a good sample covariance matrix for reference. 
imilarly to Philcox et al. ( 2020 ), we process a single mock catalog

n essentially the same manner as data and compare the resulting
ovariance with the sample covariance of clustering measurements 
n all available mocks, which gives a fair proxy of the pipeline
erformance on data and is also robust to the mismatch between data
nd mock clustering. We repeat the procedure multiple times taking 
 different catalog each time to assess the accuracy of the method,
ts stability, and fluctuations. In addition, we pay extra attention to
he formation of a covariance matrix comparison toolkit. We focus 
n the meaning of the numbers used and derive reference values for
he ideal case when the semi-analytical prediction matches the true 
nderlying covariance. Due to sample variance, these expectation 
alues can be non-trivial, and understanding the noise in the com-
arison measures is crucially important as well. We choose a smaller
umber of observables for lower noise and clearer interpretation and 
urther project the covariances into the lower-dimensional and more 
hysically meaningful space of model parameters. 
We also note the prospects of standard reconstruction techniques 

hat aim to reverse the large-scale displacements during the times 
fter the drag epoch. Such subsequent evolution leads to broadening 
nd contamination of the BAO peak; thus, undoing it sharpens 
he feature (Eisenstein et al. 2007 ). The RASCALC formalism is
pplicable to reconstructed 2PCF covariance as well with minor 
djustments. 

This paper is organized in the following manner. We review 

revious 2PCF estimators and covariances and discuss a modification 
f random counts computation and a formal extension to recon- 
tructed data in Section 2 . In Section 3 , we discuss the problem of
ovariance matrix comparison and present our selection of methods 
efore applying them to RASCALC validation with DESI LRG 

ocks in Section 4 . We conclude in Section 5 by re vie wing current
ccomplishments and future prospects. Appendix A provides more 
omplete details on the covariance matrix estimators. Appendix B 

rovides an overview and derivations of useful properties of covari- 
nce matrix comparison metrics. 

 M E T H O D S  O F  C OVA R I A N C E  MATRI X  

STIMATION  

e start by recapitulating the 2PCF estimators and covariance matrix 
ormalism from O’Connell et al. ( 2016 ), O’Connell & Eisenstein
 2019 ), and Philcox et al. ( 2020 ), with a revised notation similar
o Philcox & Eisenstein ( 2019 ). In the following two sections, we
iscuss a slight modification for optimized disjoint random count 
omputation and an extension for reconstructed data. 

.1 Ov er view of previous work 

n a galaxy surv e y, we may define the 2PCF of tracers X and Y
hrough the ratio of pair counts: 

ˆ XY ( r , μ) = 

N 

X N 

Y ( r , μ) 

R 

X R 

Y ( r , μ) 
(1) 

Landy & Szalay 1993 ), where μ = cos θ is used instead of angle θ
 μ can be restricted to 0 ≤ μ ≤ 1 by symmetry) and N 

X = D 

X − R 

X .
 

X and R 

X are (weighted) galaxies and random particles (tracing the
MNRAS 524, 3894–3911 (2023) 
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xpected mean density) of kind X , respectively. In radial bin a and
ngular bin c , this estimate transforms to 

ˆ ξXY 
)c 

a 
= 

(
N 

X N 

Y 
)c 

a (
R 

X R 

Y 
)c 

a 

(2) 

ith 

N 

X N 

Y 
)c 

a 
= 

∑ 

i �= j 

n X i n 
Y 
j w 

X 
i w 

Y 
j � 

a ( r ij ) � 

c ( μij ) δ
X 
i δ

Y 
j (3) 

(
R 

X R 

Y 
)c 

a 
= 

∑ 

i �= j 

n X i n 
Y 
j w 

X 
i w 

Y 
j � 

a ( r ij ) � 

c ( μij ) , 

here we have assigned a cubic grid to the surv e y such that each cell
ontains no more than one galaxy, n X i is the expected mean number
ensity of tracer X in the cell i , w i is the expected mean weight, δi 

s the fractional galaxy o v erdensity, μij relates to the angle between
he line of sight and the separation vector r ij = r i − r j ( r ij being its
bsolute value), and � are binning functions (unity if the argument
ts into the bin and zero otherwise). 
Given the binned 2PCF estimator [equation ( 2 )], the covariance
atrix can be computed by definition: 

cov 
[ (

ˆ ξXY 
)c 

a 
, 
(

ˆ ξZW 

)d 

b 

] 
= 

〈 (
ˆ ξXY 

)c 

a 

(
ˆ ξZW 

)d 

b 

〉 

−
〈 (

ˆ ξXY 
)c 

a 

〉 〈 (
ˆ ξZW 

)d 

b 

〉 

, (4) 

here 〈〉 means ensemble average over realizations of overdensity
. According to equation ( 3 ), this affects the NN counts but not RR .
hus, the right-hand side of equation ( 4 ) has the product of RR counts
s a constant denominator and a sum o v er sets of four cells (from the
roduct of NN counts), containing an ensemble average of the product
f 4 δ values, where some of the cells can coincide with each other.
hese ensemble averages are by definition four-point correlation

unctions, but same-cell o v erdensities handled naiv ely giv e zero
eparation and di vergent v alues. To overcome this issue, O’Connell
t al. ( 2016 ) further expanded equation ( 4 ) into sums over distinct
wo-, three-, and four-cell configurations. Additionally, squares of
 v erdensity in one cell (products of o v erdensities in coinciding cells)
ere replaced by a shot-noise approximation: 

δX 
i 

)2 ≈ 1 

n X i 

(
1 + δX 

i 

)
. (5) 

s a result, only products of four, three, or two o v erdensities in
istinct cells remained. After ensemble averaging, these give four-,
hree-, and two-point correlation functions at non-zero separations,
espectively . Lastly , the disconnected (Gaussian) part of the four-
oint function can be separated from the connected (non-Gaussian)
ne according to Isserlis’ (Wick’s) theorem (Isserlis 1918 ). The full
esulting expressions are provided in Appendix A , equation ( A2 ). 

Due to high noise in higher-point correlation function measure-
ents and difficulties in their theoretical modelling, an alternative

pproach of mimicking non-Gaussianity has been established. All
he higher-order correlation functions are set to zero (save for
isconnected four-point, which reduces to products of two-point
unctions), but the shot-noise approximation is modified with a
actor αX 

SN > 1, which can have a separate value for each of different
amples of galaxies: 

δX 
i 

)2 ≈ αX 
SN 

n X i 

(
1 + δX 

i 

)
. (6) 

his increases the correlations on the smallest scales, which is similar
o where non-Gaussian effects are the strongest. 
NRAS 524, 3894–3911 (2023) 
The sums can be transformed to continuous form by changing
ums to integrals over positions and replacing cell quantities with
ontinuous functions in 3D space. Ho we ver, it is convenient to leave
hem discrete, which allows us to estimate them using importance
ampling directly from the random catalog (Philcox et al. 2020 ),
ithout the need to write functional forms for surv e y number density,
eights, and so on. Two-point function values for pairs of points are

nterpolated from a grid/table to sampled pair separation r ij , μij (the
atter can be computed with respect to the mid-point radius-vector of
he pair, or a fixed axis) with the bicubic method, which is in practice
ased on radially and angularly binned 2PCF estimates. A special
terative correlation function rescaling procedure is used to modify
he values of the correlation function on the interpolation grid such
hat the bin-averaged values of the interpolation result resemble the
inned 2PCF estimates more closely. 
Originally, O’Connell et al. ( 2016 ) fit the shot-noise rescaling to a

ample covariance obtained from a smaller set of mocks, with the idea
hat lower precision was sufficient for obtaining just one parameter
s opposed to estimating the whole matrix. O’Connell & Eisenstein
 2019 ) proposed that a jackknife covariance from the data itself can
e used instead, eliminating the dependence on mocks completely.
oting that jackknife has issues in the cosmological application, they
eveloped a separate estimator for this covariance taking into account
orrelations between different estimates. 

We follow a modified formalism from Philcox et al. ( 2020 ) called
nrestricted jackknife . According to it, the jackknife correlation func-
ion estimate ξA is the cross-correlation function between jackknife
egion number A and the whole survey. In other words, an additional
eight of particle i (denoted by q A i ) is equal to one if it belongs to the

egion A and zero if not. A pair of particles is additionally weighted
y the mean of their weights: one if both belong to the region A , one
alf if only one does and zero if both are out of it. Conveniently, the
um of these weights for any selected pair o v er all jackknife regions
s unity. As a consequence, the mean of jackknife 2PCF estimates
weighted by RR counts) is equal to the full 2PCF estimate. Then an
stimator for jackknife covariance is w ork ed out separately [equation
 A7 )], with a similar shot-noise rescaling procedure. 

In principle, shot-noise rescaling [equation ( 6 )] can be different
or each tracer, and it can be obtained by fitting the prediction for
he jackknife covariance of its auto-correlation function to the data-
ased jackknife estimate. The resulting αX 

SN value(s) is used together
ith the full covariance estimator [equation ( A1 )] for the final result.
Let us reiterate the key approximation: non-Gaussianity can be
imicked by rescaling shot noise while dropping the terms with

igher-order correlation functions. It works because the primary
ffect of non-Gaussian contributions is an additional correlation
t small distances, typically smaller than the bin width of 2PCF
sed in actual fits and requiring a covariance. Enhancing the shot
oise results in increased correlation on infinitely small scales. This
hould remain a good estimate as long as the correlation functions’
ontribution to covariances on scales of interest is dominated by
heir squeezed limits. Whether this is the case is not clear generally,
ut O’Connell et al. ( 2016 ) reported good agreement with large sets
f mock catalogs achieved with this method, and Varg as-Mag a ̃ na
t al. ( 2018 ) demonstrated the applicability of the approach to BAO
nalysis. 

It is important to specify the means of fitting covariance matrices.
ollowing Philcox et al. ( 2020 ), we choose to optimize the Kullback–
eibler (KL) divergence between the RASCALC jackknife precision

˜ 
 J ( αSN ) and the data-based jackknife covariance estimate [given by
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quation ( A6 )], D KL 

[
˜ � J ( αSN ) , C J 

]
, where 

 KL ( � 1 , C 2 ) = 

1 

2 
[ tr ( � 1 C 2 ) − N bins − ln det ( � 1 C 2 ) ] . (7) 

n this equation, N bins is the dimension of covariance matrices 
number of correlation function bins). Inversion of the RASCALC 

ovariance has a certain bias. Since it is not expected to obey Wishart
tatistics like the (mock) sample covariance, the Hartlap factor 
Hartlap, Simon & Schneider 2007 ) is not rele v ant. A special second-
rder bias correction has been derived in O’Connell & Eisenstein 
 2019 ): 

˜ 
 = ( I − ˜ D ) ̃  C 

−1 

˜ D = 

N subsamples − 1 

N subsamples 

⎡ 

⎣ −I + 

1 

N subsamples 

N subsamples ∑ 

i= 1 

˜ C 

−1 
[ i] 

˜ C i 

⎤ 

⎦ , (8) 

hich uses the partial covariance estimates ˜ C i from N subsamples distinct 
ets of configurations resulting from importance sampling in the 
stimation of sums [equation ( A2 ) or ( A8 )] and mean of all the
artial estimates but the i ’th ˜ C [ i] . Thus, the correction is applicable
or both jackknife and full covariance. 

.2 Split random-random computation 

eih ̈anen et al. ( 2019 ) showed that splitting the random catalog
nto a number of sub-catalogs of the same size as the data cat-
log when calculating random–random pairs and excluding pairs 
cross different sub-catalogs provides the optimal error at a fixed 
omputational cost. The splitting can be used in RASCALC . It gives
ittle to no speed-up and impact on results because the importance 
ampling is too far from complete. Ho we ver, it can be useful for
ultinode parallelization. This approach has been used for the data- 

ased RASCALC computation in Moon et al. ( 2023 ). 
A robust implementation of split random–random pair calculations 

n RASCALC would require considering only quadruples of random 

oints where members of each pair are from the same sub-catalog, 
ut the pairs can be from different catalogs. However, this has been
ound to have little to no impact on the results, probably due to
he fact that importance sampling co v ers only a small fraction of
ll possible configurations. At the same time, such implementation 
akes the code less efficient and makes it impossible to split the

omputation of different catalogs between nodes. 

.3 Reconstructed two-point function covariance 

fter standard reconstruction, a common approach is to replace N = 

 D − R ) by N = ( D − S ) ( S being the random point with position
hifted in the same manner as data) in the Landy–Szalay estimator 
equation ( 1 )], leaving RR in the denominator, so that it is 

ˆ XY = 

D 

X D 

Y − D 

X S Y − S X D 

Y + S X S Y 

R 

X R 

Y 
, (9) 

nstead of 

ˆ XY = 

D 

X D 

Y − D 

X R 

Y − R 

X D 

Y + R 

X R 

Y 

R 

X R 

Y 
. (10) 

his means shifted randoms are to be used in sums or integrals
epresenting NN . These eventually form the sums (or integrals) for C
erms. Thus, strictly speaking, the procedure for reconstructed 2PCF 

hould be: 

(i) use shifted randoms for sampling, corresponding to the numer- 
tor of ( 9 ); 
(ii) provide a differently normalized 2PCF as input, namely 

ˆ XY 
in = 

D 

X D 

Y − D 

X S Y − S X D 

Y + S X S Y 

S X S Y 
, (11) 

ince non-shifted randoms do not appear in the sampling procedure; 
(iii) use non-shifted random counts for denominator in equation 

 A2 ), or correction function [equation ( A15 )] in Legendre case,
orresponding to the denominator of [equation ( 9 )]. 

Shifted randoms are individual for each mock catalog. Therefore, 
hey can not be defined clearly for mock-averaged computations. In 
hose cases, we continue to use the non-shifted randoms everywhere 
or consistency. 

 M E T H O D S  O F  C O M PA R I S O N  O F  

OVA R I A N C E  MATRI CES  

ince a covariance matrix is a high-dimensional object, it can be hard
o explore and interpret. Moreover, we run the pipeline multiple times
ndependently and aim to study all the covariance matrix products to
ssess their stability and fluctuations. Thus, compact and numerical 
omparison measures are instructive. 

.1 Interpr etable measur es of similarity for co v ariance 
atrices 

he first characteristic we consider is the KL divergence, a measure
f distance between distributions used to fit covariances in RASCALC 

Section 2.1 , equation ( 7 )]. It is generally defined as an expectation
alue of the logarithm of the ratio of the two probability distribution
unctions according to the first distribution: 

 KL ( P 1 || P 2 ) = 

∫ 
ln 

(
P 1 ( x) 

P 2 ( x) 

)
P 1 ( x )d x (12) 

y this e xpression, KL div ergence can be seen as an average
ifference in log-likelihood. For two Gaussian distributions with 
ovariance matrices C i and precision matrices � i = C 

−1 
i describing 

 bins observables (correlation function bins in our setup), it can be
ound as 

 KL ( � 1 , C 2 ) = 

1 

2 
[ tr ( � 1 C 2 ) − N bins − ln det ( � 1 C 2 ) ] . (13) 

his is the expression we will use. O’Connell et al. ( 2016 ) show that
he KL divergence is related to the log-likelihood if the covariance 

atrix is estimated from a sample with multi v ariate normal distribu-
ion, which is a very good approximation for correlation function 
ins, and additionally assuming that the precision matrix is the 
nverse of the true covariance matrix, characterizing the multivariate 
ormal distribution of measured quantities. This is very appropriate 
or testing the hypothesis that the RASCALC precision matrix is a
recise unbiased estimate. 
The next metric assesses how close the first precision matrix is to

he inverse of the second covariance matrix, and at the same time, a
directional’ root-mean-square relative difference in χ2 given by the 
wo covariance matrices (explained in more detail in Appendix B2 ): 

 inv ( � 1 , C 2 ) = 

1 √ 

N bins 

∣∣∣∣∣∣C 

1 / 2 
2 � 1 C 

1 / 2 
2 − I 

∣∣∣∣∣∣
F 

= 

√ 

tr 
[
( � 1 C 2 − I ) 2 

]
N bins 

. (14) 

his measure can also be seen as the average relati ve dif ference in
he errorbars. Moreo v er, if the co variance matrix is estimated from
MNRAS 524, 3894–3911 (2023) 
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 sample with multi v ariate normal distribution and the precision
atrix is assumed to be true, R 

2 
inv is proportional to the χ2 computed

sing covariance of independent covariance matrix elements (Ap-
endix B2 ). Thus, in this case, it can serve as an approximation of
og-likelihood for optimization. 

The last metric is akin to the mean reduced χ2 of samples
orresponding to one covariance matrix with respect to the other
recision matrix: 

2 
red ( � 1 , C 2 ) = 

1 

N bins 
tr ( � 1 C 2 ) . (15) 

t can be seen as the mean ratio of χ2 given by the two covari-
nce/precision matrices. 

All three metrics are not symmetric, meaning that values for ( � 1 ,
 2 ) and ( � 2 , C 1 ) may be different, so in principle, it might be

nformative to consider differences both ways. On the other hand,
he sample covariance is less robust than the RASCALC result and its
nversion can be less stable. Moreover, computing each metric twice
akes the results more numerous and less clear. Finally, the KL

ivergence [equation ( 13 )] is expected to lose its log-likelihood sense
f computed between the sample precision and model covariance,
ince the latter one does not necessarily follow Wishart distribution.
herefore, we decided to limit ourselves to RASCALC precision
atrices and sample covariance matrices. 
For a better understanding of the metrics, let us consider the

igenvalues of � 1 C 2 (alternatively, one can use � 

1 / 2 
1 C 2 � 

1 / 2 
1 , which

s symmetric) and denote them as λa . We would like � 1 → C 

−1 
2 thus

ll λa → 1. The metrics then can be expressed as 

 KL ( � 1 , C 2 ) = 

1 

2 

N bins ∑ 

a= 1 

[ λa − 1 − ln λa ] ≈ 1 

4 

N bins ∑ 

a= 1 

( λa − 1) 2 , (16) 

 inv ( � 1 , C 2 ) = 

√ √ √ √ 

1 

N bins 

N bins ∑ 

a= 1 

( λa − 1) 2 , (17) 

2 
red ( � 1 , C 2 ) = 

1 

N bins 

N bins ∑ 

a= 1 

λa . (18) 

hus, D KL and R inv accumulate any deviation of λa from 1, although
hey cannot indicate the direction of such differences. Note that the
uadratic expression for D KL is approximate so it is not generally
egenerate with R inv , although as the covariance matrices approach
ach other, these two measures become more redundant: 

 KL ( � 1 , C 2 ) ≈ N bins 

4 
R 

2 
inv ( � 1 , C 2 ) . (19) 

2 
red can show which covariance matrix is ‘larger’ on average, while
eviations in opposite directions may cancel each other. 
Next, we w ould lik e to understand what to expect from these
etrics. For this purpose, we consider the case when the precision
atrix is predicted perfectly ( � 0 ), ideally matching the true under-

ying covariance ( C 0 = � 

−1 
0 ) and focus on the noise properties of

he sample covariance matrix C S obtained via the standard unbiased
stimator for the case when the true mean is not known: 

 S,ab = 

1 

n S − 1 

n S ∑ 

i= 1 

(
ξa,i − ξ̄a 

) (
ξb,i − ξ̄b 

)
(20) 

here a , b denote bin numbers, i , j index sample numbers, and ξ̄a is
he estimate of the mean: 

¯
a ≡ 1 

n S 

n S ∑ 

i= 1 

ξa,i . (21) 
NRAS 524, 3894–3911 (2023) 
ince the clustering measurements are described well by a multi-
ariate normal distribution, their sample covariance matrix follows
he Wishart statistics. This provides a reference of how the metrics
ehave when the perfect precision matrix is compared to a covariance
atrix estimated from n S samples with N bins bins (or any other
aussian observ ables). Full deri v ations are presented in Appendix B ;
ere, we will only provide the results for mean/expectation values
nd standard deviations: 

〈 D KL ( � 0 , C S ) 〉 ≈ N bins ( N bins + 1) 

4( n S − 1) 
, 

[ D KL ( � 0 , C S ) ] ≈ 1 

2 

√ 

N bins [( N bins + 1)( n S + 2 N bins + 2) + 2] 

( n S − 1 ) 3 
; 

(22) 

〈 R inv ( � 0 , C S ) 〉 ≈
√ 

N bins + 1 

n S − 1 
, 

[ R inv ( � 0 , C S ) ] ≈ 1 

n S − 1 

√ 

( N bins + 1)( n S + 2 N bins + 2) + 2 

N bins ( N bins + 1) 
. 

(23) 

aiv ely, one could e xpect D KL and R inv to become arbitrarily small
s � 1 → � 0 . Ho we ver, in reality, the y can hav e large e xpectation
alues, especially as the number of bins increases. 
χ2 

red , ho we v er, would behav e like the reduced χ2 with N bins × ( n S 
1) degrees of freedom in this case (see Appendix B3 ): 〈
χ2 

red ( � 0 , C S ) 
〉 = 1 , 

[
χ2 

red ( � 0 , C S ) 
] = 

√ 

2 

N bins ( n S − 1) 
. (24) 

t might seem like D KL and R inv could be unbiased by multiplying
ne of the matrices by a factor similar to the Hartlap factor (Hartlap
t al. 2007 ), but a lack of bias in χ2 

red expectation value suggests that
his is not true. 

It is notable that a deviation of χ2 
red from 1 would contribute to R inv 

see expressions ( 18 ) and ( 17 ); their consequence is also that 

χ2 
red ( � 1 , C 2 ) − 1 

∣∣ ≤ R inv ( � 1 , C 2 ) . (25) 

o we ver, the direction of such deviation will not be clear in R inv , and
on-tri vial expectation v alue can make it harder to interpret. This
eeps χ2 

red useful in many cases. 

.2 Internal conv er gence assessment 

nternal consistency of RASCALC covariance matrices in one run
nd the convergence of the Monte Carlo integration procedure are
lso important to assess quantitatively. We propose to employ the
bo v e-mentioned methods to accomplish this and provide valuable
iagnostics that do not rely on a reference (e.g. sample) covariance
nd thus can be used in any run, including the pure data-based one.
o we ver, we need to note that such a test can only quantify limited

ources of uncertainty or error, leaving aside the f actors lik e adequacy
f the approximations in the formalism, the precision of the input
lustering, and noise in the jackknife covariance estimated from the
ata. 
The RASCALC code provides multiple partial intermediate results

orresponding to practically non-o v erlapping sets of quadruples,
riples, and pairs of points. These resulting covariance matrices can
e split into two distinct sets of similar size, averaged within them,
nd compared using the three metrics. In this case, ho we ver, the
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rguments for the χ2 
red weaken – we can expect R inv to become 

rbitrarily low as the number of Monte Carlo samples increases, 
hich would limit the reduced chi-squared via equation ( 25 ), and

t is not as interesting to understand which of the halves gives a
smaller’ matrix. Then D KL also becomes more redundant with R inv 

ia equation ( 19 ). Therefore, it is reasonable to only show R inv , which
an be seen as an estimate of root-mean-square relative precision 
considered o v er all directions in measurement space). 

 APPLICATION  TO  DESI  L R G  M O C K S  

n this section, we use the described methods on DESI-M2 mocks 
o assess the performance and stability of the approach on the actual
ata set. We describe the setup first, then perform intrinsic validation 
escribed in Section 4.3 , look at the shot-noise rescaling values 
esulting from jackknife calibration used for the final covariance 
stimates, validate the RASCALC results by comparison with the 
ock sample covariance in measurement/observable and parameter 

pace, and finally focus specifically on errorbars on BAO scale. 

.1 Mock catalogs and reconstruction method 

e use the 999 ef fecti v e Zel’do vich (EZ) mocks (Chuang et al.
015 ; Zhao et al. 2021 ) with cuts corresponding to the DESI LRG
ample [Zhou et al. 2020 ; described in more detail in Moon et al.
 2023 )], which will be referred to as DESI-M2 Firstgen EZ
ocks . Sample covariance based on these does not provide a 
erfect reference because both the number of mock catalogs and 
he level of details in each simulation are limited, but the best one
an have realistically since increasing one without making the other 
 orse w ould require even more significant computational resources. 
omparing these is also robust to the mismatch between data and 
ock clustering. 
The reconstruction method is also the same as in Moon et al.

 2023 ): the iterative procedure (Burden, Percival & Howlett 2015 )
mplemented in the IterativeFFTReconstruction algo- 
ithm of the PYRECON package 2 with the RecIso convention. 
hree iterations are used with a Gaussian smoothing kernel of width 
5 h −1 Mpc. An approximate growth rate and the expected bias are
ssumed. 

.2 Setup 

or this study, we have performed separate runs using 2PCF mea- 
ured from single LRG DESI-M2 Firstgen EZ mocks catalogs. 
his has been repeated 10 times for pre- and post-recon. In the latter
ase, individual shifted random catalogs have been used for each 
ock, following the procedure we described in Section 2.3 . 
Pre-reconstruction galaxies and randoms were assigned unity 

eights, for post-reconstruction FKP weights (Feldman, Kaiser & 

eacock 1994 ) were used, given by 

 FKP = 

1 

1 + n ( z) CP 0 
(26) 

here n ( z) is the weighted number density (per volume), C is the
ean completeness for the sample, and P 0 is a fiducial power- 

pectrum amplitude. For LRG, C = 0.579 and P 0 = 10 4 ( h −1 Mpc) 3 
 https://github.com/cosmodesi/pyrecon (Arnaud de Mattia, Martin J. White, 
ulian E. Bautista, Pedro Rangel Caetano, Sesh Nadathur, Enrique Paillas, 
rant Merz, Davide Bianchi) 

3

M
s

Moon et al. 2023 ). We note that the weighting schemes are not
xactly the same as for real data, but since weights are included
xplicitly in the covariance estimators, we expect RASCALC to work 
ith any fixed choice applied consistently for 2PCF measurements 

nd Monte Carlo integration. 
For the importance sampling input, 10 random catalogs were 

sed in pre-recon computations and 20 in post-recon, like for the
R ( SS ) pair counts computation for the 2PCF estimates. These

andoms have been concatenated before being provided to RASCALC 

 x ecutable. We assign 60 jackknife regions assigned by a K -means
ubsampler based on data positions (but not weights) as in DESI-M2
ata, compute the jackknife covariance matrix, and use it to calibrate
he shot-noise rescaling. 

We note that some validation has been performed in Moon et al.
 2023 ): RASCALC covariance matrix based on 2PCF averaged over all 
RG DESI-M2 Firstgen EZ mocks with no shot-noise rescal- 

ng applied (and using unshifted randoms in the post-reconstruction 
ase) has been compared to the sample covariance matrix in terms
f χ2 of BAO fits, best-fit values and standard deviations of BAO
sotropic scale parameter α, yielding a good agreement. Ho we ver, 
here are significant limitations to this approach: 

(i) effect of noise in the input clustering is significantly smaller 
n 2PCF averaged over ≈1000 mocks than in the real data, which is
lose to a single mock catalog; 

(ii) possible differences in other parameters of the BAO model or 
ore generic aspects of correlation function have not been assessed. 

Single-mock runs address the first issue since each of them is a fair
roxy of the data. The use of covariance matrix comparison metrics
rom Section 3.1 expands on the second one. We keep the result with
ock-average 2PCF, labeled ‘Average G’ (Gaussian), to assess the 

mportance of precision of input clustering. 
We also consider a shot-noise-rescaled version of the run with 
ock-av eraged clustering, labelled ‘Av erage NG’ (non-Gaussian). 
e note that calibration of an all-mocks run on a jackknife estimate

an be ambiguous or require a repeated computation of all the
air counts with jackknives, which was not done before because 
ackknives are not necessary for the sample covariance. Thus we 
hoose to fit the full covariance matrix to the mock sample covariance
y minimizing the KL divergence between them [analogously to the 
ackknife procedure described in Section 2.1 and equation ( 7 )]. Since
nly one parameter is varied in the fit, a perfect agreement is still
ot guaranteed. On the other hand, this setup is clearly idealized
nd would be closer to the closest possible match to the mock
ovariance the RASCALC method can provide. It comprises another 
seful reference to compare to the data-like performance on single 
ocks. 
We only consider 45 radial bins, spanning 4 h −1 Mpc each from

0 to 200 h −1 Mpc. The RASCALC covariances are produced with
ingle angular bins, which is a simplifying assumption since treating 
onopole more precisely in Legendre mode with shot-noise rescal- 

ng would require 2 runs per data set, as explained in Appendix A3 .
he 2PCF measurements for the mock sample covariance use a more
recise monopole estimate provided by PYCORR . 3 We also project 
hem into a BAO model parameter space using the deri v ati ves near
he best fit (Fisher forecast). The model uses only a separation range
rom 48 to 148 h −1 Mpc. 
MNRAS 524, 3894–3911 (2023) 

 https://github.com/cosmodesi/pycor r (Arnaud de Mattia, Lehman Garrison, 
anodeep Sinha, Davide Bianchi, Svyatoslav Trusov, Enrique Paillas, Se- 

hadri Nadathur, Craig Warner, James Lasker) 

https://github.com/cosmodesi/pyrecon
https://github.com/cosmodesi/pycorr
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Table 1. Intrinsic pre- and post-reconstruction convergence test results 
in measurement space. R inv estimate root-mean-square relative precision, 
av eraged o v er all different directions in the measurement space. The numbers 
provided here are for the full covariance, but the consistency levels of the 
jackknife covariance prediction from RASCALC are similar. They demonstrate 
sub-percent stability in RASCALC integrals and ensure that random noise in 
importance sampling is not a significant source of error, as these numbers are 
smaller than deviations observed in further comparisons (Tables 3 –6 ). 

Mock no. R inv pre R inv post 

Average G 1.3 × 10 −3 3.0 × 10 −3 

Average NG 1.2 × 10 −3 8.1 × 10 −3 

1 3.7 × 10 −3 2.3 × 10 −3 

2 3.1 × 10 −3 2.2 × 10 −3 

3 3.8 × 10 −3 2.1 × 10 −3 

4 6.3 × 10 −3 1.9 × 10 −3 

5 4.4 × 10 −3 1.3 × 10 −3 

6 4.4 × 10 −3 1.9 × 10 −3 

7 3.7 × 10 −3 2.0 × 10 −3 

8 3.3 × 10 −3 1.7 × 10 −3 

9 3.5 × 10 −3 2.5 × 10 −3 

10 3.5 × 10 −3 2.2 × 10 −3 
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Table 2. Shot-noise rescaling values for the 10 mocks, on which the final 
covariance predictions are based, pre- and post-reconstruction. The ‘Average 
NG’ value is fit to mock sample covariance, and the 1–10 are fit to jackknife 
covariance estimates from single mocks, and the resulting numbers are 
consistent. The standard deviation for single mocks is ≈ 2 per cent before 
and ≈ 1 per cent after reconstruction, which translate into a similar effect on 
relative precision of the final covariance matrices due to rescaling. 

Mock no. Pre-recon αSN Post-recon αSN 

Average NG 1.096 1.038 

1 1.096 1.062 
2 1.074 1.043 
3 1.040 1.034 
4 1.077 1.051 
5 1.079 1.033 
6 1.089 1.030 
7 1.080 1.041 
8 1.102 1.058 
9 1.116 1.033 
10 1.080 1.041 

1–10 mean ± std 1.083 ± 0.020 1.043 ± 0.011 
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.3 Internal conv er gence checks 

e perform an intrinsic diagnostic procedure (as described in
ection 3.2 ) to ensure that RASCALC integrals converged well in each
un and exclude importance sampling random noise from significant
rror factors. We found that pre-recon mock 6 and post-recon mock
 showed significantly worse consistency than all the rest. Therefore,
e have run them twice longer. 
After that, all the RASCALC results have reached a high and quite

niform level of internal consistency, as presented in Table 1 . We
nly show R inv , which are easier to interpret as the root-mean-
quare relati ve de viation between dif ferent partial estimates of the
ovariance matrix (considered over all directions in measurement
pace). χ2 

red are limited via equation ( 25 ), and D KL values are quite
lose to estimates from equation ( 19 ). Due to high consistency in
easurement space, we have not performed projection to parameter

pace here. The splitting of Monte Carlo subsamples has been
one in a fe w dif ferent ways and the non-symmetric metric has
een computed both ways ( � 1 C 2 and � 2 C 1 ), but all the values
ere very close, 4 and thus have been averaged to one number for

ach metric. These low (sub-percent) internal deviations give us
onfidence that the Monte Carlo integration procedure in RascalC
as converged well, and it will not be a significant error source in
urther comparison. After ascertaining this, we have not touched
he covariance matrix products to be fair – with real survey and no

ocks, other validation procedures described in this paper are not
vailable. 

.4 Shot-noise rescaling values 

ext, we look into the shot-noise rescaling values because the
nal covariance estimates (with approximate non-Gaussianity) are
ased on them. The shot-noise rescaling values for single mocks
re obtained by fitting the separate RASCALC jackknife covariance
NRAS 524, 3894–3911 (2023) 

 In the case of disjoint running (Section 2.2 ), there can be a meaningful 
ifference between splittings within or between different random sub- 
atalogs, due to fluctuations in pair counts between these. But here all the 
andoms have been concatenated together. 

p
 

t  

m  

p  

a  
rediction to the jackknife covariance estimate for each mock. For
he mock-average clustering, the full RASCALC covariance was fit to
he mock sample covariance instead, as discussed in Section 4.2 . 

The shot-noise rescaling values are gathered in Table 2 . We note
hat all of them are greater than one (which corresponds to purely
aussian covariance), in accordance with our expectation that the
on-Gaussianity expands the errorbars. Moreover, the mean shot-
oise rescaling of the 10 single mocks is ≈4 standard deviations
arger than 1 both before and after reconstruction. The values
btained from jackknife and mock covariance are consistent. After
econstruction, the shot-noise rescaling decreases for every mock.
he pre-recon mean is larger than the post-recon one by ≈1.8 stan-
ard deviations. The scatter after reconstruction is also smaller than
efore. These deviations can be caused by the random fluctuations
n the input 2PCF estimates, noise in jackknife covariances, and
ifferences in shifted randoms (for post-recon only). 
The key conclusion is that we have obtained the shot-noise

escaling parameter for a data-like setup (single mock runs) with a
er cent-level precision. This maps into a similar or smaller relative
eviation in the rescaled covariance matrices since the two-point term
as the strongest scaling, ∝ α2 

SN , and the four-point term remains the
ame [equation ( A3 )]. 

.5 Measurement-space validation 

ow we proceed to comparison with the sample covariance matrices
s reference, keeping in mind they are not devoid of noise so not
ll the comparison measures can be ideal. We consider the higher-
imensional space of observables first, where the effects of sample
ariance are quite significant. It consists of 45 bins of 2PCF, spanning
0–200 h −1 Mpc linearly with a bin width of 4 h −1 Mpc. 
Sample covariances for all original bins have been estimated using

 S = 999 2PCF measurements from all the DESI-M2 Firstgen
Z mocks and the standard unbiased estimator [equation ( 20 )]. The
rocedures have been similar for pre- and post-recon. 
The comparison measures between the RASCALC precision ma-

rices [estimated via equation ( 8 )] and the sample covariance
atrices have been computed and are presented in Table 3 for

re-reconstruction and Table 4 for post-reconstruction. First of
ll, there are fluctuations in the comparison measures, involving
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Table 3. Results of general measurement-space comparison between the 
RASCALC results ( R ) and mock sample covariance ( S ) before reconstruction. 
The last row provides the perfect-case reference – expectation values and 
standard deviations for the three metrics, if the RASCALC precision matrix 
truly described the distribution of the mock correlation functions. 

Mock no. D KL ( � R , C S ) R inv ( � R , C S ) χ2 
red ( � R , C S ) 

Average G 0.793 0.2922 1.1422 
Average NG 0.537 0.2136 0.9906 

1 0.721 0.2252 0.9600 
2 0.602 0.2234 0.9992 
3 0.571 0.2329 1.0477 
4 0.548 0.2191 0.9991 
5 0.755 0.2302 0.9830 
6 0.727 0.2315 0.9723 
7 0.695 0.2254 0.9675 
8 0.530 0.2085 0.9695 
9 0.610 0.2140 0.9291 
10 0.518 0.2106 0.9895 

1–10 0.628 ± 0.089 0.2221 ± 0.0087 0.982 ± 0.031 
Perfect � 0.519 ± 0.024 0.2147 ± 0.0049 1.0000 ± 0.0067 

Table 4. Results of general measurement-space comparison between RAS- 
CALC results ( R ) and mock sample covariance ( S ) after reconstruction.The 
last row provides the perfect-case reference – expectation values and standard 
deviations for the three metrics, if the RASCALC precision matrix truly 
described the distribution of the mock correlation functions. 

Mock no. D KL ( � R , C S ) R inv ( � R , C S ) χ2 
red ( � R , C S ) 

Average G 0.62 0.247 1.0653 
Average NG 0.57 0.225 1.0028 

1 0.94 0.256 0.9463 
2 0.63 0.229 0.9725 
3 0.72 0.266 1.0031 
4 0.61 0.222 0.9657 
5 0.62 0.229 0.9924 
6 0.65 0.231 0.9817 
7 0.62 0.226 0.9706 
8 0.61 0.222 0.9631 
9 0.77 0.281 1.0214 
10 0.88 0.314 1.0162 

1–10 0.70 ± 0.12 0.247 ± 0.031 0.983 ± 0.024 
Perfect � 0.519 ± 0.024 0.2147 ± 0.0049 1.0000 ± 0.0067 
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he single-mock results, stemming from the input 2PCF estimates, 
ackknife covariances, and differences in shifted randoms (for post- 
econ only) – the same causes as for scatter in αSN discussed in 
ection 4.4 . The individual pre-reconstruction covariances appear 

o agree with the mock sample covariance better than the post-
econstruction. The covariance with mock-averaged clustering and 
o shot-noise rescaling, on the contrary, gives a closer agreement 
fter reconstruction. Before reconstruction, any individual shot-noise 
escaled covariance shows better agreement than the Gaussian mock- 
veraged clustering run; after reconstruction, it is very often worse. 
ith mock-averaged clustering, the shot-noise rescaling is clearly 

eneficial for pre-reconstruction and less so for post-reconstruction. 
his may be a hint that the shot-noise rescaling might not be doing
s well after reconstruction as before. 

Compared to the perfect case, RASCALC typically performs worse 
higher D KL and R inv , reduced chi-squared further from one), which 
e expect since the code (and the mocks) involve (different) 

pproximations. We note that on average the comparison metrics 
re within a couple of standard deviations of the expectation value
or the true underlying covariance matrix. On the other hand, it is
he larger standard deviation in RASCALC results that is allowing this
onclusion, and reducing the noise factors causing it (input 2PCF 

uctuations, single jackknife covariance) may allow us to reach a 
loser agreement in the future works. 

.6 P arameter-space v alidation 

n this section, we project the covariance into a lower-dimensional 
nd more physically meaningful space of BAO model parameters. 
ower dimensionality makes the reference values for comparison 
etrics clearer and the results become easier to interpret. In addition,

he correlation function modes that are not physically possible or do
ot affect the parameter constraints are remo v ed from consideration,
hich leaves only real and important ‘directions’ for consideration. 
We choose a commonly used BAO model 5 (Ross et al. 2017 ; Ata

t al. 2018 ) with a scalable template ξ 0 and three nuisance polynomial
erms: 

mod ( r) = Bξ0 ( αBAO r) + A 0 + A 1 /r + A 2 /r 
2 , (27) 

omprising N pars = 5 parameters: B , A 0 , A 1 , A 2 , αBAO . 
Instead of performing full fits, we use Fisher matrix formalism. 

his can be seen as less precise than full fits on every mock or
CMC using a 2PCF likelihood. On the other hand, the parameter

istribution is not Gaussian when the model is not a linear function
f parameters, which makes linear approximation within Fisher 
atrix formalism more suitable for the comparison methods we have 

iscussed. 
We estimate the parameter covariance matrix as the inverse of the

isher matrix: 

 

par 
S = 

n S − 1 

n S − N 

′ 
bins + N pars − 1 

[ 
M 

(
C 

′ meas 
S 

)−1 
M 

T 
] −1 

(28) 

here the measurement-space mock sample covariance matrix C 

′ meas 
S 

s cut to the N 

′ 
bins = 25 bins spanning separations from 48 to 148

 

−1 Mpc used in BAO fits, and M is the matrix of deri v ati ves of
inned 2PCF vector ξ with respect to parameters p : 

 ca ≡ ∂ ξa 

∂ p c 

. (29) 

he deri v ati v es hav e been taken at the best-fit parameters for the
ock-averaged clustering measurements (separate before and after 

econstruction). 
Note that equation ( 28 ) is scaled by a correction factor according

o equation ( B6 ) in Paillas et al. ( 2023 ) to account for biases caused
y both matrix inversions. This provides an unbiased (although not 
oiseless) estimate of the true underlying covariance in parameter 
pace as validated in Appendix B4 . 

A similar but simpler procedure was performed with RASCALC 

roducts: 

 

par 
R,cd ≈ M 

(
C 

′ meas 
R 

)−1 
M 

T , (30) 

here C 

′ meas 
R was also cut to the 25 bins spanning separations from

8 to 148 h −1 Mpc used in BAO fits. There is a bias correction matrix
 for RASCALC [equation ( 8 )], but for the results presented here

bsolute values of its eigenvalues are � 10 −3 thus we have decided
o neglect this correction factor. 
MNRAS 524, 3894–3911 (2023) 
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Table 5. Results of BAO parameter space ( B , A 0 , A 1 , A 2 , and αBAO ) 
comparison between RASCALC results ( R ) and mock sample covariance 
( S ) before reconstruction. The last row provides the perfect-case reference 
– expectation values and standard deviations for the three metrics, if the 
RASCALC precision matrix truly described the distribution of the mock 
correlation functions. 

Mock no. D KL ( � R , C S ) R inv ( � R , C S ) χ2 
red ( � R , C S ) 

Average G 0.026 0.138 0.992 
Average NG 0.027 0.135 0.925 

1 0.104 0.236 0.855 
2 0.065 0.193 0.911 
3 0.022 0.122 0.941 
4 0.013 0.099 0.962 
5 0.127 0.250 0.883 
6 0.091 0.232 0.866 
7 0.095 0.229 0.861 
8 0.025 0.128 0.918 
9 0.042 0.165 0.876 
10 0.016 0.107 0.944 

1–10 0.060 ± 0.042 0.176 ± 0.059 0.902 ± 0.039 
Perfect � 0.0075 ± 0.0028 0.078 ± 0.014 1.000 ± 0.020 

Table 6. Results of BAO parameter space ( B , A 0 , A 1 , A 2 , and αBAO ) 
comparison between RASCALC results ( R ) and mock sample covariance 
( S ) after reconstruction. The last row provides the perfect-case reference 
– expectation values and standard deviations for the three metrics, if the 
RASCALC precision matrix truly described the distribution of the mock 
correlation functions. 

Mock no. D KL ( � R , C S ) R inv ( � R , C S ) χ2 
red ( � R , C S ) 

Average G 0.020 0.134 1.087 
Average NG 0.014 0.113 1.049 

1 0.122 0.252 0.907 
2 0.036 0.171 1.002 
3 0.041 0.202 1.082 
4 0.015 0.106 0.981 
5 0.030 0.149 0.999 
6 0.029 0.144 0.974 
7 0.021 0.125 0.981 
8 0.014 0.105 0.977 
9 0.095 0.329 1.154 
10 0.096 0.327 1.155 

1–10 0.050 ± 0.039 0.191 ± 0.085 1.021 ± 0.082 
Perfect � 0.0075 ± 0.0028 0.078 ± 0.014 1.000 ± 0.020 
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Table 7. Pre- and post-reconstruction errorbars on αBAO from Fisher fore- 
cast. The mean of 10 single pre-reconstruction catalogs agrees with the sample 
covariance within a standard deviation. For post-reconstruction, the difference 
is within 2 standard deviations. 

σ ( αBAO ) Pre-recon Post-recon 

Sample cov 0.01590 ± 0.00036 0.01459 ± 0.00033 
Average G 0.01522 0.01360 
Average NG 0.01596 0.01392 

1 0.01616 0.01424 
2 0.01598 0.01395 
3 0.01583 0.01410 
4 0.01609 0.01405 
5 0.01595 0.01385 
6 0.01613 0.01396 
7 0.01594 0.01389 
8 0.01621 0.01400 
9 0.01652 0.01402 
10 0.01618 0.01405 

1–10 mean ±std 0.01610 ± 0.00019 0.01401 ± 0.00011 
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The comparison measures have been computed between the
rojected matrices and are presented in Table 5 for pre-recon and
able 6 for post-recon. Generally, lower expectation values of D KL 

nd R inv for perfect precision make these numbers for RASCALC
asier to interpret. There is a less apparent difference between pre-
nd post-recon. A notable exception is that all χ2 

red for rescaled
with mock-averaged and single-mock clusterings) pre-recon are
ignificantly less than 1 (meaning RASCALC ‘o v erestimates’ the
ovariance then). In other cases, mimicking non-Gaussianity gives a
light impro v ement for mock-av eraged clustering, but higher noise
n 2PCF and jackknife covariance in single-mock estimates often
rives the agreement with mock sample covariance worse than in the
ock-averaged Gaussian estimate. 
Overall, RASCALC single-mock results are within < 2 σ (dominated

y the standard deviation of the perfect reference values, except
he reduced chi-squared before reconstruction, which deviates by
NRAS 524, 3894–3911 (2023) 
2.2 std (combined). Ho we ver, the scatter in these numbers is quite
ignificant (e.g. a few percent in root-mean-square relative error R inv ),
nd we should try to reduce it in future work. 

.7 Errorbars on BAO scale parameter 

ince the scale parameter αBAO is the important output of the current
AO analysis [equation ( 27 )], we have decided to extract its errorbar,
arginalized o v er the other four parameters. This is quite trivial after

he previous subsection – we only needed to invert the RASCALC
arameter-space precisions 

 

par 
R = 

(
� 

par 
R 

)−1 
(31) 

eglecting the inversion bias, since it is expected to be even smaller
han before with the smaller size of the matrices. Then we extract the

arginalized errorbars from all the parameter covariances as 

( αBAO ) = 

√ 

C 

par 
αα . (32) 

For the sample covariance, we expect the variance of C S , αα to
early follow equation ( B2 ): 

Var 
[
C 

par 
S,αα

] ≈ 2 

n S − 1 

(
C 

par 
S,αα

)2 
(33) 

nd therefore the standard deviation of σ ( αBAO ) of 

[ σ ( αBAO ) ] ≈ σ ( αBAO ) √ 

2( n S − 1) 
, (34) 

esulting in relative precision of 2.2 per cent. This has been confirmed
n Appendix B4 . 

The resulting errorbar (Fisher) forecasts are provided in Table 7
nd also presented as a scatter plot in Fig. 1 . We can notice that
n any case the post-recon precision is expected to be higher than
re-recon. In both pre-recon and post-recon, σ ( αBAO ) in the mock-
veraged clustering run without shot-noise rescaling are noticeably
maller than predicted from the sample covariance and are brought
loser in the rescaled results. Mock-averaged clustering with fit shot
oise and single mock runs give very similar numbers. The key
onclusion is that single-mock runs are in good agreement with the
ample covariance on σ ( αBAO ), with a remarkably close match before
econstruction (just fractions of standard deviation) and a difference
f ≈2 standard deviation after reconstruction. This gives assurance
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Figure 1. Pre- and post-reconstruction errorbars on αBAO from Fisher 
forecast plotted against each other. Compared to the mock-averaged Gaussian 
run (Average G), the mock-averaged rescaled run (Average NG) and single- 
mock predictions with rescaling are closer to the sample covariance. The 
horizontal (pre-reconstruction) agreement is closer than the vertical (post- 
reconstruction) one, but even the latter falls within ≈2 σ . Note that the range 
of the axes is quite narrow, comprising only ≈ 9 per cent relative difference 
in errorbar before reconstruction and ≈ 7 per cent after. 
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hat data-based RASCALC covariances are on par with mock sample 
ne for isotropic BAO fits. 

 SUMMARY  A N D  O U T L O O K  

his work continues a series of papers (O’Connell et al. 2016 ;
’Connell & Eisenstein 2019 ; Philcox & Eisenstein 2019 ; Philcox 

t al. 2020 ) developing a semi-empirical approach for estimating 
ovariances of 2PCFs, combining analytical methods with the usage 
f measured clustering and calibration on jackknives. The former 
rings smoothness and reliability, and the latter allows for flexibility 
f the results while being independent of mock galaxy catalogs. 
e should note that the method is expected to be applicable at

ntermediate scales – as analytical methods tend to fail on the smallest 
cales, while on the largest scales, the number of configurations 
ncreases making the computation longer, and the signal to noise in 
orrelation function measurement decreases. The latter issue could 
e alleviated by a smooth transition to a theoretically modelled 2PCF,
hich we leave for future work. 
We have discussed the implications of split random-random 

ounts computation and made a slight modification to the formalism 

o co v er the reconstructed 2PCF estimates. Then, we reconsidered 
he methods for covariance matrix comparison, paying great 
ttention to their meaning, interpretation, and noise stemming from 

ock sample variance. 
Finally, we have applied the selected approaches to the validation 

f RASCALC on single DESI-M2 Firstgen EZ mock catalogs 
using their individual clustering measurements and shifted random 

atalogs after reconstruction), each representing a reasonable proxy 
or DESI-M2 data, by comparison with full mock sample covariance. 

e find a close agreement (maximum deviation ≈2.2 σ ) with a 
erfect case, although much of this deviation is due to scatter in
ASCALC results. The preceding discussion about the interpretations 
f the metrics, focusing on a smaller number of observables and 
 ven fe wer parameters allo wed us to obtain a clearer quantitati ve
ssessment of the precision and accuracy of RASCALC results than in
revious works. One should keep in mind the mocks are approximate
nd this can partially account for the imperfection of the match with
he reference statistics. 

Focusing on the errorbar of the BAO scale, we found a very close,
ercent-level agreement with the sample covariance from mocks. 
t is on par with the accuracy that a set of ≈1000 simulations can
rovide. The number of available mocks thus limits the precision of
he validation at the current level. 

The comparison suggests that noise in the input 2PCF might 
e a significant limiting factor for the accuracy of our covariance 
atrices in higher-dimensional spaces. Smoothing this input or 

omplementing it with a theoretical best-fit model could help to 
itigate this issue without introducing many additional assumptions. 
his marks an important topic for follow-up studies. 
In the full measurement space before reconstruction, using a 

hot-noise rescaling is particularly clearly beneficial compared to the 
ure Gaussian estimate even with less noisy (mock sample average) 
nput clustering. The discrepancies and fluctuations are likely to 
e impacted by the precision of correlation function estimates 
rom data, which will impro v e with its size in the future. Further
alidations with larger mocks, corresponding to a year and/or full 5
r of DESI data, will follow. 
During the comparison, we have seen indications that the recon- 

tructed extension may not be working better than with the pre-
econstructed data, contrary to the expectation. This might be related 
o the subtleties of small-scale behaviour of reconstructed points and 
ill be investigated in further detail in future work. 
Another perspective direction is the development of alterna- 

ives to shot-noise rescaling within the more generic semi-analytic 
onfiguration-space formalism. Usage of fully empirical higher- 
oint functions is likely to be not viable, due to a significantly
igher number of bins and accordingly lower signal to noise. Precise
heoretical modeling of non-Gaussian correlation functions is also 
ery challenging. Instead, we might include a basic prescription 
or non-Gaussian covariance contribution inferred from a set of 
etailed simulations, or use approximate expressions for higher- 
oint functions like ζ ( r 1 , r 2 ) = Q [ ξ ( r 1 ) ξ ( r 2 ) + ξ ( r 1 ) ξ ( | r 1 − r 2 | )
 ξ ( r 2 ) ξ ( | r 1 − r 2 | )] moti v ated by hierarchical models (Peebles &
roth 1975 ), and possibly a similar structure for the 4PCF. This
ight provide better accuracy than rescaling the Gaussian terms 
hile keeping the number of parameters low and thus still allowing
s to fit them to a reference (e.g. jackknife) covariance. On the other
and, the aforementioned 3PCF prescription is known to be far from
xact with constant Q (Takada & Jain 2003 ), and the computations
ay suffer from slower convergence due to additional large values 

f small-scale 2PCF compared to Gaussian parts. 
The key advantage of the approaches considered in this paper 

s that a covariance can be based on the data itself and does not
equire matching mock catalogs each time. This alleviates the 
oncern about the accuracy of such approximate simulations, not 
ompletely removing it since we still need some as references for
alidation of the prescriptions. Perhaps more importantly, covariance 
omputation becomes much more flexible. Rele v ant cases are when
he clustering signal changes after more data are gathered, or when
lternative assumptions (for instance, the base cosmology) are 
ested. For such updates, calibration, generation, and processing of a 
uite of mocks large enough for good sample covariance consumes 
reat resources. The computation of one proxy-data covariance 
n this paper took about 100 core-hours for pre-recon and about
MNRAS 524, 3894–3911 (2023) 
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00 core-hours for post-recon. 6 This could be optimized further by
oting that the intrinsic consistency in each run was much higher
han the resemblance of reference sample covariance – time of
omputation helps with the former but the latter is fundamentally
imited by the accuracy of approximations and precision of the input
orrelation function. Moreo v er, the number of mocks limits the
ev el of accurac y of validation. F ast co variance matrix computation
ithout mocks can also allow shifting the balance from quantity to
uality of the simulations, freeing resources for more detailed ones. 
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 In one case out of 10 (both pre- and post-recon), a repeated computation 
aking twice longer was performed. 

W  

X
Z
Z

r on 29 August 2023
ATA  AVAI LABI LI TY  

he code is openly accessible at https://github.com/oliverphilcox/R
scalC . All data from the tables and figures are available in machine-
eadable format at doi:10.5281/zenodo.7750637 in compliance with
he DESI data management plan. The DESI-M2 Firstgen EZ
ocks used in this paper will be made public with the DESI Y1
ata release (DR1), and all the covariance matrices used in this work
ill be released in the same supplementary material (Rashko v etsk yi

t al. 2023 ). 

EFERENCES  

lam S. et al., 2021, Phys. Rev. D , 103, 083533 
ta M. et al., 2018, MNRAS , 473, 4773 
ernstein G. M. , 1994, ApJ , 424, 569 
urden A. , Perci v al W. J., Howlett C., 2015, MNRAS , 453, 456 
huang C.-H. , Kitaura F.-S., Prada F., Zhao C., Yepes G., 2015, MNRAS ,

446, 2621 
ESI Collaboration , 2016, preprint ( arXiv:1611.00036 ) 
ESI Collaboration , 2022, AJ , 164, 207 
ESI Collaboration , 2023a, preprint ( arXiv:2306.06307 ) 
ESI Collaboration , 2023b, preprint ( arXiv:2306.06308 ) 
isenstein D. J. et al., 2005, ApJ , 633, 560 
isenstein D. J. , Seo H.-J., Sirko E., Spergel D. N., 2007, ApJ , 664, 675 
eldman H. A. , Kaiser N., Peacock J. A., 1994, ApJ , 426, 23 
artlap J. , Simon P., Schneider P., 2007, A&A , 464, 399 

sserlis L. , 1918, Biometrika , 12, 134 
eih ̈anen E. et al., 2019, A&A , 631, A73 
andy S. D. , Szalay A. S., 1993, ApJ , 412, 64 
ohammad F. G. , Perci v al W. J., 2022, MNRAS , 514, 1289 
oon J. et al., 2023, preprint ( arXiv:2304.08427 ) 
’Connell R. , Eisenstein D. J., 2019, MNRAS , 487, 2701 
’Connell R. , Eisenstein D., Vargas M., Ho S., Padmanabhan N., 2016,

MNRAS , 462, 2681 
aillas E. et al., 2023, MNRAS 
eebles P. J. E. , Groth E. J., 1975, ApJ , 196, 1 
hilcox O. H. E. , Eisenstein D. J., 2019, MNRAS , 490, 5931 
hilcox O. H. E. , Eisenstein D. J., O’Connell R., Wiegand A., 2020, MNRAS ,

491, 3290 
ashko v etsk yi M. , Eisenstein D. et al. 2023, Validation of semi-analytical,

semi-empirical covariance matrices for two-point correlation function for
Early DESI data, , https:// doi.org/ 10.5281/ zenodo.7750637 

oss A. J. et al., 2017, MNRAS , 464, 1168 
akada M. , Jain B., 2003, MNRAS , 340, 580 
rusov S. et al., 2023, preprint ( arXiv:2306.16332 ) 
arg as-Mag a ̃ na M. et al., 2018, MNRAS , 477, 1153 
adekar D. , Scoccimarro R., 2020, Phys. Rev. D , 102, 123517 
einberg D. H. , Mortonson M. J., Eisenstein D. J., Hirata C., Riess A. G.,

Rozo E., 2013, Phys. Rep. , 530, 87 
u X. et al., 2010, ApJ , 718, 1224 
hao C. et al., 2021, MNRAS , 503, 1149 
hou R. et al., 2020, Res. Notes Am. Astron. Soc. , 4, 181 

https://www.desi.lbl.gov/collaborating-institutions
https://github.com/oliverphilcox/RascalC
http://dx.doi.org/10.5281/zenodo.7750637
http://dx.doi.org/10.1103/PhysRevD.103.083533
http://dx.doi.org/10.1093/mnras/stx2630
http://dx.doi.org/10.1086/173915
http://dx.doi.org/10.1093/mnras/stv1581
http://dx.doi.org/10.1093/mnras/stu2301
http://arxiv.org/abs/1611.00036
http://dx.doi.org/10.3847/1538-3881/ac882b
http://arxiv.org/abs/2306.06307
http://arxiv.org/abs/2306.06308
http://dx.doi.org/10.1086/466512
http://dx.doi.org/10.1086/518712
http://dx.doi.org/10.1086/174036
http://dx.doi.org/10.1051/0004-6361:20066170
http://dx.doi.org/10.1093/biomet/12.1-2.134
http://dx.doi.org/10.1051/0004-6361/201935828
http://dx.doi.org/10.1086/172900
http://dx.doi.org/10.1093/mnras/stac1458
http://arxiv.org/abs/2304.08427
http://dx.doi.org/10.1093/mnras/stz1359
http://dx.doi.org/10.1093/mnras/stw1821
http://dx.doi.org/10.1093/mnras/stad1017
http://dx.doi.org/10.1086/153390
http://dx.doi.org/10.1093/mnras/stz2896
http://dx.doi.org/10.1093/mnras/stz3218
https://doi.org/10.5281/zenodo.7750637
http://dx.doi.org/10.1093/mnras/stw2372
http://dx.doi.org/10.1046/j.1365-8711.2003.06321.x
http://arxiv.org/abs/2306.16332
http://dx.doi.org/10.1093/mnras/sty571
http://dx.doi.org/10.1103/PhysRevD.102.123517
http://dx.doi.org/10.1016/j.physrep.2013.05.001
http://dx.doi.org/10.1088/0004-637X/718/2/1224
http://dx.doi.org/10.1093/mnras/stab510
http://dx.doi.org/10.3847/2515-5172/abc0f4


2PCF covariance matrices for early DESI data 3905 

A

A

T ˆ ξXY 
)c 

a 
, 
(

ˆ ξZW 

)d 

b 

] 
) is 

(
 C 

X,YW 

)cd 

ab 

] 
X 
SN α

Y 
SN 

2 

[
δXW δYZ + δXZ δYW 

](
2 C 

XY 
)cd 

ab 
(A1) 

w

(
 

W 

l � 

a ( r ij ) � 

c ( μij ) � 

b ( r kl ) � 

d ( μkl ) 

 ( r ij ) � 

c ( μij ) � 

b ( r jk ) � 

d ( μjk ) 
[
ζXYZ 
ijk + ξXZ 

ik 

]

 ( μij ) 
[
1 + ξXY 

ij 

]
(A2) 

w t al. ( 2020 ), we have written 2 ξ ik ξ jl instead of ξ ik ξ jl + ξ il ξ jk , allowing to 
o ing to compute a few more distinct terms in multitracer setup. Computing 
f y the Monte Carlo method instead, by randomly sampling a subset of 
t x et al. 2020 ). 
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A

T

(
(A4) 

w nd for any pair, 
∑ 

A q 
A 
ij = 1 in the unrestricted jackknife formalism. 

 is sensible to weight the regions by the RR pair counts, which roughly 
c

(
(A5) 

a ull-survey estimate [equation ( 2 )]. 

(
 

XY 
A 

)c 

a 
− (

ˆ ξXY 
)c 

a 

] [ (
ˆ ξZW 

A 

)d 

b 
− (

ˆ ξZW 

)d 

b 

] } 

. (A6) 

B  ) and simplifying through equation ( 6 ) one can arrive to 

(
,YW 

)cd 

ab 

]
+ 

αY 

4 

[
δYW 

(
3 C 

Y ,XZ 
J 

)cd 

ab 
+ δYZ 

(
3 C 

Y ,XW 

J 

)cd 

ab 

]

(A7) 
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PPENDIX  A :  C OVA R I A N C E  ESTIMATORS  

1 Full co v ariance in radial and angular bins 

he expression for full covariance in radial and angular bins ( cov 
[ (

˜ C 

XY,ZW 

)cd 

ab 
( αSN ) = 

(
4 C 

XY,ZW 

)cd 

ab 
+ 

αX 
SN 

4 

[ 
δXW 

(
3 C 

X,YZ 
)cd 

ab 
+ δXZ 

(
3

+ 

αY 
SN 

4 

[ 
δYW 

(
3 C 

Y ,XZ 
)cd 

ab 
+ δYZ 

(
3 C 

Y ,XW 

)cd 

ab 

] 
+ 

α

ith 

4 C 

XY,ZW 

)cd 

ab 
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1 (
R 

X R 

Y 
)c 

a 

(
R 

Z R 

W 

)d 

b 

∑ 

i �= j �= k �= l 

n X i n 
Y 
j n 

Z 
k n 

W 

l w 

X 
i w 

Y 
j w 

Z 
k w

×
[ 
η

(c) ,XYWZ 
ijkl + 2 ξXZ 

ik ξYW 

j l 

] 
(

3 C 

Y ,XZ 
)cd 

ab 
= 

4 (
R 

X R 

Y 
)c 

a 

(
R 

Y R 

Z 
)d 

b 

∑ 

i �= j �= k 

n X i n 
Y 
j n 

Z 
k w 

X 
i 

(
w 

Y 
j 

)2 
w 

Z 
k � 

a

(
2 C 

XY 
)cd 

ab 
= 

2 δab δcd (
R 

X R 

Y 
)c 

a 

(
R 

X R 

Y 
)d 

b 

∑ 

i �= j 

n X i n 
Y 
j 

(
w 

X 
i w 

Y 
j 

)2 
� 

a ( r ij ) � 

c

here δXY , δab , and δcd are Kronecker deltas. Similarly to Philcox e
ptimize the computation using the symmetries of the term but requir
ull sums (beyond the pair one) is not feasible, so are estimated b
wo/three/four-point configurations from the random catalog (Philco

The most practical form for single tracer X is simpler: 

C 

X X ,X X 
)cd 

ab 

(
αX 

SN 

) = 

(
4 C 

X X ,X X 
)cd 

ab 
+ αX 

SN 

(
3 C 

X ,X X 
)cd 

ab 
+ 

(
αX 

SN 

)2 (2 C 

2 Jackknife co v ariance in radial and angular bins 

he jackknife pair counts are 

N 

X N 

Y 
A 

)c 

a 
= 

∑ 

i �= j 

n X i n 
Y 
j w 

X 
i w 

Y 
j � 

a ( r ij ) � 

c ( μij ) δ
X 
i δ

Y 
j q 

A 
ij 

(
R 

X R 

Y 
A 

)c 

a 
= 

∑ 

i �= j 

n X i n 
Y 
j w 

X 
i w 

Y 
j � 

a ( r ij ) � 

c ( μij ) q 
A 
ij , 

here q A ij is the jackknife weighting factor for the pair of particles, a

The binned correlation function estimate 
(

ˆ ξXY 
A 

)c 

a 
is their ratio. It

orrespond to the volume fraction of each region: 

w 

XY 
A 

)c 

a 
= 

(
R 

X R 

Y 
A 

)c 

a (
R 

X R 

Y 
)c 

a 

, 

nd then the weighted average of the jackknife 2PCF is identical to f
The jackknife covariance estimate is 

C 

XY,ZW 

J 

)cd 

ab 
= 

1 

1 − ∑ 

B 

(
w 

XY 
B 

)c 

a 

(
w 

ZW 

B 

)d 

b 

∑ 

A 

{ (
w 

XY 
A 

)c 

a 

(
w 

ZW 

A 

)d 

b 

[ (
ξ̂

y substituting equation ( 2 ), expanding using equations ( A4 ) and ( 3

˜ C 

XY,ZW 

J 

)cd 

ab 
= 

(
4 C 

XY,ZW 

J 

)cd 

ab 
+ 

αX 

4 

[
δXW 

(
3 C 

X,YZ 
J 

)cd 

ab 
+ δXZ 

(
3 C 

X
J 

+ 

αX αY 

2 

[
δXW δYZ + δXZ δYW 

](
2 C 

XY 
J 

)cd 

ab 
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w( ∑ 

�= j �= k �= l 

n X i n 
Y 
j n 

Z 
k n 

W 

l w 

X 
i w 

Y 
j w 

Z 
k w 

W 

l � 

a ( r ij ) � 

c ( μij ) 

W 

 

] (
ω 

XY,ZW 

ijkl 

)cd 

ab 

 

 j �= k 

n X i n 
Y 
j n 

Z 
k w 

X 
i 

(
w 

Y 
j 

)2 
w 

Z 
k � 

a ( r ij ) � 

c ( μij ) � 

b ( r jk ) � 

d ( μjk ) 

 

�= j 

n X i n 
Y 
j 

(
w 

X 
i w 

Y 
j 

)2 
� 

a ( r ij ) � 

c ( μij ) 
[
1 + ξXY 

ij 

](
ω 

X Y ,X Y 
i ji j 

)cd 

ab 
, (A8) 

w(
(A9) 

I tting the prediction for jackknife covariance of its auto-correlation function (
 

 

(A10) 

t The resulting αX value(s) should be plugged into equation ( A1 ) to obtain 
t

A

P tors for Legendre moments of the anisotropic 2PCF, which is related to 
ξ

ξ (A11) 

(  1 

0 
d μ ξXY ( r, μ) L � ( μ) , (A12) 

L uality in last line assumes symmetry ξXY ( r , μ) = ξXY ( r , −μ) (necessarily 
t s debatable). 

en transform it to Legendre moments, a direct computation of the latter 
a y sum over bins and removes the need for very fine splitting in μ, which 
w

 we obtain 

(
(A13) 

H ed Landy-Szalay estimator 

(
(A14) 

s here each P can stand for D 

X , D 

Y , R 

X or R 

Y ) are the limit of the ratio of 
c s width δμ, P P 

c 
a = 

∫ 
d μP P a ( μ) � 

c ( μ) ≈ P P a ( μc ) δμ, μc being the bin 
c

) is needed to go further due to integration in equation ( A13 ). This is done 
v 0 )], which accounts for surv e y boundaries and selection, defined through 

(A15) 

w  w̄ 

X are the surv e y-av eraged number density and weight for tracer X , 
r  r a , min and r a , max being its lower and upper boundaries). The numerator is 
t hts, and bins in | μ| (i.e. ne gativ e v alues re versed into [0,1] interv al); thus, 
i For non-trivial geometry, varying density and/or weights, it may become 
d  only the angular variable value is arbitrary, while the radius is taken as 
r nal fit to empirical data was used by Philcox & Eisenstein ( 2019 ). 
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X R 
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(
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XY 
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ZW 
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)d 
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] 
i

×� 

b ( r kl ) � 
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(c) ,XYWZ 
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R 

Y R 

Z 
)d 
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1 − ∑ 
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(
w 

XY 
B 

)c 

a 

(
w 

YZ 
B 

)d 

b 

] ∑
i �=

×[
ζXYZ 
ijk + ξXZ 

ik 

](
ω 

XY ,Y Z 
ijjk 

)cd 

ab (
2 C 

XY 
J 

)cd 

ab 
= 

2 δab δcd (
R 

X R 

Y 
)c 

a 

(
R 

X R 

Y 
)d 

b 

[ 
1 − ∑ 

B 

(
w 

XY 
B 

)c 

a 

(
w 

XY 
B 

)d 

b 

] ∑
i

here 
(
ω ijkl 

)cd 

ab 
is an additional weight tensor: 

ω 

XY,ZW 

ijkl 

)cd 

ab 
= 

∑ 

A 

{ [ 
q A ij −

(
w 

XY 
A 

)c 

a 

] [ 
q A kl −

(
w 

ZW 

A 

)d 

b 

] } 

. 

n practice, shot-noise rescaling for each tracer has been obtained by fi

C 

X X ,X X 
J 

)cd 

ab 
= 

(
4 C 

X X ,X X 
J 

)cd 

ab 
+ αX 

(
3 C 

X ,X X 
J 

)cd 

ab 
+ 

(
αX 

)2 (2 C 

XX 
J 

)cd

ab

o the data-based jackknife estimate [computed via equation ( A6 )]. 
he full surv e y co variance. 

3 Co v ariance of Legendre multipoles in radial bins 

hilcox & Eisenstein ( 2019 ) further derive direct covariance estima
( r , μ) through 

XY ( r, μ) = 

∞ ∑ 

� = 0 

(
ξXY 

)� 
( r) L � ( μ) , 

ξXY 
)� 

( r) = 

2 � + 1 

2 

∫ 1 

−1 
d μ ξXY ( r, μ) L � ( μ) = 

( −1) � + 1 

2 
(2 � + 1) 

∫
 � ( μ) being the Legendre polynomial of order � , and the second eq

rue for auto-correlation, X = Y , and violation in cross-correlations i
While one could estimate the angularly binned 2PCF first and th

llows to evade inaccuracies caused by the replacement of integral b
 ould mak e the co variance inte grals slower to conv erge. 
Averaging equation ( A12 ) between the boundaries of radial bin a ,

ξXY 
)� 

a 
= (2 � + 1) 

∫ 1 

0 
d μ

(
ξXY 

)
a 
( μ) L � ( μ) . 

ere ξXY 
a ( μ), binned radially but not angularly, is given by the reduc

ξXY 
)

a 
( μ) = 

(
N 

X N 

Y 
)

a 
( μ) (

R 

X R 

Y 
)

a 
( μ) 

imilarly to equations ( 1 ) & ( 2 ). The continuous counts PP a ( μ) (w
onventional pair counts in infinitesimally small angular bins c to it
enter. 

A functional form for the continuous random pair counts ( R 

X R 

Y ) a ( μ
ia a survey correction function � 

XY ( r a , μ) [following Xu et al. ( 201

(
R 

X R 

Y 
)

a 
( μ) ≡ V 

X n̄ X n̄ Y w̄ 

X w̄ 

Y v a 

� 

XY ( r a , μ) 
, 

here V 

X is the total volume of surv e y for tracer X , and n̄ X and
espectively. v a = 

4 π
3 

(
r 3 a, max − r 3 a, min 

)
is the volume of radial bin a (

he expression for a periodic box with uniform number density, weig
n this simple case, the surv e y correction function � 

XY ( r a , μ) = 1. 
ifferent but not too far by order of magnitude. Ho we ver, note that
epresentative of the bin. In practice, a piecewise-polynomial functio
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ance can be computed by definition using equation ( 6 ), resulting in 
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ab 
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ab 
. (A16) 
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(A17) 

 Legendre moments of the 2PCF. So far, it has been suggested that the 
s stimate on angularly binned 2PCF (Philcox & Eisenstein 2019 ). 

A TRI CS  F O R  NOI SY  SAMPLE  C OVA R I A N C E  

M

H mparison metrics between a noisy sample covariance and the true 
c CALC results are to the latter. 

B

A draws from a multi v ariate normal distribution – has been considered in 
a ited to the expectation value of the KL divergence between them, and we 
h nd the mean (variance or standard deviation). In addition, we believe the 
fi  from the number of samples. This is because for the estimate of sample 
c

X (B1) 

t  well: x̄ a ≡ 1 
n S 

∑ n S 
i= 1 x a,i . This reduces the number of degrees of freedom 

b s 

(B2) 

i

a rix of the Gaussian distribution the samples are drawn from. The sample 
c  the true covariance: 〈 X 〉 = C 0 . Then, considering two sample covariance 
m  i = C 0 + δ X i , Taylor expanding and only leaving the leading non-trivial 
(

〈
(B3) 

i

〈
a

trix, while the RASCALC results are not expected to follow the Wishart 
d � 0 : 

〈 (B4) 
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Then the 2PCF Legendre moment can be estimated and the covari(
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[
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]
. 

Jackknife poses certain challenges to direct computation for the
hot-noise rescaling value(s) should be optimized with a jackknife e

PPENDIX  B:  STATISTICS  O F  C O M PA R I S O N  ME
ATRIX  

ere, we provide deri v ations of the expectation values for co
ovariance/precision matrix. This is useful for testing how close RAS

1 KL di v er gence mean and variance 

 more generic setup – two sample covariance matrices based on 
ppendix D of Philcox et al. ( 2020 ). Ho we ver, the deri v ation was lim
ave not been able to find a reference about the metric’s scatter arou
nal result there is slightly incorrect, namely 1 should be subtracted
ovariance commonly used with mocks 

 ab = 

1 

n S − 1 

n S ∑ 

i= 1 

( x a,i − x̄ a )( x b,i − x̄ b ) 

he mean is not known beforehand but estimated from the sample as
y one. Then the covariance of sample covariance matrix elements i

cov ( X ab , X cd ) = 

C 0 ,ac C 0 ,bd + C 0 ,ad C 0 ,bc 

n S − 1 

nstead of 

cov ( X ab , X cd ) = 

C 0 ,ac C 0 ,bd + C 0 ,ad C 0 ,bc 

n S 

s in Philcox et al. ( 2020 ). C 0 is the true underlying covariance mat
ovariance estimate is unbiased, meaning that the expectation value is
atrices X i obtained from n 

( i) 
S samples each, decomposing them as X

quadratic) order in δ X i , we obtain 

D KL 

(
X 

−1 
1 , X 2 

)〉 ≈ N bins ( N bins + 1) 

4 

( 

1 

n 
(1) 
S − 1 

+ 

1 

n 
(2) 
S − 1 

) 

nstead of 

D KL 

(
X 

−1 
1 , X 2 

)〉 ≈ N bins ( N bins + 1) 

4 

( 

1 

n 
(1) 
S 

+ 

1 

n 
(2) 
S 

) 

s in Philcox et al. ( 2020 ). 
Since in this work we only consider one sample covariance ma

istribution, the more rele v ant result is for the true precision matrix 

 D KL ( � 0 , X ) 〉 ≈ N bins ( N bins + 1) 

4( n S − 1) 
, 
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w r of samples to infinity, reducing the noise in X 

−1 
1 to zero. 

ariance. Let us take 

(B5) 

w e eigenvectors and eigenvalues equal to the square roots of corresponding 
e

(B6) 

L ȳ a (so that 〈 δy a , i 〉 = 0) and finally compute the ‘normalized’ covariance 
m

Y (B7) 

T

Y (B8) 

L

ab = 

(
δij − 1 

n S 

)
δab . (B9) 

A

Y (B10) 

w

(B11) 

N nce matrix, starting from 

2 (B12) 

w terminant to arrive to 

2 (B13) 

r ): 

2 (B14) 

N or series up to quadratic order in δY we obtain 

2 (B15) 

T ( B11 ), one can re-derive equation ( B4 ). We will proceed to compute the 
v

 ab δY ab δY cd δY cd 〉 − 〈 δY ab δY ab 〉 〈 δY cd δY cd 〉 ] . (B16) 

F

Y
 

δy d,l . (B17) 

δ  use Wick’s theorem to split this into all possible pairs. ( δY also has zero 
m  deeper level.) The total number of pairs is 8!/(4! × 2 4 ) = 105, so it is 
e ul to check which are similar. It is apparent that the following five index 
p  l and ( a , b , i , j ) ↔ ( c , d , k , l ). Finally, some of the pairs will not contribute 
t e Y contribute to 〈 Y 〉 = I and must be subtracted; and if all the contracted 
p ean of D KL and has to be subtracted too. 

1) 4 Var [ D KL ( � 0 , X)], but no more than 8 of them are distinct after using 
s

 

〉 〈
δy d,k δy d,l 

〉 = 

kl − 1 
n S 

)
= 8 N 

3 
bins ( n S − 1) (B18) 
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hich can be obtained from equation ( B3 ) by setting the first numbe
For the further deri v ations, it is convenient to ‘normalize’ the cov

y i = � 

1 / 2 
0 x i , 

here � 

1 / 2 
0 means the matrix square root of � 0 – a matrix with the sam

igenvalues of the original matrix. Then 

cov ( y a,i , y b,j ) = δij δab . 

et us also introduce ȳ a ≡ 1 
n S 

∑ n S 
i= 1 y a,i , define δy a,i ≡ y a,i − − −

atrix: 

 ab ≡ 1 

n S − 1 

n S ∑ 

i= 1 

δy a,i δy b,i . 

hen also 

 = � 

1 / 2 
0 X � 

1 / 2 
0 . 

et us compute 

cov ( δy a,i , δy b,j ) = 

〈
δy a,i δy b,j 

〉 = δij δab − 2 × 1 

n S 
δab + n S × 1 

n 2 S 
δ

s a consequence, 〈 Y 〉 = I , and we can expand 

 = I + δY 

hile 〈 δY 〉 = 0. Also, 

cov ( Y ab , Y cd ) = 〈 δY ab δY cd 〉 = 

δac δbd + δad δbc 

n S − 1 
. 

ow let us expand the KL divergence using the ‘normalized’ covaria

 D KL ( � 0 , X ) = tr ( � 0 X ) − N bins − ln det ( � 0 X ) , 

e can write � 0 = � 

1 / 2 
0 � 

1 / 2 
0 , use the cyclic property of trace and de

 D KL ( � 0 , X ) = tr ( Y ) − N bins − ln det ( Y ) , 

emembering equation ( B8 ). Then we expand in δY (equation ( B10 )

 D KL ( � 0 , X ) = tr ( δY ) − ln det ( I + δY ) . 

ow using ln det A = tr ln A and expanding the second term in Tayl

 D KL ( � 0 , X ) ≈ 1 

2 
tr 
[
( δY ) 2 

] = 

1 

2 

N bins ∑ 

a,b= 1 

δY ab δY ab . 

aking the expectation value of equation ( B15 ) and using equation 
ariance: 

Var 
{

tr 
[
( δY ) 2 

]} = 

〈 (
tr 
[
( δY ) 2 

])2 
〉 

− 〈
tr 
[
( δY ) 2 

]〉2 = 

N bins ∑ 

a,b ,c ,d= 1 

[ 〈 δY

ull expansion gives 

 ab Y ab Y cd Y cd = 

1 

( n S − 1) 4 

n S ∑ 

i,j ,k,l= 1 

δy a,i δy b,i δy a,j δy b,j δy c,k δy d,k δy c,l

y are normally distributed and have zero means, so for them, we can
ean, but not Gaussian distribution, this is why we need to go to a

asy to go o v er them in a computer program. Additionally, it is usef
ermutations leave the expression unchanged: a ↔ b , c ↔ d , i ↔ j , k ↔
o variance and can be excluded: contraction of a pair inside the sam
airs correspond to Y ’s with the same indices, it contributes to the m
We find there are 56 pair assignments contributing to ≈ 16( n S −

ymmetries: 

8 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

〈
δy a,i δy a,j 

〉 〈
δy b,i δy c,k 

〉 〈
δy b,j δy c,l

8 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

(
δij − 1 

n S 

)(
δik − 1 

n S 

)
δbc 

(
δjl − 1 

n S 

)
δbc 

(
δ
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y d,l 

〉 〈
δy d,k δy c,l 

〉 = 

δkl − 1 
n S 

)
δdc = 16 N 

2 
bins ( n S − 1) (B19) 

y d,l 

〉 〈
δy d,k δy c,l 

〉 = 

d 
(
δkl − 1 

n S 

)
δcd = 8 N bins ( n S − 1) (B20) 

 

δy c,l 
〉 〈

δy b,j δy d,l 

〉 = 

c 
(
δjl − 1 

n S 

)
δbd = 4 N 

2 
bins ( n S − 1) 2 (B21) 

 

δy d,l 

〉 〈
δy b,j δy c,l 

〉 = 

d 
(
δjl − 1 

n S 

)
δbc = 4 N bins ( n S − 1) 2 (B22) 

y d,k 

〉 〈
δy b,j δy d,l 

〉 = 

d 
(
δjl − 1 

n S 

)
δbd = 4 N bins ( n S − 1) (B23) 

y d,l 

〉 〈
δy b,j δy d,k 

〉 = 

 

(
δjk − 1 

n S 

)
δbd = 8 N bins ( n S − 1) (B24) 

y c,l 
〉 〈

δy b,j δy d,k 

〉 = 

c 
(
δjk − 1 

n S 

)
δbd = 4 N 

2 
bins ( n S − 1) (B25) 

1) + 4( n S − 1) + 4 + 8 + 4 N bins ] = 

 = 

4 N bins 

( n S − 1) 3 
[( N bins + 1)( n S + 2 N bins + 2) + 2] . (B26) 

nce is approximately 16 times smaller: 

(B27) 

T ansion was truncated at the quadratic order in δY . Other deri v ation steps 
a

B

W ed to the other. If u is an unit vector in N bins -dimensional space ( u 

T u = 1), 
t ere, C 

1 / 2 
2 means the matrix square root of C 2 – a matrix with the same 

e nding eigenvalues of the original matrix. Then we consider the χ2 with 
r

w (B28) 

T value of this matrix, which can be expressed through the Frobenius norm: 

R (B29) 

T sing its cyclic property: ∣∣∣ = tr 

[(
C 

1 / 2 
2 � 1 C 

1 / 2 
2 − I 

)2 
]

 tr ( � 1 C 2 � 1 C 2 − 2 � 1 C 2 + I ) = tr tr 
[
( � 1 C 2 − I ) 2 

]
. (B30) 

T

R (B31) 

D
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16 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

〈
δy a,i δy a,j 

〉 〈
δy b,i δy c,k 

〉 〈
δy b,j δ

16 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

(
δij − 1 

n S 

)(
δik − 1 

n S 

)
δbc 

(
δjl − 1 

n S 

)
δbd 

(
8 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

〈
δy a,i δy b,j 

〉 〈
δy b,i δy c,k 

〉 〈
δy a,j δ

8 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

(
δij − 1 

n S 

)
δab 

(
δik − 1 

n S 

)
δbc 

(
δjl − 1 

n S 

)
δa

4 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

〈
δy a,i δy c,k 

〉 〈
δy b,i δy d,k 

〉 〈
δy a,j

4 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

(
δik − 1 

n S 

)
δac 

(
δik − 1 

n S 

)
δbd 

(
δjl − 1 

n S 

)
δa

4 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

〈
δy a,i δy c,k 

〉 〈
δy b,i δy d,k 

〉 〈
δy a,j

4 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

(
δik − 1 

n S 

)
δac 

(
δik − 1 

n S 

)
δbd 

(
δjl − 1 

n S 

)
δa

4 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

〈
δy a,i δy c,k 

〉 〈
δy b,i δy c,l 

〉 〈
δy a,j δ

4 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

(
δik − 1 

n S 

)
δac 

(
δil − 1 

n S 

)
δbc 

(
δjk − 1 

n S 

)
δa

8 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

〈
δy a,i δy c,k 

〉 〈
δy b,i δy c,l 

〉 〈
δy a,j δ

8 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

(
δik − 1 

n S 

)
δac 

(
δil − 1 

n S 

)
δbc 

(
δjl − 1 

n S 

)
δad

4 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

〈
δy a,i δy c,k 

〉 〈
δy b,i δy d,l 

〉 〈
δy a,j δ

4 
∑ N bins 

a,b ,c ,d= 1 

∑ n S 
i,j ,k,l= 1 

(
δik − 1 

n S 

)
δac 

(
δil − 1 

n S 

)
δbd 

(
δjl − 1 

n S 

)
δa

Gathering all together gives 

Var 
{

tr 
[
( δY ) 2 

]} ≈ N bins 

( n S − 1) 3 
[8 N 

2 
bins + 16 N bins + 8 + 4 N bins ( n S −

4 N bins 

( n S − 1) 3 
[2 N 

2 
bins + 4 N bins + 4 + ( N bins + 1) n S ]

Then, according to equation ( B15 ), the variance of the KL diverge

Var [ D KL ( � 0 , X ) ] ≈ N bins [( N bins + 1)( n S + 2 N bins + 2) + 2] 

4( n S − 1) 3 
. 

his is an approximation because in equation ( B15 ), the Taylor exp
re exact. 

2 Inverse test 

e considered how different χ2 would result from one matrix compar
hen w = C 

1 / 2 
2 u gives an unit χ2 according to C 2 : w 

T C 

−1 
2 w = 1. H

igenvectors and eigenvalues equal to the square roots of correspo
espect to C 1 ( � 1 ): w 

T � 1 w and subtract the expected value of 1: 

 

T � 1 w − 1 = u 

T 
[ 
C 

1 / 2 
2 � 1 C 

1 / 2 
2 − I 

] 
u . 

aking the RMS o v er all directions of u , one arrives at the RMS eigen

 inv ( � 1 , C 2 ) = 

1 √ 

N bins 

∣∣∣∣∣∣C 

1 / 2 
2 � 1 C 

1 / 2 
2 − I 

∣∣∣∣∣∣
F 
. 

he Frobenius norm can be recast as a trace and simplified further u∣∣∣C 

1 / 2 
2 � 1 C 

1 / 2 
2 − I 

∣∣∣∣∣∣
F 

= tr 

[(
C 

1 / 2 
2 � 1 C 

1 / 2 
2 − I 

)T (
C 

1 / 2 
2 � 1 C 

1 / 2 
2 − I 

)]

= tr 
(

C 

1 / 2 
2 � 1 C 2 � 1 C 

1 / 2 
2 − 2 C 

1 / 2 
2 � 1 C 

1 / 2 
2 + I 

)
=

his allows us to compute the quantity as 

 inv ( � 1 , C 2 ) = 

√ 

tr 
[
( � 1 C 2 − I ) 2 

]
N bins 

, 
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M

w ng (and inverting) covariance matrices (especially the sample one) when 
p

P (B32) 

w  Eisenstein ( 2019 ) and Philcox et al. ( 2020 ). Through a similar procedure, 
o

| (B33) 

H  less clear. 
: 

R (B34) 

R

R (B35) 

F t 

R (B36) 

w ins and lack of approximations. We can obtain the expectation value by 
p

〈
(B37) 

F

(B38) 

A are root to estimate the mean and variance of not-squared metric as 

〈 (B39) 

 2) + 2 

1) 2 
. (B40) 

A n of minus log-likelihood, considering the covariance of all covariance 
m tion ( B36 )). Since δ Y is real and symmetric, we obtain 

N (B41) 

F x have zero covariance (excluding the pairs symmetric with respect to the 
d f-diagonal elements have a variance of 1/( n S − 1). Then this covariance is 
t ent elements divided by their variance to get the χ2 : 

χ  δY ab ) 
2 = 

( n S − 1 ) N bins 

2 
× R 

2 
inv ( � 0 , X ) . (B42) 

S nts of sample covariance matrix X (via equation ( B8 ), since � 0 is not 
d he ‘rotation’ into Y would be significantly longer as the covariance of X ab 

e  

B

W tors in individual samples from the estimate of average: 

 

− 1) tr ( � 0 X) . (B43) 
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hich is more computationally robust – it is better to avoid factorizi
ossible. 
It is notable that this metric is related to the discriminant matrix 

 = 

√ 

� R 

T 
C S 

√ 

� R − I , 

here 
√ 

� R is the lower Cholesky decomposition, used in Philcox &
ne can find that its Frobenius norm is the same as abo v e: 

 | P | | 2 F = tr 
[
( � 1 C 2 − I ) 2 

]
. 

o we ver, the interpretation of elements of the discriminant matrix is
Now let us consider the square of this metric (to remo v e the root)

 

2 
inv ( � 0 , X ) = 

1 

N bins 
tr [ � 0 X� 0 X − 2 � 0 X + I ] . 

emembering equation ( B8 ), we arrive to 

 

2 
inv ( � 0 , X ) = 

1 

N bins 
tr 
[
Y 

2 − 2 Y + I 
]
. 

urthermore, expanding in δY [according to equation ( B10 )], we ge

 

2 
inv ( � 0 , X ) = 

1 

N bins 
tr 
[
( δY ) 2 

]
, 

hich is similar to equation ( B15 ) up to a constant factor of 1/ N b

lugging in equation ( B11 ): 

R 

2 
inv ( � 0 , X ) 

〉 = 

N bins + 1 

n S − 1 
. 

or variance, we can use equation ( B26 ): 

Var 
[
R 

2 
inv ( � 0 , X ) 

] = 

4[( N bins + 1)( n S + 2 N bins + 2) + 2] 

N bins ( n S − 1) 3 
. 

ssuming Var 
[
R 

2 
inv ( � 0 , X ) 

] � 〈
R 

2 
inv ( � 0 , X ) 

〉2 
, we can take the squ

 R inv ( � 0 , X ) 〉 ≈
√ 〈

R 

2 
inv ( � 0 , X ) 

〉 = 

√ 

N bins + 1 

n S − 1 
, 

Var [ R inv ( � 0 , X ) ] ≈ Var 
[
R 

2 
inv ( � 0 , X ) 

]
4 
〈
R 

2 
inv ( � 0 , X ) 

〉 = 

( N bins + 1)( n S + 2 N bins +
N bins ( N bins + 1)( n S −

lso, it is useful to note that R inv is related to the χ2 approximatio
atrix elements. This is rather easy to see with δ Y expression (equa

 bins × R 

2 
inv ( � 0 , X ) = | | δY | | 2 F = 

N bins ∑ 

a,b= 1 

( δY ab ) 
2 . 

rom equation ( B11 ), we conclude that distinct elements of Y matri
iagonal), its diagonal elements have a variance of 2/( n S − 1) and of
rivial to invert and we have to sum squares of deviation of independ

2 = ( n S − 1 ) 

[ 
1 

2 

N bins ∑ 

a= 1 

( δY aa ) 
2 + 

N bins ∑ 

a= 1 

N bins ∑ 

b= a+ 1 

( δY ab ) 
2 

] 
= 

n S − 1 

2 

N bins ∑ 

a,b= 1 

(

ince elements of Y are independent linear combinations of eleme
egenerate), the same holds for X , but a direct computation without t
lements [equation ( B2 )] has a more generic and complex structure.

3 Mean chi-squared 

e consider the sum of χ2 associated with the deviation of data vec

n S ∑ 

i= 1 

N bins ∑ 

a,b= 1 

( x a,i − x̄ a ) � 0 ,ab ( x b,i − x̄ b ) = ( n S − 1) 
N bins ∑ 

a,b= 1 

� 0 ,ab X ab = ( n S
NRAS 524, 3894–3911 (2023) 
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Table B1. Theoretical versus sampled mean ± std of covariance matrix comparison metrics with the true precision matrix. A close agreement 
can be seen. 

D KL ( � 0 , X ) R inv ( � 0 , X ) χ2 
red ( � 0 , X) 

Measurement space (45 bins) Theoretical 0.519 ± 0.024 0.2147 ± 0.0049 1.0000 ± 0.0067 
Sampled 0.526 ± 0.023 0.2146 ± 0.0050 1.0000 ± 0.0067 

Parameter space (5 quantities projected from 25 bins) Theoretical 0.0075 ± 0.0028 0.078 ± 0.014 1.000 ± 0.020 
Sampled 0.0077 ± 0.0028 0.077 ± 0.014 1.000 ± 0.020 

R

 S − 1) ∼ χ2 [ N bins × ( n S − 1)] . (B44) 

T

χ (B45) 

B

T erformed a quick Monte Carlo validation. 10 000 batches of 999 samples 
h ken the true covariance and precision to be unity matrices C 0 = � 0 = I . 
T matrix operations. Full 45-bin sample covariance and precision matrices 
h  projected into 5 quantities, for simplicity using 5 random orthonormal 
v and sampled means and standard deviations are presented in Table B1 . 
D only in the second digit of standard deviation and fractions of standard 
d  than enough for the main part of the paper, where the scatter of RASCALC 

r te that the results for D KL and R inv [equations ( B4 ), ( B27 ), ( B39 ), and 
( hem, especially as N bins increases, while the deri v ations for R 

2 
inv and χ2 

red 

[
LC Average NG for pre-reconstruction) and deri v ati ves of the observables 

w e reconstruction) to confirm whether the comparison measures are indeed 
n t (Table B1 ), and close agreement of σ [ σ ( αBAO )]/ σ ( αBAO ) with [2( n S −
1

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

T

©
P

D
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emembering equation ( B5 ), we can rewrite the LHS as 

n S ∑ 

i= 1 

N bins ∑ 

a,b= 1 

( y a,i − ȳ a ) δab ( y b,i − ȳ b ) = 

N bins ∑ 

a= 1 

n S ∑ 

i= 1 

( y a,i − ȳ a ) 
2 ∼

N bins ∑ 

a= 1 

χ2 ( n

herefore the corresponding reduced χ2 is 

2 
red = 

1 

N bins 
tr ( � 0 X ) . 

4 Validation of means and standard deviations 

o check the theoretical results from the previous sections, we have p
aving 45 bins each have been generated. For simplicity, we have ta
his should not affect the results, save for numerical instabilities in 
ave been estimated in each batch. Then, 25 bins were selected and
ectors as parameter deri v ati ves. Comparison between theoretical 
ifferences are most pronounced in D KL , but the disagreement is 
eviation on the mean. Therefore, we report a close agreement, more
esults is significantly larger than these standard deviations. We no
 B40 )] are approximate and we expect meaningful deviations from t
equations ( B37 ), ( B37 ), and ( B44 )] are exact. 

We have repeated this test with a realistic covariance matrix ( RASCA

ith respect to the parameters (accordingly, for the BAO model befor
ot affected. We have obtained the same numbers as in simpler tes
)] −1/2 according to equation ( 34 ). 
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