
T E C H N I C A L R E L E A S E

aws-s3-integrity-check: an
open-source bash tool to verify the
integrity of a dataset stored on
Amazon S3

Submitted: 26 April 2023
Accepted: 17 August 2023
Published: 23 August 2023

* Corresponding author. E-mail:
mina.ryten@ucl.ac.uk

Published by GigaScience Press.

Preprint submitted at https://doi.org/
10.20944/preprints202308.0603.v1

This is an Open Access article
distributed under the terms of the
Creative Commons Attribution
License (https://creativecommons.
org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and
reproduction in any medium,
provided the original work is
properly cited.

Gigabyte, 2023, 1–15

Sonia García-Ruiz1,2, Regina Hertfelder Reynolds1,2, Melissa Grant-Peters1,2,
Emil Karl Gustavsson1,2, Aine Fairbrother-Browne1,3,4, Zhongbo Chen1,4,
Jonathan William Brenton1,2 and Mina Ryten1,2,*

1 Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health,
London, UK

2 NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London,
UK

3 Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King’s College
London, London, UK

4 Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK

ABSTRACT
Amazon Simple Storage Service (Amazon S3) is a widely used platform for storing large
biomedical datasets. Unintended data alterations can occur during data writing and transmission,
altering the original content and generating unexpected results. However, no open-source and
easy-to-use tool exists to verify end-to-end data integrity. Here, we present aws-s3-integrity-check,
a user-friendly, lightweight, and reliable bash tool to verify the integrity of a dataset stored in
an Amazon S3 bucket. Using this tool, we only needed ∼114 min to verify the integrity of 1,045
records ranging between 5 bytes and 10 gigabytes and occupying ∼935 gigabytes of the Amazon
S3 cloud. Our aws-s3-integrity-check tool also provides file-by-file on-screen and log-file-based
information about the status of each integrity check. To our knowledge, this tool is the only
open-source one that allows verifying the integrity of a dataset uploaded to the Amazon S3
Storage quickly, reliably, and efficiently. The tool is freely available for download and use at
https://github.com/SoniaRuiz/aws-s3-integrity-check and https://hub.docker.com/r/soniaruiz/aws-
s3-integrity-check.

Subjects Software and Workflows, Software Engineering, Workflows

FINDINGS
Background
Since the advent of high-throughput next-generation sequencing technologies [1] and with
the recent surge of long-read, single-cell, and spatial RNA sequencing [2], biomedical
research has become intensely data-driven [3–5]. Indeed, one of the major challenges of the
post-genome era has been to store the large data volumes produced by these technologies.
Cloud computing providers, such as Amazon Web Services (AWS) [6], play an essential role
in addressing this challenge by offering leading security standards, cost-effective data
storage, easy data sharing, and real-time access to resources and applications [7–9].

Nevertheless, cloud storage services require a stable network connection to complete a
successful data transfer [10]. For instance, network congestion can cause packet loss during

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 1/15

mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
mailto:mina.ryten@ucl.ac.uk
https://doi.org/10.20944/preprints202308.0603.v1
https://doi.org/10.20944/preprints202308.0603.v1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/SoniaRuiz/aws-s3-integrity-check
https://hub.docker.com/r/soniaruiz/aws-s3-integrity-check
https://hub.docker.com/r/soniaruiz/aws-s3-integrity-check
https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

data transmission, producing unintended changes to the data and corrupting the
transferred files. To identify faulty data transfers in real-time, Amazon Simple Storage
Service (Amazon S3) permits using checksum values through the AWS Command Line
Interface (AWS CLI) tool. This approach consists of locally calculating the Content-MD5 or
the entity tag (ETag) number associated with the contents of a given file; this checksum
value is then inserted within the AWS CLI command used to upload the file to an Amazon S3
bucket. If the checksum number assigned by Amazon S3 is identical to the local checksum
calculated by the user, then both local and remote file versions are the same: the file’s
integrity is proven.

However, this method has disadvantages. First, the choice of the checksum number to
calculate (i.e., either the Content-MD5 [11] or the ETag number) depends on the
characteristics of the file, such as its size or the server-side encryption selected. This
requires the user to evaluate the characteristics of each file independently before deciding
which checksum value to calculate. Second, the checksum number needs to be included
within the AWS CLI command used to upload the file to an Amazon S3 bucket; thus, the user
needs to upload each file individually. Finally, this process needs to be repeated for each file
transferred to Amazon S3, which, as the number of files forming a dataset increases, can
exponentially increase the time required to complete a data transfer.

To overcome these challenges, we developed aws-s3-integrity-check, a bash tool to verify
the integrity of a dataset uploaded to Amazon S3. The aws-s3-integrity-check tool offers a
user-friendly and easy-to-use front-end that requires one single command with a maximum
of three parameters to perform the complete integrity verification of all files contained
within a given Amazon S3 bucket, regardless of their size and extension. In addition, the
aws-s3-integrity-check tool provides three unique features: (i) it is used after the data has
been uploaded, providing the user with the freedom to transfer the data in batches to
Amazon S3 without having to manually calculate individual checksum values for each file;
(ii) to complete the integrity verification of all files contained within a given dataset, it only
requires the submission of one query to the Amazon S3 application programming interface
(API), thus not congesting the network; and (iii) it informs the user of the result from each
checksum comparison, providing detailed per-file information. Concerning the latter,
aws-s3-integrity-check can produce four types of output: (i) if the user does not have read
access to the indicated Amazon S3 bucket, the tool produces an error message and stops its
execution; (ii) if a given file from the provided folder does not exist within the indicated
Amazon S3 bucket, the tool produces a warning message and continues its execution; (iii) if
a local file exists within the remote bucket, but its local and remote checksum values do not
match, the tool produces a warning message and continues its execution; (iv) if the local file
exists within the remote bucket and its local and remote checksum values match, the
integrity of the file is marked as proven. All outputs are shown on-screen and stored locally
in a log file.

The aws-s3-integrity-check tool is freely available for download and use [12, 13], also
within a Docker format [14].

Our approach
Our purpose was to enable the automatic integrity verification of a set of files transferred to
Amazon S3, regardless of their size and extension. Therefore, we created the
aws-s3-integrity-check tool, which: (i) reads the metadata of the totality of files stored within

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 2/15

https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

a given Amazon S3 bucket by querying the Amazon S3 API only once; (ii) calculates the
checksum value associated with every file contained within a local folder by using the same
algorithm applied by Amazon S3; and (iii) compares local and remote checksum values,
informing the user if both numbers are identical and, consequently, if the remote version of
the S3 object coincides with its local version.

To identify different file versions, Amazon S3 uses ETag numbers, which remain
unalterable unless the file object suffers any change to its contents. Amazon S3 uses
different algorithms to calculate an ETag number, depending on the characteristics of the
transferred file. More specifically, an ETag number is an MD5 digest of the object data when
the file is: (i) uploaded through the AWS Management Console or using the PUT Object,
POST Object, or Copy operation; (ii) is plain text; or (iii) is encrypted with Amazon
S3-managed keys (SSE-S3). However, if the object has been server-side encrypted with
customer-provided keys (SSE-C) or with AWS Key Management Service (AWS KMS) keys
(SSE-KMS), the ETag number assigned will not be an MD5 digest. Finally, if the object has
been created as part of a Multipart Upload or Party copy operation, the ETag number
assigned will not be an MD5 digest, regardless of the encryption method [15]. When an
object is larger than a specific file size, it will be automatically uploaded using multipart
uploads. The ETag number assigned to it will combine the different MD5 digest numbers
assigned to smaller sections of its data.

In order to match the default values published within the guidelines corresponding to
the AWS CLI S3 transfer commands [16], 8 MB is the default multipart chunk size and the
maximum file size threshold for aws-s3-integrity-check to calculate the ETag number. To
automatise the calculation of the ETag value in cases where the file size exceeds the default
value of 8 MB, the aws-s3-integrity-check tool uses the s3md5 bash script (version 1.2) [17].
The s3md5 bash script consists of several steps. Using the same algorithm used by Amazon
S3, the s3md5 script splits the files larger than 8 MB into smaller parts of that same size and
calculates the MD5 digest corresponding to each chunk. Secondly, the s3md5 script
concatenates all the bytes from the individual MD5 digest numbers produced, creating a
single value and converting it into binary format before calculating its final MD5 digest
number. Thirdly, it appends a dash with the total number of parts calculated to the MD5
hash. The resulting number represents the final ETag value assigned to the file. Figure 1
shows a complete overview of the approach followed (please, refer to the Methods section
for more details).

TESTING
Datasets
To test the aws-s3-integrity-check tool, we used 1,045 files stored across four independent
Amazon S3 buckets within a private AWS account in the London region (eu-west-2). The
rationale behind the inclusion of these four datasets during the testing phase of the
aws-s3-integrity-check tool was the variability of their project nature, the different file types
and sizes they contain, and their availability within two different public repositories (i.e.,
the European Genome-phenome Archive (EGA) [18] and the data repository GigaDB [19]).

These four datasets occupied ∼935 GB of cloud storage space and contained files ranging
between 5 Bytes and 10 GB that were individually uploaded to AWS using the AWS CLI sync
command (version 1) [20]. No specific server-side encryption was indicated while using the
sync command. In addition, all the configuration values available for the aws s3 sync

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 3/15

https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

Figure 1. Overview of the aws-s3-integrity-check tool.
(A) The aws-s3-integrity-check tool verifies if the user has read access to the files within the Amazon S3 bucket
indicated by the parameter [-b|--bucket <S3_bucket_name>]. (B) The aws-s3-integrity-check tool queries the
Amazon S3 API to obtain a list with the ETag numbers assigned to all files contained within the S3 bucket indicated.
(C) The aws-s3-integrity-check tool uses the s3md5 bash script to calculate the ETag number associated with the
contents of each local file contained within the folder indicated by parameter [-l|--local <path_local_folder>].
(D) The aws-s3-integrity-check tool compares the local and remote ETag numbers assigned to each local file. The
output of each phase of the tool is shown on-screen and logged within a local file.

Table 1. Details of the four datasets used during the testing phase of the aws-s3-integrity-check tool. All datasets were independently tested. The log files
produced by each independent test are available on GitHub [21]. All processing times were measured using the in-built time Linux tool (version 1.7) [22].
Processing times refer to the time (in minutes and seconds) required for the aws-s3-integrity-check tool to process and evaluate the integrity of the totality of
the files within each dataset.

Amazon S3 bucket Data
origin

Details Number of
files tested

Bucket size Processing time Log file

mass-spectrometry-
imaging

GigaDB Imaging-type supporting data for the
publication “Delineating Regions-of-interest
for Mass Spectrometry Imaging by
Multimodally Corroborated Spatial
Segmentation” [23].

36 16 GB real 1m52.193s
user 1m8.964s
sys 0m24.404s

logs/mass-spectrometry-
imaging.S3_integrity_
log.2023.07.31-22.59.01.tx

rnaseq-pd EGA Contents of the EGA dataset
EGAS00001006380, containing bulk-tissue
RNA-sequencing paired nuclear and
cytoplasmic fractions of the anterior
prefrontal cortex, cerebellar cortex, and
putamen tissues from post-mortem
neuropathologically-confirmed control
individuals [24].

872 479 GB real 62m56.793s
user 36m26.604s
sys 16m10.548s

logs/rnaseq-pd.S3_integrity_
log.2023.07.31-23.02.47.txt

tf-prioritizer GigaDB Software-type supporting data for the
publication “TF-Prioritizer: a Java pipeline
to prioritize condition-specific transcription
factors” [25].

6 3.7 MB real 0m15.131s
user 0m2.012s
sys 0m0.240s

logs/tf-prioritizer.S3_integrity_
log.2023.07.31-22.58.33.txt

ukbec-unaligned-fastq EGA A subset of the EGA dataset
EGAS00001003065, containing
RNA-sequencing Fastq files generated from
180 putamen and substantia nigra control
samples [26].

131 440 GB real 51m12.058s
user 31m27.348s
sys 14m7.084s

logs/ukbec-unaligned-
fastq.S3_integrity_
log.2023.08.01-01.03.58.txt

command, which include max_concurrent_requests, max_queue_size,
multipart_threshold, multipart_chunksize, and max_bandwidth, were not changed and
used with default values. Details of the four datasets tested are shown in Table 1.

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 4/15

https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

Table 2. File types processed during the testing phase of the aws-s3-integrity-check tool.

File type Description
Bam Compressed binary version of a SAM file that represents aligned sequences up to 128 Mb.
Bed Browser Extensible Data format. This file format is used to store genomic regions as coordinates.
Csv Comma-Separated Values.
Docx File format for Microsoft Word documents.
Fa File containing information about DNA sequences and other related pieces of scientific information.
Fastq Text-based format for storing genome sequencing data and quality scores.
Gct Gene Cluster Text. This is a tab-delimited text format file that contains gene expression data.
Gff General Feature Format is a file format used for describing genes and other features of DNA, RNA, and protein sequences.
Gz A file compressed by the standard GNU zip (gzip).
Html HyperText Markup Language file.
Ibd Pre-processed mass spectrometry imaging (MSI) data.
imzML Imaging Mass Spectrometry Markup Language. Contains raw MSI data.
Ipynb Computational notebooks that can be opened with Jupyter Notebook.
Jpg Compressed image format for containing digital images.
JSON JavaScript Object Notation. Text-based format to represent structured data based on JavaScript object syntax.
md5 Checksum file.
Msa Multiple sequence alignment file. It generally contains the alignment of three or more biological sequences of similar length.
Mtx Sparse matrix format. This contains genes in the rows and cells in the columns. It is produced as output by Cell Ranger.
Npy Standard binary file format in NumPy [27] for saving numpy arrays.
Nwk Newick tree file format to represent graph-theoretical trees with edge lengths using parentheses and commas.
Pdf Portable Document Format.
Py Python file.
Pyc Compiled bytecode file generated by the Python interpreter after a Python script is imported or executed.
R R language script format.
Svg Scalable Vector Graphics. This is a vector file format.
Tab Tab-delimited text or data files.
Tif Tag Image File Format. Tif is a computer file used to store raster graphics and image information.
Tsv Tab-separated values to store text-based tabular data.
Txt Text document file.
Vcf Variant Call Format. Text file for storing gene sequence variations.
Xls Microsoft Excel Binary File format.
Zip A file containing one or more compressed files.

File types
Using the aws-s3-integrity-check tool, we successfully verified the data integrity of multiple
file types detailed in Table 2.

Testing procedure
We performed two-sided tests. We used the aws-s3-integrity-check tool to (i) test the integrity
of three datasets uploaded to Amazon S3 and (ii) test the integrity of one dataset
downloaded from Amazon S3.

To test the former approach, we downloaded three publicly available datasets
corresponding to one EGA project and two GigaDB studies. Firstly, we requested access to
the dataset with EGA accession number EGAS00001006380, and, after obtaining access, we
downloaded the totality of its files to a local folder. Secondly, we downloaded from the
GigaDB File Transfer Protocol server the data files corresponding to two GigaScience
studies [28, 29] DOI:10.5524/102374 and DOI:10.5524/102379, by using the following Linux
commands:

$ wget -r
ftp://anonymous@ftp.cngb.org/pub/gigadb/pub/10.5524/102001_103000/102374/*

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 5/15

https://www.ncbi.nlm.nih.gov/nuccore/EGAS00001006380
https://doi.org/10.5524/102374
https://doi.org/10.5524/102379
https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

$ wget -r
ftp://anonymous@ftp.cngb.org/pub/gigadb/pub/10.5524/102001_103000/102379/*

These three datasets (i.e., one EGA dataset and two GigaDB projects) were then uploaded
to three different Amazon S3 buckets, which were respectively named “rnaseq-d”
(EGAS00001006380), “mass-spectrometry-imaging” [23], and “tf-prioritizer” [25] (Table 1). In
all three cases, the data was uploaded to Amazon S3 by using the following aws s3
command:

$ aws s3 sync --profile aws_profile path_local_folder/ s3://bucket_name/

To verify that the data contents of the remote S3 objects were identical to the contents of
their local version, we then ran the aws-s3-integrity-check tool by using the following
command structure:

$ bash aws_check_integrity.sh [-l|--local <path_local_folder>] [-b|--bucket
<s3_bucket_name>] [-p|--profile <aws_profile>]

Next, we used the aws-s3-integrity-check tool to test the integrity of a local dataset
downloaded from an S3 bucket. In this case, we used data from the EGA project with
accession number EGAS00001003065. Once we obtained access to the EGAS00001003065
repository, we downloaded all its files to a local folder. We then uploaded this local dataset
to an S3 bucket named “ukbec-unaligned-fastq” (Table 1). When the data transfer to Amazon
S3 finished, we downloaded these remote files to a local folder by using the S3 command
sync as follows:

$ aws s3 sync --profile aws_profile s3://ukbec-unaligned-fastq/ path_local_folder/.

To test that the local version of the downloaded files had identical data contents as their
remote S3 version, we ran the aws-s3-integrity-check tool employing the following
command synopsis:

$ bash aws_check_integrity.sh [-l|--local <path_local_folder>] [-b|--bucket
<ukbec-unaligned-fastq>] [-p|--profile <aws_profile>].

Finally, we tested whether the aws-s3-integrity-check tool could detect any differences
between a given local file that had been manually modified and its S3 remote version and
inform the user accordingly. Therefore, we edited the file “readme_102374.txt” from the
dataset [23] and changed its data contents by running the following command:

$ (echo THIS FILE HAS BEEN LOCALLY MODIFIED; cat readme_102374.txt) >
readme_102374.tmp && mv readme_102374.t{mp,xt}

We then run the aws-s3-integrity-check tool employing the following command synopsis:

$ bash aws_check_integrity.sh [-l|--local <path_local_folder>] [-b|--bucket
<mass-spectrometry-imaging>] [-p|--profile <aws_profile>].

As expected, the aws-s3-integrity-check tool was able to detect the differences in data
contents between the local and the S3 remote version of the “readme_102374.txt” file by
producing a different checksum number from the one originally provided by Amazon S3.
The error message produced was “ERROR: local and remote ETag numbers for the file
‘readme_102374.txt’ do not match.”. The output of this comparison can be checked on the log
file “mass-spectrometry-imaging.S3_integrity_log.2023.07.31-22.59.01.txt” (Table 1).

The aws-s3-integrity-check tool also demonstrated minimal use of computer resources by
displaying an average CPU usage of only 2% across all tests performed.

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 6/15

https://www.ncbi.nlm.nih.gov/nuccore/EGAS00001006380
https://www.ncbi.nlm.nih.gov/nuccore/EGAS00001003065
https://www.ncbi.nlm.nih.gov/nuccore/EGAS00001003065
https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

Testing configuration
The four datasets tested were stored across four Amazon S3 buckets in the AWS London
region (eu-west-2) (Table 1). All four S3 buckets had the file versioning enabled and a
server-side SSE-S3 encryption key type selected.

The aws-s3-integrity-check tool is expected to work for files that have been uploaded to
Amazon S3 by following these two uploading criteria:

1. Uploaded by command line using any of the aws s3 transfer commands, which include
the cp, sync, mv, and rm commands.
2. Using the default values established for the following aws s3 configuration
parameters:

a. max_concurrent_requests - default: 10.
b. max_queue_size - default: 1000.
c. multipart_threshold - default: 8 (MB).
d. multipart_chunksize - default: 8 (MB).
e. max_bandwidth - default: none.
f. use_accelerate_endpoint - default: false.
g. use_dualstack_endpoint - default: false.
h. addressing_style - default: auto.
i. payload_signing_enabled - default: false.

The aws-s3-integrity-check tool is expected to work across Linux distributions. With this
in mind, testing was performed using an Ubuntu server 16.04 LTS with kernel version
4.4.0-210-generic and an Ubuntu server 22.04.1 LTS (Jammy Jellyfish) with kernel version
5.15.0-56-generic. To remove the operating system barrier, the Dockerized version of the
aws-s3-integrity-check tool has been made available [14].

Support
The source code corresponding to the aws-s3-integrity-check tool is hosted on GitHub [13].
Also, from this repository, it is possible to create new issues and submit tested pull review
requests. Issues have been configured to choose between the “Bug report” and “Feature
request” categories, ultimately facilitating the creation and submission of new triaged and
labelled entries.

The aws-s3-integrity-check tool relies on the s3md5 bash script (version 1.2) [17] to
function. To ensure the availability and maintenance of the s3md5 bash script to users of
the aws-s3-integrity-check tool, the source s3md5 GitHub repository [17] has been forked
and made available [30]. Any potential issues emerging on the s3md5 bash script that may
affect the core function of the aws-s3-integrity-check tool can be submitted via the Issues tab
of the forked s3md5 repository. Any new issue will be triaged, maintained, and fixed on the
forked GitHub repository within the “Bug Report” category, before being submitted via a
pull request to the project owner.

Limitations
Here, we presented a novel approach for optimising the integrity verification of a dataset
transferred to/from the Amazon S3 cloud storage service. However, there are a few caveats
to this strategy. First, the user has to have read/write access to an Amazon S3 bucket.

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 7/15

https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

Figure 2. A stepwise protocol summarising how to check the integrity of a dataset stored on Amazon
S3 [31].
https://www.protocols.io/widgets/doi?uri=dx.doi.org/10.17504/protocols.io.n92ld9qy9g5b/v2

Second, this tool requires that the user selects JavaScript Object Notation (JSON) as the
preferred text-output format during the AWS authentication process. Third, the
aws-s3-integrity-check tool is only expected to work for files that have been uploaded to
Amazon S3 using any of the aws s3 transfer commands (i.e., cp, sync, mv, and rm) with all
the configuration parameters set to their default values, including multipart_threshold and
multipart_chunksize. In particular, it is essential that the file size thresholds for the file
multipart upload and the default multipart chunk size remain at the default 8 MB values.
Fourth, the bash version of this tool is only expected to work across Linux distributions.
Finally, the Dockerized version of this tool requires three extra arguments to mount three
local folders required by the Docker image, which may increase the complexity of using this
tool.

METHODS
A stepwise protocol summarising how to check the integrity of a dataset stored on Amazon
S3 is available on protocols.io [31] (Figure 2).

Main script
The main script is formed by a set of sequential steps whose methods are detailed below.

To parse command options and arguments sent to the aws-s3-integrity-check bash tool,
we used the Linux built-in function getops [32]. The arguments sent corresponded to
(i) [-l|--local <path_local_folder>], to indicate the path to the local folder containing the
files to be tested; (ii) [-b|--bucket <S3_bucket_name>], to indicate the name of the Amazon
S3 bucket containing the remote version of the local files; (iii) [-p|--profile
<aws_profile>], to indicate the user’s AWS profile in case the authentication on AWS was
done using single sign-on (SSO); and (iv) [-h|--help], to show further information about
the usage of the tool.

To test whether the user had read access over the files stored within the Amazon S3
bucket indicated through the argument [-b|--bucket <S3_bucket_name>], we used the AWS
CLI command aws s3 ls (version 2) [33]. If this query returned an error, the tool informed

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 8/15

https://www.protocols.io/widgets/doi?uri=dx.doi.org/10.17504/protocols.io.n92ld9qy9g5b/v2
https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

Figure 3. Structure of the JSON object returned by the AWS CLI function list-objects.
The information contained within each entry corresponds to the metadata of a given S3 object. The aws-s3-
integrity-check bash tool used the keys “Key” and “ETag” during the integrity verification of each file.

the user and suggested different AWS authentication options. For the correct performance
of this tool, it is required that the user selects JSON as the preferred text-output format
during the AWS authentication process.

To obtain the ETag number assigned to the totality of the files contained within the
indicated Amazon S3 bucket, we used the AWS CLI command list-objects (version 1) [34]
as follows:

$ aws s3api list-objects --bucket "$bucket_name" --profile "$aws_profile"'

In this way, we reduced to one the number of queries performed to the AWS S3 API,
known as s3api, which considerably reduced the overall network overload. The output of
the function list-objects was a JSON object (Figure 3).

If the local path indicated through the parameter [-l|--local <path_local_folder>]
existed, was a directory, and the user had read access over its contents, the tool looped
through its files. For each file within the folder, the aws-s3-integrity-check bash tool checked
whether the filename was among the entries retrieved within the JSON metadata object and
indicated within the “Key” field. If that was the case, it meant that the local file existed on
the indicated remote Amazon S3 bucket, and we could proceed to calculate its checksum

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 9/15

https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

value. Before calculating the checksum value of the file, the tool evaluated the data content
of the file. If it was smaller than 8 MB, the tool calculated its Content-MD5 value by using the
function md5sum [35, 36] (version 8.25) [37]. However, if the file was larger than 8 MB, it
used the function s3md5 (version 1.2) [17] with the command "s3md5 8 path_local_file".

To obtain the ETag value that Amazon S3 assigned to the tested file the moment it was
stored on the remote bucket, we filtered the JSON metadata object using the fields “ETag”
and “Key” and the function select (jq library, version jq-1.5-1-a5b5cbe, [38]). We then
compared the local and remote checksum values; if the two numbers were identical, the
integrity of the local file was proven. We repeated this process for each file in the local
folder [-l|--local <path_local_folder>].

To inform the user about the outcome of each step, we use on-screen messages and log
this information within a local file in a .txt format. Log files are stored within a local folder
named “log/” located in the same path in which the main bash script aws-check-integrity.sh
is located. If a local “log/” folder does not exist, the script creates it. Figure 1 shows a
complete overview of the approach we followed.

Docker image
To create the Dockerized version of the aws-s3-integrity-check tool (Docker, version 18.09.7,
build 2d0083d) [39], we used the Dockerfile shown in Figure 4.

The Dockerized version of the aws-s3-integrity-check tool requires the user to indicate
the following additional arguments within the docker run command:

• [-v <path_local_folder>:<path_local_folder>]. This argument is required. This
argument requires replacing the strings [<path_local_folder>:<path_local_folder>]
with the absolute path to the local folder containing the local version of the remote S3
files to be tested. This argument is used to mount the local folder as a local volume to the
Docker image, allowing Docker to have read access over the local files to be tested.
Important: the local folder should be referenced by using the absolute path.

– Example: -v /data/nucCyt:/data/nucCyt

• [-v “$PWD/logs/:/usr/src/logs”]. This argument is required. This argument should not be
changed and, therefore, it should be used as it is shown here. It represents the path to the
local logs folder and is used to mount the local logs folder as a local volume to the Docker
image. It allows Docker to record the outputs produced during the tool execution.

• [-v “$HOME/.aws:/root/.aws:ro”]. This argument is required. This argument should not
be changed and, therefore, it should be used as it is shown here. It represents the path to
the local folder containing the information about the user authentication on AWS. This
parameter is used to mount the local AWS credential directory as a read-only volume to
the Docker image, allowing Docker to have read access to the authentication information
of the user on AWS.

Next, we present two examples that show how to run the Dockerized version of the
aws-s3-integrity-check tool. Each example differs in the method used by the user to
authenticate on AWS:

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 10/15

https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

Figure 4. Dockerfile used to Dockerize the aws-s3-integrity-check tool.

Example #1 (if the user has authenticated on Amazon s3 using SSO):

• docker run -v /data/nucCyt:/data/nucCyt -v "$PWD/logs:/usr/src/logs" -v
"$HOME/.aws:/root/.aws:ro" soniaruiz/aws-s3-integrity-check:latest -l
/data/nucCyt/ -b nuccyt -p my_aws_profile

Example #2 (if the user has authenticated on Amazon s3 using an IAM role (KEY +
SECRET)):

• docker run -v /data/nucCyt:/data/nucCyt -v "$PWD/logs:/usr/src/logs" -v
"$HOME/.aws:/root/.aws:ro" soniaruiz/aws-s3-integrity-check:latest -l
/data/nucCyt/ -b nuccyt

AVAILABILITY AND REQUIREMENTS
• Project name: aws-s3-integrity-check: an open-source bash tool to verify the integrity
of a dataset stored on Amazon S3

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 11/15

https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

• Project homepage: https://github.com/SoniaRuiz/aws-s3-integrity-check [12]
• DockerHub URL: https://hub.docker.com/r/soniaruiz/aws-s3-integrity-check
• Protocols.io: https://dx.doi.org/10.17504/protocols.io.n92ld9qy9g5b/v2 [31]
• Operating system: Ubuntu 16.04.7 LTS (Xenial Xerus), Ubuntu 18.04.6 LTS (Bionic Beaver),

Ubuntu server 22.04.1 LTS (Jammy Jellyfish).
• Programming language: Bash
• Other requirements:

– jq (version jq-1.5-1-a5b5cbe, https://stedolan.github.io/jq/)
– xxd (version 1.10 27oct98 by Juergen Weigert,

https://manpages.ubuntu.com/manpages/bionic/en/man1/xxd.1.html)
– s3md5 (https://github.com/antespi/s3md5)
– AWS Command Line Interface (CLI), (version 2,

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html)
– Docker (version 18.09.7, build 2d0083d, https://www.docker.com/)

• License: Apache-2.0 license.

DATA AVAILABILITY
All datasets used during the testing phase of the aws-s3-integrity-check tool are available
within the EGA and GigaDB platforms.

The dataset stored within the Amazon S3 bucket ‘mass-spectrometry-imaging’ was
generated by Guo et al. [28] and is available on the GigaDB platform [23].

The dataset stored within the Amazon S3 bucket ‘tf-prioritizer’ was generated by
Hoffmann et al. [29] and is available on the GigaDB platform [25].

The dataset stored within the Amazon S3 bucket ‘rnaseq-pd’ was generated by Feleke,
Reynolds et al. [24] and is available under request from EGA with accession number
EGAS00001006380.

The dataset stored within the Amazon S3 bucket ‘ukbec-unaligned-fastq’ was a subset of
the original dataset generated by Guelfi et al. [26], and is available under request from EGA
with accession number EGAS00001003065.

The log files produced during the testing phase of the aws-s3-integrity-check tool are
available at https://github.com/SoniaRuiz/aws-s3-integrity-check/tree/master/logs.

LIST OF ABBREVIATIONS
Amazon S3: Amazon Simple Storage Service; API: Application Programming Interface; AWS:
Amazon Web Services; AWS CLI: AWS Command Line Interface; AWS KMS: AWS Key
Management Service; DOI: Digital Object Identifier; EGA: European Genome-phenome
Archive; ETag: Entity Tag; JSON: JavaScript Object Notation; MSI: mass spectrometry
imaging; SSE-C: Server-side encryption with customer-provided encryption keys; SSE-KMS:
Server-side encryption with AWS Key Management Service keys; SSE-S3: Server-side
encryption with Amazon S3 managed keys; SSO: Single Sign-On.

DECLARATIONS
Competing Interests
The authors declare that they have no competing interests.

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 12/15

https://github.com/SoniaRuiz/aws-s3-integrity-check
https://hub.docker.com/r/soniaruiz/aws-s3-integrity-check
https://dx.doi.org/10.17504/protocols.io.n92ld9qy9g5b/v2
https://stedolan.github.io/jq/
https://manpages.ubuntu.com/manpages/bionic/en/man1/xxd.1.html
https://github.com/antespi/s3md5
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://www.docker.com/
https://www.ncbi.nlm.nih.gov/nuccore/EGAS00001006380
https://www.ncbi.nlm.nih.gov/nuccore/EGAS00001003065
https://github.com/SoniaRuiz/aws-s3-integrity-check/tree/master/logs
https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

Ethics approval
The authors declare that ethical approval was not required for this type of research.

Author contributions
SGR implemented the aws-s3-integrity-check bash tool, created the manuscript, provided
the cloud computing expertise, designed the case study, created the Docker image, and
conducted the empirical experiments. RHR provided new ideas for feature development
and SSO knowledge. RHR, MG-P, ZC, and AF-B proofread the manuscript. RHR, EKG, JWB,
MG-P, AF-B, and ZC helped during the empirical experiments. MR supervised the tool
implementation.

Funding
SGR, RHR, MG-P, JWB and MR were supported through the award of a Tenure Track
Clinician Scientist Fellowship to MR (MR/N008324/1). EKG was supported by the
Postdoctoral Fellowship Program in Alzheimer’s Disease Research from the BrightFocus
Foundation (Award Number: A2021009F). ZC was supported by a clinical research
fellowship from the Leonard Wolfson Foundation. AF-B was supported through the award
of a Biotechnology and Biological Sciences Research Council (BBSRC UK) London
Interdisciplinary Doctoral Fellowship.

Acknowledgements
We acknowledge support from the AWS Cloud Credits for Research (to SGR) for providing
cloud computing resources. We acknowledge Antonio Espinosa; James Seward; Alejandro
Martinez; Andy Wu; Carlo Mendola; Marc Tamsky for their contributions to the GitHub
repository.

REFERENCES
1 Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing

technologies. Nat. Rev. Genet., 2016; 17: 333–351.

2 Marx V. Method of the year: long-read sequencing. Nat. Methods, 2023; 20(1): 6–11.
doi:10.1038/s41592-022-01730-w.

3 Angerer P, Simon L, Tritschler S et al. Single cells make big data: New challenges and opportunities in
transcriptomics. Curr. Opin. Syst. Biol., 2017; 4: 85–91.

4 Schmidt B, Hildebrandt A. Next-generation sequencing: big data meets high performance computing.
Drug Discov. Today, 2017; 22: 712–717.

5 Fang S, Chen B, Zhang Y et al. Computational approaches and challenges in spatial transcriptomics.
Genom. Proteom. Bioinform., 2023; 21(1): 24–47. doi:10.1016/j.gpb.2022.10.001.

6 Cloud Computing Services - Amazon Web Services (AWS). https://aws.amazon.com/. Accessed 14
April 2023.

7 Langmead B, Schatz MC, Lin J et al. Searching for SNPs with cloud computing. Genome Biol., 2009; 10:
R134.

8 Wall DP, Kudtarkar P, Fusaro VA et al. Cloud computing for comparative genomics. BMC Bioinform.,
2010; 11: 259.

9 Halligan BD, Geiger JF, Vallejos AK et al. Low cost, scalable proteomics data analysis using Amazon’s
cloud computing services and open source search algorithms. J. Proteome Res., 2009; 8: 3148–3153.

10 Dickens PM, Larson JW, Nicol DM. Diagnostics for causes of packet loss in a high performance data
transfer system. In: 18th International Parallel and Distributed Processing Symposium, 2004
Proceedings. IEEE, 2004; pp. 55–64.

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 13/15

https://doi.org/10.1038/s41592-022-01730-w
https://doi.org/10.1016/j.gpb.2022.10.001
https://aws.amazon.com/
https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

11 RFC 1864 - The Content-MD5 Header Field. https://datatracker.ietf.org/doc/html/rfc1864. Accessed 14
April 2023.

12 García-Ruiz S, Espinosa A, Seward J et al. SoniaRuiz/aws-s3-integrity-check: GigaByte version (v1.0.1).
Zenodo. 2023; https://doi.org/10.5281/zenodo.8217517.

13 aws-s3-integrity-check GitHub. https://github.com/SoniaRuiz/aws-s3-integrity-check.

14 aws-s3-integrity-check DockerHub. https://hub.docker.com/r/soniaruiz/aws-s3-integrity-check.

15 Checking object integrity - Amazon Simple Storage Service.
https://docs.aws.amazon.com/AmazonS3/latest/userguide/checking-object-integrity.html. Accessed 31
July 2023.

16 AWS CLI S3 Configuration — AWS CLI 1.27.115 Command Reference.
https://docs.aws.amazon.com/cli/latest/topic/s3-config.html. Accessed 19 April 2023.

17 antespi/s3md5: Bash script to calculate Etag/S3 MD5 sum for very big files uploaded using multipart S3
API. https://github.com/antespi/s3md5. Accessed 16 April 2023.

18 Freeberg MA, Fromont LA, D’Altri T et al. The European Genome-phenome Archive in 2021. Nucleic
Acids Res., 2022; 50: D980–D987.

19 Sneddon TP, Zhe XS, Edmunds SC et al. GigaDB: promoting data dissemination and reproducibility.
Database, 2014; 2014: bau018. doi:10.1186/2047-217X-1-11.

20 sync — AWS CLI 2.11.13 Command Reference.
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/sync.html. Accessed 16 April
2023.

21 aws-s3-integrity-check logs. https://github.com/SoniaRuiz/aws-s3-integrity-check/tree/master/logs.
Accessed 12 May 2023.

22 time(1) - Linux manual page. https://man7.org/linux/man-pages/man1/time.1.html. Accessed 30 July
2023.

23 Guo A, Chen Z, Li F et al. Supporting data for “Delineating regions-of-interest for mass spectrometry
imaging by multimodally corroborated spatial segmentation”. GigaScience Database, 2023;
http://dx.doi.org/10.5524/102374.

24 Feleke R, Reynolds RH, Smith AM et al. Cross-platform transcriptional profiling identifies common
and distinct molecular pathologies in Lewy body diseases. Acta Neuropathol., 2021; 142: 449–474.

25 Hoffmann M, Trummer N, Schwartz L et al. Supporting data for “TF-Prioritizer: a java pipeline to
prioritize condition-specific transcription factors”. GigaScience Database, 2023;
http://dx.doi.org/10.5524/102379.

26 Guelfi S, D’Sa K, Botía JA et al. Regulatory sites for splicing in human basal ganglia are enriched for
disease-relevant information. Nat. Commun., 2020; 11: 1041.

27 NumPy documentation — NumPy v1.25.dev0 Manual. https://numpy.org/devdocs/index.html. Accessed
12 May 2023.

28 Guo A, Chen Z, Li F et al. Delineating regions of interest for mass spectrometry imaging by
multimodally corroborated spatial segmentation. GigaScience, 2022; 12: giad021.
doi:10.1093/gigascience/giad021.

29 Hoffmann M, Trummer N, Schwartz L et al. TF-Prioritizer: a Java pipeline to prioritize
condition-specific transcription factors. GigaScience, 2022; 12: giad026.
doi:10.1093/gigascience/giad026.

30 s3md5 GitHub. https://github.com/SoniaRuiz/s3md5.

31 García-Ruiz S. Check the integrity of a dataset stored on Amazon S3. protocols.io. 2023;
https://dx.doi.org/10.17504/protocols.io.n92ld9qy9g5b/v2.

32 IBM Documentation. https://www.ibm.com/docs/en/aix/7.1?topic=g-getopts-command. Accessed 16
April 2023.

33 ls — AWS CLI 2.11.13 Command Reference.
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/ls.html. Accessed 16 April
2023.

34 list-objects — AWS CLI 1.27.114 Command Reference.
https://docs.aws.amazon.com/cli/latest/reference/s3api/list-objects.html. Accessed 16 April 2023.

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 14/15

https://datatracker.ietf.org/doc/html/rfc1864
https://doi.org/10.5281/zenodo.8217517
https://github.com/SoniaRuiz/aws-s3-integrity-check
https://hub.docker.com/r/soniaruiz/aws-s3-integrity-check
https://docs.aws.amazon.com/AmazonS3/latest/userguide/checking-object-integrity.html
https://docs.aws.amazon.com/cli/latest/topic/s3-config.html
https://github.com/antespi/s3md5
https://doi.org/10.1186/2047-217X-1-11
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/sync.html
https://github.com/SoniaRuiz/aws-s3-integrity-check/tree/master/logs
https://man7.org/linux/man-pages/man1/time.1.html
http://dx.doi.org/10.5524/102374
http://dx.doi.org/10.5524/102379
https://numpy.org/devdocs/index.html
https://doi.org/10.1093/gigascience/giad021
https://doi.org/10.1093/gigascience/giad026
https://github.com/SoniaRuiz/s3md5
https://dx.doi.org/10.17504/protocols.io.n92ld9qy9g5b/v2
https://www.ibm.com/docs/en/aix/7.1?topic=g-getopts-command
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/ls.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/list-objects.html
https://doi.org/10.46471/gigabyte.87

S. García-Ruiz et al.

35 md5sum invocation (GNU Coreutils 9.2).
https://www.gnu.org/software/coreutils/manual/html_node/md5sum-invocation.html#md5sum-
invocation. Accessed 14 April 2023.

36 Rivest R. The MD5 Message-Digest Algorithm. RFC Editor, 1992; https://www.ietf.org/rfc/rfc1321.txt.

37 md5sum(1): compute/check MD5 message digest - Linux man page. https://linux.die.net/man/1/md5sum.
Accessed 16 April 2023.

38 jq. https://stedolan.github.io/jq/. Accessed 16 April 2023.

39 Docker: Accelerated, Containerized Application Development. https://www.docker.com/. Accessed 16
April 2023.

Gigabyte, 2023, DOI: 10.46471/gigabyte.87 15/15

https://www.gnu.org/software/coreutils/manual/html_node/md5sum-invocation.html#md5sum-invocation
https://www.gnu.org/software/coreutils/manual/html_node/md5sum-invocation.html#md5sum-invocation
https://www.ietf.org/rfc/rfc1321.txt
https://linux.die.net/man/1/md5sum
https://stedolan.github.io/jq/
https://www.docker.com/
https://doi.org/10.46471/gigabyte.87

	Findings
	Background
	Our approach

	Testing
	Datasets
	File types
	Testing procedure
	Testing configuration
	Support
	Limitations

	Methods
	Main script
	Docker image

	Availability and requirements
	Data Availability
	List of abbreviations
	Declarations
	Competing Interests
	Ethics approval
	Author contributions
	Funding
	Acknowledgements

